ARM: integrator: fix compile warning in cpu.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / mmu.c
blobfbb04aee8301efab741f80f7c590a45d7e3b298f
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "mmu.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/io.h>
41 #include <asm/vmx.h>
44 * When setting this variable to true it enables Two-Dimensional-Paging
45 * where the hardware walks 2 page tables:
46 * 1. the guest-virtual to guest-physical
47 * 2. while doing 1. it walks guest-physical to host-physical
48 * If the hardware supports that we don't need to do shadow paging.
50 bool tdp_enabled = false;
52 enum {
53 AUDIT_PRE_PAGE_FAULT,
54 AUDIT_POST_PAGE_FAULT,
55 AUDIT_PRE_PTE_WRITE,
56 AUDIT_POST_PTE_WRITE,
57 AUDIT_PRE_SYNC,
58 AUDIT_POST_SYNC
61 char *audit_point_name[] = {
62 "pre page fault",
63 "post page fault",
64 "pre pte write",
65 "post pte write",
66 "pre sync",
67 "post sync"
70 #undef MMU_DEBUG
72 #ifdef MMU_DEBUG
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77 #else
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
82 #endif
84 #ifdef MMU_DEBUG
85 static int dbg = 0;
86 module_param(dbg, bool, 0644);
87 #endif
89 static int oos_shadow = 1;
90 module_param(oos_shadow, bool, 0644);
92 #ifndef MMU_DEBUG
93 #define ASSERT(x) do { } while (0)
94 #else
95 #define ASSERT(x) \
96 if (!(x)) { \
97 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
98 __FILE__, __LINE__, #x); \
100 #endif
102 #define PTE_PREFETCH_NUM 8
104 #define PT_FIRST_AVAIL_BITS_SHIFT 9
105 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
107 #define PT64_LEVEL_BITS 9
109 #define PT64_LEVEL_SHIFT(level) \
110 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112 #define PT64_LEVEL_MASK(level) \
113 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115 #define PT64_INDEX(address, level)\
116 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
119 #define PT32_LEVEL_BITS 10
121 #define PT32_LEVEL_SHIFT(level) \
122 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124 #define PT32_LEVEL_MASK(level) \
125 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
126 #define PT32_LVL_OFFSET_MASK(level) \
127 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
128 * PT32_LEVEL_BITS))) - 1))
130 #define PT32_INDEX(address, level)\
131 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
135 #define PT64_DIR_BASE_ADDR_MASK \
136 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
137 #define PT64_LVL_ADDR_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
140 #define PT64_LVL_OFFSET_MASK(level) \
141 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
142 * PT64_LEVEL_BITS))) - 1))
144 #define PT32_BASE_ADDR_MASK PAGE_MASK
145 #define PT32_DIR_BASE_ADDR_MASK \
146 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
147 #define PT32_LVL_ADDR_MASK(level) \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
149 * PT32_LEVEL_BITS))) - 1))
151 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
152 | PT64_NX_MASK)
154 #define RMAP_EXT 4
156 #define ACC_EXEC_MASK 1
157 #define ACC_WRITE_MASK PT_WRITABLE_MASK
158 #define ACC_USER_MASK PT_USER_MASK
159 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161 #include <trace/events/kvm.h>
163 #define CREATE_TRACE_POINTS
164 #include "mmutrace.h"
166 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
168 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
170 struct kvm_rmap_desc {
171 u64 *sptes[RMAP_EXT];
172 struct kvm_rmap_desc *more;
175 struct kvm_shadow_walk_iterator {
176 u64 addr;
177 hpa_t shadow_addr;
178 int level;
179 u64 *sptep;
180 unsigned index;
183 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
184 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
185 shadow_walk_okay(&(_walker)); \
186 shadow_walk_next(&(_walker)))
188 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
190 static struct kmem_cache *pte_chain_cache;
191 static struct kmem_cache *rmap_desc_cache;
192 static struct kmem_cache *mmu_page_header_cache;
193 static struct percpu_counter kvm_total_used_mmu_pages;
195 static u64 __read_mostly shadow_trap_nonpresent_pte;
196 static u64 __read_mostly shadow_notrap_nonpresent_pte;
197 static u64 __read_mostly shadow_base_present_pte;
198 static u64 __read_mostly shadow_nx_mask;
199 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
200 static u64 __read_mostly shadow_user_mask;
201 static u64 __read_mostly shadow_accessed_mask;
202 static u64 __read_mostly shadow_dirty_mask;
204 static inline u64 rsvd_bits(int s, int e)
206 return ((1ULL << (e - s + 1)) - 1) << s;
209 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
211 shadow_trap_nonpresent_pte = trap_pte;
212 shadow_notrap_nonpresent_pte = notrap_pte;
214 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
216 void kvm_mmu_set_base_ptes(u64 base_pte)
218 shadow_base_present_pte = base_pte;
220 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
222 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
223 u64 dirty_mask, u64 nx_mask, u64 x_mask)
225 shadow_user_mask = user_mask;
226 shadow_accessed_mask = accessed_mask;
227 shadow_dirty_mask = dirty_mask;
228 shadow_nx_mask = nx_mask;
229 shadow_x_mask = x_mask;
231 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
233 static bool is_write_protection(struct kvm_vcpu *vcpu)
235 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
238 static int is_cpuid_PSE36(void)
240 return 1;
243 static int is_nx(struct kvm_vcpu *vcpu)
245 return vcpu->arch.efer & EFER_NX;
248 static int is_shadow_present_pte(u64 pte)
250 return pte != shadow_trap_nonpresent_pte
251 && pte != shadow_notrap_nonpresent_pte;
254 static int is_large_pte(u64 pte)
256 return pte & PT_PAGE_SIZE_MASK;
259 static int is_writable_pte(unsigned long pte)
261 return pte & PT_WRITABLE_MASK;
264 static int is_dirty_gpte(unsigned long pte)
266 return pte & PT_DIRTY_MASK;
269 static int is_rmap_spte(u64 pte)
271 return is_shadow_present_pte(pte);
274 static int is_last_spte(u64 pte, int level)
276 if (level == PT_PAGE_TABLE_LEVEL)
277 return 1;
278 if (is_large_pte(pte))
279 return 1;
280 return 0;
283 static pfn_t spte_to_pfn(u64 pte)
285 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 static gfn_t pse36_gfn_delta(u32 gpte)
290 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
292 return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 static void __set_spte(u64 *sptep, u64 spte)
297 set_64bit(sptep, spte);
300 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
302 #ifdef CONFIG_X86_64
303 return xchg(sptep, new_spte);
304 #else
305 u64 old_spte;
307 do {
308 old_spte = *sptep;
309 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
311 return old_spte;
312 #endif
315 static bool spte_has_volatile_bits(u64 spte)
317 if (!shadow_accessed_mask)
318 return false;
320 if (!is_shadow_present_pte(spte))
321 return false;
323 if ((spte & shadow_accessed_mask) &&
324 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
325 return false;
327 return true;
330 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
332 return (old_spte & bit_mask) && !(new_spte & bit_mask);
335 static void update_spte(u64 *sptep, u64 new_spte)
337 u64 mask, old_spte = *sptep;
339 WARN_ON(!is_rmap_spte(new_spte));
341 new_spte |= old_spte & shadow_dirty_mask;
343 mask = shadow_accessed_mask;
344 if (is_writable_pte(old_spte))
345 mask |= shadow_dirty_mask;
347 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
348 __set_spte(sptep, new_spte);
349 else
350 old_spte = __xchg_spte(sptep, new_spte);
352 if (!shadow_accessed_mask)
353 return;
355 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
356 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
357 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
358 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
361 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
362 struct kmem_cache *base_cache, int min)
364 void *obj;
366 if (cache->nobjs >= min)
367 return 0;
368 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
369 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
370 if (!obj)
371 return -ENOMEM;
372 cache->objects[cache->nobjs++] = obj;
374 return 0;
377 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
378 struct kmem_cache *cache)
380 while (mc->nobjs)
381 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
384 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
385 int min)
387 struct page *page;
389 if (cache->nobjs >= min)
390 return 0;
391 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
392 page = alloc_page(GFP_KERNEL);
393 if (!page)
394 return -ENOMEM;
395 cache->objects[cache->nobjs++] = page_address(page);
397 return 0;
400 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
402 while (mc->nobjs)
403 free_page((unsigned long)mc->objects[--mc->nobjs]);
406 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
408 int r;
410 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
411 pte_chain_cache, 4);
412 if (r)
413 goto out;
414 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
415 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
416 if (r)
417 goto out;
418 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
419 if (r)
420 goto out;
421 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
422 mmu_page_header_cache, 4);
423 out:
424 return r;
427 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
429 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
430 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
431 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
432 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
433 mmu_page_header_cache);
436 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
437 size_t size)
439 void *p;
441 BUG_ON(!mc->nobjs);
442 p = mc->objects[--mc->nobjs];
443 return p;
446 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
448 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
449 sizeof(struct kvm_pte_chain));
452 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
454 kmem_cache_free(pte_chain_cache, pc);
457 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
459 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
460 sizeof(struct kvm_rmap_desc));
463 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
465 kmem_cache_free(rmap_desc_cache, rd);
468 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
470 if (!sp->role.direct)
471 return sp->gfns[index];
473 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
476 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
478 if (sp->role.direct)
479 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
480 else
481 sp->gfns[index] = gfn;
485 * Return the pointer to the largepage write count for a given
486 * gfn, handling slots that are not large page aligned.
488 static int *slot_largepage_idx(gfn_t gfn,
489 struct kvm_memory_slot *slot,
490 int level)
492 unsigned long idx;
494 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
495 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
496 return &slot->lpage_info[level - 2][idx].write_count;
499 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
501 struct kvm_memory_slot *slot;
502 int *write_count;
503 int i;
505 slot = gfn_to_memslot(kvm, gfn);
506 for (i = PT_DIRECTORY_LEVEL;
507 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
508 write_count = slot_largepage_idx(gfn, slot, i);
509 *write_count += 1;
513 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
515 struct kvm_memory_slot *slot;
516 int *write_count;
517 int i;
519 slot = gfn_to_memslot(kvm, gfn);
520 for (i = PT_DIRECTORY_LEVEL;
521 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
522 write_count = slot_largepage_idx(gfn, slot, i);
523 *write_count -= 1;
524 WARN_ON(*write_count < 0);
528 static int has_wrprotected_page(struct kvm *kvm,
529 gfn_t gfn,
530 int level)
532 struct kvm_memory_slot *slot;
533 int *largepage_idx;
535 slot = gfn_to_memslot(kvm, gfn);
536 if (slot) {
537 largepage_idx = slot_largepage_idx(gfn, slot, level);
538 return *largepage_idx;
541 return 1;
544 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
546 unsigned long page_size;
547 int i, ret = 0;
549 page_size = kvm_host_page_size(kvm, gfn);
551 for (i = PT_PAGE_TABLE_LEVEL;
552 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
553 if (page_size >= KVM_HPAGE_SIZE(i))
554 ret = i;
555 else
556 break;
559 return ret;
562 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
564 struct kvm_memory_slot *slot;
565 int host_level, level, max_level;
567 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
568 if (slot && slot->dirty_bitmap)
569 return PT_PAGE_TABLE_LEVEL;
571 host_level = host_mapping_level(vcpu->kvm, large_gfn);
573 if (host_level == PT_PAGE_TABLE_LEVEL)
574 return host_level;
576 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
577 kvm_x86_ops->get_lpage_level() : host_level;
579 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
580 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
581 break;
583 return level - 1;
587 * Take gfn and return the reverse mapping to it.
590 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
592 struct kvm_memory_slot *slot;
593 unsigned long idx;
595 slot = gfn_to_memslot(kvm, gfn);
596 if (likely(level == PT_PAGE_TABLE_LEVEL))
597 return &slot->rmap[gfn - slot->base_gfn];
599 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
600 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
602 return &slot->lpage_info[level - 2][idx].rmap_pde;
606 * Reverse mapping data structures:
608 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
609 * that points to page_address(page).
611 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
612 * containing more mappings.
614 * Returns the number of rmap entries before the spte was added or zero if
615 * the spte was not added.
618 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
620 struct kvm_mmu_page *sp;
621 struct kvm_rmap_desc *desc;
622 unsigned long *rmapp;
623 int i, count = 0;
625 if (!is_rmap_spte(*spte))
626 return count;
627 sp = page_header(__pa(spte));
628 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
629 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
630 if (!*rmapp) {
631 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
632 *rmapp = (unsigned long)spte;
633 } else if (!(*rmapp & 1)) {
634 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
635 desc = mmu_alloc_rmap_desc(vcpu);
636 desc->sptes[0] = (u64 *)*rmapp;
637 desc->sptes[1] = spte;
638 *rmapp = (unsigned long)desc | 1;
639 ++count;
640 } else {
641 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
642 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
643 while (desc->sptes[RMAP_EXT-1] && desc->more) {
644 desc = desc->more;
645 count += RMAP_EXT;
647 if (desc->sptes[RMAP_EXT-1]) {
648 desc->more = mmu_alloc_rmap_desc(vcpu);
649 desc = desc->more;
651 for (i = 0; desc->sptes[i]; ++i)
652 ++count;
653 desc->sptes[i] = spte;
655 return count;
658 static void rmap_desc_remove_entry(unsigned long *rmapp,
659 struct kvm_rmap_desc *desc,
660 int i,
661 struct kvm_rmap_desc *prev_desc)
663 int j;
665 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
667 desc->sptes[i] = desc->sptes[j];
668 desc->sptes[j] = NULL;
669 if (j != 0)
670 return;
671 if (!prev_desc && !desc->more)
672 *rmapp = (unsigned long)desc->sptes[0];
673 else
674 if (prev_desc)
675 prev_desc->more = desc->more;
676 else
677 *rmapp = (unsigned long)desc->more | 1;
678 mmu_free_rmap_desc(desc);
681 static void rmap_remove(struct kvm *kvm, u64 *spte)
683 struct kvm_rmap_desc *desc;
684 struct kvm_rmap_desc *prev_desc;
685 struct kvm_mmu_page *sp;
686 gfn_t gfn;
687 unsigned long *rmapp;
688 int i;
690 sp = page_header(__pa(spte));
691 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
692 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
693 if (!*rmapp) {
694 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
695 BUG();
696 } else if (!(*rmapp & 1)) {
697 rmap_printk("rmap_remove: %p 1->0\n", spte);
698 if ((u64 *)*rmapp != spte) {
699 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
700 BUG();
702 *rmapp = 0;
703 } else {
704 rmap_printk("rmap_remove: %p many->many\n", spte);
705 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
706 prev_desc = NULL;
707 while (desc) {
708 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
709 if (desc->sptes[i] == spte) {
710 rmap_desc_remove_entry(rmapp,
711 desc, i,
712 prev_desc);
713 return;
715 prev_desc = desc;
716 desc = desc->more;
718 pr_err("rmap_remove: %p many->many\n", spte);
719 BUG();
723 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
725 pfn_t pfn;
726 u64 old_spte = *sptep;
728 if (!spte_has_volatile_bits(old_spte))
729 __set_spte(sptep, new_spte);
730 else
731 old_spte = __xchg_spte(sptep, new_spte);
733 if (!is_rmap_spte(old_spte))
734 return 0;
736 pfn = spte_to_pfn(old_spte);
737 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
738 kvm_set_pfn_accessed(pfn);
739 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
740 kvm_set_pfn_dirty(pfn);
741 return 1;
744 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
746 if (set_spte_track_bits(sptep, new_spte))
747 rmap_remove(kvm, sptep);
750 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
752 struct kvm_rmap_desc *desc;
753 u64 *prev_spte;
754 int i;
756 if (!*rmapp)
757 return NULL;
758 else if (!(*rmapp & 1)) {
759 if (!spte)
760 return (u64 *)*rmapp;
761 return NULL;
763 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
764 prev_spte = NULL;
765 while (desc) {
766 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
767 if (prev_spte == spte)
768 return desc->sptes[i];
769 prev_spte = desc->sptes[i];
771 desc = desc->more;
773 return NULL;
776 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
778 unsigned long *rmapp;
779 u64 *spte;
780 int i, write_protected = 0;
782 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
784 spte = rmap_next(kvm, rmapp, NULL);
785 while (spte) {
786 BUG_ON(!spte);
787 BUG_ON(!(*spte & PT_PRESENT_MASK));
788 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
789 if (is_writable_pte(*spte)) {
790 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
791 write_protected = 1;
793 spte = rmap_next(kvm, rmapp, spte);
796 /* check for huge page mappings */
797 for (i = PT_DIRECTORY_LEVEL;
798 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
799 rmapp = gfn_to_rmap(kvm, gfn, i);
800 spte = rmap_next(kvm, rmapp, NULL);
801 while (spte) {
802 BUG_ON(!spte);
803 BUG_ON(!(*spte & PT_PRESENT_MASK));
804 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
805 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
806 if (is_writable_pte(*spte)) {
807 drop_spte(kvm, spte,
808 shadow_trap_nonpresent_pte);
809 --kvm->stat.lpages;
810 spte = NULL;
811 write_protected = 1;
813 spte = rmap_next(kvm, rmapp, spte);
817 return write_protected;
820 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
821 unsigned long data)
823 u64 *spte;
824 int need_tlb_flush = 0;
826 while ((spte = rmap_next(kvm, rmapp, NULL))) {
827 BUG_ON(!(*spte & PT_PRESENT_MASK));
828 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
829 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
830 need_tlb_flush = 1;
832 return need_tlb_flush;
835 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
836 unsigned long data)
838 int need_flush = 0;
839 u64 *spte, new_spte;
840 pte_t *ptep = (pte_t *)data;
841 pfn_t new_pfn;
843 WARN_ON(pte_huge(*ptep));
844 new_pfn = pte_pfn(*ptep);
845 spte = rmap_next(kvm, rmapp, NULL);
846 while (spte) {
847 BUG_ON(!is_shadow_present_pte(*spte));
848 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
849 need_flush = 1;
850 if (pte_write(*ptep)) {
851 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
852 spte = rmap_next(kvm, rmapp, NULL);
853 } else {
854 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
855 new_spte |= (u64)new_pfn << PAGE_SHIFT;
857 new_spte &= ~PT_WRITABLE_MASK;
858 new_spte &= ~SPTE_HOST_WRITEABLE;
859 new_spte &= ~shadow_accessed_mask;
860 set_spte_track_bits(spte, new_spte);
861 spte = rmap_next(kvm, rmapp, spte);
864 if (need_flush)
865 kvm_flush_remote_tlbs(kvm);
867 return 0;
870 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
871 unsigned long data,
872 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
873 unsigned long data))
875 int i, j;
876 int ret;
877 int retval = 0;
878 struct kvm_memslots *slots;
880 slots = kvm_memslots(kvm);
882 for (i = 0; i < slots->nmemslots; i++) {
883 struct kvm_memory_slot *memslot = &slots->memslots[i];
884 unsigned long start = memslot->userspace_addr;
885 unsigned long end;
887 end = start + (memslot->npages << PAGE_SHIFT);
888 if (hva >= start && hva < end) {
889 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
891 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
893 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
894 unsigned long idx;
895 int sh;
897 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
898 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
899 (memslot->base_gfn >> sh);
900 ret |= handler(kvm,
901 &memslot->lpage_info[j][idx].rmap_pde,
902 data);
904 trace_kvm_age_page(hva, memslot, ret);
905 retval |= ret;
909 return retval;
912 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
914 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
917 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
919 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
922 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
923 unsigned long data)
925 u64 *spte;
926 int young = 0;
929 * Emulate the accessed bit for EPT, by checking if this page has
930 * an EPT mapping, and clearing it if it does. On the next access,
931 * a new EPT mapping will be established.
932 * This has some overhead, but not as much as the cost of swapping
933 * out actively used pages or breaking up actively used hugepages.
935 if (!shadow_accessed_mask)
936 return kvm_unmap_rmapp(kvm, rmapp, data);
938 spte = rmap_next(kvm, rmapp, NULL);
939 while (spte) {
940 int _young;
941 u64 _spte = *spte;
942 BUG_ON(!(_spte & PT_PRESENT_MASK));
943 _young = _spte & PT_ACCESSED_MASK;
944 if (_young) {
945 young = 1;
946 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
948 spte = rmap_next(kvm, rmapp, spte);
950 return young;
953 #define RMAP_RECYCLE_THRESHOLD 1000
955 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
957 unsigned long *rmapp;
958 struct kvm_mmu_page *sp;
960 sp = page_header(__pa(spte));
962 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
964 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
965 kvm_flush_remote_tlbs(vcpu->kvm);
968 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
970 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
973 #ifdef MMU_DEBUG
974 static int is_empty_shadow_page(u64 *spt)
976 u64 *pos;
977 u64 *end;
979 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
980 if (is_shadow_present_pte(*pos)) {
981 printk(KERN_ERR "%s: %p %llx\n", __func__,
982 pos, *pos);
983 return 0;
985 return 1;
987 #endif
990 * This value is the sum of all of the kvm instances's
991 * kvm->arch.n_used_mmu_pages values. We need a global,
992 * aggregate version in order to make the slab shrinker
993 * faster
995 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
997 kvm->arch.n_used_mmu_pages += nr;
998 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1001 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1003 ASSERT(is_empty_shadow_page(sp->spt));
1004 hlist_del(&sp->hash_link);
1005 list_del(&sp->link);
1006 __free_page(virt_to_page(sp->spt));
1007 if (!sp->role.direct)
1008 __free_page(virt_to_page(sp->gfns));
1009 kmem_cache_free(mmu_page_header_cache, sp);
1010 kvm_mod_used_mmu_pages(kvm, -1);
1013 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1015 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1018 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1019 u64 *parent_pte, int direct)
1021 struct kvm_mmu_page *sp;
1023 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1024 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1025 if (!direct)
1026 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1027 PAGE_SIZE);
1028 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1029 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1030 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1031 sp->multimapped = 0;
1032 sp->parent_pte = parent_pte;
1033 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1034 return sp;
1037 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1038 struct kvm_mmu_page *sp, u64 *parent_pte)
1040 struct kvm_pte_chain *pte_chain;
1041 struct hlist_node *node;
1042 int i;
1044 if (!parent_pte)
1045 return;
1046 if (!sp->multimapped) {
1047 u64 *old = sp->parent_pte;
1049 if (!old) {
1050 sp->parent_pte = parent_pte;
1051 return;
1053 sp->multimapped = 1;
1054 pte_chain = mmu_alloc_pte_chain(vcpu);
1055 INIT_HLIST_HEAD(&sp->parent_ptes);
1056 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1057 pte_chain->parent_ptes[0] = old;
1059 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1060 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1061 continue;
1062 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1063 if (!pte_chain->parent_ptes[i]) {
1064 pte_chain->parent_ptes[i] = parent_pte;
1065 return;
1068 pte_chain = mmu_alloc_pte_chain(vcpu);
1069 BUG_ON(!pte_chain);
1070 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1071 pte_chain->parent_ptes[0] = parent_pte;
1074 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1075 u64 *parent_pte)
1077 struct kvm_pte_chain *pte_chain;
1078 struct hlist_node *node;
1079 int i;
1081 if (!sp->multimapped) {
1082 BUG_ON(sp->parent_pte != parent_pte);
1083 sp->parent_pte = NULL;
1084 return;
1086 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1087 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1088 if (!pte_chain->parent_ptes[i])
1089 break;
1090 if (pte_chain->parent_ptes[i] != parent_pte)
1091 continue;
1092 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1093 && pte_chain->parent_ptes[i + 1]) {
1094 pte_chain->parent_ptes[i]
1095 = pte_chain->parent_ptes[i + 1];
1096 ++i;
1098 pte_chain->parent_ptes[i] = NULL;
1099 if (i == 0) {
1100 hlist_del(&pte_chain->link);
1101 mmu_free_pte_chain(pte_chain);
1102 if (hlist_empty(&sp->parent_ptes)) {
1103 sp->multimapped = 0;
1104 sp->parent_pte = NULL;
1107 return;
1109 BUG();
1112 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1114 struct kvm_pte_chain *pte_chain;
1115 struct hlist_node *node;
1116 struct kvm_mmu_page *parent_sp;
1117 int i;
1119 if (!sp->multimapped && sp->parent_pte) {
1120 parent_sp = page_header(__pa(sp->parent_pte));
1121 fn(parent_sp, sp->parent_pte);
1122 return;
1125 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1126 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1127 u64 *spte = pte_chain->parent_ptes[i];
1129 if (!spte)
1130 break;
1131 parent_sp = page_header(__pa(spte));
1132 fn(parent_sp, spte);
1136 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1137 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1139 mmu_parent_walk(sp, mark_unsync);
1142 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1144 unsigned int index;
1146 index = spte - sp->spt;
1147 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1148 return;
1149 if (sp->unsync_children++)
1150 return;
1151 kvm_mmu_mark_parents_unsync(sp);
1154 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1155 struct kvm_mmu_page *sp)
1157 int i;
1159 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1160 sp->spt[i] = shadow_trap_nonpresent_pte;
1163 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1164 struct kvm_mmu_page *sp, bool clear_unsync)
1166 return 1;
1169 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1173 #define KVM_PAGE_ARRAY_NR 16
1175 struct kvm_mmu_pages {
1176 struct mmu_page_and_offset {
1177 struct kvm_mmu_page *sp;
1178 unsigned int idx;
1179 } page[KVM_PAGE_ARRAY_NR];
1180 unsigned int nr;
1183 #define for_each_unsync_children(bitmap, idx) \
1184 for (idx = find_first_bit(bitmap, 512); \
1185 idx < 512; \
1186 idx = find_next_bit(bitmap, 512, idx+1))
1188 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1189 int idx)
1191 int i;
1193 if (sp->unsync)
1194 for (i=0; i < pvec->nr; i++)
1195 if (pvec->page[i].sp == sp)
1196 return 0;
1198 pvec->page[pvec->nr].sp = sp;
1199 pvec->page[pvec->nr].idx = idx;
1200 pvec->nr++;
1201 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1204 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1205 struct kvm_mmu_pages *pvec)
1207 int i, ret, nr_unsync_leaf = 0;
1209 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1210 struct kvm_mmu_page *child;
1211 u64 ent = sp->spt[i];
1213 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1214 goto clear_child_bitmap;
1216 child = page_header(ent & PT64_BASE_ADDR_MASK);
1218 if (child->unsync_children) {
1219 if (mmu_pages_add(pvec, child, i))
1220 return -ENOSPC;
1222 ret = __mmu_unsync_walk(child, pvec);
1223 if (!ret)
1224 goto clear_child_bitmap;
1225 else if (ret > 0)
1226 nr_unsync_leaf += ret;
1227 else
1228 return ret;
1229 } else if (child->unsync) {
1230 nr_unsync_leaf++;
1231 if (mmu_pages_add(pvec, child, i))
1232 return -ENOSPC;
1233 } else
1234 goto clear_child_bitmap;
1236 continue;
1238 clear_child_bitmap:
1239 __clear_bit(i, sp->unsync_child_bitmap);
1240 sp->unsync_children--;
1241 WARN_ON((int)sp->unsync_children < 0);
1245 return nr_unsync_leaf;
1248 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1249 struct kvm_mmu_pages *pvec)
1251 if (!sp->unsync_children)
1252 return 0;
1254 mmu_pages_add(pvec, sp, 0);
1255 return __mmu_unsync_walk(sp, pvec);
1258 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1260 WARN_ON(!sp->unsync);
1261 trace_kvm_mmu_sync_page(sp);
1262 sp->unsync = 0;
1263 --kvm->stat.mmu_unsync;
1266 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1267 struct list_head *invalid_list);
1268 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1269 struct list_head *invalid_list);
1271 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1272 hlist_for_each_entry(sp, pos, \
1273 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1274 if ((sp)->gfn != (gfn)) {} else
1276 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1277 hlist_for_each_entry(sp, pos, \
1278 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1279 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1280 (sp)->role.invalid) {} else
1282 /* @sp->gfn should be write-protected at the call site */
1283 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1284 struct list_head *invalid_list, bool clear_unsync)
1286 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1287 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1288 return 1;
1291 if (clear_unsync)
1292 kvm_unlink_unsync_page(vcpu->kvm, sp);
1294 if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1295 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1296 return 1;
1299 kvm_mmu_flush_tlb(vcpu);
1300 return 0;
1303 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1304 struct kvm_mmu_page *sp)
1306 LIST_HEAD(invalid_list);
1307 int ret;
1309 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1310 if (ret)
1311 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1313 return ret;
1316 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1317 struct list_head *invalid_list)
1319 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1322 /* @gfn should be write-protected at the call site */
1323 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1325 struct kvm_mmu_page *s;
1326 struct hlist_node *node;
1327 LIST_HEAD(invalid_list);
1328 bool flush = false;
1330 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1331 if (!s->unsync)
1332 continue;
1334 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1335 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1336 (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1337 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1338 continue;
1340 kvm_unlink_unsync_page(vcpu->kvm, s);
1341 flush = true;
1344 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1345 if (flush)
1346 kvm_mmu_flush_tlb(vcpu);
1349 struct mmu_page_path {
1350 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1351 unsigned int idx[PT64_ROOT_LEVEL-1];
1354 #define for_each_sp(pvec, sp, parents, i) \
1355 for (i = mmu_pages_next(&pvec, &parents, -1), \
1356 sp = pvec.page[i].sp; \
1357 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1358 i = mmu_pages_next(&pvec, &parents, i))
1360 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1361 struct mmu_page_path *parents,
1362 int i)
1364 int n;
1366 for (n = i+1; n < pvec->nr; n++) {
1367 struct kvm_mmu_page *sp = pvec->page[n].sp;
1369 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1370 parents->idx[0] = pvec->page[n].idx;
1371 return n;
1374 parents->parent[sp->role.level-2] = sp;
1375 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1378 return n;
1381 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1383 struct kvm_mmu_page *sp;
1384 unsigned int level = 0;
1386 do {
1387 unsigned int idx = parents->idx[level];
1389 sp = parents->parent[level];
1390 if (!sp)
1391 return;
1393 --sp->unsync_children;
1394 WARN_ON((int)sp->unsync_children < 0);
1395 __clear_bit(idx, sp->unsync_child_bitmap);
1396 level++;
1397 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1400 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1401 struct mmu_page_path *parents,
1402 struct kvm_mmu_pages *pvec)
1404 parents->parent[parent->role.level-1] = NULL;
1405 pvec->nr = 0;
1408 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1409 struct kvm_mmu_page *parent)
1411 int i;
1412 struct kvm_mmu_page *sp;
1413 struct mmu_page_path parents;
1414 struct kvm_mmu_pages pages;
1415 LIST_HEAD(invalid_list);
1417 kvm_mmu_pages_init(parent, &parents, &pages);
1418 while (mmu_unsync_walk(parent, &pages)) {
1419 int protected = 0;
1421 for_each_sp(pages, sp, parents, i)
1422 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1424 if (protected)
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1427 for_each_sp(pages, sp, parents, i) {
1428 kvm_sync_page(vcpu, sp, &invalid_list);
1429 mmu_pages_clear_parents(&parents);
1431 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1432 cond_resched_lock(&vcpu->kvm->mmu_lock);
1433 kvm_mmu_pages_init(parent, &parents, &pages);
1437 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1438 gfn_t gfn,
1439 gva_t gaddr,
1440 unsigned level,
1441 int direct,
1442 unsigned access,
1443 u64 *parent_pte)
1445 union kvm_mmu_page_role role;
1446 unsigned quadrant;
1447 struct kvm_mmu_page *sp;
1448 struct hlist_node *node;
1449 bool need_sync = false;
1451 role = vcpu->arch.mmu.base_role;
1452 role.level = level;
1453 role.direct = direct;
1454 if (role.direct)
1455 role.cr4_pae = 0;
1456 role.access = access;
1457 if (!vcpu->arch.mmu.direct_map
1458 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1459 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1460 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1461 role.quadrant = quadrant;
1463 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1464 if (!need_sync && sp->unsync)
1465 need_sync = true;
1467 if (sp->role.word != role.word)
1468 continue;
1470 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1471 break;
1473 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1474 if (sp->unsync_children) {
1475 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1476 kvm_mmu_mark_parents_unsync(sp);
1477 } else if (sp->unsync)
1478 kvm_mmu_mark_parents_unsync(sp);
1480 trace_kvm_mmu_get_page(sp, false);
1481 return sp;
1483 ++vcpu->kvm->stat.mmu_cache_miss;
1484 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1485 if (!sp)
1486 return sp;
1487 sp->gfn = gfn;
1488 sp->role = role;
1489 hlist_add_head(&sp->hash_link,
1490 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1491 if (!direct) {
1492 if (rmap_write_protect(vcpu->kvm, gfn))
1493 kvm_flush_remote_tlbs(vcpu->kvm);
1494 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1495 kvm_sync_pages(vcpu, gfn);
1497 account_shadowed(vcpu->kvm, gfn);
1499 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1500 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1501 else
1502 nonpaging_prefetch_page(vcpu, sp);
1503 trace_kvm_mmu_get_page(sp, true);
1504 return sp;
1507 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1508 struct kvm_vcpu *vcpu, u64 addr)
1510 iterator->addr = addr;
1511 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1512 iterator->level = vcpu->arch.mmu.shadow_root_level;
1514 if (iterator->level == PT64_ROOT_LEVEL &&
1515 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1516 !vcpu->arch.mmu.direct_map)
1517 --iterator->level;
1519 if (iterator->level == PT32E_ROOT_LEVEL) {
1520 iterator->shadow_addr
1521 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1522 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1523 --iterator->level;
1524 if (!iterator->shadow_addr)
1525 iterator->level = 0;
1529 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1531 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1532 return false;
1534 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1535 if (is_large_pte(*iterator->sptep))
1536 return false;
1538 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1539 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1540 return true;
1543 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1545 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1546 --iterator->level;
1549 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1551 u64 spte;
1553 spte = __pa(sp->spt)
1554 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1555 | PT_WRITABLE_MASK | PT_USER_MASK;
1556 __set_spte(sptep, spte);
1559 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1561 if (is_large_pte(*sptep)) {
1562 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1563 kvm_flush_remote_tlbs(vcpu->kvm);
1567 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1568 unsigned direct_access)
1570 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1571 struct kvm_mmu_page *child;
1574 * For the direct sp, if the guest pte's dirty bit
1575 * changed form clean to dirty, it will corrupt the
1576 * sp's access: allow writable in the read-only sp,
1577 * so we should update the spte at this point to get
1578 * a new sp with the correct access.
1580 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1581 if (child->role.access == direct_access)
1582 return;
1584 mmu_page_remove_parent_pte(child, sptep);
1585 __set_spte(sptep, shadow_trap_nonpresent_pte);
1586 kvm_flush_remote_tlbs(vcpu->kvm);
1590 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1591 struct kvm_mmu_page *sp)
1593 unsigned i;
1594 u64 *pt;
1595 u64 ent;
1597 pt = sp->spt;
1599 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1600 ent = pt[i];
1602 if (is_shadow_present_pte(ent)) {
1603 if (!is_last_spte(ent, sp->role.level)) {
1604 ent &= PT64_BASE_ADDR_MASK;
1605 mmu_page_remove_parent_pte(page_header(ent),
1606 &pt[i]);
1607 } else {
1608 if (is_large_pte(ent))
1609 --kvm->stat.lpages;
1610 drop_spte(kvm, &pt[i],
1611 shadow_trap_nonpresent_pte);
1614 pt[i] = shadow_trap_nonpresent_pte;
1618 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1620 mmu_page_remove_parent_pte(sp, parent_pte);
1623 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1625 int i;
1626 struct kvm_vcpu *vcpu;
1628 kvm_for_each_vcpu(i, vcpu, kvm)
1629 vcpu->arch.last_pte_updated = NULL;
1632 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1634 u64 *parent_pte;
1636 while (sp->multimapped || sp->parent_pte) {
1637 if (!sp->multimapped)
1638 parent_pte = sp->parent_pte;
1639 else {
1640 struct kvm_pte_chain *chain;
1642 chain = container_of(sp->parent_ptes.first,
1643 struct kvm_pte_chain, link);
1644 parent_pte = chain->parent_ptes[0];
1646 BUG_ON(!parent_pte);
1647 kvm_mmu_put_page(sp, parent_pte);
1648 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1652 static int mmu_zap_unsync_children(struct kvm *kvm,
1653 struct kvm_mmu_page *parent,
1654 struct list_head *invalid_list)
1656 int i, zapped = 0;
1657 struct mmu_page_path parents;
1658 struct kvm_mmu_pages pages;
1660 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1661 return 0;
1663 kvm_mmu_pages_init(parent, &parents, &pages);
1664 while (mmu_unsync_walk(parent, &pages)) {
1665 struct kvm_mmu_page *sp;
1667 for_each_sp(pages, sp, parents, i) {
1668 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1669 mmu_pages_clear_parents(&parents);
1670 zapped++;
1672 kvm_mmu_pages_init(parent, &parents, &pages);
1675 return zapped;
1678 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1679 struct list_head *invalid_list)
1681 int ret;
1683 trace_kvm_mmu_prepare_zap_page(sp);
1684 ++kvm->stat.mmu_shadow_zapped;
1685 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1686 kvm_mmu_page_unlink_children(kvm, sp);
1687 kvm_mmu_unlink_parents(kvm, sp);
1688 if (!sp->role.invalid && !sp->role.direct)
1689 unaccount_shadowed(kvm, sp->gfn);
1690 if (sp->unsync)
1691 kvm_unlink_unsync_page(kvm, sp);
1692 if (!sp->root_count) {
1693 /* Count self */
1694 ret++;
1695 list_move(&sp->link, invalid_list);
1696 } else {
1697 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1698 kvm_reload_remote_mmus(kvm);
1701 sp->role.invalid = 1;
1702 kvm_mmu_reset_last_pte_updated(kvm);
1703 return ret;
1706 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1707 struct list_head *invalid_list)
1709 struct kvm_mmu_page *sp;
1711 if (list_empty(invalid_list))
1712 return;
1714 kvm_flush_remote_tlbs(kvm);
1716 do {
1717 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1718 WARN_ON(!sp->role.invalid || sp->root_count);
1719 kvm_mmu_free_page(kvm, sp);
1720 } while (!list_empty(invalid_list));
1725 * Changing the number of mmu pages allocated to the vm
1726 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1728 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1730 LIST_HEAD(invalid_list);
1732 * If we set the number of mmu pages to be smaller be than the
1733 * number of actived pages , we must to free some mmu pages before we
1734 * change the value
1737 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1738 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1739 !list_empty(&kvm->arch.active_mmu_pages)) {
1740 struct kvm_mmu_page *page;
1742 page = container_of(kvm->arch.active_mmu_pages.prev,
1743 struct kvm_mmu_page, link);
1744 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1745 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1747 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1750 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1753 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1755 struct kvm_mmu_page *sp;
1756 struct hlist_node *node;
1757 LIST_HEAD(invalid_list);
1758 int r;
1760 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1761 r = 0;
1763 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1764 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1765 sp->role.word);
1766 r = 1;
1767 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1769 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1770 return r;
1773 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1775 struct kvm_mmu_page *sp;
1776 struct hlist_node *node;
1777 LIST_HEAD(invalid_list);
1779 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1780 pgprintk("%s: zap %llx %x\n",
1781 __func__, gfn, sp->role.word);
1782 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1784 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1787 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1789 int slot = memslot_id(kvm, gfn);
1790 struct kvm_mmu_page *sp = page_header(__pa(pte));
1792 __set_bit(slot, sp->slot_bitmap);
1795 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1797 int i;
1798 u64 *pt = sp->spt;
1800 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1801 return;
1803 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1804 if (pt[i] == shadow_notrap_nonpresent_pte)
1805 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1810 * The function is based on mtrr_type_lookup() in
1811 * arch/x86/kernel/cpu/mtrr/generic.c
1813 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1814 u64 start, u64 end)
1816 int i;
1817 u64 base, mask;
1818 u8 prev_match, curr_match;
1819 int num_var_ranges = KVM_NR_VAR_MTRR;
1821 if (!mtrr_state->enabled)
1822 return 0xFF;
1824 /* Make end inclusive end, instead of exclusive */
1825 end--;
1827 /* Look in fixed ranges. Just return the type as per start */
1828 if (mtrr_state->have_fixed && (start < 0x100000)) {
1829 int idx;
1831 if (start < 0x80000) {
1832 idx = 0;
1833 idx += (start >> 16);
1834 return mtrr_state->fixed_ranges[idx];
1835 } else if (start < 0xC0000) {
1836 idx = 1 * 8;
1837 idx += ((start - 0x80000) >> 14);
1838 return mtrr_state->fixed_ranges[idx];
1839 } else if (start < 0x1000000) {
1840 idx = 3 * 8;
1841 idx += ((start - 0xC0000) >> 12);
1842 return mtrr_state->fixed_ranges[idx];
1847 * Look in variable ranges
1848 * Look of multiple ranges matching this address and pick type
1849 * as per MTRR precedence
1851 if (!(mtrr_state->enabled & 2))
1852 return mtrr_state->def_type;
1854 prev_match = 0xFF;
1855 for (i = 0; i < num_var_ranges; ++i) {
1856 unsigned short start_state, end_state;
1858 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1859 continue;
1861 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1862 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1863 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1864 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1866 start_state = ((start & mask) == (base & mask));
1867 end_state = ((end & mask) == (base & mask));
1868 if (start_state != end_state)
1869 return 0xFE;
1871 if ((start & mask) != (base & mask))
1872 continue;
1874 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1875 if (prev_match == 0xFF) {
1876 prev_match = curr_match;
1877 continue;
1880 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1881 curr_match == MTRR_TYPE_UNCACHABLE)
1882 return MTRR_TYPE_UNCACHABLE;
1884 if ((prev_match == MTRR_TYPE_WRBACK &&
1885 curr_match == MTRR_TYPE_WRTHROUGH) ||
1886 (prev_match == MTRR_TYPE_WRTHROUGH &&
1887 curr_match == MTRR_TYPE_WRBACK)) {
1888 prev_match = MTRR_TYPE_WRTHROUGH;
1889 curr_match = MTRR_TYPE_WRTHROUGH;
1892 if (prev_match != curr_match)
1893 return MTRR_TYPE_UNCACHABLE;
1896 if (prev_match != 0xFF)
1897 return prev_match;
1899 return mtrr_state->def_type;
1902 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1904 u8 mtrr;
1906 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1907 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1908 if (mtrr == 0xfe || mtrr == 0xff)
1909 mtrr = MTRR_TYPE_WRBACK;
1910 return mtrr;
1912 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1914 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1916 trace_kvm_mmu_unsync_page(sp);
1917 ++vcpu->kvm->stat.mmu_unsync;
1918 sp->unsync = 1;
1920 kvm_mmu_mark_parents_unsync(sp);
1921 mmu_convert_notrap(sp);
1924 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1926 struct kvm_mmu_page *s;
1927 struct hlist_node *node;
1929 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1930 if (s->unsync)
1931 continue;
1932 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1933 __kvm_unsync_page(vcpu, s);
1937 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1938 bool can_unsync)
1940 struct kvm_mmu_page *s;
1941 struct hlist_node *node;
1942 bool need_unsync = false;
1944 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1945 if (!can_unsync)
1946 return 1;
1948 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1949 return 1;
1951 if (!need_unsync && !s->unsync) {
1952 if (!oos_shadow)
1953 return 1;
1954 need_unsync = true;
1957 if (need_unsync)
1958 kvm_unsync_pages(vcpu, gfn);
1959 return 0;
1962 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1963 unsigned pte_access, int user_fault,
1964 int write_fault, int dirty, int level,
1965 gfn_t gfn, pfn_t pfn, bool speculative,
1966 bool can_unsync, bool reset_host_protection)
1968 u64 spte;
1969 int ret = 0;
1972 * We don't set the accessed bit, since we sometimes want to see
1973 * whether the guest actually used the pte (in order to detect
1974 * demand paging).
1976 spte = shadow_base_present_pte;
1977 if (!speculative)
1978 spte |= shadow_accessed_mask;
1979 if (!dirty)
1980 pte_access &= ~ACC_WRITE_MASK;
1981 if (pte_access & ACC_EXEC_MASK)
1982 spte |= shadow_x_mask;
1983 else
1984 spte |= shadow_nx_mask;
1985 if (pte_access & ACC_USER_MASK)
1986 spte |= shadow_user_mask;
1987 if (level > PT_PAGE_TABLE_LEVEL)
1988 spte |= PT_PAGE_SIZE_MASK;
1989 if (tdp_enabled)
1990 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1991 kvm_is_mmio_pfn(pfn));
1993 if (reset_host_protection)
1994 spte |= SPTE_HOST_WRITEABLE;
1996 spte |= (u64)pfn << PAGE_SHIFT;
1998 if ((pte_access & ACC_WRITE_MASK)
1999 || (!vcpu->arch.mmu.direct_map && write_fault
2000 && !is_write_protection(vcpu) && !user_fault)) {
2002 if (level > PT_PAGE_TABLE_LEVEL &&
2003 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2004 ret = 1;
2005 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2006 goto done;
2009 spte |= PT_WRITABLE_MASK;
2011 if (!vcpu->arch.mmu.direct_map
2012 && !(pte_access & ACC_WRITE_MASK))
2013 spte &= ~PT_USER_MASK;
2016 * Optimization: for pte sync, if spte was writable the hash
2017 * lookup is unnecessary (and expensive). Write protection
2018 * is responsibility of mmu_get_page / kvm_sync_page.
2019 * Same reasoning can be applied to dirty page accounting.
2021 if (!can_unsync && is_writable_pte(*sptep))
2022 goto set_pte;
2024 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2025 pgprintk("%s: found shadow page for %llx, marking ro\n",
2026 __func__, gfn);
2027 ret = 1;
2028 pte_access &= ~ACC_WRITE_MASK;
2029 if (is_writable_pte(spte))
2030 spte &= ~PT_WRITABLE_MASK;
2034 if (pte_access & ACC_WRITE_MASK)
2035 mark_page_dirty(vcpu->kvm, gfn);
2037 set_pte:
2038 update_spte(sptep, spte);
2039 done:
2040 return ret;
2043 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2044 unsigned pt_access, unsigned pte_access,
2045 int user_fault, int write_fault, int dirty,
2046 int *ptwrite, int level, gfn_t gfn,
2047 pfn_t pfn, bool speculative,
2048 bool reset_host_protection)
2050 int was_rmapped = 0;
2051 int rmap_count;
2053 pgprintk("%s: spte %llx access %x write_fault %d"
2054 " user_fault %d gfn %llx\n",
2055 __func__, *sptep, pt_access,
2056 write_fault, user_fault, gfn);
2058 if (is_rmap_spte(*sptep)) {
2060 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2061 * the parent of the now unreachable PTE.
2063 if (level > PT_PAGE_TABLE_LEVEL &&
2064 !is_large_pte(*sptep)) {
2065 struct kvm_mmu_page *child;
2066 u64 pte = *sptep;
2068 child = page_header(pte & PT64_BASE_ADDR_MASK);
2069 mmu_page_remove_parent_pte(child, sptep);
2070 __set_spte(sptep, shadow_trap_nonpresent_pte);
2071 kvm_flush_remote_tlbs(vcpu->kvm);
2072 } else if (pfn != spte_to_pfn(*sptep)) {
2073 pgprintk("hfn old %llx new %llx\n",
2074 spte_to_pfn(*sptep), pfn);
2075 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2076 kvm_flush_remote_tlbs(vcpu->kvm);
2077 } else
2078 was_rmapped = 1;
2081 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2082 dirty, level, gfn, pfn, speculative, true,
2083 reset_host_protection)) {
2084 if (write_fault)
2085 *ptwrite = 1;
2086 kvm_mmu_flush_tlb(vcpu);
2089 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2090 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2091 is_large_pte(*sptep)? "2MB" : "4kB",
2092 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2093 *sptep, sptep);
2094 if (!was_rmapped && is_large_pte(*sptep))
2095 ++vcpu->kvm->stat.lpages;
2097 page_header_update_slot(vcpu->kvm, sptep, gfn);
2098 if (!was_rmapped) {
2099 rmap_count = rmap_add(vcpu, sptep, gfn);
2100 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2101 rmap_recycle(vcpu, sptep, gfn);
2103 kvm_release_pfn_clean(pfn);
2104 if (speculative) {
2105 vcpu->arch.last_pte_updated = sptep;
2106 vcpu->arch.last_pte_gfn = gfn;
2110 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2114 static struct kvm_memory_slot *
2115 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2117 struct kvm_memory_slot *slot;
2119 slot = gfn_to_memslot(vcpu->kvm, gfn);
2120 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2121 (no_dirty_log && slot->dirty_bitmap))
2122 slot = NULL;
2124 return slot;
2127 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2128 bool no_dirty_log)
2130 struct kvm_memory_slot *slot;
2131 unsigned long hva;
2133 slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2134 if (!slot) {
2135 get_page(bad_page);
2136 return page_to_pfn(bad_page);
2139 hva = gfn_to_hva_memslot(slot, gfn);
2141 return hva_to_pfn_atomic(vcpu->kvm, hva);
2144 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2145 struct kvm_mmu_page *sp,
2146 u64 *start, u64 *end)
2148 struct page *pages[PTE_PREFETCH_NUM];
2149 unsigned access = sp->role.access;
2150 int i, ret;
2151 gfn_t gfn;
2153 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2154 if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2155 return -1;
2157 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2158 if (ret <= 0)
2159 return -1;
2161 for (i = 0; i < ret; i++, gfn++, start++)
2162 mmu_set_spte(vcpu, start, ACC_ALL,
2163 access, 0, 0, 1, NULL,
2164 sp->role.level, gfn,
2165 page_to_pfn(pages[i]), true, true);
2167 return 0;
2170 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2171 struct kvm_mmu_page *sp, u64 *sptep)
2173 u64 *spte, *start = NULL;
2174 int i;
2176 WARN_ON(!sp->role.direct);
2178 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2179 spte = sp->spt + i;
2181 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2182 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2183 if (!start)
2184 continue;
2185 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2186 break;
2187 start = NULL;
2188 } else if (!start)
2189 start = spte;
2193 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2195 struct kvm_mmu_page *sp;
2198 * Since it's no accessed bit on EPT, it's no way to
2199 * distinguish between actually accessed translations
2200 * and prefetched, so disable pte prefetch if EPT is
2201 * enabled.
2203 if (!shadow_accessed_mask)
2204 return;
2206 sp = page_header(__pa(sptep));
2207 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2208 return;
2210 __direct_pte_prefetch(vcpu, sp, sptep);
2213 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2214 int level, gfn_t gfn, pfn_t pfn)
2216 struct kvm_shadow_walk_iterator iterator;
2217 struct kvm_mmu_page *sp;
2218 int pt_write = 0;
2219 gfn_t pseudo_gfn;
2221 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2222 if (iterator.level == level) {
2223 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
2224 0, write, 1, &pt_write,
2225 level, gfn, pfn, false, true);
2226 direct_pte_prefetch(vcpu, iterator.sptep);
2227 ++vcpu->stat.pf_fixed;
2228 break;
2231 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2232 u64 base_addr = iterator.addr;
2234 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2235 pseudo_gfn = base_addr >> PAGE_SHIFT;
2236 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2237 iterator.level - 1,
2238 1, ACC_ALL, iterator.sptep);
2239 if (!sp) {
2240 pgprintk("nonpaging_map: ENOMEM\n");
2241 kvm_release_pfn_clean(pfn);
2242 return -ENOMEM;
2245 __set_spte(iterator.sptep,
2246 __pa(sp->spt)
2247 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2248 | shadow_user_mask | shadow_x_mask
2249 | shadow_accessed_mask);
2252 return pt_write;
2255 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2257 siginfo_t info;
2259 info.si_signo = SIGBUS;
2260 info.si_errno = 0;
2261 info.si_code = BUS_MCEERR_AR;
2262 info.si_addr = (void __user *)address;
2263 info.si_addr_lsb = PAGE_SHIFT;
2265 send_sig_info(SIGBUS, &info, tsk);
2268 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2270 kvm_release_pfn_clean(pfn);
2271 if (is_hwpoison_pfn(pfn)) {
2272 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2273 return 0;
2274 } else if (is_fault_pfn(pfn))
2275 return -EFAULT;
2277 return 1;
2280 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2282 int r;
2283 int level;
2284 pfn_t pfn;
2285 unsigned long mmu_seq;
2287 level = mapping_level(vcpu, gfn);
2290 * This path builds a PAE pagetable - so we can map 2mb pages at
2291 * maximum. Therefore check if the level is larger than that.
2293 if (level > PT_DIRECTORY_LEVEL)
2294 level = PT_DIRECTORY_LEVEL;
2296 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2298 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2299 smp_rmb();
2300 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2302 /* mmio */
2303 if (is_error_pfn(pfn))
2304 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2306 spin_lock(&vcpu->kvm->mmu_lock);
2307 if (mmu_notifier_retry(vcpu, mmu_seq))
2308 goto out_unlock;
2309 kvm_mmu_free_some_pages(vcpu);
2310 r = __direct_map(vcpu, v, write, level, gfn, pfn);
2311 spin_unlock(&vcpu->kvm->mmu_lock);
2314 return r;
2316 out_unlock:
2317 spin_unlock(&vcpu->kvm->mmu_lock);
2318 kvm_release_pfn_clean(pfn);
2319 return 0;
2323 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2325 int i;
2326 struct kvm_mmu_page *sp;
2327 LIST_HEAD(invalid_list);
2329 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2330 return;
2331 spin_lock(&vcpu->kvm->mmu_lock);
2332 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2333 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2334 vcpu->arch.mmu.direct_map)) {
2335 hpa_t root = vcpu->arch.mmu.root_hpa;
2337 sp = page_header(root);
2338 --sp->root_count;
2339 if (!sp->root_count && sp->role.invalid) {
2340 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2341 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2343 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2344 spin_unlock(&vcpu->kvm->mmu_lock);
2345 return;
2347 for (i = 0; i < 4; ++i) {
2348 hpa_t root = vcpu->arch.mmu.pae_root[i];
2350 if (root) {
2351 root &= PT64_BASE_ADDR_MASK;
2352 sp = page_header(root);
2353 --sp->root_count;
2354 if (!sp->root_count && sp->role.invalid)
2355 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2356 &invalid_list);
2358 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2360 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2361 spin_unlock(&vcpu->kvm->mmu_lock);
2362 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2365 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2367 int ret = 0;
2369 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2370 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2371 ret = 1;
2374 return ret;
2377 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2379 struct kvm_mmu_page *sp;
2380 unsigned i;
2382 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2383 spin_lock(&vcpu->kvm->mmu_lock);
2384 kvm_mmu_free_some_pages(vcpu);
2385 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2386 1, ACC_ALL, NULL);
2387 ++sp->root_count;
2388 spin_unlock(&vcpu->kvm->mmu_lock);
2389 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2390 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2391 for (i = 0; i < 4; ++i) {
2392 hpa_t root = vcpu->arch.mmu.pae_root[i];
2394 ASSERT(!VALID_PAGE(root));
2395 spin_lock(&vcpu->kvm->mmu_lock);
2396 kvm_mmu_free_some_pages(vcpu);
2397 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2398 i << 30,
2399 PT32_ROOT_LEVEL, 1, ACC_ALL,
2400 NULL);
2401 root = __pa(sp->spt);
2402 ++sp->root_count;
2403 spin_unlock(&vcpu->kvm->mmu_lock);
2404 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2406 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2407 } else
2408 BUG();
2410 return 0;
2413 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2415 struct kvm_mmu_page *sp;
2416 u64 pdptr, pm_mask;
2417 gfn_t root_gfn;
2418 int i;
2420 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2422 if (mmu_check_root(vcpu, root_gfn))
2423 return 1;
2426 * Do we shadow a long mode page table? If so we need to
2427 * write-protect the guests page table root.
2429 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2430 hpa_t root = vcpu->arch.mmu.root_hpa;
2432 ASSERT(!VALID_PAGE(root));
2434 spin_lock(&vcpu->kvm->mmu_lock);
2435 kvm_mmu_free_some_pages(vcpu);
2436 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2437 0, ACC_ALL, NULL);
2438 root = __pa(sp->spt);
2439 ++sp->root_count;
2440 spin_unlock(&vcpu->kvm->mmu_lock);
2441 vcpu->arch.mmu.root_hpa = root;
2442 return 0;
2446 * We shadow a 32 bit page table. This may be a legacy 2-level
2447 * or a PAE 3-level page table. In either case we need to be aware that
2448 * the shadow page table may be a PAE or a long mode page table.
2450 pm_mask = PT_PRESENT_MASK;
2451 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2452 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2454 for (i = 0; i < 4; ++i) {
2455 hpa_t root = vcpu->arch.mmu.pae_root[i];
2457 ASSERT(!VALID_PAGE(root));
2458 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2459 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2460 if (!is_present_gpte(pdptr)) {
2461 vcpu->arch.mmu.pae_root[i] = 0;
2462 continue;
2464 root_gfn = pdptr >> PAGE_SHIFT;
2465 if (mmu_check_root(vcpu, root_gfn))
2466 return 1;
2468 spin_lock(&vcpu->kvm->mmu_lock);
2469 kvm_mmu_free_some_pages(vcpu);
2470 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2471 PT32_ROOT_LEVEL, 0,
2472 ACC_ALL, NULL);
2473 root = __pa(sp->spt);
2474 ++sp->root_count;
2475 spin_unlock(&vcpu->kvm->mmu_lock);
2477 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2479 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2482 * If we shadow a 32 bit page table with a long mode page
2483 * table we enter this path.
2485 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2486 if (vcpu->arch.mmu.lm_root == NULL) {
2488 * The additional page necessary for this is only
2489 * allocated on demand.
2492 u64 *lm_root;
2494 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2495 if (lm_root == NULL)
2496 return 1;
2498 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2500 vcpu->arch.mmu.lm_root = lm_root;
2503 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2506 return 0;
2509 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2511 if (vcpu->arch.mmu.direct_map)
2512 return mmu_alloc_direct_roots(vcpu);
2513 else
2514 return mmu_alloc_shadow_roots(vcpu);
2517 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2519 int i;
2520 struct kvm_mmu_page *sp;
2522 if (vcpu->arch.mmu.direct_map)
2523 return;
2525 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2526 return;
2528 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2529 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2530 hpa_t root = vcpu->arch.mmu.root_hpa;
2531 sp = page_header(root);
2532 mmu_sync_children(vcpu, sp);
2533 return;
2535 for (i = 0; i < 4; ++i) {
2536 hpa_t root = vcpu->arch.mmu.pae_root[i];
2538 if (root && VALID_PAGE(root)) {
2539 root &= PT64_BASE_ADDR_MASK;
2540 sp = page_header(root);
2541 mmu_sync_children(vcpu, sp);
2544 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2547 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2549 spin_lock(&vcpu->kvm->mmu_lock);
2550 mmu_sync_roots(vcpu);
2551 spin_unlock(&vcpu->kvm->mmu_lock);
2554 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2555 u32 access, u32 *error)
2557 if (error)
2558 *error = 0;
2559 return vaddr;
2562 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2563 u32 access, u32 *error)
2565 if (error)
2566 *error = 0;
2567 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2570 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2571 u32 error_code)
2573 gfn_t gfn;
2574 int r;
2576 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2577 r = mmu_topup_memory_caches(vcpu);
2578 if (r)
2579 return r;
2581 ASSERT(vcpu);
2582 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2584 gfn = gva >> PAGE_SHIFT;
2586 return nonpaging_map(vcpu, gva & PAGE_MASK,
2587 error_code & PFERR_WRITE_MASK, gfn);
2590 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2591 u32 error_code)
2593 pfn_t pfn;
2594 int r;
2595 int level;
2596 gfn_t gfn = gpa >> PAGE_SHIFT;
2597 unsigned long mmu_seq;
2599 ASSERT(vcpu);
2600 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2602 r = mmu_topup_memory_caches(vcpu);
2603 if (r)
2604 return r;
2606 level = mapping_level(vcpu, gfn);
2608 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2610 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2611 smp_rmb();
2612 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2613 if (is_error_pfn(pfn))
2614 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2615 spin_lock(&vcpu->kvm->mmu_lock);
2616 if (mmu_notifier_retry(vcpu, mmu_seq))
2617 goto out_unlock;
2618 kvm_mmu_free_some_pages(vcpu);
2619 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2620 level, gfn, pfn);
2621 spin_unlock(&vcpu->kvm->mmu_lock);
2623 return r;
2625 out_unlock:
2626 spin_unlock(&vcpu->kvm->mmu_lock);
2627 kvm_release_pfn_clean(pfn);
2628 return 0;
2631 static void nonpaging_free(struct kvm_vcpu *vcpu)
2633 mmu_free_roots(vcpu);
2636 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2637 struct kvm_mmu *context)
2639 context->new_cr3 = nonpaging_new_cr3;
2640 context->page_fault = nonpaging_page_fault;
2641 context->gva_to_gpa = nonpaging_gva_to_gpa;
2642 context->free = nonpaging_free;
2643 context->prefetch_page = nonpaging_prefetch_page;
2644 context->sync_page = nonpaging_sync_page;
2645 context->invlpg = nonpaging_invlpg;
2646 context->root_level = 0;
2647 context->shadow_root_level = PT32E_ROOT_LEVEL;
2648 context->root_hpa = INVALID_PAGE;
2649 context->direct_map = true;
2650 context->nx = false;
2651 return 0;
2654 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2656 ++vcpu->stat.tlb_flush;
2657 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2660 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2662 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2663 mmu_free_roots(vcpu);
2666 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2668 return vcpu->arch.cr3;
2671 static void inject_page_fault(struct kvm_vcpu *vcpu)
2673 vcpu->arch.mmu.inject_page_fault(vcpu);
2676 static void paging_free(struct kvm_vcpu *vcpu)
2678 nonpaging_free(vcpu);
2681 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2683 int bit7;
2685 bit7 = (gpte >> 7) & 1;
2686 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2689 #define PTTYPE 64
2690 #include "paging_tmpl.h"
2691 #undef PTTYPE
2693 #define PTTYPE 32
2694 #include "paging_tmpl.h"
2695 #undef PTTYPE
2697 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2698 struct kvm_mmu *context,
2699 int level)
2701 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2702 u64 exb_bit_rsvd = 0;
2704 if (!context->nx)
2705 exb_bit_rsvd = rsvd_bits(63, 63);
2706 switch (level) {
2707 case PT32_ROOT_LEVEL:
2708 /* no rsvd bits for 2 level 4K page table entries */
2709 context->rsvd_bits_mask[0][1] = 0;
2710 context->rsvd_bits_mask[0][0] = 0;
2711 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2713 if (!is_pse(vcpu)) {
2714 context->rsvd_bits_mask[1][1] = 0;
2715 break;
2718 if (is_cpuid_PSE36())
2719 /* 36bits PSE 4MB page */
2720 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2721 else
2722 /* 32 bits PSE 4MB page */
2723 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2724 break;
2725 case PT32E_ROOT_LEVEL:
2726 context->rsvd_bits_mask[0][2] =
2727 rsvd_bits(maxphyaddr, 63) |
2728 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2729 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2730 rsvd_bits(maxphyaddr, 62); /* PDE */
2731 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2732 rsvd_bits(maxphyaddr, 62); /* PTE */
2733 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2734 rsvd_bits(maxphyaddr, 62) |
2735 rsvd_bits(13, 20); /* large page */
2736 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2737 break;
2738 case PT64_ROOT_LEVEL:
2739 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2740 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2741 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2742 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2743 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2744 rsvd_bits(maxphyaddr, 51);
2745 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2746 rsvd_bits(maxphyaddr, 51);
2747 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2748 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2749 rsvd_bits(maxphyaddr, 51) |
2750 rsvd_bits(13, 29);
2751 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2752 rsvd_bits(maxphyaddr, 51) |
2753 rsvd_bits(13, 20); /* large page */
2754 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2755 break;
2759 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2760 struct kvm_mmu *context,
2761 int level)
2763 context->nx = is_nx(vcpu);
2765 reset_rsvds_bits_mask(vcpu, context, level);
2767 ASSERT(is_pae(vcpu));
2768 context->new_cr3 = paging_new_cr3;
2769 context->page_fault = paging64_page_fault;
2770 context->gva_to_gpa = paging64_gva_to_gpa;
2771 context->prefetch_page = paging64_prefetch_page;
2772 context->sync_page = paging64_sync_page;
2773 context->invlpg = paging64_invlpg;
2774 context->free = paging_free;
2775 context->root_level = level;
2776 context->shadow_root_level = level;
2777 context->root_hpa = INVALID_PAGE;
2778 context->direct_map = false;
2779 return 0;
2782 static int paging64_init_context(struct kvm_vcpu *vcpu,
2783 struct kvm_mmu *context)
2785 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2788 static int paging32_init_context(struct kvm_vcpu *vcpu,
2789 struct kvm_mmu *context)
2791 context->nx = false;
2793 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2795 context->new_cr3 = paging_new_cr3;
2796 context->page_fault = paging32_page_fault;
2797 context->gva_to_gpa = paging32_gva_to_gpa;
2798 context->free = paging_free;
2799 context->prefetch_page = paging32_prefetch_page;
2800 context->sync_page = paging32_sync_page;
2801 context->invlpg = paging32_invlpg;
2802 context->root_level = PT32_ROOT_LEVEL;
2803 context->shadow_root_level = PT32E_ROOT_LEVEL;
2804 context->root_hpa = INVALID_PAGE;
2805 context->direct_map = false;
2806 return 0;
2809 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2810 struct kvm_mmu *context)
2812 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2815 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2817 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2819 context->new_cr3 = nonpaging_new_cr3;
2820 context->page_fault = tdp_page_fault;
2821 context->free = nonpaging_free;
2822 context->prefetch_page = nonpaging_prefetch_page;
2823 context->sync_page = nonpaging_sync_page;
2824 context->invlpg = nonpaging_invlpg;
2825 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2826 context->root_hpa = INVALID_PAGE;
2827 context->direct_map = true;
2828 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2829 context->get_cr3 = get_cr3;
2830 context->inject_page_fault = kvm_inject_page_fault;
2831 context->nx = is_nx(vcpu);
2833 if (!is_paging(vcpu)) {
2834 context->nx = false;
2835 context->gva_to_gpa = nonpaging_gva_to_gpa;
2836 context->root_level = 0;
2837 } else if (is_long_mode(vcpu)) {
2838 context->nx = is_nx(vcpu);
2839 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2840 context->gva_to_gpa = paging64_gva_to_gpa;
2841 context->root_level = PT64_ROOT_LEVEL;
2842 } else if (is_pae(vcpu)) {
2843 context->nx = is_nx(vcpu);
2844 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2845 context->gva_to_gpa = paging64_gva_to_gpa;
2846 context->root_level = PT32E_ROOT_LEVEL;
2847 } else {
2848 context->nx = false;
2849 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2850 context->gva_to_gpa = paging32_gva_to_gpa;
2851 context->root_level = PT32_ROOT_LEVEL;
2854 return 0;
2857 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2859 int r;
2860 ASSERT(vcpu);
2861 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2863 if (!is_paging(vcpu))
2864 r = nonpaging_init_context(vcpu, context);
2865 else if (is_long_mode(vcpu))
2866 r = paging64_init_context(vcpu, context);
2867 else if (is_pae(vcpu))
2868 r = paging32E_init_context(vcpu, context);
2869 else
2870 r = paging32_init_context(vcpu, context);
2872 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2873 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2875 return r;
2877 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2879 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2881 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2883 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
2884 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
2885 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2887 return r;
2890 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2892 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2894 g_context->get_cr3 = get_cr3;
2895 g_context->inject_page_fault = kvm_inject_page_fault;
2898 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2899 * translation of l2_gpa to l1_gpa addresses is done using the
2900 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2901 * functions between mmu and nested_mmu are swapped.
2903 if (!is_paging(vcpu)) {
2904 g_context->nx = false;
2905 g_context->root_level = 0;
2906 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
2907 } else if (is_long_mode(vcpu)) {
2908 g_context->nx = is_nx(vcpu);
2909 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
2910 g_context->root_level = PT64_ROOT_LEVEL;
2911 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2912 } else if (is_pae(vcpu)) {
2913 g_context->nx = is_nx(vcpu);
2914 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
2915 g_context->root_level = PT32E_ROOT_LEVEL;
2916 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2917 } else {
2918 g_context->nx = false;
2919 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
2920 g_context->root_level = PT32_ROOT_LEVEL;
2921 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
2924 return 0;
2927 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2929 vcpu->arch.update_pte.pfn = bad_pfn;
2931 if (mmu_is_nested(vcpu))
2932 return init_kvm_nested_mmu(vcpu);
2933 else if (tdp_enabled)
2934 return init_kvm_tdp_mmu(vcpu);
2935 else
2936 return init_kvm_softmmu(vcpu);
2939 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2941 ASSERT(vcpu);
2942 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2943 /* mmu.free() should set root_hpa = INVALID_PAGE */
2944 vcpu->arch.mmu.free(vcpu);
2947 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2949 destroy_kvm_mmu(vcpu);
2950 return init_kvm_mmu(vcpu);
2952 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2954 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2956 int r;
2958 r = mmu_topup_memory_caches(vcpu);
2959 if (r)
2960 goto out;
2961 r = mmu_alloc_roots(vcpu);
2962 spin_lock(&vcpu->kvm->mmu_lock);
2963 mmu_sync_roots(vcpu);
2964 spin_unlock(&vcpu->kvm->mmu_lock);
2965 if (r)
2966 goto out;
2967 /* set_cr3() should ensure TLB has been flushed */
2968 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2969 out:
2970 return r;
2972 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2974 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2976 mmu_free_roots(vcpu);
2978 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
2980 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2981 struct kvm_mmu_page *sp,
2982 u64 *spte)
2984 u64 pte;
2985 struct kvm_mmu_page *child;
2987 pte = *spte;
2988 if (is_shadow_present_pte(pte)) {
2989 if (is_last_spte(pte, sp->role.level))
2990 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
2991 else {
2992 child = page_header(pte & PT64_BASE_ADDR_MASK);
2993 mmu_page_remove_parent_pte(child, spte);
2996 __set_spte(spte, shadow_trap_nonpresent_pte);
2997 if (is_large_pte(pte))
2998 --vcpu->kvm->stat.lpages;
3001 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3002 struct kvm_mmu_page *sp,
3003 u64 *spte,
3004 const void *new)
3006 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3007 ++vcpu->kvm->stat.mmu_pde_zapped;
3008 return;
3011 if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
3012 return;
3014 ++vcpu->kvm->stat.mmu_pte_updated;
3015 if (!sp->role.cr4_pae)
3016 paging32_update_pte(vcpu, sp, spte, new);
3017 else
3018 paging64_update_pte(vcpu, sp, spte, new);
3021 static bool need_remote_flush(u64 old, u64 new)
3023 if (!is_shadow_present_pte(old))
3024 return false;
3025 if (!is_shadow_present_pte(new))
3026 return true;
3027 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3028 return true;
3029 old ^= PT64_NX_MASK;
3030 new ^= PT64_NX_MASK;
3031 return (old & ~new & PT64_PERM_MASK) != 0;
3034 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3035 bool remote_flush, bool local_flush)
3037 if (zap_page)
3038 return;
3040 if (remote_flush)
3041 kvm_flush_remote_tlbs(vcpu->kvm);
3042 else if (local_flush)
3043 kvm_mmu_flush_tlb(vcpu);
3046 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3048 u64 *spte = vcpu->arch.last_pte_updated;
3050 return !!(spte && (*spte & shadow_accessed_mask));
3053 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3054 u64 gpte)
3056 gfn_t gfn;
3057 pfn_t pfn;
3059 if (!is_present_gpte(gpte))
3060 return;
3061 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3063 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3064 smp_rmb();
3065 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3067 if (is_error_pfn(pfn)) {
3068 kvm_release_pfn_clean(pfn);
3069 return;
3071 vcpu->arch.update_pte.gfn = gfn;
3072 vcpu->arch.update_pte.pfn = pfn;
3075 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3077 u64 *spte = vcpu->arch.last_pte_updated;
3079 if (spte
3080 && vcpu->arch.last_pte_gfn == gfn
3081 && shadow_accessed_mask
3082 && !(*spte & shadow_accessed_mask)
3083 && is_shadow_present_pte(*spte))
3084 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3087 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3088 const u8 *new, int bytes,
3089 bool guest_initiated)
3091 gfn_t gfn = gpa >> PAGE_SHIFT;
3092 union kvm_mmu_page_role mask = { .word = 0 };
3093 struct kvm_mmu_page *sp;
3094 struct hlist_node *node;
3095 LIST_HEAD(invalid_list);
3096 u64 entry, gentry;
3097 u64 *spte;
3098 unsigned offset = offset_in_page(gpa);
3099 unsigned pte_size;
3100 unsigned page_offset;
3101 unsigned misaligned;
3102 unsigned quadrant;
3103 int level;
3104 int flooded = 0;
3105 int npte;
3106 int r;
3107 int invlpg_counter;
3108 bool remote_flush, local_flush, zap_page;
3110 zap_page = remote_flush = local_flush = false;
3112 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3114 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3117 * Assume that the pte write on a page table of the same type
3118 * as the current vcpu paging mode. This is nearly always true
3119 * (might be false while changing modes). Note it is verified later
3120 * by update_pte().
3122 if ((is_pae(vcpu) && bytes == 4) || !new) {
3123 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3124 if (is_pae(vcpu)) {
3125 gpa &= ~(gpa_t)7;
3126 bytes = 8;
3128 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3129 if (r)
3130 gentry = 0;
3131 new = (const u8 *)&gentry;
3134 switch (bytes) {
3135 case 4:
3136 gentry = *(const u32 *)new;
3137 break;
3138 case 8:
3139 gentry = *(const u64 *)new;
3140 break;
3141 default:
3142 gentry = 0;
3143 break;
3146 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3147 spin_lock(&vcpu->kvm->mmu_lock);
3148 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3149 gentry = 0;
3150 kvm_mmu_access_page(vcpu, gfn);
3151 kvm_mmu_free_some_pages(vcpu);
3152 ++vcpu->kvm->stat.mmu_pte_write;
3153 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3154 if (guest_initiated) {
3155 if (gfn == vcpu->arch.last_pt_write_gfn
3156 && !last_updated_pte_accessed(vcpu)) {
3157 ++vcpu->arch.last_pt_write_count;
3158 if (vcpu->arch.last_pt_write_count >= 3)
3159 flooded = 1;
3160 } else {
3161 vcpu->arch.last_pt_write_gfn = gfn;
3162 vcpu->arch.last_pt_write_count = 1;
3163 vcpu->arch.last_pte_updated = NULL;
3167 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3168 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3169 pte_size = sp->role.cr4_pae ? 8 : 4;
3170 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3171 misaligned |= bytes < 4;
3172 if (misaligned || flooded) {
3174 * Misaligned accesses are too much trouble to fix
3175 * up; also, they usually indicate a page is not used
3176 * as a page table.
3178 * If we're seeing too many writes to a page,
3179 * it may no longer be a page table, or we may be
3180 * forking, in which case it is better to unmap the
3181 * page.
3183 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3184 gpa, bytes, sp->role.word);
3185 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3186 &invalid_list);
3187 ++vcpu->kvm->stat.mmu_flooded;
3188 continue;
3190 page_offset = offset;
3191 level = sp->role.level;
3192 npte = 1;
3193 if (!sp->role.cr4_pae) {
3194 page_offset <<= 1; /* 32->64 */
3196 * A 32-bit pde maps 4MB while the shadow pdes map
3197 * only 2MB. So we need to double the offset again
3198 * and zap two pdes instead of one.
3200 if (level == PT32_ROOT_LEVEL) {
3201 page_offset &= ~7; /* kill rounding error */
3202 page_offset <<= 1;
3203 npte = 2;
3205 quadrant = page_offset >> PAGE_SHIFT;
3206 page_offset &= ~PAGE_MASK;
3207 if (quadrant != sp->role.quadrant)
3208 continue;
3210 local_flush = true;
3211 spte = &sp->spt[page_offset / sizeof(*spte)];
3212 while (npte--) {
3213 entry = *spte;
3214 mmu_pte_write_zap_pte(vcpu, sp, spte);
3215 if (gentry &&
3216 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3217 & mask.word))
3218 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3219 if (!remote_flush && need_remote_flush(entry, *spte))
3220 remote_flush = true;
3221 ++spte;
3224 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3225 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3226 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3227 spin_unlock(&vcpu->kvm->mmu_lock);
3228 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3229 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3230 vcpu->arch.update_pte.pfn = bad_pfn;
3234 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3236 gpa_t gpa;
3237 int r;
3239 if (vcpu->arch.mmu.direct_map)
3240 return 0;
3242 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3244 spin_lock(&vcpu->kvm->mmu_lock);
3245 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3246 spin_unlock(&vcpu->kvm->mmu_lock);
3247 return r;
3249 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3251 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3253 LIST_HEAD(invalid_list);
3255 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3256 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3257 struct kvm_mmu_page *sp;
3259 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3260 struct kvm_mmu_page, link);
3261 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3262 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3263 ++vcpu->kvm->stat.mmu_recycled;
3267 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
3269 int r;
3270 enum emulation_result er;
3272 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
3273 if (r < 0)
3274 goto out;
3276 if (!r) {
3277 r = 1;
3278 goto out;
3281 r = mmu_topup_memory_caches(vcpu);
3282 if (r)
3283 goto out;
3285 er = emulate_instruction(vcpu, cr2, error_code, 0);
3287 switch (er) {
3288 case EMULATE_DONE:
3289 return 1;
3290 case EMULATE_DO_MMIO:
3291 ++vcpu->stat.mmio_exits;
3292 /* fall through */
3293 case EMULATE_FAIL:
3294 return 0;
3295 default:
3296 BUG();
3298 out:
3299 return r;
3301 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3303 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3305 vcpu->arch.mmu.invlpg(vcpu, gva);
3306 kvm_mmu_flush_tlb(vcpu);
3307 ++vcpu->stat.invlpg;
3309 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3311 void kvm_enable_tdp(void)
3313 tdp_enabled = true;
3315 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3317 void kvm_disable_tdp(void)
3319 tdp_enabled = false;
3321 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3323 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3325 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3326 if (vcpu->arch.mmu.lm_root != NULL)
3327 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3330 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3332 struct page *page;
3333 int i;
3335 ASSERT(vcpu);
3338 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3339 * Therefore we need to allocate shadow page tables in the first
3340 * 4GB of memory, which happens to fit the DMA32 zone.
3342 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3343 if (!page)
3344 return -ENOMEM;
3346 vcpu->arch.mmu.pae_root = page_address(page);
3347 for (i = 0; i < 4; ++i)
3348 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3350 return 0;
3353 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3355 ASSERT(vcpu);
3356 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3358 return alloc_mmu_pages(vcpu);
3361 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3363 ASSERT(vcpu);
3364 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3366 return init_kvm_mmu(vcpu);
3369 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3371 struct kvm_mmu_page *sp;
3373 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3374 int i;
3375 u64 *pt;
3377 if (!test_bit(slot, sp->slot_bitmap))
3378 continue;
3380 pt = sp->spt;
3381 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3382 /* avoid RMW */
3383 if (is_writable_pte(pt[i]))
3384 pt[i] &= ~PT_WRITABLE_MASK;
3386 kvm_flush_remote_tlbs(kvm);
3389 void kvm_mmu_zap_all(struct kvm *kvm)
3391 struct kvm_mmu_page *sp, *node;
3392 LIST_HEAD(invalid_list);
3394 spin_lock(&kvm->mmu_lock);
3395 restart:
3396 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3397 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3398 goto restart;
3400 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3401 spin_unlock(&kvm->mmu_lock);
3404 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3405 struct list_head *invalid_list)
3407 struct kvm_mmu_page *page;
3409 page = container_of(kvm->arch.active_mmu_pages.prev,
3410 struct kvm_mmu_page, link);
3411 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3414 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3416 struct kvm *kvm;
3417 struct kvm *kvm_freed = NULL;
3419 if (nr_to_scan == 0)
3420 goto out;
3422 spin_lock(&kvm_lock);
3424 list_for_each_entry(kvm, &vm_list, vm_list) {
3425 int idx, freed_pages;
3426 LIST_HEAD(invalid_list);
3428 idx = srcu_read_lock(&kvm->srcu);
3429 spin_lock(&kvm->mmu_lock);
3430 if (!kvm_freed && nr_to_scan > 0 &&
3431 kvm->arch.n_used_mmu_pages > 0) {
3432 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3433 &invalid_list);
3434 kvm_freed = kvm;
3436 nr_to_scan--;
3438 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3439 spin_unlock(&kvm->mmu_lock);
3440 srcu_read_unlock(&kvm->srcu, idx);
3442 if (kvm_freed)
3443 list_move_tail(&kvm_freed->vm_list, &vm_list);
3445 spin_unlock(&kvm_lock);
3447 out:
3448 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3451 static struct shrinker mmu_shrinker = {
3452 .shrink = mmu_shrink,
3453 .seeks = DEFAULT_SEEKS * 10,
3456 static void mmu_destroy_caches(void)
3458 if (pte_chain_cache)
3459 kmem_cache_destroy(pte_chain_cache);
3460 if (rmap_desc_cache)
3461 kmem_cache_destroy(rmap_desc_cache);
3462 if (mmu_page_header_cache)
3463 kmem_cache_destroy(mmu_page_header_cache);
3466 void kvm_mmu_module_exit(void)
3468 mmu_destroy_caches();
3469 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3470 unregister_shrinker(&mmu_shrinker);
3473 int kvm_mmu_module_init(void)
3475 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3476 sizeof(struct kvm_pte_chain),
3477 0, 0, NULL);
3478 if (!pte_chain_cache)
3479 goto nomem;
3480 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3481 sizeof(struct kvm_rmap_desc),
3482 0, 0, NULL);
3483 if (!rmap_desc_cache)
3484 goto nomem;
3486 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3487 sizeof(struct kvm_mmu_page),
3488 0, 0, NULL);
3489 if (!mmu_page_header_cache)
3490 goto nomem;
3492 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3493 goto nomem;
3495 register_shrinker(&mmu_shrinker);
3497 return 0;
3499 nomem:
3500 mmu_destroy_caches();
3501 return -ENOMEM;
3505 * Caculate mmu pages needed for kvm.
3507 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3509 int i;
3510 unsigned int nr_mmu_pages;
3511 unsigned int nr_pages = 0;
3512 struct kvm_memslots *slots;
3514 slots = kvm_memslots(kvm);
3516 for (i = 0; i < slots->nmemslots; i++)
3517 nr_pages += slots->memslots[i].npages;
3519 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3520 nr_mmu_pages = max(nr_mmu_pages,
3521 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3523 return nr_mmu_pages;
3526 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3527 unsigned len)
3529 if (len > buffer->len)
3530 return NULL;
3531 return buffer->ptr;
3534 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3535 unsigned len)
3537 void *ret;
3539 ret = pv_mmu_peek_buffer(buffer, len);
3540 if (!ret)
3541 return ret;
3542 buffer->ptr += len;
3543 buffer->len -= len;
3544 buffer->processed += len;
3545 return ret;
3548 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3549 gpa_t addr, gpa_t value)
3551 int bytes = 8;
3552 int r;
3554 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3555 bytes = 4;
3557 r = mmu_topup_memory_caches(vcpu);
3558 if (r)
3559 return r;
3561 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3562 return -EFAULT;
3564 return 1;
3567 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3569 (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3570 return 1;
3573 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3575 spin_lock(&vcpu->kvm->mmu_lock);
3576 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3577 spin_unlock(&vcpu->kvm->mmu_lock);
3578 return 1;
3581 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3582 struct kvm_pv_mmu_op_buffer *buffer)
3584 struct kvm_mmu_op_header *header;
3586 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3587 if (!header)
3588 return 0;
3589 switch (header->op) {
3590 case KVM_MMU_OP_WRITE_PTE: {
3591 struct kvm_mmu_op_write_pte *wpte;
3593 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3594 if (!wpte)
3595 return 0;
3596 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3597 wpte->pte_val);
3599 case KVM_MMU_OP_FLUSH_TLB: {
3600 struct kvm_mmu_op_flush_tlb *ftlb;
3602 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3603 if (!ftlb)
3604 return 0;
3605 return kvm_pv_mmu_flush_tlb(vcpu);
3607 case KVM_MMU_OP_RELEASE_PT: {
3608 struct kvm_mmu_op_release_pt *rpt;
3610 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3611 if (!rpt)
3612 return 0;
3613 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3615 default: return 0;
3619 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3620 gpa_t addr, unsigned long *ret)
3622 int r;
3623 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3625 buffer->ptr = buffer->buf;
3626 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3627 buffer->processed = 0;
3629 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3630 if (r)
3631 goto out;
3633 while (buffer->len) {
3634 r = kvm_pv_mmu_op_one(vcpu, buffer);
3635 if (r < 0)
3636 goto out;
3637 if (r == 0)
3638 break;
3641 r = 1;
3642 out:
3643 *ret = buffer->processed;
3644 return r;
3647 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3649 struct kvm_shadow_walk_iterator iterator;
3650 int nr_sptes = 0;
3652 spin_lock(&vcpu->kvm->mmu_lock);
3653 for_each_shadow_entry(vcpu, addr, iterator) {
3654 sptes[iterator.level-1] = *iterator.sptep;
3655 nr_sptes++;
3656 if (!is_shadow_present_pte(*iterator.sptep))
3657 break;
3659 spin_unlock(&vcpu->kvm->mmu_lock);
3661 return nr_sptes;
3663 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3665 #ifdef CONFIG_KVM_MMU_AUDIT
3666 #include "mmu_audit.c"
3667 #else
3668 static void mmu_audit_disable(void) { }
3669 #endif
3671 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3673 ASSERT(vcpu);
3675 destroy_kvm_mmu(vcpu);
3676 free_mmu_pages(vcpu);
3677 mmu_free_memory_caches(vcpu);
3678 mmu_audit_disable();