p54: generate channel list dynamically
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / disk-io.c
blobd28d29c95f7ca23a91e9ccf3c306840484ea29ed
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
45 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
48 * end_io_wq structs are used to do processing in task context when an IO is
49 * complete. This is used during reads to verify checksums, and it is used
50 * by writes to insert metadata for new file extents after IO is complete.
52 struct end_io_wq {
53 struct bio *bio;
54 bio_end_io_t *end_io;
55 void *private;
56 struct btrfs_fs_info *info;
57 int error;
58 int metadata;
59 struct list_head list;
60 struct btrfs_work work;
64 * async submit bios are used to offload expensive checksumming
65 * onto the worker threads. They checksum file and metadata bios
66 * just before they are sent down the IO stack.
68 struct async_submit_bio {
69 struct inode *inode;
70 struct bio *bio;
71 struct list_head list;
72 extent_submit_bio_hook_t *submit_bio_start;
73 extent_submit_bio_hook_t *submit_bio_done;
74 int rw;
75 int mirror_num;
76 unsigned long bio_flags;
77 struct btrfs_work work;
80 /* These are used to set the lockdep class on the extent buffer locks.
81 * The class is set by the readpage_end_io_hook after the buffer has
82 * passed csum validation but before the pages are unlocked.
84 * The lockdep class is also set by btrfs_init_new_buffer on freshly
85 * allocated blocks.
87 * The class is based on the level in the tree block, which allows lockdep
88 * to know that lower nodes nest inside the locks of higher nodes.
90 * We also add a check to make sure the highest level of the tree is
91 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
92 * code needs update as well.
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
96 # error
97 # endif
98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
100 /* leaf */
101 "btrfs-extent-00",
102 "btrfs-extent-01",
103 "btrfs-extent-02",
104 "btrfs-extent-03",
105 "btrfs-extent-04",
106 "btrfs-extent-05",
107 "btrfs-extent-06",
108 "btrfs-extent-07",
109 /* highest possible level */
110 "btrfs-extent-08",
112 #endif
115 * extents on the btree inode are pretty simple, there's one extent
116 * that covers the entire device
118 static struct extent_map *btree_get_extent(struct inode *inode,
119 struct page *page, size_t page_offset, u64 start, u64 len,
120 int create)
122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 struct extent_map *em;
124 int ret;
126 spin_lock(&em_tree->lock);
127 em = lookup_extent_mapping(em_tree, start, len);
128 if (em) {
129 em->bdev =
130 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
131 spin_unlock(&em_tree->lock);
132 goto out;
134 spin_unlock(&em_tree->lock);
136 em = alloc_extent_map(GFP_NOFS);
137 if (!em) {
138 em = ERR_PTR(-ENOMEM);
139 goto out;
141 em->start = 0;
142 em->len = (u64)-1;
143 em->block_len = (u64)-1;
144 em->block_start = 0;
145 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
147 spin_lock(&em_tree->lock);
148 ret = add_extent_mapping(em_tree, em);
149 if (ret == -EEXIST) {
150 u64 failed_start = em->start;
151 u64 failed_len = em->len;
153 free_extent_map(em);
154 em = lookup_extent_mapping(em_tree, start, len);
155 if (em) {
156 ret = 0;
157 } else {
158 em = lookup_extent_mapping(em_tree, failed_start,
159 failed_len);
160 ret = -EIO;
162 } else if (ret) {
163 free_extent_map(em);
164 em = NULL;
166 spin_unlock(&em_tree->lock);
168 if (ret)
169 em = ERR_PTR(ret);
170 out:
171 return em;
174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
176 return crc32c(seed, data, len);
179 void btrfs_csum_final(u32 crc, char *result)
181 *(__le32 *)result = ~cpu_to_le32(crc);
185 * compute the csum for a btree block, and either verify it or write it
186 * into the csum field of the block.
188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
189 int verify)
191 u16 csum_size =
192 btrfs_super_csum_size(&root->fs_info->super_copy);
193 char *result = NULL;
194 unsigned long len;
195 unsigned long cur_len;
196 unsigned long offset = BTRFS_CSUM_SIZE;
197 char *map_token = NULL;
198 char *kaddr;
199 unsigned long map_start;
200 unsigned long map_len;
201 int err;
202 u32 crc = ~(u32)0;
203 unsigned long inline_result;
205 len = buf->len - offset;
206 while (len > 0) {
207 err = map_private_extent_buffer(buf, offset, 32,
208 &map_token, &kaddr,
209 &map_start, &map_len, KM_USER0);
210 if (err)
211 return 1;
212 cur_len = min(len, map_len - (offset - map_start));
213 crc = btrfs_csum_data(root, kaddr + offset - map_start,
214 crc, cur_len);
215 len -= cur_len;
216 offset += cur_len;
217 unmap_extent_buffer(buf, map_token, KM_USER0);
219 if (csum_size > sizeof(inline_result)) {
220 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
221 if (!result)
222 return 1;
223 } else {
224 result = (char *)&inline_result;
227 btrfs_csum_final(crc, result);
229 if (verify) {
230 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
231 u32 val;
232 u32 found = 0;
233 memcpy(&found, result, csum_size);
235 read_extent_buffer(buf, &val, 0, csum_size);
236 if (printk_ratelimit()) {
237 printk(KERN_INFO "btrfs: %s checksum verify "
238 "failed on %llu wanted %X found %X "
239 "level %d\n",
240 root->fs_info->sb->s_id,
241 (unsigned long long)buf->start, val, found,
242 btrfs_header_level(buf));
244 if (result != (char *)&inline_result)
245 kfree(result);
246 return 1;
248 } else {
249 write_extent_buffer(buf, result, 0, csum_size);
251 if (result != (char *)&inline_result)
252 kfree(result);
253 return 0;
257 * we can't consider a given block up to date unless the transid of the
258 * block matches the transid in the parent node's pointer. This is how we
259 * detect blocks that either didn't get written at all or got written
260 * in the wrong place.
262 static int verify_parent_transid(struct extent_io_tree *io_tree,
263 struct extent_buffer *eb, u64 parent_transid)
265 int ret;
267 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
268 return 0;
270 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
271 if (extent_buffer_uptodate(io_tree, eb) &&
272 btrfs_header_generation(eb) == parent_transid) {
273 ret = 0;
274 goto out;
276 if (printk_ratelimit()) {
277 printk("parent transid verify failed on %llu wanted %llu "
278 "found %llu\n",
279 (unsigned long long)eb->start,
280 (unsigned long long)parent_transid,
281 (unsigned long long)btrfs_header_generation(eb));
283 ret = 1;
284 clear_extent_buffer_uptodate(io_tree, eb);
285 out:
286 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
287 GFP_NOFS);
288 return ret;
292 * helper to read a given tree block, doing retries as required when
293 * the checksums don't match and we have alternate mirrors to try.
295 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
296 struct extent_buffer *eb,
297 u64 start, u64 parent_transid)
299 struct extent_io_tree *io_tree;
300 int ret;
301 int num_copies = 0;
302 int mirror_num = 0;
304 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
305 while (1) {
306 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
307 btree_get_extent, mirror_num);
308 if (!ret &&
309 !verify_parent_transid(io_tree, eb, parent_transid))
310 return ret;
312 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
313 eb->start, eb->len);
314 if (num_copies == 1)
315 return ret;
317 mirror_num++;
318 if (mirror_num > num_copies)
319 return ret;
321 return -EIO;
325 * checksum a dirty tree block before IO. This has extra checks to make sure
326 * we only fill in the checksum field in the first page of a multi-page block
329 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
331 struct extent_io_tree *tree;
332 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
333 u64 found_start;
334 int found_level;
335 unsigned long len;
336 struct extent_buffer *eb;
337 int ret;
339 tree = &BTRFS_I(page->mapping->host)->io_tree;
341 if (page->private == EXTENT_PAGE_PRIVATE)
342 goto out;
343 if (!page->private)
344 goto out;
345 len = page->private >> 2;
346 WARN_ON(len == 0);
348 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
349 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
350 btrfs_header_generation(eb));
351 BUG_ON(ret);
352 found_start = btrfs_header_bytenr(eb);
353 if (found_start != start) {
354 WARN_ON(1);
355 goto err;
357 if (eb->first_page != page) {
358 WARN_ON(1);
359 goto err;
361 if (!PageUptodate(page)) {
362 WARN_ON(1);
363 goto err;
365 found_level = btrfs_header_level(eb);
367 csum_tree_block(root, eb, 0);
368 err:
369 free_extent_buffer(eb);
370 out:
371 return 0;
374 static int check_tree_block_fsid(struct btrfs_root *root,
375 struct extent_buffer *eb)
377 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
378 u8 fsid[BTRFS_UUID_SIZE];
379 int ret = 1;
381 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
382 BTRFS_FSID_SIZE);
383 while (fs_devices) {
384 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
385 ret = 0;
386 break;
388 fs_devices = fs_devices->seed;
390 return ret;
393 #ifdef CONFIG_DEBUG_LOCK_ALLOC
394 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
396 lockdep_set_class_and_name(&eb->lock,
397 &btrfs_eb_class[level],
398 btrfs_eb_name[level]);
400 #endif
402 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
403 struct extent_state *state)
405 struct extent_io_tree *tree;
406 u64 found_start;
407 int found_level;
408 unsigned long len;
409 struct extent_buffer *eb;
410 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
411 int ret = 0;
413 tree = &BTRFS_I(page->mapping->host)->io_tree;
414 if (page->private == EXTENT_PAGE_PRIVATE)
415 goto out;
416 if (!page->private)
417 goto out;
419 len = page->private >> 2;
420 WARN_ON(len == 0);
422 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
424 found_start = btrfs_header_bytenr(eb);
425 if (found_start != start) {
426 if (printk_ratelimit()) {
427 printk(KERN_INFO "btrfs bad tree block start "
428 "%llu %llu\n",
429 (unsigned long long)found_start,
430 (unsigned long long)eb->start);
432 ret = -EIO;
433 goto err;
435 if (eb->first_page != page) {
436 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
437 eb->first_page->index, page->index);
438 WARN_ON(1);
439 ret = -EIO;
440 goto err;
442 if (check_tree_block_fsid(root, eb)) {
443 if (printk_ratelimit()) {
444 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
445 (unsigned long long)eb->start);
447 ret = -EIO;
448 goto err;
450 found_level = btrfs_header_level(eb);
452 btrfs_set_buffer_lockdep_class(eb, found_level);
454 ret = csum_tree_block(root, eb, 1);
455 if (ret)
456 ret = -EIO;
458 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
459 end = eb->start + end - 1;
460 err:
461 free_extent_buffer(eb);
462 out:
463 return ret;
466 static void end_workqueue_bio(struct bio *bio, int err)
468 struct end_io_wq *end_io_wq = bio->bi_private;
469 struct btrfs_fs_info *fs_info;
471 fs_info = end_io_wq->info;
472 end_io_wq->error = err;
473 end_io_wq->work.func = end_workqueue_fn;
474 end_io_wq->work.flags = 0;
476 if (bio->bi_rw & (1 << BIO_RW)) {
477 if (end_io_wq->metadata)
478 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
479 &end_io_wq->work);
480 else
481 btrfs_queue_worker(&fs_info->endio_write_workers,
482 &end_io_wq->work);
483 } else {
484 if (end_io_wq->metadata)
485 btrfs_queue_worker(&fs_info->endio_meta_workers,
486 &end_io_wq->work);
487 else
488 btrfs_queue_worker(&fs_info->endio_workers,
489 &end_io_wq->work);
493 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
494 int metadata)
496 struct end_io_wq *end_io_wq;
497 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
498 if (!end_io_wq)
499 return -ENOMEM;
501 end_io_wq->private = bio->bi_private;
502 end_io_wq->end_io = bio->bi_end_io;
503 end_io_wq->info = info;
504 end_io_wq->error = 0;
505 end_io_wq->bio = bio;
506 end_io_wq->metadata = metadata;
508 bio->bi_private = end_io_wq;
509 bio->bi_end_io = end_workqueue_bio;
510 return 0;
513 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
515 unsigned long limit = min_t(unsigned long,
516 info->workers.max_workers,
517 info->fs_devices->open_devices);
518 return 256 * limit;
521 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
523 return atomic_read(&info->nr_async_bios) >
524 btrfs_async_submit_limit(info);
527 static void run_one_async_start(struct btrfs_work *work)
529 struct btrfs_fs_info *fs_info;
530 struct async_submit_bio *async;
532 async = container_of(work, struct async_submit_bio, work);
533 fs_info = BTRFS_I(async->inode)->root->fs_info;
534 async->submit_bio_start(async->inode, async->rw, async->bio,
535 async->mirror_num, async->bio_flags);
538 static void run_one_async_done(struct btrfs_work *work)
540 struct btrfs_fs_info *fs_info;
541 struct async_submit_bio *async;
542 int limit;
544 async = container_of(work, struct async_submit_bio, work);
545 fs_info = BTRFS_I(async->inode)->root->fs_info;
547 limit = btrfs_async_submit_limit(fs_info);
548 limit = limit * 2 / 3;
550 atomic_dec(&fs_info->nr_async_submits);
552 if (atomic_read(&fs_info->nr_async_submits) < limit &&
553 waitqueue_active(&fs_info->async_submit_wait))
554 wake_up(&fs_info->async_submit_wait);
556 async->submit_bio_done(async->inode, async->rw, async->bio,
557 async->mirror_num, async->bio_flags);
560 static void run_one_async_free(struct btrfs_work *work)
562 struct async_submit_bio *async;
564 async = container_of(work, struct async_submit_bio, work);
565 kfree(async);
568 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
569 int rw, struct bio *bio, int mirror_num,
570 unsigned long bio_flags,
571 extent_submit_bio_hook_t *submit_bio_start,
572 extent_submit_bio_hook_t *submit_bio_done)
574 struct async_submit_bio *async;
576 async = kmalloc(sizeof(*async), GFP_NOFS);
577 if (!async)
578 return -ENOMEM;
580 async->inode = inode;
581 async->rw = rw;
582 async->bio = bio;
583 async->mirror_num = mirror_num;
584 async->submit_bio_start = submit_bio_start;
585 async->submit_bio_done = submit_bio_done;
587 async->work.func = run_one_async_start;
588 async->work.ordered_func = run_one_async_done;
589 async->work.ordered_free = run_one_async_free;
591 async->work.flags = 0;
592 async->bio_flags = bio_flags;
594 atomic_inc(&fs_info->nr_async_submits);
596 if (rw & (1 << BIO_RW_SYNCIO))
597 btrfs_set_work_high_prio(&async->work);
599 btrfs_queue_worker(&fs_info->workers, &async->work);
601 while (atomic_read(&fs_info->async_submit_draining) &&
602 atomic_read(&fs_info->nr_async_submits)) {
603 wait_event(fs_info->async_submit_wait,
604 (atomic_read(&fs_info->nr_async_submits) == 0));
607 return 0;
610 static int btree_csum_one_bio(struct bio *bio)
612 struct bio_vec *bvec = bio->bi_io_vec;
613 int bio_index = 0;
614 struct btrfs_root *root;
616 WARN_ON(bio->bi_vcnt <= 0);
617 while (bio_index < bio->bi_vcnt) {
618 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
619 csum_dirty_buffer(root, bvec->bv_page);
620 bio_index++;
621 bvec++;
623 return 0;
626 static int __btree_submit_bio_start(struct inode *inode, int rw,
627 struct bio *bio, int mirror_num,
628 unsigned long bio_flags)
631 * when we're called for a write, we're already in the async
632 * submission context. Just jump into btrfs_map_bio
634 btree_csum_one_bio(bio);
635 return 0;
638 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
639 int mirror_num, unsigned long bio_flags)
642 * when we're called for a write, we're already in the async
643 * submission context. Just jump into btrfs_map_bio
645 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
648 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
649 int mirror_num, unsigned long bio_flags)
651 int ret;
653 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
654 bio, 1);
655 BUG_ON(ret);
657 if (!(rw & (1 << BIO_RW))) {
659 * called for a read, do the setup so that checksum validation
660 * can happen in the async kernel threads
662 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
663 mirror_num, 0);
667 * kthread helpers are used to submit writes so that checksumming
668 * can happen in parallel across all CPUs
670 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
671 inode, rw, bio, mirror_num, 0,
672 __btree_submit_bio_start,
673 __btree_submit_bio_done);
676 static int btree_writepage(struct page *page, struct writeback_control *wbc)
678 struct extent_io_tree *tree;
679 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680 struct extent_buffer *eb;
681 int was_dirty;
683 tree = &BTRFS_I(page->mapping->host)->io_tree;
684 if (!(current->flags & PF_MEMALLOC)) {
685 return extent_write_full_page(tree, page,
686 btree_get_extent, wbc);
689 redirty_page_for_writepage(wbc, page);
690 eb = btrfs_find_tree_block(root, page_offset(page),
691 PAGE_CACHE_SIZE);
692 WARN_ON(!eb);
694 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
695 if (!was_dirty) {
696 spin_lock(&root->fs_info->delalloc_lock);
697 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
698 spin_unlock(&root->fs_info->delalloc_lock);
700 free_extent_buffer(eb);
702 unlock_page(page);
703 return 0;
706 static int btree_writepages(struct address_space *mapping,
707 struct writeback_control *wbc)
709 struct extent_io_tree *tree;
710 tree = &BTRFS_I(mapping->host)->io_tree;
711 if (wbc->sync_mode == WB_SYNC_NONE) {
712 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
713 u64 num_dirty;
714 unsigned long thresh = 32 * 1024 * 1024;
716 if (wbc->for_kupdate)
717 return 0;
719 /* this is a bit racy, but that's ok */
720 num_dirty = root->fs_info->dirty_metadata_bytes;
721 if (num_dirty < thresh)
722 return 0;
724 return extent_writepages(tree, mapping, btree_get_extent, wbc);
727 static int btree_readpage(struct file *file, struct page *page)
729 struct extent_io_tree *tree;
730 tree = &BTRFS_I(page->mapping->host)->io_tree;
731 return extent_read_full_page(tree, page, btree_get_extent);
734 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
736 struct extent_io_tree *tree;
737 struct extent_map_tree *map;
738 int ret;
740 if (PageWriteback(page) || PageDirty(page))
741 return 0;
743 tree = &BTRFS_I(page->mapping->host)->io_tree;
744 map = &BTRFS_I(page->mapping->host)->extent_tree;
746 ret = try_release_extent_state(map, tree, page, gfp_flags);
747 if (!ret)
748 return 0;
750 ret = try_release_extent_buffer(tree, page);
751 if (ret == 1) {
752 ClearPagePrivate(page);
753 set_page_private(page, 0);
754 page_cache_release(page);
757 return ret;
760 static void btree_invalidatepage(struct page *page, unsigned long offset)
762 struct extent_io_tree *tree;
763 tree = &BTRFS_I(page->mapping->host)->io_tree;
764 extent_invalidatepage(tree, page, offset);
765 btree_releasepage(page, GFP_NOFS);
766 if (PagePrivate(page)) {
767 printk(KERN_WARNING "btrfs warning page private not zero "
768 "on page %llu\n", (unsigned long long)page_offset(page));
769 ClearPagePrivate(page);
770 set_page_private(page, 0);
771 page_cache_release(page);
775 static struct address_space_operations btree_aops = {
776 .readpage = btree_readpage,
777 .writepage = btree_writepage,
778 .writepages = btree_writepages,
779 .releasepage = btree_releasepage,
780 .invalidatepage = btree_invalidatepage,
781 .sync_page = block_sync_page,
784 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
785 u64 parent_transid)
787 struct extent_buffer *buf = NULL;
788 struct inode *btree_inode = root->fs_info->btree_inode;
789 int ret = 0;
791 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
792 if (!buf)
793 return 0;
794 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
795 buf, 0, 0, btree_get_extent, 0);
796 free_extent_buffer(buf);
797 return ret;
800 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
801 u64 bytenr, u32 blocksize)
803 struct inode *btree_inode = root->fs_info->btree_inode;
804 struct extent_buffer *eb;
805 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
806 bytenr, blocksize, GFP_NOFS);
807 return eb;
810 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
811 u64 bytenr, u32 blocksize)
813 struct inode *btree_inode = root->fs_info->btree_inode;
814 struct extent_buffer *eb;
816 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
817 bytenr, blocksize, NULL, GFP_NOFS);
818 return eb;
822 int btrfs_write_tree_block(struct extent_buffer *buf)
824 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
825 buf->start + buf->len - 1, WB_SYNC_ALL);
828 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
830 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
831 buf->start, buf->start + buf->len - 1);
834 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
835 u32 blocksize, u64 parent_transid)
837 struct extent_buffer *buf = NULL;
838 struct inode *btree_inode = root->fs_info->btree_inode;
839 struct extent_io_tree *io_tree;
840 int ret;
842 io_tree = &BTRFS_I(btree_inode)->io_tree;
844 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
845 if (!buf)
846 return NULL;
848 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
850 if (ret == 0)
851 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
852 return buf;
856 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
857 struct extent_buffer *buf)
859 struct inode *btree_inode = root->fs_info->btree_inode;
860 if (btrfs_header_generation(buf) ==
861 root->fs_info->running_transaction->transid) {
862 btrfs_assert_tree_locked(buf);
864 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
865 spin_lock(&root->fs_info->delalloc_lock);
866 if (root->fs_info->dirty_metadata_bytes >= buf->len)
867 root->fs_info->dirty_metadata_bytes -= buf->len;
868 else
869 WARN_ON(1);
870 spin_unlock(&root->fs_info->delalloc_lock);
873 /* ugh, clear_extent_buffer_dirty needs to lock the page */
874 btrfs_set_lock_blocking(buf);
875 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
876 buf);
878 return 0;
881 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
882 u32 stripesize, struct btrfs_root *root,
883 struct btrfs_fs_info *fs_info,
884 u64 objectid)
886 root->node = NULL;
887 root->commit_root = NULL;
888 root->sectorsize = sectorsize;
889 root->nodesize = nodesize;
890 root->leafsize = leafsize;
891 root->stripesize = stripesize;
892 root->ref_cows = 0;
893 root->track_dirty = 0;
895 root->fs_info = fs_info;
896 root->objectid = objectid;
897 root->last_trans = 0;
898 root->highest_inode = 0;
899 root->last_inode_alloc = 0;
900 root->name = NULL;
901 root->in_sysfs = 0;
902 root->inode_tree.rb_node = NULL;
904 INIT_LIST_HEAD(&root->dirty_list);
905 INIT_LIST_HEAD(&root->orphan_list);
906 INIT_LIST_HEAD(&root->root_list);
907 spin_lock_init(&root->node_lock);
908 spin_lock_init(&root->list_lock);
909 spin_lock_init(&root->inode_lock);
910 mutex_init(&root->objectid_mutex);
911 mutex_init(&root->log_mutex);
912 init_waitqueue_head(&root->log_writer_wait);
913 init_waitqueue_head(&root->log_commit_wait[0]);
914 init_waitqueue_head(&root->log_commit_wait[1]);
915 atomic_set(&root->log_commit[0], 0);
916 atomic_set(&root->log_commit[1], 0);
917 atomic_set(&root->log_writers, 0);
918 root->log_batch = 0;
919 root->log_transid = 0;
920 extent_io_tree_init(&root->dirty_log_pages,
921 fs_info->btree_inode->i_mapping, GFP_NOFS);
923 memset(&root->root_key, 0, sizeof(root->root_key));
924 memset(&root->root_item, 0, sizeof(root->root_item));
925 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
926 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
927 root->defrag_trans_start = fs_info->generation;
928 init_completion(&root->kobj_unregister);
929 root->defrag_running = 0;
930 root->defrag_level = 0;
931 root->root_key.objectid = objectid;
932 root->anon_super.s_root = NULL;
933 root->anon_super.s_dev = 0;
934 INIT_LIST_HEAD(&root->anon_super.s_list);
935 INIT_LIST_HEAD(&root->anon_super.s_instances);
936 init_rwsem(&root->anon_super.s_umount);
938 return 0;
941 static int find_and_setup_root(struct btrfs_root *tree_root,
942 struct btrfs_fs_info *fs_info,
943 u64 objectid,
944 struct btrfs_root *root)
946 int ret;
947 u32 blocksize;
948 u64 generation;
950 __setup_root(tree_root->nodesize, tree_root->leafsize,
951 tree_root->sectorsize, tree_root->stripesize,
952 root, fs_info, objectid);
953 ret = btrfs_find_last_root(tree_root, objectid,
954 &root->root_item, &root->root_key);
955 BUG_ON(ret);
957 generation = btrfs_root_generation(&root->root_item);
958 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
959 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
960 blocksize, generation);
961 root->commit_root = btrfs_root_node(root);
962 BUG_ON(!root->node);
963 return 0;
966 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
967 struct btrfs_fs_info *fs_info)
969 struct extent_buffer *eb;
970 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
971 u64 start = 0;
972 u64 end = 0;
973 int ret;
975 if (!log_root_tree)
976 return 0;
978 while (1) {
979 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
980 0, &start, &end, EXTENT_DIRTY);
981 if (ret)
982 break;
984 clear_extent_dirty(&log_root_tree->dirty_log_pages,
985 start, end, GFP_NOFS);
987 eb = fs_info->log_root_tree->node;
989 WARN_ON(btrfs_header_level(eb) != 0);
990 WARN_ON(btrfs_header_nritems(eb) != 0);
992 ret = btrfs_free_reserved_extent(fs_info->tree_root,
993 eb->start, eb->len);
994 BUG_ON(ret);
996 free_extent_buffer(eb);
997 kfree(fs_info->log_root_tree);
998 fs_info->log_root_tree = NULL;
999 return 0;
1002 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1003 struct btrfs_fs_info *fs_info)
1005 struct btrfs_root *root;
1006 struct btrfs_root *tree_root = fs_info->tree_root;
1007 struct extent_buffer *leaf;
1009 root = kzalloc(sizeof(*root), GFP_NOFS);
1010 if (!root)
1011 return ERR_PTR(-ENOMEM);
1013 __setup_root(tree_root->nodesize, tree_root->leafsize,
1014 tree_root->sectorsize, tree_root->stripesize,
1015 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1017 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1018 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1019 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1021 * log trees do not get reference counted because they go away
1022 * before a real commit is actually done. They do store pointers
1023 * to file data extents, and those reference counts still get
1024 * updated (along with back refs to the log tree).
1026 root->ref_cows = 0;
1028 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1029 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1030 if (IS_ERR(leaf)) {
1031 kfree(root);
1032 return ERR_CAST(leaf);
1035 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1036 btrfs_set_header_bytenr(leaf, leaf->start);
1037 btrfs_set_header_generation(leaf, trans->transid);
1038 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1039 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1040 root->node = leaf;
1042 write_extent_buffer(root->node, root->fs_info->fsid,
1043 (unsigned long)btrfs_header_fsid(root->node),
1044 BTRFS_FSID_SIZE);
1045 btrfs_mark_buffer_dirty(root->node);
1046 btrfs_tree_unlock(root->node);
1047 return root;
1050 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1051 struct btrfs_fs_info *fs_info)
1053 struct btrfs_root *log_root;
1055 log_root = alloc_log_tree(trans, fs_info);
1056 if (IS_ERR(log_root))
1057 return PTR_ERR(log_root);
1058 WARN_ON(fs_info->log_root_tree);
1059 fs_info->log_root_tree = log_root;
1060 return 0;
1063 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1064 struct btrfs_root *root)
1066 struct btrfs_root *log_root;
1067 struct btrfs_inode_item *inode_item;
1069 log_root = alloc_log_tree(trans, root->fs_info);
1070 if (IS_ERR(log_root))
1071 return PTR_ERR(log_root);
1073 log_root->last_trans = trans->transid;
1074 log_root->root_key.offset = root->root_key.objectid;
1076 inode_item = &log_root->root_item.inode;
1077 inode_item->generation = cpu_to_le64(1);
1078 inode_item->size = cpu_to_le64(3);
1079 inode_item->nlink = cpu_to_le32(1);
1080 inode_item->nbytes = cpu_to_le64(root->leafsize);
1081 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1083 btrfs_set_root_node(&log_root->root_item, log_root->node);
1085 WARN_ON(root->log_root);
1086 root->log_root = log_root;
1087 root->log_transid = 0;
1088 return 0;
1091 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1092 struct btrfs_key *location)
1094 struct btrfs_root *root;
1095 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1096 struct btrfs_path *path;
1097 struct extent_buffer *l;
1098 u64 highest_inode;
1099 u64 generation;
1100 u32 blocksize;
1101 int ret = 0;
1103 root = kzalloc(sizeof(*root), GFP_NOFS);
1104 if (!root)
1105 return ERR_PTR(-ENOMEM);
1106 if (location->offset == (u64)-1) {
1107 ret = find_and_setup_root(tree_root, fs_info,
1108 location->objectid, root);
1109 if (ret) {
1110 kfree(root);
1111 return ERR_PTR(ret);
1113 goto insert;
1116 __setup_root(tree_root->nodesize, tree_root->leafsize,
1117 tree_root->sectorsize, tree_root->stripesize,
1118 root, fs_info, location->objectid);
1120 path = btrfs_alloc_path();
1121 BUG_ON(!path);
1122 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1123 if (ret != 0) {
1124 if (ret > 0)
1125 ret = -ENOENT;
1126 goto out;
1128 l = path->nodes[0];
1129 read_extent_buffer(l, &root->root_item,
1130 btrfs_item_ptr_offset(l, path->slots[0]),
1131 sizeof(root->root_item));
1132 memcpy(&root->root_key, location, sizeof(*location));
1133 ret = 0;
1134 out:
1135 btrfs_release_path(root, path);
1136 btrfs_free_path(path);
1137 if (ret) {
1138 kfree(root);
1139 return ERR_PTR(ret);
1141 generation = btrfs_root_generation(&root->root_item);
1142 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1143 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1144 blocksize, generation);
1145 root->commit_root = btrfs_root_node(root);
1146 BUG_ON(!root->node);
1147 insert:
1148 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1149 root->ref_cows = 1;
1150 ret = btrfs_find_highest_inode(root, &highest_inode);
1151 if (ret == 0) {
1152 root->highest_inode = highest_inode;
1153 root->last_inode_alloc = highest_inode;
1156 return root;
1159 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1160 u64 root_objectid)
1162 struct btrfs_root *root;
1164 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1165 return fs_info->tree_root;
1166 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1167 return fs_info->extent_root;
1169 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 (unsigned long)root_objectid);
1171 return root;
1174 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1175 struct btrfs_key *location)
1177 struct btrfs_root *root;
1178 int ret;
1180 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1181 return fs_info->tree_root;
1182 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1183 return fs_info->extent_root;
1184 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1185 return fs_info->chunk_root;
1186 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1187 return fs_info->dev_root;
1188 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1189 return fs_info->csum_root;
1191 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1192 (unsigned long)location->objectid);
1193 if (root)
1194 return root;
1196 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1197 if (IS_ERR(root))
1198 return root;
1200 set_anon_super(&root->anon_super, NULL);
1202 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1203 (unsigned long)root->root_key.objectid,
1204 root);
1205 if (ret) {
1206 free_extent_buffer(root->node);
1207 kfree(root);
1208 return ERR_PTR(ret);
1210 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1211 ret = btrfs_find_dead_roots(fs_info->tree_root,
1212 root->root_key.objectid);
1213 BUG_ON(ret);
1214 btrfs_orphan_cleanup(root);
1216 return root;
1219 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1220 struct btrfs_key *location,
1221 const char *name, int namelen)
1223 struct btrfs_root *root;
1224 int ret;
1226 root = btrfs_read_fs_root_no_name(fs_info, location);
1227 if (!root)
1228 return NULL;
1230 if (root->in_sysfs)
1231 return root;
1233 ret = btrfs_set_root_name(root, name, namelen);
1234 if (ret) {
1235 free_extent_buffer(root->node);
1236 kfree(root);
1237 return ERR_PTR(ret);
1239 #if 0
1240 ret = btrfs_sysfs_add_root(root);
1241 if (ret) {
1242 free_extent_buffer(root->node);
1243 kfree(root->name);
1244 kfree(root);
1245 return ERR_PTR(ret);
1247 #endif
1248 root->in_sysfs = 1;
1249 return root;
1252 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1254 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1255 int ret = 0;
1256 struct btrfs_device *device;
1257 struct backing_dev_info *bdi;
1259 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1260 if (!device->bdev)
1261 continue;
1262 bdi = blk_get_backing_dev_info(device->bdev);
1263 if (bdi && bdi_congested(bdi, bdi_bits)) {
1264 ret = 1;
1265 break;
1268 return ret;
1272 * this unplugs every device on the box, and it is only used when page
1273 * is null
1275 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1277 struct btrfs_device *device;
1278 struct btrfs_fs_info *info;
1280 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1281 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1282 if (!device->bdev)
1283 continue;
1285 bdi = blk_get_backing_dev_info(device->bdev);
1286 if (bdi->unplug_io_fn)
1287 bdi->unplug_io_fn(bdi, page);
1291 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1293 struct inode *inode;
1294 struct extent_map_tree *em_tree;
1295 struct extent_map *em;
1296 struct address_space *mapping;
1297 u64 offset;
1299 /* the generic O_DIRECT read code does this */
1300 if (1 || !page) {
1301 __unplug_io_fn(bdi, page);
1302 return;
1306 * page->mapping may change at any time. Get a consistent copy
1307 * and use that for everything below
1309 smp_mb();
1310 mapping = page->mapping;
1311 if (!mapping)
1312 return;
1314 inode = mapping->host;
1317 * don't do the expensive searching for a small number of
1318 * devices
1320 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1321 __unplug_io_fn(bdi, page);
1322 return;
1325 offset = page_offset(page);
1327 em_tree = &BTRFS_I(inode)->extent_tree;
1328 spin_lock(&em_tree->lock);
1329 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1330 spin_unlock(&em_tree->lock);
1331 if (!em) {
1332 __unplug_io_fn(bdi, page);
1333 return;
1336 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1337 free_extent_map(em);
1338 __unplug_io_fn(bdi, page);
1339 return;
1341 offset = offset - em->start;
1342 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1343 em->block_start + offset, page);
1344 free_extent_map(em);
1348 * If this fails, caller must call bdi_destroy() to get rid of the
1349 * bdi again.
1351 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1353 int err;
1355 bdi->capabilities = BDI_CAP_MAP_COPY;
1356 err = bdi_init(bdi);
1357 if (err)
1358 return err;
1360 err = bdi_register(bdi, NULL, "btrfs-%d",
1361 atomic_inc_return(&btrfs_bdi_num));
1362 if (err)
1363 return err;
1365 bdi->ra_pages = default_backing_dev_info.ra_pages;
1366 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1367 bdi->unplug_io_data = info;
1368 bdi->congested_fn = btrfs_congested_fn;
1369 bdi->congested_data = info;
1370 return 0;
1373 static int bio_ready_for_csum(struct bio *bio)
1375 u64 length = 0;
1376 u64 buf_len = 0;
1377 u64 start = 0;
1378 struct page *page;
1379 struct extent_io_tree *io_tree = NULL;
1380 struct btrfs_fs_info *info = NULL;
1381 struct bio_vec *bvec;
1382 int i;
1383 int ret;
1385 bio_for_each_segment(bvec, bio, i) {
1386 page = bvec->bv_page;
1387 if (page->private == EXTENT_PAGE_PRIVATE) {
1388 length += bvec->bv_len;
1389 continue;
1391 if (!page->private) {
1392 length += bvec->bv_len;
1393 continue;
1395 length = bvec->bv_len;
1396 buf_len = page->private >> 2;
1397 start = page_offset(page) + bvec->bv_offset;
1398 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1399 info = BTRFS_I(page->mapping->host)->root->fs_info;
1401 /* are we fully contained in this bio? */
1402 if (buf_len <= length)
1403 return 1;
1405 ret = extent_range_uptodate(io_tree, start + length,
1406 start + buf_len - 1);
1407 return ret;
1411 * called by the kthread helper functions to finally call the bio end_io
1412 * functions. This is where read checksum verification actually happens
1414 static void end_workqueue_fn(struct btrfs_work *work)
1416 struct bio *bio;
1417 struct end_io_wq *end_io_wq;
1418 struct btrfs_fs_info *fs_info;
1419 int error;
1421 end_io_wq = container_of(work, struct end_io_wq, work);
1422 bio = end_io_wq->bio;
1423 fs_info = end_io_wq->info;
1425 /* metadata bio reads are special because the whole tree block must
1426 * be checksummed at once. This makes sure the entire block is in
1427 * ram and up to date before trying to verify things. For
1428 * blocksize <= pagesize, it is basically a noop
1430 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1431 !bio_ready_for_csum(bio)) {
1432 btrfs_queue_worker(&fs_info->endio_meta_workers,
1433 &end_io_wq->work);
1434 return;
1436 error = end_io_wq->error;
1437 bio->bi_private = end_io_wq->private;
1438 bio->bi_end_io = end_io_wq->end_io;
1439 kfree(end_io_wq);
1440 bio_endio(bio, error);
1443 static int cleaner_kthread(void *arg)
1445 struct btrfs_root *root = arg;
1447 do {
1448 smp_mb();
1449 if (root->fs_info->closing)
1450 break;
1452 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1453 mutex_lock(&root->fs_info->cleaner_mutex);
1454 btrfs_clean_old_snapshots(root);
1455 mutex_unlock(&root->fs_info->cleaner_mutex);
1457 if (freezing(current)) {
1458 refrigerator();
1459 } else {
1460 smp_mb();
1461 if (root->fs_info->closing)
1462 break;
1463 set_current_state(TASK_INTERRUPTIBLE);
1464 schedule();
1465 __set_current_state(TASK_RUNNING);
1467 } while (!kthread_should_stop());
1468 return 0;
1471 static int transaction_kthread(void *arg)
1473 struct btrfs_root *root = arg;
1474 struct btrfs_trans_handle *trans;
1475 struct btrfs_transaction *cur;
1476 unsigned long now;
1477 unsigned long delay;
1478 int ret;
1480 do {
1481 smp_mb();
1482 if (root->fs_info->closing)
1483 break;
1485 delay = HZ * 30;
1486 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1487 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1489 mutex_lock(&root->fs_info->trans_mutex);
1490 cur = root->fs_info->running_transaction;
1491 if (!cur) {
1492 mutex_unlock(&root->fs_info->trans_mutex);
1493 goto sleep;
1496 now = get_seconds();
1497 if (now < cur->start_time || now - cur->start_time < 30) {
1498 mutex_unlock(&root->fs_info->trans_mutex);
1499 delay = HZ * 5;
1500 goto sleep;
1502 mutex_unlock(&root->fs_info->trans_mutex);
1503 trans = btrfs_start_transaction(root, 1);
1504 ret = btrfs_commit_transaction(trans, root);
1506 sleep:
1507 wake_up_process(root->fs_info->cleaner_kthread);
1508 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1510 if (freezing(current)) {
1511 refrigerator();
1512 } else {
1513 if (root->fs_info->closing)
1514 break;
1515 set_current_state(TASK_INTERRUPTIBLE);
1516 schedule_timeout(delay);
1517 __set_current_state(TASK_RUNNING);
1519 } while (!kthread_should_stop());
1520 return 0;
1523 struct btrfs_root *open_ctree(struct super_block *sb,
1524 struct btrfs_fs_devices *fs_devices,
1525 char *options)
1527 u32 sectorsize;
1528 u32 nodesize;
1529 u32 leafsize;
1530 u32 blocksize;
1531 u32 stripesize;
1532 u64 generation;
1533 u64 features;
1534 struct btrfs_key location;
1535 struct buffer_head *bh;
1536 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1537 GFP_NOFS);
1538 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1539 GFP_NOFS);
1540 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1541 GFP_NOFS);
1542 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1543 GFP_NOFS);
1544 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1545 GFP_NOFS);
1546 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1547 GFP_NOFS);
1548 struct btrfs_root *log_tree_root;
1550 int ret;
1551 int err = -EINVAL;
1553 struct btrfs_super_block *disk_super;
1555 if (!extent_root || !tree_root || !fs_info ||
1556 !chunk_root || !dev_root || !csum_root) {
1557 err = -ENOMEM;
1558 goto fail;
1560 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1561 INIT_LIST_HEAD(&fs_info->trans_list);
1562 INIT_LIST_HEAD(&fs_info->dead_roots);
1563 INIT_LIST_HEAD(&fs_info->hashers);
1564 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1565 INIT_LIST_HEAD(&fs_info->ordered_operations);
1566 spin_lock_init(&fs_info->delalloc_lock);
1567 spin_lock_init(&fs_info->new_trans_lock);
1568 spin_lock_init(&fs_info->ref_cache_lock);
1570 init_completion(&fs_info->kobj_unregister);
1571 fs_info->tree_root = tree_root;
1572 fs_info->extent_root = extent_root;
1573 fs_info->csum_root = csum_root;
1574 fs_info->chunk_root = chunk_root;
1575 fs_info->dev_root = dev_root;
1576 fs_info->fs_devices = fs_devices;
1577 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1578 INIT_LIST_HEAD(&fs_info->space_info);
1579 btrfs_mapping_init(&fs_info->mapping_tree);
1580 atomic_set(&fs_info->nr_async_submits, 0);
1581 atomic_set(&fs_info->async_delalloc_pages, 0);
1582 atomic_set(&fs_info->async_submit_draining, 0);
1583 atomic_set(&fs_info->nr_async_bios, 0);
1584 fs_info->sb = sb;
1585 fs_info->max_extent = (u64)-1;
1586 fs_info->max_inline = 8192 * 1024;
1587 if (setup_bdi(fs_info, &fs_info->bdi))
1588 goto fail_bdi;
1589 fs_info->btree_inode = new_inode(sb);
1590 fs_info->btree_inode->i_ino = 1;
1591 fs_info->btree_inode->i_nlink = 1;
1592 fs_info->metadata_ratio = 8;
1594 fs_info->thread_pool_size = min_t(unsigned long,
1595 num_online_cpus() + 2, 8);
1597 INIT_LIST_HEAD(&fs_info->ordered_extents);
1598 spin_lock_init(&fs_info->ordered_extent_lock);
1600 sb->s_blocksize = 4096;
1601 sb->s_blocksize_bits = blksize_bits(4096);
1604 * we set the i_size on the btree inode to the max possible int.
1605 * the real end of the address space is determined by all of
1606 * the devices in the system
1608 fs_info->btree_inode->i_size = OFFSET_MAX;
1609 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1610 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1612 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1613 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1614 fs_info->btree_inode->i_mapping,
1615 GFP_NOFS);
1616 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1617 GFP_NOFS);
1619 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1621 spin_lock_init(&fs_info->block_group_cache_lock);
1622 fs_info->block_group_cache_tree.rb_node = NULL;
1624 extent_io_tree_init(&fs_info->pinned_extents,
1625 fs_info->btree_inode->i_mapping, GFP_NOFS);
1626 fs_info->do_barriers = 1;
1628 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1629 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1630 sizeof(struct btrfs_key));
1631 insert_inode_hash(fs_info->btree_inode);
1633 mutex_init(&fs_info->trans_mutex);
1634 mutex_init(&fs_info->ordered_operations_mutex);
1635 mutex_init(&fs_info->tree_log_mutex);
1636 mutex_init(&fs_info->drop_mutex);
1637 mutex_init(&fs_info->chunk_mutex);
1638 mutex_init(&fs_info->transaction_kthread_mutex);
1639 mutex_init(&fs_info->cleaner_mutex);
1640 mutex_init(&fs_info->volume_mutex);
1641 mutex_init(&fs_info->tree_reloc_mutex);
1643 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1644 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1646 init_waitqueue_head(&fs_info->transaction_throttle);
1647 init_waitqueue_head(&fs_info->transaction_wait);
1648 init_waitqueue_head(&fs_info->async_submit_wait);
1650 __setup_root(4096, 4096, 4096, 4096, tree_root,
1651 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1654 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1655 if (!bh)
1656 goto fail_iput;
1658 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1659 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1660 sizeof(fs_info->super_for_commit));
1661 brelse(bh);
1663 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1665 disk_super = &fs_info->super_copy;
1666 if (!btrfs_super_root(disk_super))
1667 goto fail_iput;
1669 ret = btrfs_parse_options(tree_root, options);
1670 if (ret) {
1671 err = ret;
1672 goto fail_iput;
1675 features = btrfs_super_incompat_flags(disk_super) &
1676 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1677 if (features) {
1678 printk(KERN_ERR "BTRFS: couldn't mount because of "
1679 "unsupported optional features (%Lx).\n",
1680 (unsigned long long)features);
1681 err = -EINVAL;
1682 goto fail_iput;
1685 features = btrfs_super_incompat_flags(disk_super);
1686 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1687 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1688 btrfs_set_super_incompat_flags(disk_super, features);
1691 features = btrfs_super_compat_ro_flags(disk_super) &
1692 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1693 if (!(sb->s_flags & MS_RDONLY) && features) {
1694 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1695 "unsupported option features (%Lx).\n",
1696 (unsigned long long)features);
1697 err = -EINVAL;
1698 goto fail_iput;
1702 * we need to start all the end_io workers up front because the
1703 * queue work function gets called at interrupt time, and so it
1704 * cannot dynamically grow.
1706 btrfs_init_workers(&fs_info->workers, "worker",
1707 fs_info->thread_pool_size);
1709 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1710 fs_info->thread_pool_size);
1712 btrfs_init_workers(&fs_info->submit_workers, "submit",
1713 min_t(u64, fs_devices->num_devices,
1714 fs_info->thread_pool_size));
1716 /* a higher idle thresh on the submit workers makes it much more
1717 * likely that bios will be send down in a sane order to the
1718 * devices
1720 fs_info->submit_workers.idle_thresh = 64;
1722 fs_info->workers.idle_thresh = 16;
1723 fs_info->workers.ordered = 1;
1725 fs_info->delalloc_workers.idle_thresh = 2;
1726 fs_info->delalloc_workers.ordered = 1;
1728 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1729 btrfs_init_workers(&fs_info->endio_workers, "endio",
1730 fs_info->thread_pool_size);
1731 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1732 fs_info->thread_pool_size);
1733 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1734 "endio-meta-write", fs_info->thread_pool_size);
1735 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1736 fs_info->thread_pool_size);
1739 * endios are largely parallel and should have a very
1740 * low idle thresh
1742 fs_info->endio_workers.idle_thresh = 4;
1743 fs_info->endio_meta_workers.idle_thresh = 4;
1745 fs_info->endio_write_workers.idle_thresh = 64;
1746 fs_info->endio_meta_write_workers.idle_thresh = 64;
1748 btrfs_start_workers(&fs_info->workers, 1);
1749 btrfs_start_workers(&fs_info->submit_workers, 1);
1750 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1751 btrfs_start_workers(&fs_info->fixup_workers, 1);
1752 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1753 btrfs_start_workers(&fs_info->endio_meta_workers,
1754 fs_info->thread_pool_size);
1755 btrfs_start_workers(&fs_info->endio_meta_write_workers,
1756 fs_info->thread_pool_size);
1757 btrfs_start_workers(&fs_info->endio_write_workers,
1758 fs_info->thread_pool_size);
1760 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1761 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1762 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1764 nodesize = btrfs_super_nodesize(disk_super);
1765 leafsize = btrfs_super_leafsize(disk_super);
1766 sectorsize = btrfs_super_sectorsize(disk_super);
1767 stripesize = btrfs_super_stripesize(disk_super);
1768 tree_root->nodesize = nodesize;
1769 tree_root->leafsize = leafsize;
1770 tree_root->sectorsize = sectorsize;
1771 tree_root->stripesize = stripesize;
1773 sb->s_blocksize = sectorsize;
1774 sb->s_blocksize_bits = blksize_bits(sectorsize);
1776 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1777 sizeof(disk_super->magic))) {
1778 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1779 goto fail_sb_buffer;
1782 mutex_lock(&fs_info->chunk_mutex);
1783 ret = btrfs_read_sys_array(tree_root);
1784 mutex_unlock(&fs_info->chunk_mutex);
1785 if (ret) {
1786 printk(KERN_WARNING "btrfs: failed to read the system "
1787 "array on %s\n", sb->s_id);
1788 goto fail_sb_buffer;
1791 blocksize = btrfs_level_size(tree_root,
1792 btrfs_super_chunk_root_level(disk_super));
1793 generation = btrfs_super_chunk_root_generation(disk_super);
1795 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1796 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1798 chunk_root->node = read_tree_block(chunk_root,
1799 btrfs_super_chunk_root(disk_super),
1800 blocksize, generation);
1801 BUG_ON(!chunk_root->node);
1802 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1803 chunk_root->commit_root = btrfs_root_node(chunk_root);
1805 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1806 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1807 BTRFS_UUID_SIZE);
1809 mutex_lock(&fs_info->chunk_mutex);
1810 ret = btrfs_read_chunk_tree(chunk_root);
1811 mutex_unlock(&fs_info->chunk_mutex);
1812 if (ret) {
1813 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1814 sb->s_id);
1815 goto fail_chunk_root;
1818 btrfs_close_extra_devices(fs_devices);
1820 blocksize = btrfs_level_size(tree_root,
1821 btrfs_super_root_level(disk_super));
1822 generation = btrfs_super_generation(disk_super);
1824 tree_root->node = read_tree_block(tree_root,
1825 btrfs_super_root(disk_super),
1826 blocksize, generation);
1827 if (!tree_root->node)
1828 goto fail_chunk_root;
1829 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1830 tree_root->commit_root = btrfs_root_node(tree_root);
1832 ret = find_and_setup_root(tree_root, fs_info,
1833 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1834 if (ret)
1835 goto fail_tree_root;
1836 extent_root->track_dirty = 1;
1838 ret = find_and_setup_root(tree_root, fs_info,
1839 BTRFS_DEV_TREE_OBJECTID, dev_root);
1840 if (ret)
1841 goto fail_extent_root;
1842 dev_root->track_dirty = 1;
1844 ret = find_and_setup_root(tree_root, fs_info,
1845 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1846 if (ret)
1847 goto fail_dev_root;
1849 csum_root->track_dirty = 1;
1851 btrfs_read_block_groups(extent_root);
1853 fs_info->generation = generation;
1854 fs_info->last_trans_committed = generation;
1855 fs_info->data_alloc_profile = (u64)-1;
1856 fs_info->metadata_alloc_profile = (u64)-1;
1857 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1858 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1859 "btrfs-cleaner");
1860 if (IS_ERR(fs_info->cleaner_kthread))
1861 goto fail_csum_root;
1863 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1864 tree_root,
1865 "btrfs-transaction");
1866 if (IS_ERR(fs_info->transaction_kthread))
1867 goto fail_cleaner;
1869 if (!btrfs_test_opt(tree_root, SSD) &&
1870 !btrfs_test_opt(tree_root, NOSSD) &&
1871 !fs_info->fs_devices->rotating) {
1872 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1873 "mode\n");
1874 btrfs_set_opt(fs_info->mount_opt, SSD);
1877 if (btrfs_super_log_root(disk_super) != 0) {
1878 u64 bytenr = btrfs_super_log_root(disk_super);
1880 if (fs_devices->rw_devices == 0) {
1881 printk(KERN_WARNING "Btrfs log replay required "
1882 "on RO media\n");
1883 err = -EIO;
1884 goto fail_trans_kthread;
1886 blocksize =
1887 btrfs_level_size(tree_root,
1888 btrfs_super_log_root_level(disk_super));
1890 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1891 GFP_NOFS);
1893 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1894 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1896 log_tree_root->node = read_tree_block(tree_root, bytenr,
1897 blocksize,
1898 generation + 1);
1899 ret = btrfs_recover_log_trees(log_tree_root);
1900 BUG_ON(ret);
1902 if (sb->s_flags & MS_RDONLY) {
1903 ret = btrfs_commit_super(tree_root);
1904 BUG_ON(ret);
1908 if (!(sb->s_flags & MS_RDONLY)) {
1909 ret = btrfs_recover_relocation(tree_root);
1910 BUG_ON(ret);
1913 location.objectid = BTRFS_FS_TREE_OBJECTID;
1914 location.type = BTRFS_ROOT_ITEM_KEY;
1915 location.offset = (u64)-1;
1917 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1918 if (!fs_info->fs_root)
1919 goto fail_trans_kthread;
1921 return tree_root;
1923 fail_trans_kthread:
1924 kthread_stop(fs_info->transaction_kthread);
1925 fail_cleaner:
1926 kthread_stop(fs_info->cleaner_kthread);
1929 * make sure we're done with the btree inode before we stop our
1930 * kthreads
1932 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1933 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1935 fail_csum_root:
1936 free_extent_buffer(csum_root->node);
1937 free_extent_buffer(csum_root->commit_root);
1938 fail_dev_root:
1939 free_extent_buffer(dev_root->node);
1940 free_extent_buffer(dev_root->commit_root);
1941 fail_extent_root:
1942 free_extent_buffer(extent_root->node);
1943 free_extent_buffer(extent_root->commit_root);
1944 fail_tree_root:
1945 free_extent_buffer(tree_root->node);
1946 free_extent_buffer(tree_root->commit_root);
1947 fail_chunk_root:
1948 free_extent_buffer(chunk_root->node);
1949 free_extent_buffer(chunk_root->commit_root);
1950 fail_sb_buffer:
1951 btrfs_stop_workers(&fs_info->fixup_workers);
1952 btrfs_stop_workers(&fs_info->delalloc_workers);
1953 btrfs_stop_workers(&fs_info->workers);
1954 btrfs_stop_workers(&fs_info->endio_workers);
1955 btrfs_stop_workers(&fs_info->endio_meta_workers);
1956 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1957 btrfs_stop_workers(&fs_info->endio_write_workers);
1958 btrfs_stop_workers(&fs_info->submit_workers);
1959 fail_iput:
1960 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1961 iput(fs_info->btree_inode);
1963 btrfs_close_devices(fs_info->fs_devices);
1964 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1965 fail_bdi:
1966 bdi_destroy(&fs_info->bdi);
1967 fail:
1968 kfree(extent_root);
1969 kfree(tree_root);
1970 kfree(fs_info);
1971 kfree(chunk_root);
1972 kfree(dev_root);
1973 kfree(csum_root);
1974 return ERR_PTR(err);
1977 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1979 char b[BDEVNAME_SIZE];
1981 if (uptodate) {
1982 set_buffer_uptodate(bh);
1983 } else {
1984 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1985 printk(KERN_WARNING "lost page write due to "
1986 "I/O error on %s\n",
1987 bdevname(bh->b_bdev, b));
1989 /* note, we dont' set_buffer_write_io_error because we have
1990 * our own ways of dealing with the IO errors
1992 clear_buffer_uptodate(bh);
1994 unlock_buffer(bh);
1995 put_bh(bh);
1998 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2000 struct buffer_head *bh;
2001 struct buffer_head *latest = NULL;
2002 struct btrfs_super_block *super;
2003 int i;
2004 u64 transid = 0;
2005 u64 bytenr;
2007 /* we would like to check all the supers, but that would make
2008 * a btrfs mount succeed after a mkfs from a different FS.
2009 * So, we need to add a special mount option to scan for
2010 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2012 for (i = 0; i < 1; i++) {
2013 bytenr = btrfs_sb_offset(i);
2014 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2015 break;
2016 bh = __bread(bdev, bytenr / 4096, 4096);
2017 if (!bh)
2018 continue;
2020 super = (struct btrfs_super_block *)bh->b_data;
2021 if (btrfs_super_bytenr(super) != bytenr ||
2022 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2023 sizeof(super->magic))) {
2024 brelse(bh);
2025 continue;
2028 if (!latest || btrfs_super_generation(super) > transid) {
2029 brelse(latest);
2030 latest = bh;
2031 transid = btrfs_super_generation(super);
2032 } else {
2033 brelse(bh);
2036 return latest;
2040 * this should be called twice, once with wait == 0 and
2041 * once with wait == 1. When wait == 0 is done, all the buffer heads
2042 * we write are pinned.
2044 * They are released when wait == 1 is done.
2045 * max_mirrors must be the same for both runs, and it indicates how
2046 * many supers on this one device should be written.
2048 * max_mirrors == 0 means to write them all.
2050 static int write_dev_supers(struct btrfs_device *device,
2051 struct btrfs_super_block *sb,
2052 int do_barriers, int wait, int max_mirrors)
2054 struct buffer_head *bh;
2055 int i;
2056 int ret;
2057 int errors = 0;
2058 u32 crc;
2059 u64 bytenr;
2060 int last_barrier = 0;
2062 if (max_mirrors == 0)
2063 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2065 /* make sure only the last submit_bh does a barrier */
2066 if (do_barriers) {
2067 for (i = 0; i < max_mirrors; i++) {
2068 bytenr = btrfs_sb_offset(i);
2069 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2070 device->total_bytes)
2071 break;
2072 last_barrier = i;
2076 for (i = 0; i < max_mirrors; i++) {
2077 bytenr = btrfs_sb_offset(i);
2078 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2079 break;
2081 if (wait) {
2082 bh = __find_get_block(device->bdev, bytenr / 4096,
2083 BTRFS_SUPER_INFO_SIZE);
2084 BUG_ON(!bh);
2085 wait_on_buffer(bh);
2086 if (!buffer_uptodate(bh))
2087 errors++;
2089 /* drop our reference */
2090 brelse(bh);
2092 /* drop the reference from the wait == 0 run */
2093 brelse(bh);
2094 continue;
2095 } else {
2096 btrfs_set_super_bytenr(sb, bytenr);
2098 crc = ~(u32)0;
2099 crc = btrfs_csum_data(NULL, (char *)sb +
2100 BTRFS_CSUM_SIZE, crc,
2101 BTRFS_SUPER_INFO_SIZE -
2102 BTRFS_CSUM_SIZE);
2103 btrfs_csum_final(crc, sb->csum);
2106 * one reference for us, and we leave it for the
2107 * caller
2109 bh = __getblk(device->bdev, bytenr / 4096,
2110 BTRFS_SUPER_INFO_SIZE);
2111 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2113 /* one reference for submit_bh */
2114 get_bh(bh);
2116 set_buffer_uptodate(bh);
2117 lock_buffer(bh);
2118 bh->b_end_io = btrfs_end_buffer_write_sync;
2121 if (i == last_barrier && do_barriers && device->barriers) {
2122 ret = submit_bh(WRITE_BARRIER, bh);
2123 if (ret == -EOPNOTSUPP) {
2124 printk("btrfs: disabling barriers on dev %s\n",
2125 device->name);
2126 set_buffer_uptodate(bh);
2127 device->barriers = 0;
2128 /* one reference for submit_bh */
2129 get_bh(bh);
2130 lock_buffer(bh);
2131 ret = submit_bh(WRITE_SYNC, bh);
2133 } else {
2134 ret = submit_bh(WRITE_SYNC, bh);
2137 if (ret)
2138 errors++;
2140 return errors < i ? 0 : -1;
2143 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2145 struct list_head *head;
2146 struct btrfs_device *dev;
2147 struct btrfs_super_block *sb;
2148 struct btrfs_dev_item *dev_item;
2149 int ret;
2150 int do_barriers;
2151 int max_errors;
2152 int total_errors = 0;
2153 u64 flags;
2155 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2156 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2158 sb = &root->fs_info->super_for_commit;
2159 dev_item = &sb->dev_item;
2161 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2162 head = &root->fs_info->fs_devices->devices;
2163 list_for_each_entry(dev, head, dev_list) {
2164 if (!dev->bdev) {
2165 total_errors++;
2166 continue;
2168 if (!dev->in_fs_metadata || !dev->writeable)
2169 continue;
2171 btrfs_set_stack_device_generation(dev_item, 0);
2172 btrfs_set_stack_device_type(dev_item, dev->type);
2173 btrfs_set_stack_device_id(dev_item, dev->devid);
2174 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2175 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2176 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2177 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2178 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2179 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2180 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2182 flags = btrfs_super_flags(sb);
2183 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2185 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2186 if (ret)
2187 total_errors++;
2189 if (total_errors > max_errors) {
2190 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2191 total_errors);
2192 BUG();
2195 total_errors = 0;
2196 list_for_each_entry(dev, head, dev_list) {
2197 if (!dev->bdev)
2198 continue;
2199 if (!dev->in_fs_metadata || !dev->writeable)
2200 continue;
2202 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2203 if (ret)
2204 total_errors++;
2206 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2207 if (total_errors > max_errors) {
2208 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2209 total_errors);
2210 BUG();
2212 return 0;
2215 int write_ctree_super(struct btrfs_trans_handle *trans,
2216 struct btrfs_root *root, int max_mirrors)
2218 int ret;
2220 ret = write_all_supers(root, max_mirrors);
2221 return ret;
2224 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2226 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2227 radix_tree_delete(&fs_info->fs_roots_radix,
2228 (unsigned long)root->root_key.objectid);
2229 if (root->anon_super.s_dev) {
2230 down_write(&root->anon_super.s_umount);
2231 kill_anon_super(&root->anon_super);
2233 if (root->node)
2234 free_extent_buffer(root->node);
2235 if (root->commit_root)
2236 free_extent_buffer(root->commit_root);
2237 kfree(root->name);
2238 kfree(root);
2239 return 0;
2242 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2244 int ret;
2245 struct btrfs_root *gang[8];
2246 int i;
2248 while (1) {
2249 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2250 (void **)gang, 0,
2251 ARRAY_SIZE(gang));
2252 if (!ret)
2253 break;
2254 for (i = 0; i < ret; i++)
2255 btrfs_free_fs_root(fs_info, gang[i]);
2257 return 0;
2260 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2262 u64 root_objectid = 0;
2263 struct btrfs_root *gang[8];
2264 int i;
2265 int ret;
2267 while (1) {
2268 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2269 (void **)gang, root_objectid,
2270 ARRAY_SIZE(gang));
2271 if (!ret)
2272 break;
2274 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2275 for (i = 0; i < ret; i++) {
2276 root_objectid = gang[i]->root_key.objectid;
2277 ret = btrfs_find_dead_roots(fs_info->tree_root,
2278 root_objectid);
2279 BUG_ON(ret);
2280 btrfs_orphan_cleanup(gang[i]);
2282 root_objectid++;
2284 return 0;
2287 int btrfs_commit_super(struct btrfs_root *root)
2289 struct btrfs_trans_handle *trans;
2290 int ret;
2292 mutex_lock(&root->fs_info->cleaner_mutex);
2293 btrfs_clean_old_snapshots(root);
2294 mutex_unlock(&root->fs_info->cleaner_mutex);
2295 trans = btrfs_start_transaction(root, 1);
2296 ret = btrfs_commit_transaction(trans, root);
2297 BUG_ON(ret);
2298 /* run commit again to drop the original snapshot */
2299 trans = btrfs_start_transaction(root, 1);
2300 btrfs_commit_transaction(trans, root);
2301 ret = btrfs_write_and_wait_transaction(NULL, root);
2302 BUG_ON(ret);
2304 ret = write_ctree_super(NULL, root, 0);
2305 return ret;
2308 int close_ctree(struct btrfs_root *root)
2310 struct btrfs_fs_info *fs_info = root->fs_info;
2311 int ret;
2313 fs_info->closing = 1;
2314 smp_mb();
2316 kthread_stop(root->fs_info->transaction_kthread);
2317 kthread_stop(root->fs_info->cleaner_kthread);
2319 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2320 ret = btrfs_commit_super(root);
2321 if (ret)
2322 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2325 if (fs_info->delalloc_bytes) {
2326 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2327 (unsigned long long)fs_info->delalloc_bytes);
2329 if (fs_info->total_ref_cache_size) {
2330 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2331 (unsigned long long)fs_info->total_ref_cache_size);
2334 free_extent_buffer(fs_info->extent_root->node);
2335 free_extent_buffer(fs_info->extent_root->commit_root);
2336 free_extent_buffer(fs_info->tree_root->node);
2337 free_extent_buffer(fs_info->tree_root->commit_root);
2338 free_extent_buffer(root->fs_info->chunk_root->node);
2339 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2340 free_extent_buffer(root->fs_info->dev_root->node);
2341 free_extent_buffer(root->fs_info->dev_root->commit_root);
2342 free_extent_buffer(root->fs_info->csum_root->node);
2343 free_extent_buffer(root->fs_info->csum_root->commit_root);
2345 btrfs_free_block_groups(root->fs_info);
2347 del_fs_roots(fs_info);
2349 iput(fs_info->btree_inode);
2351 btrfs_stop_workers(&fs_info->fixup_workers);
2352 btrfs_stop_workers(&fs_info->delalloc_workers);
2353 btrfs_stop_workers(&fs_info->workers);
2354 btrfs_stop_workers(&fs_info->endio_workers);
2355 btrfs_stop_workers(&fs_info->endio_meta_workers);
2356 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2357 btrfs_stop_workers(&fs_info->endio_write_workers);
2358 btrfs_stop_workers(&fs_info->submit_workers);
2360 btrfs_close_devices(fs_info->fs_devices);
2361 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2363 bdi_destroy(&fs_info->bdi);
2365 kfree(fs_info->extent_root);
2366 kfree(fs_info->tree_root);
2367 kfree(fs_info->chunk_root);
2368 kfree(fs_info->dev_root);
2369 kfree(fs_info->csum_root);
2370 return 0;
2373 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2375 int ret;
2376 struct inode *btree_inode = buf->first_page->mapping->host;
2378 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2379 if (!ret)
2380 return ret;
2382 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2383 parent_transid);
2384 return !ret;
2387 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2389 struct inode *btree_inode = buf->first_page->mapping->host;
2390 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2391 buf);
2394 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2396 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2397 u64 transid = btrfs_header_generation(buf);
2398 struct inode *btree_inode = root->fs_info->btree_inode;
2399 int was_dirty;
2401 btrfs_assert_tree_locked(buf);
2402 if (transid != root->fs_info->generation) {
2403 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2404 "found %llu running %llu\n",
2405 (unsigned long long)buf->start,
2406 (unsigned long long)transid,
2407 (unsigned long long)root->fs_info->generation);
2408 WARN_ON(1);
2410 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2411 buf);
2412 if (!was_dirty) {
2413 spin_lock(&root->fs_info->delalloc_lock);
2414 root->fs_info->dirty_metadata_bytes += buf->len;
2415 spin_unlock(&root->fs_info->delalloc_lock);
2419 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2422 * looks as though older kernels can get into trouble with
2423 * this code, they end up stuck in balance_dirty_pages forever
2425 u64 num_dirty;
2426 unsigned long thresh = 32 * 1024 * 1024;
2428 if (current->flags & PF_MEMALLOC)
2429 return;
2431 num_dirty = root->fs_info->dirty_metadata_bytes;
2433 if (num_dirty > thresh) {
2434 balance_dirty_pages_ratelimited_nr(
2435 root->fs_info->btree_inode->i_mapping, 1);
2437 return;
2440 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2442 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2443 int ret;
2444 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2445 if (ret == 0)
2446 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2447 return ret;
2450 int btree_lock_page_hook(struct page *page)
2452 struct inode *inode = page->mapping->host;
2453 struct btrfs_root *root = BTRFS_I(inode)->root;
2454 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2455 struct extent_buffer *eb;
2456 unsigned long len;
2457 u64 bytenr = page_offset(page);
2459 if (page->private == EXTENT_PAGE_PRIVATE)
2460 goto out;
2462 len = page->private >> 2;
2463 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2464 if (!eb)
2465 goto out;
2467 btrfs_tree_lock(eb);
2468 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2470 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2471 spin_lock(&root->fs_info->delalloc_lock);
2472 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2473 root->fs_info->dirty_metadata_bytes -= eb->len;
2474 else
2475 WARN_ON(1);
2476 spin_unlock(&root->fs_info->delalloc_lock);
2479 btrfs_tree_unlock(eb);
2480 free_extent_buffer(eb);
2481 out:
2482 lock_page(page);
2483 return 0;
2486 static struct extent_io_ops btree_extent_io_ops = {
2487 .write_cache_pages_lock_hook = btree_lock_page_hook,
2488 .readpage_end_io_hook = btree_readpage_end_io_hook,
2489 .submit_bio_hook = btree_submit_bio_hook,
2490 /* note we're sharing with inode.c for the merge bio hook */
2491 .merge_bio_hook = btrfs_merge_bio_hook,