tipc: Increase frequency of load distribution over broadcast link
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mmap.c
blob75557c639ad419c49aff37f1a57de548077f702d
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
37 #include "internal.h"
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
41 #endif
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
45 #endif
47 static void unmap_region(struct mm_struct *mm,
48 struct vm_area_struct *vma, struct vm_area_struct *prev,
49 unsigned long start, unsigned long end);
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
55 #undef DEBUG_MM_RB
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
61 * map_type prot
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 pgprot_t protection_map[16] = {
73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 return __pgprot(pgprot_val(protection_map[vm_flags &
80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 EXPORT_SYMBOL(vm_get_page_prot);
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 unsigned long free, allowed;
110 vm_acct_memory(pages);
113 * Sometimes we want to use more memory than we have
115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 return 0;
118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 unsigned long n;
121 free = global_page_state(NR_FILE_PAGES);
122 free += nr_swap_pages;
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
130 free += global_page_state(NR_SLAB_RECLAIMABLE);
133 * Leave the last 3% for root
135 if (!cap_sys_admin)
136 free -= free / 32;
138 if (free > pages)
139 return 0;
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
145 n = nr_free_pages();
148 * Leave reserved pages. The pages are not for anonymous pages.
150 if (n <= totalreserve_pages)
151 goto error;
152 else
153 n -= totalreserve_pages;
156 * Leave the last 3% for root
158 if (!cap_sys_admin)
159 n -= n / 32;
160 free += n;
162 if (free > pages)
163 return 0;
165 goto error;
168 allowed = (totalram_pages - hugetlb_total_pages())
169 * sysctl_overcommit_ratio / 100;
171 * Leave the last 3% for root
173 if (!cap_sys_admin)
174 allowed -= allowed / 32;
175 allowed += total_swap_pages;
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
179 if (mm)
180 allowed -= mm->total_vm / 32;
182 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 return 0;
184 error:
185 vm_unacct_memory(pages);
187 return -ENOMEM;
191 * Requires inode->i_mapping->i_mmap_lock
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 struct file *file, struct address_space *mapping)
196 if (vma->vm_flags & VM_DENYWRITE)
197 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 if (vma->vm_flags & VM_SHARED)
199 mapping->i_mmap_writable--;
201 flush_dcache_mmap_lock(mapping);
202 if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 list_del_init(&vma->shared.vm_set.list);
204 else
205 vma_prio_tree_remove(vma, &mapping->i_mmap);
206 flush_dcache_mmap_unlock(mapping);
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
213 void unlink_file_vma(struct vm_area_struct *vma)
215 struct file *file = vma->vm_file;
217 if (file) {
218 struct address_space *mapping = file->f_mapping;
219 spin_lock(&mapping->i_mmap_lock);
220 __remove_shared_vm_struct(vma, file, mapping);
221 spin_unlock(&mapping->i_mmap_lock);
226 * Close a vm structure and free it, returning the next.
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 struct vm_area_struct *next = vma->vm_next;
232 might_sleep();
233 if (vma->vm_ops && vma->vm_ops->close)
234 vma->vm_ops->close(vma);
235 if (vma->vm_file) {
236 fput(vma->vm_file);
237 if (vma->vm_flags & VM_EXECUTABLE)
238 removed_exe_file_vma(vma->vm_mm);
240 mpol_put(vma_policy(vma));
241 kmem_cache_free(vm_area_cachep, vma);
242 return next;
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 unsigned long rlim, retval;
248 unsigned long newbrk, oldbrk;
249 struct mm_struct *mm = current->mm;
250 unsigned long min_brk;
252 down_write(&mm->mmap_sem);
254 #ifdef CONFIG_COMPAT_BRK
255 min_brk = mm->end_code;
256 #else
257 min_brk = mm->start_brk;
258 #endif
259 if (brk < min_brk)
260 goto out;
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
268 rlim = rlimit(RLIMIT_DATA);
269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 (mm->end_data - mm->start_data) > rlim)
271 goto out;
273 newbrk = PAGE_ALIGN(brk);
274 oldbrk = PAGE_ALIGN(mm->brk);
275 if (oldbrk == newbrk)
276 goto set_brk;
278 /* Always allow shrinking brk. */
279 if (brk <= mm->brk) {
280 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 goto set_brk;
282 goto out;
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 goto out;
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 goto out;
292 set_brk:
293 mm->brk = brk;
294 out:
295 retval = mm->brk;
296 up_write(&mm->mmap_sem);
297 return retval;
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
303 int i = 0, j;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev)
311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 if (vma->vm_start < pend)
313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 if (vma->vm_start > vma->vm_end)
315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 i++;
317 pn = nd;
318 prev = vma->vm_start;
319 pend = vma->vm_end;
321 j = 0;
322 for (nd = pn; nd; nd = rb_prev(nd)) {
323 j++;
325 if (i != j)
326 printk("backwards %d, forwards %d\n", j, i), i = 0;
327 return i;
330 void validate_mm(struct mm_struct *mm)
332 int bug = 0;
333 int i = 0;
334 struct vm_area_struct *tmp = mm->mmap;
335 while (tmp) {
336 tmp = tmp->vm_next;
337 i++;
339 if (i != mm->map_count)
340 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 i = browse_rb(&mm->mm_rb);
342 if (i != mm->map_count)
343 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 BUG_ON(bug);
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 struct rb_node ** rb_parent)
355 struct vm_area_struct * vma;
356 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358 __rb_link = &mm->mm_rb.rb_node;
359 rb_prev = __rb_parent = NULL;
360 vma = NULL;
362 while (*__rb_link) {
363 struct vm_area_struct *vma_tmp;
365 __rb_parent = *__rb_link;
366 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368 if (vma_tmp->vm_end > addr) {
369 vma = vma_tmp;
370 if (vma_tmp->vm_start <= addr)
371 break;
372 __rb_link = &__rb_parent->rb_left;
373 } else {
374 rb_prev = __rb_parent;
375 __rb_link = &__rb_parent->rb_right;
379 *pprev = NULL;
380 if (rb_prev)
381 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 *rb_link = __rb_link;
383 *rb_parent = __rb_parent;
384 return vma;
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 struct vm_area_struct *prev, struct rb_node *rb_parent)
391 if (prev) {
392 vma->vm_next = prev->vm_next;
393 prev->vm_next = vma;
394 } else {
395 mm->mmap = vma;
396 if (rb_parent)
397 vma->vm_next = rb_entry(rb_parent,
398 struct vm_area_struct, vm_rb);
399 else
400 vma->vm_next = NULL;
404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405 struct rb_node **rb_link, struct rb_node *rb_parent)
407 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
411 static void __vma_link_file(struct vm_area_struct *vma)
413 struct file *file;
415 file = vma->vm_file;
416 if (file) {
417 struct address_space *mapping = file->f_mapping;
419 if (vma->vm_flags & VM_DENYWRITE)
420 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421 if (vma->vm_flags & VM_SHARED)
422 mapping->i_mmap_writable++;
424 flush_dcache_mmap_lock(mapping);
425 if (unlikely(vma->vm_flags & VM_NONLINEAR))
426 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427 else
428 vma_prio_tree_insert(vma, &mapping->i_mmap);
429 flush_dcache_mmap_unlock(mapping);
433 static void
434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 struct vm_area_struct *prev, struct rb_node **rb_link,
436 struct rb_node *rb_parent)
438 __vma_link_list(mm, vma, prev, rb_parent);
439 __vma_link_rb(mm, vma, rb_link, rb_parent);
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 struct vm_area_struct *prev, struct rb_node **rb_link,
444 struct rb_node *rb_parent)
446 struct address_space *mapping = NULL;
448 if (vma->vm_file)
449 mapping = vma->vm_file->f_mapping;
451 if (mapping) {
452 spin_lock(&mapping->i_mmap_lock);
453 vma->vm_truncate_count = mapping->truncate_count;
455 anon_vma_lock(vma);
457 __vma_link(mm, vma, prev, rb_link, rb_parent);
458 __vma_link_file(vma);
460 anon_vma_unlock(vma);
461 if (mapping)
462 spin_unlock(&mapping->i_mmap_lock);
464 mm->map_count++;
465 validate_mm(mm);
469 * Helper for vma_adjust in the split_vma insert case:
470 * insert vm structure into list and rbtree and anon_vma,
471 * but it has already been inserted into prio_tree earlier.
473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
475 struct vm_area_struct *__vma, *prev;
476 struct rb_node **rb_link, *rb_parent;
478 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480 __vma_link(mm, vma, prev, rb_link, rb_parent);
481 mm->map_count++;
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486 struct vm_area_struct *prev)
488 prev->vm_next = vma->vm_next;
489 rb_erase(&vma->vm_rb, &mm->mm_rb);
490 if (mm->mmap_cache == vma)
491 mm->mmap_cache = prev;
495 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496 * is already present in an i_mmap tree without adjusting the tree.
497 * The following helper function should be used when such adjustments
498 * are necessary. The "insert" vma (if any) is to be inserted
499 * before we drop the necessary locks.
501 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
502 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
504 struct mm_struct *mm = vma->vm_mm;
505 struct vm_area_struct *next = vma->vm_next;
506 struct vm_area_struct *importer = NULL;
507 struct address_space *mapping = NULL;
508 struct prio_tree_root *root = NULL;
509 struct file *file = vma->vm_file;
510 struct anon_vma *anon_vma = NULL;
511 long adjust_next = 0;
512 int remove_next = 0;
514 if (next && !insert) {
515 if (end >= next->vm_end) {
517 * vma expands, overlapping all the next, and
518 * perhaps the one after too (mprotect case 6).
520 again: remove_next = 1 + (end > next->vm_end);
521 end = next->vm_end;
522 anon_vma = next->anon_vma;
523 importer = vma;
524 } else if (end > next->vm_start) {
526 * vma expands, overlapping part of the next:
527 * mprotect case 5 shifting the boundary up.
529 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
530 anon_vma = next->anon_vma;
531 importer = vma;
532 } else if (end < vma->vm_end) {
534 * vma shrinks, and !insert tells it's not
535 * split_vma inserting another: so it must be
536 * mprotect case 4 shifting the boundary down.
538 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
539 anon_vma = next->anon_vma;
540 importer = next;
545 * When changing only vma->vm_end, we don't really need anon_vma lock.
547 if (vma->anon_vma && (insert || importer || start != vma->vm_start))
548 anon_vma = vma->anon_vma;
549 if (anon_vma) {
551 * Easily overlooked: when mprotect shifts the boundary,
552 * make sure the expanding vma has anon_vma set if the
553 * shrinking vma had, to cover any anon pages imported.
555 if (importer && !importer->anon_vma) {
556 /* Block reverse map lookups until things are set up. */
557 if (anon_vma_clone(importer, vma)) {
558 return -ENOMEM;
560 importer->anon_vma = anon_vma;
564 if (file) {
565 mapping = file->f_mapping;
566 if (!(vma->vm_flags & VM_NONLINEAR))
567 root = &mapping->i_mmap;
568 spin_lock(&mapping->i_mmap_lock);
569 if (importer &&
570 vma->vm_truncate_count != next->vm_truncate_count) {
572 * unmap_mapping_range might be in progress:
573 * ensure that the expanding vma is rescanned.
575 importer->vm_truncate_count = 0;
577 if (insert) {
578 insert->vm_truncate_count = vma->vm_truncate_count;
580 * Put into prio_tree now, so instantiated pages
581 * are visible to arm/parisc __flush_dcache_page
582 * throughout; but we cannot insert into address
583 * space until vma start or end is updated.
585 __vma_link_file(insert);
589 if (root) {
590 flush_dcache_mmap_lock(mapping);
591 vma_prio_tree_remove(vma, root);
592 if (adjust_next)
593 vma_prio_tree_remove(next, root);
596 vma->vm_start = start;
597 vma->vm_end = end;
598 vma->vm_pgoff = pgoff;
599 if (adjust_next) {
600 next->vm_start += adjust_next << PAGE_SHIFT;
601 next->vm_pgoff += adjust_next;
604 if (root) {
605 if (adjust_next)
606 vma_prio_tree_insert(next, root);
607 vma_prio_tree_insert(vma, root);
608 flush_dcache_mmap_unlock(mapping);
611 if (remove_next) {
613 * vma_merge has merged next into vma, and needs
614 * us to remove next before dropping the locks.
616 __vma_unlink(mm, next, vma);
617 if (file)
618 __remove_shared_vm_struct(next, file, mapping);
619 } else if (insert) {
621 * split_vma has split insert from vma, and needs
622 * us to insert it before dropping the locks
623 * (it may either follow vma or precede it).
625 __insert_vm_struct(mm, insert);
628 if (mapping)
629 spin_unlock(&mapping->i_mmap_lock);
631 if (remove_next) {
632 if (file) {
633 fput(file);
634 if (next->vm_flags & VM_EXECUTABLE)
635 removed_exe_file_vma(mm);
637 if (next->anon_vma)
638 anon_vma_merge(vma, next);
639 mm->map_count--;
640 mpol_put(vma_policy(next));
641 kmem_cache_free(vm_area_cachep, next);
643 * In mprotect's case 6 (see comments on vma_merge),
644 * we must remove another next too. It would clutter
645 * up the code too much to do both in one go.
647 if (remove_next == 2) {
648 next = vma->vm_next;
649 goto again;
653 validate_mm(mm);
655 return 0;
659 * If the vma has a ->close operation then the driver probably needs to release
660 * per-vma resources, so we don't attempt to merge those.
662 static inline int is_mergeable_vma(struct vm_area_struct *vma,
663 struct file *file, unsigned long vm_flags)
665 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
666 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
667 return 0;
668 if (vma->vm_file != file)
669 return 0;
670 if (vma->vm_ops && vma->vm_ops->close)
671 return 0;
672 return 1;
675 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
676 struct anon_vma *anon_vma2)
678 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
682 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
683 * in front of (at a lower virtual address and file offset than) the vma.
685 * We cannot merge two vmas if they have differently assigned (non-NULL)
686 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
688 * We don't check here for the merged mmap wrapping around the end of pagecache
689 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
690 * wrap, nor mmaps which cover the final page at index -1UL.
692 static int
693 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
694 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
696 if (is_mergeable_vma(vma, file, vm_flags) &&
697 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
698 if (vma->vm_pgoff == vm_pgoff)
699 return 1;
701 return 0;
705 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
706 * beyond (at a higher virtual address and file offset than) the vma.
708 * We cannot merge two vmas if they have differently assigned (non-NULL)
709 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
711 static int
712 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
713 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
715 if (is_mergeable_vma(vma, file, vm_flags) &&
716 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
717 pgoff_t vm_pglen;
718 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
719 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
720 return 1;
722 return 0;
726 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
727 * whether that can be merged with its predecessor or its successor.
728 * Or both (it neatly fills a hole).
730 * In most cases - when called for mmap, brk or mremap - [addr,end) is
731 * certain not to be mapped by the time vma_merge is called; but when
732 * called for mprotect, it is certain to be already mapped (either at
733 * an offset within prev, or at the start of next), and the flags of
734 * this area are about to be changed to vm_flags - and the no-change
735 * case has already been eliminated.
737 * The following mprotect cases have to be considered, where AAAA is
738 * the area passed down from mprotect_fixup, never extending beyond one
739 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
741 * AAAA AAAA AAAA AAAA
742 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
743 * cannot merge might become might become might become
744 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
745 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
746 * mremap move: PPPPNNNNNNNN 8
747 * AAAA
748 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
749 * might become case 1 below case 2 below case 3 below
751 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
752 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
754 struct vm_area_struct *vma_merge(struct mm_struct *mm,
755 struct vm_area_struct *prev, unsigned long addr,
756 unsigned long end, unsigned long vm_flags,
757 struct anon_vma *anon_vma, struct file *file,
758 pgoff_t pgoff, struct mempolicy *policy)
760 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
761 struct vm_area_struct *area, *next;
762 int err;
765 * We later require that vma->vm_flags == vm_flags,
766 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 if (vm_flags & VM_SPECIAL)
769 return NULL;
771 if (prev)
772 next = prev->vm_next;
773 else
774 next = mm->mmap;
775 area = next;
776 if (next && next->vm_end == end) /* cases 6, 7, 8 */
777 next = next->vm_next;
780 * Can it merge with the predecessor?
782 if (prev && prev->vm_end == addr &&
783 mpol_equal(vma_policy(prev), policy) &&
784 can_vma_merge_after(prev, vm_flags,
785 anon_vma, file, pgoff)) {
787 * OK, it can. Can we now merge in the successor as well?
789 if (next && end == next->vm_start &&
790 mpol_equal(policy, vma_policy(next)) &&
791 can_vma_merge_before(next, vm_flags,
792 anon_vma, file, pgoff+pglen) &&
793 is_mergeable_anon_vma(prev->anon_vma,
794 next->anon_vma)) {
795 /* cases 1, 6 */
796 err = vma_adjust(prev, prev->vm_start,
797 next->vm_end, prev->vm_pgoff, NULL);
798 } else /* cases 2, 5, 7 */
799 err = vma_adjust(prev, prev->vm_start,
800 end, prev->vm_pgoff, NULL);
801 if (err)
802 return NULL;
803 return prev;
807 * Can this new request be merged in front of next?
809 if (next && end == next->vm_start &&
810 mpol_equal(policy, vma_policy(next)) &&
811 can_vma_merge_before(next, vm_flags,
812 anon_vma, file, pgoff+pglen)) {
813 if (prev && addr < prev->vm_end) /* case 4 */
814 err = vma_adjust(prev, prev->vm_start,
815 addr, prev->vm_pgoff, NULL);
816 else /* cases 3, 8 */
817 err = vma_adjust(area, addr, next->vm_end,
818 next->vm_pgoff - pglen, NULL);
819 if (err)
820 return NULL;
821 return area;
824 return NULL;
828 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
829 * neighbouring vmas for a suitable anon_vma, before it goes off
830 * to allocate a new anon_vma. It checks because a repetitive
831 * sequence of mprotects and faults may otherwise lead to distinct
832 * anon_vmas being allocated, preventing vma merge in subsequent
833 * mprotect.
835 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
837 struct vm_area_struct *near;
838 unsigned long vm_flags;
840 near = vma->vm_next;
841 if (!near)
842 goto try_prev;
845 * Since only mprotect tries to remerge vmas, match flags
846 * which might be mprotected into each other later on.
847 * Neither mlock nor madvise tries to remerge at present,
848 * so leave their flags as obstructing a merge.
850 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
851 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
853 if (near->anon_vma && vma->vm_end == near->vm_start &&
854 mpol_equal(vma_policy(vma), vma_policy(near)) &&
855 can_vma_merge_before(near, vm_flags,
856 NULL, vma->vm_file, vma->vm_pgoff +
857 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
858 return near->anon_vma;
859 try_prev:
861 * It is potentially slow to have to call find_vma_prev here.
862 * But it's only on the first write fault on the vma, not
863 * every time, and we could devise a way to avoid it later
864 * (e.g. stash info in next's anon_vma_node when assigning
865 * an anon_vma, or when trying vma_merge). Another time.
867 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
868 if (!near)
869 goto none;
871 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
872 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
874 if (near->anon_vma && near->vm_end == vma->vm_start &&
875 mpol_equal(vma_policy(near), vma_policy(vma)) &&
876 can_vma_merge_after(near, vm_flags,
877 NULL, vma->vm_file, vma->vm_pgoff))
878 return near->anon_vma;
879 none:
881 * There's no absolute need to look only at touching neighbours:
882 * we could search further afield for "compatible" anon_vmas.
883 * But it would probably just be a waste of time searching,
884 * or lead to too many vmas hanging off the same anon_vma.
885 * We're trying to allow mprotect remerging later on,
886 * not trying to minimize memory used for anon_vmas.
888 return NULL;
891 #ifdef CONFIG_PROC_FS
892 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
893 struct file *file, long pages)
895 const unsigned long stack_flags
896 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
898 if (file) {
899 mm->shared_vm += pages;
900 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
901 mm->exec_vm += pages;
902 } else if (flags & stack_flags)
903 mm->stack_vm += pages;
904 if (flags & (VM_RESERVED|VM_IO))
905 mm->reserved_vm += pages;
907 #endif /* CONFIG_PROC_FS */
910 * The caller must hold down_write(&current->mm->mmap_sem).
913 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
914 unsigned long len, unsigned long prot,
915 unsigned long flags, unsigned long pgoff)
917 struct mm_struct * mm = current->mm;
918 struct inode *inode;
919 unsigned int vm_flags;
920 int error;
921 unsigned long reqprot = prot;
924 * Does the application expect PROT_READ to imply PROT_EXEC?
926 * (the exception is when the underlying filesystem is noexec
927 * mounted, in which case we dont add PROT_EXEC.)
929 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
930 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
931 prot |= PROT_EXEC;
933 if (!len)
934 return -EINVAL;
936 if (!(flags & MAP_FIXED))
937 addr = round_hint_to_min(addr);
939 /* Careful about overflows.. */
940 len = PAGE_ALIGN(len);
941 if (!len)
942 return -ENOMEM;
944 /* offset overflow? */
945 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
946 return -EOVERFLOW;
948 /* Too many mappings? */
949 if (mm->map_count > sysctl_max_map_count)
950 return -ENOMEM;
952 /* Obtain the address to map to. we verify (or select) it and ensure
953 * that it represents a valid section of the address space.
955 addr = get_unmapped_area(file, addr, len, pgoff, flags);
956 if (addr & ~PAGE_MASK)
957 return addr;
959 /* Do simple checking here so the lower-level routines won't have
960 * to. we assume access permissions have been handled by the open
961 * of the memory object, so we don't do any here.
963 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
964 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966 if (flags & MAP_LOCKED)
967 if (!can_do_mlock())
968 return -EPERM;
970 /* mlock MCL_FUTURE? */
971 if (vm_flags & VM_LOCKED) {
972 unsigned long locked, lock_limit;
973 locked = len >> PAGE_SHIFT;
974 locked += mm->locked_vm;
975 lock_limit = rlimit(RLIMIT_MEMLOCK);
976 lock_limit >>= PAGE_SHIFT;
977 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
978 return -EAGAIN;
981 inode = file ? file->f_path.dentry->d_inode : NULL;
983 if (file) {
984 switch (flags & MAP_TYPE) {
985 case MAP_SHARED:
986 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
987 return -EACCES;
990 * Make sure we don't allow writing to an append-only
991 * file..
993 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
994 return -EACCES;
997 * Make sure there are no mandatory locks on the file.
999 if (locks_verify_locked(inode))
1000 return -EAGAIN;
1002 vm_flags |= VM_SHARED | VM_MAYSHARE;
1003 if (!(file->f_mode & FMODE_WRITE))
1004 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1006 /* fall through */
1007 case MAP_PRIVATE:
1008 if (!(file->f_mode & FMODE_READ))
1009 return -EACCES;
1010 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1011 if (vm_flags & VM_EXEC)
1012 return -EPERM;
1013 vm_flags &= ~VM_MAYEXEC;
1016 if (!file->f_op || !file->f_op->mmap)
1017 return -ENODEV;
1018 break;
1020 default:
1021 return -EINVAL;
1023 } else {
1024 switch (flags & MAP_TYPE) {
1025 case MAP_SHARED:
1027 * Ignore pgoff.
1029 pgoff = 0;
1030 vm_flags |= VM_SHARED | VM_MAYSHARE;
1031 break;
1032 case MAP_PRIVATE:
1034 * Set pgoff according to addr for anon_vma.
1036 pgoff = addr >> PAGE_SHIFT;
1037 break;
1038 default:
1039 return -EINVAL;
1043 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1044 if (error)
1045 return error;
1047 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1049 EXPORT_SYMBOL(do_mmap_pgoff);
1051 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1052 unsigned long, prot, unsigned long, flags,
1053 unsigned long, fd, unsigned long, pgoff)
1055 struct file *file = NULL;
1056 unsigned long retval = -EBADF;
1058 if (!(flags & MAP_ANONYMOUS)) {
1059 if (unlikely(flags & MAP_HUGETLB))
1060 return -EINVAL;
1061 file = fget(fd);
1062 if (!file)
1063 goto out;
1064 } else if (flags & MAP_HUGETLB) {
1065 struct user_struct *user = NULL;
1067 * VM_NORESERVE is used because the reservations will be
1068 * taken when vm_ops->mmap() is called
1069 * A dummy user value is used because we are not locking
1070 * memory so no accounting is necessary
1072 len = ALIGN(len, huge_page_size(&default_hstate));
1073 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1074 &user, HUGETLB_ANONHUGE_INODE);
1075 if (IS_ERR(file))
1076 return PTR_ERR(file);
1079 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1081 down_write(&current->mm->mmap_sem);
1082 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1083 up_write(&current->mm->mmap_sem);
1085 if (file)
1086 fput(file);
1087 out:
1088 return retval;
1091 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1092 struct mmap_arg_struct {
1093 unsigned long addr;
1094 unsigned long len;
1095 unsigned long prot;
1096 unsigned long flags;
1097 unsigned long fd;
1098 unsigned long offset;
1101 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1103 struct mmap_arg_struct a;
1105 if (copy_from_user(&a, arg, sizeof(a)))
1106 return -EFAULT;
1107 if (a.offset & ~PAGE_MASK)
1108 return -EINVAL;
1110 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1111 a.offset >> PAGE_SHIFT);
1113 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1116 * Some shared mappigns will want the pages marked read-only
1117 * to track write events. If so, we'll downgrade vm_page_prot
1118 * to the private version (using protection_map[] without the
1119 * VM_SHARED bit).
1121 int vma_wants_writenotify(struct vm_area_struct *vma)
1123 unsigned int vm_flags = vma->vm_flags;
1125 /* If it was private or non-writable, the write bit is already clear */
1126 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1127 return 0;
1129 /* The backer wishes to know when pages are first written to? */
1130 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1131 return 1;
1133 /* The open routine did something to the protections already? */
1134 if (pgprot_val(vma->vm_page_prot) !=
1135 pgprot_val(vm_get_page_prot(vm_flags)))
1136 return 0;
1138 /* Specialty mapping? */
1139 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1140 return 0;
1142 /* Can the mapping track the dirty pages? */
1143 return vma->vm_file && vma->vm_file->f_mapping &&
1144 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1148 * We account for memory if it's a private writeable mapping,
1149 * not hugepages and VM_NORESERVE wasn't set.
1151 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1154 * hugetlb has its own accounting separate from the core VM
1155 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1157 if (file && is_file_hugepages(file))
1158 return 0;
1160 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1163 unsigned long mmap_region(struct file *file, unsigned long addr,
1164 unsigned long len, unsigned long flags,
1165 unsigned int vm_flags, unsigned long pgoff)
1167 struct mm_struct *mm = current->mm;
1168 struct vm_area_struct *vma, *prev;
1169 int correct_wcount = 0;
1170 int error;
1171 struct rb_node **rb_link, *rb_parent;
1172 unsigned long charged = 0;
1173 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1175 /* Clear old maps */
1176 error = -ENOMEM;
1177 munmap_back:
1178 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1179 if (vma && vma->vm_start < addr + len) {
1180 if (do_munmap(mm, addr, len))
1181 return -ENOMEM;
1182 goto munmap_back;
1185 /* Check against address space limit. */
1186 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1187 return -ENOMEM;
1190 * Set 'VM_NORESERVE' if we should not account for the
1191 * memory use of this mapping.
1193 if ((flags & MAP_NORESERVE)) {
1194 /* We honor MAP_NORESERVE if allowed to overcommit */
1195 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1196 vm_flags |= VM_NORESERVE;
1198 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1199 if (file && is_file_hugepages(file))
1200 vm_flags |= VM_NORESERVE;
1204 * Private writable mapping: check memory availability
1206 if (accountable_mapping(file, vm_flags)) {
1207 charged = len >> PAGE_SHIFT;
1208 if (security_vm_enough_memory(charged))
1209 return -ENOMEM;
1210 vm_flags |= VM_ACCOUNT;
1214 * Can we just expand an old mapping?
1216 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1217 if (vma)
1218 goto out;
1221 * Determine the object being mapped and call the appropriate
1222 * specific mapper. the address has already been validated, but
1223 * not unmapped, but the maps are removed from the list.
1225 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1226 if (!vma) {
1227 error = -ENOMEM;
1228 goto unacct_error;
1231 vma->vm_mm = mm;
1232 vma->vm_start = addr;
1233 vma->vm_end = addr + len;
1234 vma->vm_flags = vm_flags;
1235 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1236 vma->vm_pgoff = pgoff;
1237 INIT_LIST_HEAD(&vma->anon_vma_chain);
1239 if (file) {
1240 error = -EINVAL;
1241 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1242 goto free_vma;
1243 if (vm_flags & VM_DENYWRITE) {
1244 error = deny_write_access(file);
1245 if (error)
1246 goto free_vma;
1247 correct_wcount = 1;
1249 vma->vm_file = file;
1250 get_file(file);
1251 error = file->f_op->mmap(file, vma);
1252 if (error)
1253 goto unmap_and_free_vma;
1254 if (vm_flags & VM_EXECUTABLE)
1255 added_exe_file_vma(mm);
1257 /* Can addr have changed??
1259 * Answer: Yes, several device drivers can do it in their
1260 * f_op->mmap method. -DaveM
1262 addr = vma->vm_start;
1263 pgoff = vma->vm_pgoff;
1264 vm_flags = vma->vm_flags;
1265 } else if (vm_flags & VM_SHARED) {
1266 error = shmem_zero_setup(vma);
1267 if (error)
1268 goto free_vma;
1271 if (vma_wants_writenotify(vma)) {
1272 pgprot_t pprot = vma->vm_page_prot;
1274 /* Can vma->vm_page_prot have changed??
1276 * Answer: Yes, drivers may have changed it in their
1277 * f_op->mmap method.
1279 * Ensures that vmas marked as uncached stay that way.
1281 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1282 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1283 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1286 vma_link(mm, vma, prev, rb_link, rb_parent);
1287 file = vma->vm_file;
1289 /* Once vma denies write, undo our temporary denial count */
1290 if (correct_wcount)
1291 atomic_inc(&inode->i_writecount);
1292 out:
1293 perf_event_mmap(vma);
1295 mm->total_vm += len >> PAGE_SHIFT;
1296 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1297 if (vm_flags & VM_LOCKED) {
1298 if (!mlock_vma_pages_range(vma, addr, addr + len))
1299 mm->locked_vm += (len >> PAGE_SHIFT);
1300 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1301 make_pages_present(addr, addr + len);
1302 return addr;
1304 unmap_and_free_vma:
1305 if (correct_wcount)
1306 atomic_inc(&inode->i_writecount);
1307 vma->vm_file = NULL;
1308 fput(file);
1310 /* Undo any partial mapping done by a device driver. */
1311 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1312 charged = 0;
1313 free_vma:
1314 kmem_cache_free(vm_area_cachep, vma);
1315 unacct_error:
1316 if (charged)
1317 vm_unacct_memory(charged);
1318 return error;
1321 /* Get an address range which is currently unmapped.
1322 * For shmat() with addr=0.
1324 * Ugly calling convention alert:
1325 * Return value with the low bits set means error value,
1326 * ie
1327 * if (ret & ~PAGE_MASK)
1328 * error = ret;
1330 * This function "knows" that -ENOMEM has the bits set.
1332 #ifndef HAVE_ARCH_UNMAPPED_AREA
1333 unsigned long
1334 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1335 unsigned long len, unsigned long pgoff, unsigned long flags)
1337 struct mm_struct *mm = current->mm;
1338 struct vm_area_struct *vma;
1339 unsigned long start_addr;
1341 if (len > TASK_SIZE)
1342 return -ENOMEM;
1344 if (flags & MAP_FIXED)
1345 return addr;
1347 if (addr) {
1348 addr = PAGE_ALIGN(addr);
1349 vma = find_vma(mm, addr);
1350 if (TASK_SIZE - len >= addr &&
1351 (!vma || addr + len <= vma->vm_start))
1352 return addr;
1354 if (len > mm->cached_hole_size) {
1355 start_addr = addr = mm->free_area_cache;
1356 } else {
1357 start_addr = addr = TASK_UNMAPPED_BASE;
1358 mm->cached_hole_size = 0;
1361 full_search:
1362 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1363 /* At this point: (!vma || addr < vma->vm_end). */
1364 if (TASK_SIZE - len < addr) {
1366 * Start a new search - just in case we missed
1367 * some holes.
1369 if (start_addr != TASK_UNMAPPED_BASE) {
1370 addr = TASK_UNMAPPED_BASE;
1371 start_addr = addr;
1372 mm->cached_hole_size = 0;
1373 goto full_search;
1375 return -ENOMEM;
1377 if (!vma || addr + len <= vma->vm_start) {
1379 * Remember the place where we stopped the search:
1381 mm->free_area_cache = addr + len;
1382 return addr;
1384 if (addr + mm->cached_hole_size < vma->vm_start)
1385 mm->cached_hole_size = vma->vm_start - addr;
1386 addr = vma->vm_end;
1389 #endif
1391 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1394 * Is this a new hole at the lowest possible address?
1396 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1397 mm->free_area_cache = addr;
1398 mm->cached_hole_size = ~0UL;
1403 * This mmap-allocator allocates new areas top-down from below the
1404 * stack's low limit (the base):
1406 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1407 unsigned long
1408 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1409 const unsigned long len, const unsigned long pgoff,
1410 const unsigned long flags)
1412 struct vm_area_struct *vma;
1413 struct mm_struct *mm = current->mm;
1414 unsigned long addr = addr0;
1416 /* requested length too big for entire address space */
1417 if (len > TASK_SIZE)
1418 return -ENOMEM;
1420 if (flags & MAP_FIXED)
1421 return addr;
1423 /* requesting a specific address */
1424 if (addr) {
1425 addr = PAGE_ALIGN(addr);
1426 vma = find_vma(mm, addr);
1427 if (TASK_SIZE - len >= addr &&
1428 (!vma || addr + len <= vma->vm_start))
1429 return addr;
1432 /* check if free_area_cache is useful for us */
1433 if (len <= mm->cached_hole_size) {
1434 mm->cached_hole_size = 0;
1435 mm->free_area_cache = mm->mmap_base;
1438 /* either no address requested or can't fit in requested address hole */
1439 addr = mm->free_area_cache;
1441 /* make sure it can fit in the remaining address space */
1442 if (addr > len) {
1443 vma = find_vma(mm, addr-len);
1444 if (!vma || addr <= vma->vm_start)
1445 /* remember the address as a hint for next time */
1446 return (mm->free_area_cache = addr-len);
1449 if (mm->mmap_base < len)
1450 goto bottomup;
1452 addr = mm->mmap_base-len;
1454 do {
1456 * Lookup failure means no vma is above this address,
1457 * else if new region fits below vma->vm_start,
1458 * return with success:
1460 vma = find_vma(mm, addr);
1461 if (!vma || addr+len <= vma->vm_start)
1462 /* remember the address as a hint for next time */
1463 return (mm->free_area_cache = addr);
1465 /* remember the largest hole we saw so far */
1466 if (addr + mm->cached_hole_size < vma->vm_start)
1467 mm->cached_hole_size = vma->vm_start - addr;
1469 /* try just below the current vma->vm_start */
1470 addr = vma->vm_start-len;
1471 } while (len < vma->vm_start);
1473 bottomup:
1475 * A failed mmap() very likely causes application failure,
1476 * so fall back to the bottom-up function here. This scenario
1477 * can happen with large stack limits and large mmap()
1478 * allocations.
1480 mm->cached_hole_size = ~0UL;
1481 mm->free_area_cache = TASK_UNMAPPED_BASE;
1482 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1484 * Restore the topdown base:
1486 mm->free_area_cache = mm->mmap_base;
1487 mm->cached_hole_size = ~0UL;
1489 return addr;
1491 #endif
1493 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1496 * Is this a new hole at the highest possible address?
1498 if (addr > mm->free_area_cache)
1499 mm->free_area_cache = addr;
1501 /* dont allow allocations above current base */
1502 if (mm->free_area_cache > mm->mmap_base)
1503 mm->free_area_cache = mm->mmap_base;
1506 unsigned long
1507 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1508 unsigned long pgoff, unsigned long flags)
1510 unsigned long (*get_area)(struct file *, unsigned long,
1511 unsigned long, unsigned long, unsigned long);
1513 unsigned long error = arch_mmap_check(addr, len, flags);
1514 if (error)
1515 return error;
1517 /* Careful about overflows.. */
1518 if (len > TASK_SIZE)
1519 return -ENOMEM;
1521 get_area = current->mm->get_unmapped_area;
1522 if (file && file->f_op && file->f_op->get_unmapped_area)
1523 get_area = file->f_op->get_unmapped_area;
1524 addr = get_area(file, addr, len, pgoff, flags);
1525 if (IS_ERR_VALUE(addr))
1526 return addr;
1528 if (addr > TASK_SIZE - len)
1529 return -ENOMEM;
1530 if (addr & ~PAGE_MASK)
1531 return -EINVAL;
1533 return arch_rebalance_pgtables(addr, len);
1536 EXPORT_SYMBOL(get_unmapped_area);
1538 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1539 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1541 struct vm_area_struct *vma = NULL;
1543 if (mm) {
1544 /* Check the cache first. */
1545 /* (Cache hit rate is typically around 35%.) */
1546 vma = mm->mmap_cache;
1547 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1548 struct rb_node * rb_node;
1550 rb_node = mm->mm_rb.rb_node;
1551 vma = NULL;
1553 while (rb_node) {
1554 struct vm_area_struct * vma_tmp;
1556 vma_tmp = rb_entry(rb_node,
1557 struct vm_area_struct, vm_rb);
1559 if (vma_tmp->vm_end > addr) {
1560 vma = vma_tmp;
1561 if (vma_tmp->vm_start <= addr)
1562 break;
1563 rb_node = rb_node->rb_left;
1564 } else
1565 rb_node = rb_node->rb_right;
1567 if (vma)
1568 mm->mmap_cache = vma;
1571 return vma;
1574 EXPORT_SYMBOL(find_vma);
1576 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1577 struct vm_area_struct *
1578 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1579 struct vm_area_struct **pprev)
1581 struct vm_area_struct *vma = NULL, *prev = NULL;
1582 struct rb_node *rb_node;
1583 if (!mm)
1584 goto out;
1586 /* Guard against addr being lower than the first VMA */
1587 vma = mm->mmap;
1589 /* Go through the RB tree quickly. */
1590 rb_node = mm->mm_rb.rb_node;
1592 while (rb_node) {
1593 struct vm_area_struct *vma_tmp;
1594 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1596 if (addr < vma_tmp->vm_end) {
1597 rb_node = rb_node->rb_left;
1598 } else {
1599 prev = vma_tmp;
1600 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1601 break;
1602 rb_node = rb_node->rb_right;
1606 out:
1607 *pprev = prev;
1608 return prev ? prev->vm_next : vma;
1612 * Verify that the stack growth is acceptable and
1613 * update accounting. This is shared with both the
1614 * grow-up and grow-down cases.
1616 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1618 struct mm_struct *mm = vma->vm_mm;
1619 struct rlimit *rlim = current->signal->rlim;
1620 unsigned long new_start;
1622 /* address space limit tests */
1623 if (!may_expand_vm(mm, grow))
1624 return -ENOMEM;
1626 /* Stack limit test */
1627 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1628 return -ENOMEM;
1630 /* mlock limit tests */
1631 if (vma->vm_flags & VM_LOCKED) {
1632 unsigned long locked;
1633 unsigned long limit;
1634 locked = mm->locked_vm + grow;
1635 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1636 limit >>= PAGE_SHIFT;
1637 if (locked > limit && !capable(CAP_IPC_LOCK))
1638 return -ENOMEM;
1641 /* Check to ensure the stack will not grow into a hugetlb-only region */
1642 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1643 vma->vm_end - size;
1644 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1645 return -EFAULT;
1648 * Overcommit.. This must be the final test, as it will
1649 * update security statistics.
1651 if (security_vm_enough_memory_mm(mm, grow))
1652 return -ENOMEM;
1654 /* Ok, everything looks good - let it rip */
1655 mm->total_vm += grow;
1656 if (vma->vm_flags & VM_LOCKED)
1657 mm->locked_vm += grow;
1658 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1659 return 0;
1662 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1664 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1665 * vma is the last one with address > vma->vm_end. Have to extend vma.
1667 #ifndef CONFIG_IA64
1668 static
1669 #endif
1670 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1672 int error;
1674 if (!(vma->vm_flags & VM_GROWSUP))
1675 return -EFAULT;
1678 * We must make sure the anon_vma is allocated
1679 * so that the anon_vma locking is not a noop.
1681 if (unlikely(anon_vma_prepare(vma)))
1682 return -ENOMEM;
1683 anon_vma_lock(vma);
1686 * vma->vm_start/vm_end cannot change under us because the caller
1687 * is required to hold the mmap_sem in read mode. We need the
1688 * anon_vma lock to serialize against concurrent expand_stacks.
1689 * Also guard against wrapping around to address 0.
1691 if (address < PAGE_ALIGN(address+4))
1692 address = PAGE_ALIGN(address+4);
1693 else {
1694 anon_vma_unlock(vma);
1695 return -ENOMEM;
1697 error = 0;
1699 /* Somebody else might have raced and expanded it already */
1700 if (address > vma->vm_end) {
1701 unsigned long size, grow;
1703 size = address - vma->vm_start;
1704 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1706 error = acct_stack_growth(vma, size, grow);
1707 if (!error)
1708 vma->vm_end = address;
1710 anon_vma_unlock(vma);
1711 return error;
1713 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1716 * vma is the first one with address < vma->vm_start. Have to extend vma.
1718 static int expand_downwards(struct vm_area_struct *vma,
1719 unsigned long address)
1721 int error;
1724 * We must make sure the anon_vma is allocated
1725 * so that the anon_vma locking is not a noop.
1727 if (unlikely(anon_vma_prepare(vma)))
1728 return -ENOMEM;
1730 address &= PAGE_MASK;
1731 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1732 if (error)
1733 return error;
1735 anon_vma_lock(vma);
1738 * vma->vm_start/vm_end cannot change under us because the caller
1739 * is required to hold the mmap_sem in read mode. We need the
1740 * anon_vma lock to serialize against concurrent expand_stacks.
1743 /* Somebody else might have raced and expanded it already */
1744 if (address < vma->vm_start) {
1745 unsigned long size, grow;
1747 size = vma->vm_end - address;
1748 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1750 error = acct_stack_growth(vma, size, grow);
1751 if (!error) {
1752 vma->vm_start = address;
1753 vma->vm_pgoff -= grow;
1756 anon_vma_unlock(vma);
1757 return error;
1760 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1762 return expand_downwards(vma, address);
1765 #ifdef CONFIG_STACK_GROWSUP
1766 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1768 return expand_upwards(vma, address);
1771 struct vm_area_struct *
1772 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1774 struct vm_area_struct *vma, *prev;
1776 addr &= PAGE_MASK;
1777 vma = find_vma_prev(mm, addr, &prev);
1778 if (vma && (vma->vm_start <= addr))
1779 return vma;
1780 if (!prev || expand_stack(prev, addr))
1781 return NULL;
1782 if (prev->vm_flags & VM_LOCKED) {
1783 mlock_vma_pages_range(prev, addr, prev->vm_end);
1785 return prev;
1787 #else
1788 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1790 return expand_downwards(vma, address);
1793 struct vm_area_struct *
1794 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1796 struct vm_area_struct * vma;
1797 unsigned long start;
1799 addr &= PAGE_MASK;
1800 vma = find_vma(mm,addr);
1801 if (!vma)
1802 return NULL;
1803 if (vma->vm_start <= addr)
1804 return vma;
1805 if (!(vma->vm_flags & VM_GROWSDOWN))
1806 return NULL;
1807 start = vma->vm_start;
1808 if (expand_stack(vma, addr))
1809 return NULL;
1810 if (vma->vm_flags & VM_LOCKED) {
1811 mlock_vma_pages_range(vma, addr, start);
1813 return vma;
1815 #endif
1818 * Ok - we have the memory areas we should free on the vma list,
1819 * so release them, and do the vma updates.
1821 * Called with the mm semaphore held.
1823 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1825 /* Update high watermark before we lower total_vm */
1826 update_hiwater_vm(mm);
1827 do {
1828 long nrpages = vma_pages(vma);
1830 mm->total_vm -= nrpages;
1831 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1832 vma = remove_vma(vma);
1833 } while (vma);
1834 validate_mm(mm);
1838 * Get rid of page table information in the indicated region.
1840 * Called with the mm semaphore held.
1842 static void unmap_region(struct mm_struct *mm,
1843 struct vm_area_struct *vma, struct vm_area_struct *prev,
1844 unsigned long start, unsigned long end)
1846 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1847 struct mmu_gather *tlb;
1848 unsigned long nr_accounted = 0;
1850 lru_add_drain();
1851 tlb = tlb_gather_mmu(mm, 0);
1852 update_hiwater_rss(mm);
1853 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1854 vm_unacct_memory(nr_accounted);
1855 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1856 next? next->vm_start: 0);
1857 tlb_finish_mmu(tlb, start, end);
1861 * Create a list of vma's touched by the unmap, removing them from the mm's
1862 * vma list as we go..
1864 static void
1865 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1866 struct vm_area_struct *prev, unsigned long end)
1868 struct vm_area_struct **insertion_point;
1869 struct vm_area_struct *tail_vma = NULL;
1870 unsigned long addr;
1872 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1873 do {
1874 rb_erase(&vma->vm_rb, &mm->mm_rb);
1875 mm->map_count--;
1876 tail_vma = vma;
1877 vma = vma->vm_next;
1878 } while (vma && vma->vm_start < end);
1879 *insertion_point = vma;
1880 tail_vma->vm_next = NULL;
1881 if (mm->unmap_area == arch_unmap_area)
1882 addr = prev ? prev->vm_end : mm->mmap_base;
1883 else
1884 addr = vma ? vma->vm_start : mm->mmap_base;
1885 mm->unmap_area(mm, addr);
1886 mm->mmap_cache = NULL; /* Kill the cache. */
1890 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1891 * munmap path where it doesn't make sense to fail.
1893 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1894 unsigned long addr, int new_below)
1896 struct mempolicy *pol;
1897 struct vm_area_struct *new;
1898 int err = -ENOMEM;
1900 if (is_vm_hugetlb_page(vma) && (addr &
1901 ~(huge_page_mask(hstate_vma(vma)))))
1902 return -EINVAL;
1904 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1905 if (!new)
1906 goto out_err;
1908 /* most fields are the same, copy all, and then fixup */
1909 *new = *vma;
1911 INIT_LIST_HEAD(&new->anon_vma_chain);
1913 if (new_below)
1914 new->vm_end = addr;
1915 else {
1916 new->vm_start = addr;
1917 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1920 pol = mpol_dup(vma_policy(vma));
1921 if (IS_ERR(pol)) {
1922 err = PTR_ERR(pol);
1923 goto out_free_vma;
1925 vma_set_policy(new, pol);
1927 if (anon_vma_clone(new, vma))
1928 goto out_free_mpol;
1930 if (new->vm_file) {
1931 get_file(new->vm_file);
1932 if (vma->vm_flags & VM_EXECUTABLE)
1933 added_exe_file_vma(mm);
1936 if (new->vm_ops && new->vm_ops->open)
1937 new->vm_ops->open(new);
1939 if (new_below)
1940 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1941 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1942 else
1943 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1945 /* Success. */
1946 if (!err)
1947 return 0;
1949 /* Clean everything up if vma_adjust failed. */
1950 new->vm_ops->close(new);
1951 if (new->vm_file) {
1952 if (vma->vm_flags & VM_EXECUTABLE)
1953 removed_exe_file_vma(mm);
1954 fput(new->vm_file);
1956 out_free_mpol:
1957 mpol_put(pol);
1958 out_free_vma:
1959 kmem_cache_free(vm_area_cachep, new);
1960 out_err:
1961 return err;
1965 * Split a vma into two pieces at address 'addr', a new vma is allocated
1966 * either for the first part or the tail.
1968 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1969 unsigned long addr, int new_below)
1971 if (mm->map_count >= sysctl_max_map_count)
1972 return -ENOMEM;
1974 return __split_vma(mm, vma, addr, new_below);
1977 /* Munmap is split into 2 main parts -- this part which finds
1978 * what needs doing, and the areas themselves, which do the
1979 * work. This now handles partial unmappings.
1980 * Jeremy Fitzhardinge <jeremy@goop.org>
1982 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1984 unsigned long end;
1985 struct vm_area_struct *vma, *prev, *last;
1987 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1988 return -EINVAL;
1990 if ((len = PAGE_ALIGN(len)) == 0)
1991 return -EINVAL;
1993 /* Find the first overlapping VMA */
1994 vma = find_vma_prev(mm, start, &prev);
1995 if (!vma)
1996 return 0;
1997 /* we have start < vma->vm_end */
1999 /* if it doesn't overlap, we have nothing.. */
2000 end = start + len;
2001 if (vma->vm_start >= end)
2002 return 0;
2005 * If we need to split any vma, do it now to save pain later.
2007 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2008 * unmapped vm_area_struct will remain in use: so lower split_vma
2009 * places tmp vma above, and higher split_vma places tmp vma below.
2011 if (start > vma->vm_start) {
2012 int error;
2015 * Make sure that map_count on return from munmap() will
2016 * not exceed its limit; but let map_count go just above
2017 * its limit temporarily, to help free resources as expected.
2019 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2020 return -ENOMEM;
2022 error = __split_vma(mm, vma, start, 0);
2023 if (error)
2024 return error;
2025 prev = vma;
2028 /* Does it split the last one? */
2029 last = find_vma(mm, end);
2030 if (last && end > last->vm_start) {
2031 int error = __split_vma(mm, last, end, 1);
2032 if (error)
2033 return error;
2035 vma = prev? prev->vm_next: mm->mmap;
2038 * unlock any mlock()ed ranges before detaching vmas
2040 if (mm->locked_vm) {
2041 struct vm_area_struct *tmp = vma;
2042 while (tmp && tmp->vm_start < end) {
2043 if (tmp->vm_flags & VM_LOCKED) {
2044 mm->locked_vm -= vma_pages(tmp);
2045 munlock_vma_pages_all(tmp);
2047 tmp = tmp->vm_next;
2052 * Remove the vma's, and unmap the actual pages
2054 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2055 unmap_region(mm, vma, prev, start, end);
2057 /* Fix up all other VM information */
2058 remove_vma_list(mm, vma);
2060 return 0;
2063 EXPORT_SYMBOL(do_munmap);
2065 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2067 int ret;
2068 struct mm_struct *mm = current->mm;
2070 profile_munmap(addr);
2072 down_write(&mm->mmap_sem);
2073 ret = do_munmap(mm, addr, len);
2074 up_write(&mm->mmap_sem);
2075 return ret;
2078 static inline void verify_mm_writelocked(struct mm_struct *mm)
2080 #ifdef CONFIG_DEBUG_VM
2081 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2082 WARN_ON(1);
2083 up_read(&mm->mmap_sem);
2085 #endif
2089 * this is really a simplified "do_mmap". it only handles
2090 * anonymous maps. eventually we may be able to do some
2091 * brk-specific accounting here.
2093 unsigned long do_brk(unsigned long addr, unsigned long len)
2095 struct mm_struct * mm = current->mm;
2096 struct vm_area_struct * vma, * prev;
2097 unsigned long flags;
2098 struct rb_node ** rb_link, * rb_parent;
2099 pgoff_t pgoff = addr >> PAGE_SHIFT;
2100 int error;
2102 len = PAGE_ALIGN(len);
2103 if (!len)
2104 return addr;
2106 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2107 if (error)
2108 return error;
2110 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2112 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2113 if (error & ~PAGE_MASK)
2114 return error;
2117 * mlock MCL_FUTURE?
2119 if (mm->def_flags & VM_LOCKED) {
2120 unsigned long locked, lock_limit;
2121 locked = len >> PAGE_SHIFT;
2122 locked += mm->locked_vm;
2123 lock_limit = rlimit(RLIMIT_MEMLOCK);
2124 lock_limit >>= PAGE_SHIFT;
2125 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2126 return -EAGAIN;
2130 * mm->mmap_sem is required to protect against another thread
2131 * changing the mappings in case we sleep.
2133 verify_mm_writelocked(mm);
2136 * Clear old maps. this also does some error checking for us
2138 munmap_back:
2139 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2140 if (vma && vma->vm_start < addr + len) {
2141 if (do_munmap(mm, addr, len))
2142 return -ENOMEM;
2143 goto munmap_back;
2146 /* Check against address space limits *after* clearing old maps... */
2147 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2148 return -ENOMEM;
2150 if (mm->map_count > sysctl_max_map_count)
2151 return -ENOMEM;
2153 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2154 return -ENOMEM;
2156 /* Can we just expand an old private anonymous mapping? */
2157 vma = vma_merge(mm, prev, addr, addr + len, flags,
2158 NULL, NULL, pgoff, NULL);
2159 if (vma)
2160 goto out;
2163 * create a vma struct for an anonymous mapping
2165 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2166 if (!vma) {
2167 vm_unacct_memory(len >> PAGE_SHIFT);
2168 return -ENOMEM;
2171 INIT_LIST_HEAD(&vma->anon_vma_chain);
2172 vma->vm_mm = mm;
2173 vma->vm_start = addr;
2174 vma->vm_end = addr + len;
2175 vma->vm_pgoff = pgoff;
2176 vma->vm_flags = flags;
2177 vma->vm_page_prot = vm_get_page_prot(flags);
2178 vma_link(mm, vma, prev, rb_link, rb_parent);
2179 out:
2180 mm->total_vm += len >> PAGE_SHIFT;
2181 if (flags & VM_LOCKED) {
2182 if (!mlock_vma_pages_range(vma, addr, addr + len))
2183 mm->locked_vm += (len >> PAGE_SHIFT);
2185 return addr;
2188 EXPORT_SYMBOL(do_brk);
2190 /* Release all mmaps. */
2191 void exit_mmap(struct mm_struct *mm)
2193 struct mmu_gather *tlb;
2194 struct vm_area_struct *vma;
2195 unsigned long nr_accounted = 0;
2196 unsigned long end;
2198 /* mm's last user has gone, and its about to be pulled down */
2199 mmu_notifier_release(mm);
2201 if (mm->locked_vm) {
2202 vma = mm->mmap;
2203 while (vma) {
2204 if (vma->vm_flags & VM_LOCKED)
2205 munlock_vma_pages_all(vma);
2206 vma = vma->vm_next;
2210 arch_exit_mmap(mm);
2212 vma = mm->mmap;
2213 if (!vma) /* Can happen if dup_mmap() received an OOM */
2214 return;
2216 lru_add_drain();
2217 flush_cache_mm(mm);
2218 tlb = tlb_gather_mmu(mm, 1);
2219 /* update_hiwater_rss(mm) here? but nobody should be looking */
2220 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2221 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2222 vm_unacct_memory(nr_accounted);
2224 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2225 tlb_finish_mmu(tlb, 0, end);
2228 * Walk the list again, actually closing and freeing it,
2229 * with preemption enabled, without holding any MM locks.
2231 while (vma)
2232 vma = remove_vma(vma);
2234 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2237 /* Insert vm structure into process list sorted by address
2238 * and into the inode's i_mmap tree. If vm_file is non-NULL
2239 * then i_mmap_lock is taken here.
2241 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2243 struct vm_area_struct * __vma, * prev;
2244 struct rb_node ** rb_link, * rb_parent;
2247 * The vm_pgoff of a purely anonymous vma should be irrelevant
2248 * until its first write fault, when page's anon_vma and index
2249 * are set. But now set the vm_pgoff it will almost certainly
2250 * end up with (unless mremap moves it elsewhere before that
2251 * first wfault), so /proc/pid/maps tells a consistent story.
2253 * By setting it to reflect the virtual start address of the
2254 * vma, merges and splits can happen in a seamless way, just
2255 * using the existing file pgoff checks and manipulations.
2256 * Similarly in do_mmap_pgoff and in do_brk.
2258 if (!vma->vm_file) {
2259 BUG_ON(vma->anon_vma);
2260 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2262 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2263 if (__vma && __vma->vm_start < vma->vm_end)
2264 return -ENOMEM;
2265 if ((vma->vm_flags & VM_ACCOUNT) &&
2266 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2267 return -ENOMEM;
2268 vma_link(mm, vma, prev, rb_link, rb_parent);
2269 return 0;
2273 * Copy the vma structure to a new location in the same mm,
2274 * prior to moving page table entries, to effect an mremap move.
2276 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2277 unsigned long addr, unsigned long len, pgoff_t pgoff)
2279 struct vm_area_struct *vma = *vmap;
2280 unsigned long vma_start = vma->vm_start;
2281 struct mm_struct *mm = vma->vm_mm;
2282 struct vm_area_struct *new_vma, *prev;
2283 struct rb_node **rb_link, *rb_parent;
2284 struct mempolicy *pol;
2287 * If anonymous vma has not yet been faulted, update new pgoff
2288 * to match new location, to increase its chance of merging.
2290 if (!vma->vm_file && !vma->anon_vma)
2291 pgoff = addr >> PAGE_SHIFT;
2293 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2294 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2295 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2296 if (new_vma) {
2298 * Source vma may have been merged into new_vma
2300 if (vma_start >= new_vma->vm_start &&
2301 vma_start < new_vma->vm_end)
2302 *vmap = new_vma;
2303 } else {
2304 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2305 if (new_vma) {
2306 *new_vma = *vma;
2307 pol = mpol_dup(vma_policy(vma));
2308 if (IS_ERR(pol))
2309 goto out_free_vma;
2310 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2311 if (anon_vma_clone(new_vma, vma))
2312 goto out_free_mempol;
2313 vma_set_policy(new_vma, pol);
2314 new_vma->vm_start = addr;
2315 new_vma->vm_end = addr + len;
2316 new_vma->vm_pgoff = pgoff;
2317 if (new_vma->vm_file) {
2318 get_file(new_vma->vm_file);
2319 if (vma->vm_flags & VM_EXECUTABLE)
2320 added_exe_file_vma(mm);
2322 if (new_vma->vm_ops && new_vma->vm_ops->open)
2323 new_vma->vm_ops->open(new_vma);
2324 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2327 return new_vma;
2329 out_free_mempol:
2330 mpol_put(pol);
2331 out_free_vma:
2332 kmem_cache_free(vm_area_cachep, new_vma);
2333 return NULL;
2337 * Return true if the calling process may expand its vm space by the passed
2338 * number of pages
2340 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2342 unsigned long cur = mm->total_vm; /* pages */
2343 unsigned long lim;
2345 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2347 if (cur + npages > lim)
2348 return 0;
2349 return 1;
2353 static int special_mapping_fault(struct vm_area_struct *vma,
2354 struct vm_fault *vmf)
2356 pgoff_t pgoff;
2357 struct page **pages;
2360 * special mappings have no vm_file, and in that case, the mm
2361 * uses vm_pgoff internally. So we have to subtract it from here.
2362 * We are allowed to do this because we are the mm; do not copy
2363 * this code into drivers!
2365 pgoff = vmf->pgoff - vma->vm_pgoff;
2367 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2368 pgoff--;
2370 if (*pages) {
2371 struct page *page = *pages;
2372 get_page(page);
2373 vmf->page = page;
2374 return 0;
2377 return VM_FAULT_SIGBUS;
2381 * Having a close hook prevents vma merging regardless of flags.
2383 static void special_mapping_close(struct vm_area_struct *vma)
2387 static const struct vm_operations_struct special_mapping_vmops = {
2388 .close = special_mapping_close,
2389 .fault = special_mapping_fault,
2393 * Called with mm->mmap_sem held for writing.
2394 * Insert a new vma covering the given region, with the given flags.
2395 * Its pages are supplied by the given array of struct page *.
2396 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2397 * The region past the last page supplied will always produce SIGBUS.
2398 * The array pointer and the pages it points to are assumed to stay alive
2399 * for as long as this mapping might exist.
2401 int install_special_mapping(struct mm_struct *mm,
2402 unsigned long addr, unsigned long len,
2403 unsigned long vm_flags, struct page **pages)
2405 struct vm_area_struct *vma;
2407 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2408 if (unlikely(vma == NULL))
2409 return -ENOMEM;
2411 INIT_LIST_HEAD(&vma->anon_vma_chain);
2412 vma->vm_mm = mm;
2413 vma->vm_start = addr;
2414 vma->vm_end = addr + len;
2416 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2417 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2419 vma->vm_ops = &special_mapping_vmops;
2420 vma->vm_private_data = pages;
2422 if (unlikely(insert_vm_struct(mm, vma))) {
2423 kmem_cache_free(vm_area_cachep, vma);
2424 return -ENOMEM;
2427 mm->total_vm += len >> PAGE_SHIFT;
2429 perf_event_mmap(vma);
2431 return 0;
2434 static DEFINE_MUTEX(mm_all_locks_mutex);
2436 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2438 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2440 * The LSB of head.next can't change from under us
2441 * because we hold the mm_all_locks_mutex.
2443 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2445 * We can safely modify head.next after taking the
2446 * anon_vma->lock. If some other vma in this mm shares
2447 * the same anon_vma we won't take it again.
2449 * No need of atomic instructions here, head.next
2450 * can't change from under us thanks to the
2451 * anon_vma->lock.
2453 if (__test_and_set_bit(0, (unsigned long *)
2454 &anon_vma->head.next))
2455 BUG();
2459 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2461 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2463 * AS_MM_ALL_LOCKS can't change from under us because
2464 * we hold the mm_all_locks_mutex.
2466 * Operations on ->flags have to be atomic because
2467 * even if AS_MM_ALL_LOCKS is stable thanks to the
2468 * mm_all_locks_mutex, there may be other cpus
2469 * changing other bitflags in parallel to us.
2471 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2472 BUG();
2473 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2478 * This operation locks against the VM for all pte/vma/mm related
2479 * operations that could ever happen on a certain mm. This includes
2480 * vmtruncate, try_to_unmap, and all page faults.
2482 * The caller must take the mmap_sem in write mode before calling
2483 * mm_take_all_locks(). The caller isn't allowed to release the
2484 * mmap_sem until mm_drop_all_locks() returns.
2486 * mmap_sem in write mode is required in order to block all operations
2487 * that could modify pagetables and free pages without need of
2488 * altering the vma layout (for example populate_range() with
2489 * nonlinear vmas). It's also needed in write mode to avoid new
2490 * anon_vmas to be associated with existing vmas.
2492 * A single task can't take more than one mm_take_all_locks() in a row
2493 * or it would deadlock.
2495 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2496 * mapping->flags avoid to take the same lock twice, if more than one
2497 * vma in this mm is backed by the same anon_vma or address_space.
2499 * We can take all the locks in random order because the VM code
2500 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2501 * takes more than one of them in a row. Secondly we're protected
2502 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2504 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2505 * that may have to take thousand of locks.
2507 * mm_take_all_locks() can fail if it's interrupted by signals.
2509 int mm_take_all_locks(struct mm_struct *mm)
2511 struct vm_area_struct *vma;
2512 struct anon_vma_chain *avc;
2513 int ret = -EINTR;
2515 BUG_ON(down_read_trylock(&mm->mmap_sem));
2517 mutex_lock(&mm_all_locks_mutex);
2519 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2520 if (signal_pending(current))
2521 goto out_unlock;
2522 if (vma->vm_file && vma->vm_file->f_mapping)
2523 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2526 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2527 if (signal_pending(current))
2528 goto out_unlock;
2529 if (vma->anon_vma)
2530 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2531 vm_lock_anon_vma(mm, avc->anon_vma);
2534 ret = 0;
2536 out_unlock:
2537 if (ret)
2538 mm_drop_all_locks(mm);
2540 return ret;
2543 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2545 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2547 * The LSB of head.next can't change to 0 from under
2548 * us because we hold the mm_all_locks_mutex.
2550 * We must however clear the bitflag before unlocking
2551 * the vma so the users using the anon_vma->head will
2552 * never see our bitflag.
2554 * No need of atomic instructions here, head.next
2555 * can't change from under us until we release the
2556 * anon_vma->lock.
2558 if (!__test_and_clear_bit(0, (unsigned long *)
2559 &anon_vma->head.next))
2560 BUG();
2561 spin_unlock(&anon_vma->lock);
2565 static void vm_unlock_mapping(struct address_space *mapping)
2567 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2569 * AS_MM_ALL_LOCKS can't change to 0 from under us
2570 * because we hold the mm_all_locks_mutex.
2572 spin_unlock(&mapping->i_mmap_lock);
2573 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2574 &mapping->flags))
2575 BUG();
2580 * The mmap_sem cannot be released by the caller until
2581 * mm_drop_all_locks() returns.
2583 void mm_drop_all_locks(struct mm_struct *mm)
2585 struct vm_area_struct *vma;
2586 struct anon_vma_chain *avc;
2588 BUG_ON(down_read_trylock(&mm->mmap_sem));
2589 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2591 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2592 if (vma->anon_vma)
2593 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2594 vm_unlock_anon_vma(avc->anon_vma);
2595 if (vma->vm_file && vma->vm_file->f_mapping)
2596 vm_unlock_mapping(vma->vm_file->f_mapping);
2599 mutex_unlock(&mm_all_locks_mutex);
2603 * initialise the VMA slab
2605 void __init mmap_init(void)
2607 int ret;
2609 ret = percpu_counter_init(&vm_committed_as, 0);
2610 VM_BUG_ON(ret);