netlink: fix NETLINK_RECV_NO_ENOBUFS in netlink_set_err()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob4799c5f0e6d089a6287b7c7742a34f37146932c1
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
76 #include <trace/events/sched.h>
79 * Protected counters by write_lock_irq(&tasklist_lock)
81 unsigned long total_forks; /* Handle normal Linux uptimes. */
82 int nr_threads; /* The idle threads do not count.. */
84 int max_threads; /* tunable limit on nr_threads */
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90 #ifdef CONFIG_PROVE_RCU
91 int lockdep_tasklist_lock_is_held(void)
93 return lockdep_is_held(&tasklist_lock);
95 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
96 #endif /* #ifdef CONFIG_PROVE_RCU */
98 int nr_processes(void)
100 int cpu;
101 int total = 0;
103 for_each_possible_cpu(cpu)
104 total += per_cpu(process_counts, cpu);
106 return total;
109 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
110 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
111 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
112 static struct kmem_cache *task_struct_cachep;
113 #endif
115 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
116 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
118 #ifdef CONFIG_DEBUG_STACK_USAGE
119 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
120 #else
121 gfp_t mask = GFP_KERNEL;
122 #endif
123 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
126 static inline void free_thread_info(struct thread_info *ti)
128 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
130 #endif
132 /* SLAB cache for signal_struct structures (tsk->signal) */
133 static struct kmem_cache *signal_cachep;
135 /* SLAB cache for sighand_struct structures (tsk->sighand) */
136 struct kmem_cache *sighand_cachep;
138 /* SLAB cache for files_struct structures (tsk->files) */
139 struct kmem_cache *files_cachep;
141 /* SLAB cache for fs_struct structures (tsk->fs) */
142 struct kmem_cache *fs_cachep;
144 /* SLAB cache for vm_area_struct structures */
145 struct kmem_cache *vm_area_cachep;
147 /* SLAB cache for mm_struct structures (tsk->mm) */
148 static struct kmem_cache *mm_cachep;
150 static void account_kernel_stack(struct thread_info *ti, int account)
152 struct zone *zone = page_zone(virt_to_page(ti));
154 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
157 void free_task(struct task_struct *tsk)
159 prop_local_destroy_single(&tsk->dirties);
160 account_kernel_stack(tsk->stack, -1);
161 free_thread_info(tsk->stack);
162 rt_mutex_debug_task_free(tsk);
163 ftrace_graph_exit_task(tsk);
164 free_task_struct(tsk);
166 EXPORT_SYMBOL(free_task);
168 void __put_task_struct(struct task_struct *tsk)
170 WARN_ON(!tsk->exit_state);
171 WARN_ON(atomic_read(&tsk->usage));
172 WARN_ON(tsk == current);
174 exit_creds(tsk);
175 delayacct_tsk_free(tsk);
177 if (!profile_handoff_task(tsk))
178 free_task(tsk);
182 * macro override instead of weak attribute alias, to workaround
183 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
185 #ifndef arch_task_cache_init
186 #define arch_task_cache_init()
187 #endif
189 void __init fork_init(unsigned long mempages)
191 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
192 #ifndef ARCH_MIN_TASKALIGN
193 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
194 #endif
195 /* create a slab on which task_structs can be allocated */
196 task_struct_cachep =
197 kmem_cache_create("task_struct", sizeof(struct task_struct),
198 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
199 #endif
201 /* do the arch specific task caches init */
202 arch_task_cache_init();
205 * The default maximum number of threads is set to a safe
206 * value: the thread structures can take up at most half
207 * of memory.
209 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
212 * we need to allow at least 20 threads to boot a system
214 if(max_threads < 20)
215 max_threads = 20;
217 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
218 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
219 init_task.signal->rlim[RLIMIT_SIGPENDING] =
220 init_task.signal->rlim[RLIMIT_NPROC];
223 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
224 struct task_struct *src)
226 *dst = *src;
227 return 0;
230 static struct task_struct *dup_task_struct(struct task_struct *orig)
232 struct task_struct *tsk;
233 struct thread_info *ti;
234 unsigned long *stackend;
236 int err;
238 prepare_to_copy(orig);
240 tsk = alloc_task_struct();
241 if (!tsk)
242 return NULL;
244 ti = alloc_thread_info(tsk);
245 if (!ti) {
246 free_task_struct(tsk);
247 return NULL;
250 err = arch_dup_task_struct(tsk, orig);
251 if (err)
252 goto out;
254 tsk->stack = ti;
256 err = prop_local_init_single(&tsk->dirties);
257 if (err)
258 goto out;
260 setup_thread_stack(tsk, orig);
261 clear_user_return_notifier(tsk);
262 stackend = end_of_stack(tsk);
263 *stackend = STACK_END_MAGIC; /* for overflow detection */
265 #ifdef CONFIG_CC_STACKPROTECTOR
266 tsk->stack_canary = get_random_int();
267 #endif
269 /* One for us, one for whoever does the "release_task()" (usually parent) */
270 atomic_set(&tsk->usage,2);
271 atomic_set(&tsk->fs_excl, 0);
272 #ifdef CONFIG_BLK_DEV_IO_TRACE
273 tsk->btrace_seq = 0;
274 #endif
275 tsk->splice_pipe = NULL;
277 account_kernel_stack(ti, 1);
279 return tsk;
281 out:
282 free_thread_info(ti);
283 free_task_struct(tsk);
284 return NULL;
287 #ifdef CONFIG_MMU
288 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
290 struct vm_area_struct *mpnt, *tmp, **pprev;
291 struct rb_node **rb_link, *rb_parent;
292 int retval;
293 unsigned long charge;
294 struct mempolicy *pol;
296 down_write(&oldmm->mmap_sem);
297 flush_cache_dup_mm(oldmm);
299 * Not linked in yet - no deadlock potential:
301 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
303 mm->locked_vm = 0;
304 mm->mmap = NULL;
305 mm->mmap_cache = NULL;
306 mm->free_area_cache = oldmm->mmap_base;
307 mm->cached_hole_size = ~0UL;
308 mm->map_count = 0;
309 cpumask_clear(mm_cpumask(mm));
310 mm->mm_rb = RB_ROOT;
311 rb_link = &mm->mm_rb.rb_node;
312 rb_parent = NULL;
313 pprev = &mm->mmap;
314 retval = ksm_fork(mm, oldmm);
315 if (retval)
316 goto out;
318 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
319 struct file *file;
321 if (mpnt->vm_flags & VM_DONTCOPY) {
322 long pages = vma_pages(mpnt);
323 mm->total_vm -= pages;
324 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
325 -pages);
326 continue;
328 charge = 0;
329 if (mpnt->vm_flags & VM_ACCOUNT) {
330 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
331 if (security_vm_enough_memory(len))
332 goto fail_nomem;
333 charge = len;
335 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
336 if (!tmp)
337 goto fail_nomem;
338 *tmp = *mpnt;
339 INIT_LIST_HEAD(&tmp->anon_vma_chain);
340 pol = mpol_dup(vma_policy(mpnt));
341 retval = PTR_ERR(pol);
342 if (IS_ERR(pol))
343 goto fail_nomem_policy;
344 vma_set_policy(tmp, pol);
345 if (anon_vma_fork(tmp, mpnt))
346 goto fail_nomem_anon_vma_fork;
347 tmp->vm_flags &= ~VM_LOCKED;
348 tmp->vm_mm = mm;
349 tmp->vm_next = NULL;
350 file = tmp->vm_file;
351 if (file) {
352 struct inode *inode = file->f_path.dentry->d_inode;
353 struct address_space *mapping = file->f_mapping;
355 get_file(file);
356 if (tmp->vm_flags & VM_DENYWRITE)
357 atomic_dec(&inode->i_writecount);
358 spin_lock(&mapping->i_mmap_lock);
359 if (tmp->vm_flags & VM_SHARED)
360 mapping->i_mmap_writable++;
361 tmp->vm_truncate_count = mpnt->vm_truncate_count;
362 flush_dcache_mmap_lock(mapping);
363 /* insert tmp into the share list, just after mpnt */
364 vma_prio_tree_add(tmp, mpnt);
365 flush_dcache_mmap_unlock(mapping);
366 spin_unlock(&mapping->i_mmap_lock);
370 * Clear hugetlb-related page reserves for children. This only
371 * affects MAP_PRIVATE mappings. Faults generated by the child
372 * are not guaranteed to succeed, even if read-only
374 if (is_vm_hugetlb_page(tmp))
375 reset_vma_resv_huge_pages(tmp);
378 * Link in the new vma and copy the page table entries.
380 *pprev = tmp;
381 pprev = &tmp->vm_next;
383 __vma_link_rb(mm, tmp, rb_link, rb_parent);
384 rb_link = &tmp->vm_rb.rb_right;
385 rb_parent = &tmp->vm_rb;
387 mm->map_count++;
388 retval = copy_page_range(mm, oldmm, mpnt);
390 if (tmp->vm_ops && tmp->vm_ops->open)
391 tmp->vm_ops->open(tmp);
393 if (retval)
394 goto out;
396 /* a new mm has just been created */
397 arch_dup_mmap(oldmm, mm);
398 retval = 0;
399 out:
400 up_write(&mm->mmap_sem);
401 flush_tlb_mm(oldmm);
402 up_write(&oldmm->mmap_sem);
403 return retval;
404 fail_nomem_anon_vma_fork:
405 mpol_put(pol);
406 fail_nomem_policy:
407 kmem_cache_free(vm_area_cachep, tmp);
408 fail_nomem:
409 retval = -ENOMEM;
410 vm_unacct_memory(charge);
411 goto out;
414 static inline int mm_alloc_pgd(struct mm_struct * mm)
416 mm->pgd = pgd_alloc(mm);
417 if (unlikely(!mm->pgd))
418 return -ENOMEM;
419 return 0;
422 static inline void mm_free_pgd(struct mm_struct * mm)
424 pgd_free(mm, mm->pgd);
426 #else
427 #define dup_mmap(mm, oldmm) (0)
428 #define mm_alloc_pgd(mm) (0)
429 #define mm_free_pgd(mm)
430 #endif /* CONFIG_MMU */
432 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
434 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
435 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
437 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
439 static int __init coredump_filter_setup(char *s)
441 default_dump_filter =
442 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
443 MMF_DUMP_FILTER_MASK;
444 return 1;
447 __setup("coredump_filter=", coredump_filter_setup);
449 #include <linux/init_task.h>
451 static void mm_init_aio(struct mm_struct *mm)
453 #ifdef CONFIG_AIO
454 spin_lock_init(&mm->ioctx_lock);
455 INIT_HLIST_HEAD(&mm->ioctx_list);
456 #endif
459 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
461 atomic_set(&mm->mm_users, 1);
462 atomic_set(&mm->mm_count, 1);
463 init_rwsem(&mm->mmap_sem);
464 INIT_LIST_HEAD(&mm->mmlist);
465 mm->flags = (current->mm) ?
466 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
467 mm->core_state = NULL;
468 mm->nr_ptes = 0;
469 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
470 spin_lock_init(&mm->page_table_lock);
471 mm->free_area_cache = TASK_UNMAPPED_BASE;
472 mm->cached_hole_size = ~0UL;
473 mm_init_aio(mm);
474 mm_init_owner(mm, p);
476 if (likely(!mm_alloc_pgd(mm))) {
477 mm->def_flags = 0;
478 mmu_notifier_mm_init(mm);
479 return mm;
482 free_mm(mm);
483 return NULL;
487 * Allocate and initialize an mm_struct.
489 struct mm_struct * mm_alloc(void)
491 struct mm_struct * mm;
493 mm = allocate_mm();
494 if (mm) {
495 memset(mm, 0, sizeof(*mm));
496 mm = mm_init(mm, current);
498 return mm;
502 * Called when the last reference to the mm
503 * is dropped: either by a lazy thread or by
504 * mmput. Free the page directory and the mm.
506 void __mmdrop(struct mm_struct *mm)
508 BUG_ON(mm == &init_mm);
509 mm_free_pgd(mm);
510 destroy_context(mm);
511 mmu_notifier_mm_destroy(mm);
512 free_mm(mm);
514 EXPORT_SYMBOL_GPL(__mmdrop);
517 * Decrement the use count and release all resources for an mm.
519 void mmput(struct mm_struct *mm)
521 might_sleep();
523 if (atomic_dec_and_test(&mm->mm_users)) {
524 exit_aio(mm);
525 ksm_exit(mm);
526 exit_mmap(mm);
527 set_mm_exe_file(mm, NULL);
528 if (!list_empty(&mm->mmlist)) {
529 spin_lock(&mmlist_lock);
530 list_del(&mm->mmlist);
531 spin_unlock(&mmlist_lock);
533 put_swap_token(mm);
534 if (mm->binfmt)
535 module_put(mm->binfmt->module);
536 mmdrop(mm);
539 EXPORT_SYMBOL_GPL(mmput);
542 * get_task_mm - acquire a reference to the task's mm
544 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
545 * this kernel workthread has transiently adopted a user mm with use_mm,
546 * to do its AIO) is not set and if so returns a reference to it, after
547 * bumping up the use count. User must release the mm via mmput()
548 * after use. Typically used by /proc and ptrace.
550 struct mm_struct *get_task_mm(struct task_struct *task)
552 struct mm_struct *mm;
554 task_lock(task);
555 mm = task->mm;
556 if (mm) {
557 if (task->flags & PF_KTHREAD)
558 mm = NULL;
559 else
560 atomic_inc(&mm->mm_users);
562 task_unlock(task);
563 return mm;
565 EXPORT_SYMBOL_GPL(get_task_mm);
567 /* Please note the differences between mmput and mm_release.
568 * mmput is called whenever we stop holding onto a mm_struct,
569 * error success whatever.
571 * mm_release is called after a mm_struct has been removed
572 * from the current process.
574 * This difference is important for error handling, when we
575 * only half set up a mm_struct for a new process and need to restore
576 * the old one. Because we mmput the new mm_struct before
577 * restoring the old one. . .
578 * Eric Biederman 10 January 1998
580 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
582 struct completion *vfork_done = tsk->vfork_done;
584 /* Get rid of any futexes when releasing the mm */
585 #ifdef CONFIG_FUTEX
586 if (unlikely(tsk->robust_list)) {
587 exit_robust_list(tsk);
588 tsk->robust_list = NULL;
590 #ifdef CONFIG_COMPAT
591 if (unlikely(tsk->compat_robust_list)) {
592 compat_exit_robust_list(tsk);
593 tsk->compat_robust_list = NULL;
595 #endif
596 if (unlikely(!list_empty(&tsk->pi_state_list)))
597 exit_pi_state_list(tsk);
598 #endif
600 /* Get rid of any cached register state */
601 deactivate_mm(tsk, mm);
603 /* notify parent sleeping on vfork() */
604 if (vfork_done) {
605 tsk->vfork_done = NULL;
606 complete(vfork_done);
610 * If we're exiting normally, clear a user-space tid field if
611 * requested. We leave this alone when dying by signal, to leave
612 * the value intact in a core dump, and to save the unnecessary
613 * trouble otherwise. Userland only wants this done for a sys_exit.
615 if (tsk->clear_child_tid) {
616 if (!(tsk->flags & PF_SIGNALED) &&
617 atomic_read(&mm->mm_users) > 1) {
619 * We don't check the error code - if userspace has
620 * not set up a proper pointer then tough luck.
622 put_user(0, tsk->clear_child_tid);
623 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
624 1, NULL, NULL, 0);
626 tsk->clear_child_tid = NULL;
631 * Allocate a new mm structure and copy contents from the
632 * mm structure of the passed in task structure.
634 struct mm_struct *dup_mm(struct task_struct *tsk)
636 struct mm_struct *mm, *oldmm = current->mm;
637 int err;
639 if (!oldmm)
640 return NULL;
642 mm = allocate_mm();
643 if (!mm)
644 goto fail_nomem;
646 memcpy(mm, oldmm, sizeof(*mm));
648 /* Initializing for Swap token stuff */
649 mm->token_priority = 0;
650 mm->last_interval = 0;
652 if (!mm_init(mm, tsk))
653 goto fail_nomem;
655 if (init_new_context(tsk, mm))
656 goto fail_nocontext;
658 dup_mm_exe_file(oldmm, mm);
660 err = dup_mmap(mm, oldmm);
661 if (err)
662 goto free_pt;
664 mm->hiwater_rss = get_mm_rss(mm);
665 mm->hiwater_vm = mm->total_vm;
667 if (mm->binfmt && !try_module_get(mm->binfmt->module))
668 goto free_pt;
670 return mm;
672 free_pt:
673 /* don't put binfmt in mmput, we haven't got module yet */
674 mm->binfmt = NULL;
675 mmput(mm);
677 fail_nomem:
678 return NULL;
680 fail_nocontext:
682 * If init_new_context() failed, we cannot use mmput() to free the mm
683 * because it calls destroy_context()
685 mm_free_pgd(mm);
686 free_mm(mm);
687 return NULL;
690 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
692 struct mm_struct * mm, *oldmm;
693 int retval;
695 tsk->min_flt = tsk->maj_flt = 0;
696 tsk->nvcsw = tsk->nivcsw = 0;
697 #ifdef CONFIG_DETECT_HUNG_TASK
698 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
699 #endif
701 tsk->mm = NULL;
702 tsk->active_mm = NULL;
705 * Are we cloning a kernel thread?
707 * We need to steal a active VM for that..
709 oldmm = current->mm;
710 if (!oldmm)
711 return 0;
713 if (clone_flags & CLONE_VM) {
714 atomic_inc(&oldmm->mm_users);
715 mm = oldmm;
716 goto good_mm;
719 retval = -ENOMEM;
720 mm = dup_mm(tsk);
721 if (!mm)
722 goto fail_nomem;
724 good_mm:
725 /* Initializing for Swap token stuff */
726 mm->token_priority = 0;
727 mm->last_interval = 0;
729 tsk->mm = mm;
730 tsk->active_mm = mm;
731 return 0;
733 fail_nomem:
734 return retval;
737 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
739 struct fs_struct *fs = current->fs;
740 if (clone_flags & CLONE_FS) {
741 /* tsk->fs is already what we want */
742 write_lock(&fs->lock);
743 if (fs->in_exec) {
744 write_unlock(&fs->lock);
745 return -EAGAIN;
747 fs->users++;
748 write_unlock(&fs->lock);
749 return 0;
751 tsk->fs = copy_fs_struct(fs);
752 if (!tsk->fs)
753 return -ENOMEM;
754 return 0;
757 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
759 struct files_struct *oldf, *newf;
760 int error = 0;
763 * A background process may not have any files ...
765 oldf = current->files;
766 if (!oldf)
767 goto out;
769 if (clone_flags & CLONE_FILES) {
770 atomic_inc(&oldf->count);
771 goto out;
774 newf = dup_fd(oldf, &error);
775 if (!newf)
776 goto out;
778 tsk->files = newf;
779 error = 0;
780 out:
781 return error;
784 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
786 #ifdef CONFIG_BLOCK
787 struct io_context *ioc = current->io_context;
789 if (!ioc)
790 return 0;
792 * Share io context with parent, if CLONE_IO is set
794 if (clone_flags & CLONE_IO) {
795 tsk->io_context = ioc_task_link(ioc);
796 if (unlikely(!tsk->io_context))
797 return -ENOMEM;
798 } else if (ioprio_valid(ioc->ioprio)) {
799 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
800 if (unlikely(!tsk->io_context))
801 return -ENOMEM;
803 tsk->io_context->ioprio = ioc->ioprio;
805 #endif
806 return 0;
809 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
811 struct sighand_struct *sig;
813 if (clone_flags & CLONE_SIGHAND) {
814 atomic_inc(&current->sighand->count);
815 return 0;
817 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
818 rcu_assign_pointer(tsk->sighand, sig);
819 if (!sig)
820 return -ENOMEM;
821 atomic_set(&sig->count, 1);
822 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
823 return 0;
826 void __cleanup_sighand(struct sighand_struct *sighand)
828 if (atomic_dec_and_test(&sighand->count))
829 kmem_cache_free(sighand_cachep, sighand);
834 * Initialize POSIX timer handling for a thread group.
836 static void posix_cpu_timers_init_group(struct signal_struct *sig)
838 unsigned long cpu_limit;
840 /* Thread group counters. */
841 thread_group_cputime_init(sig);
843 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
844 if (cpu_limit != RLIM_INFINITY) {
845 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
846 sig->cputimer.running = 1;
849 /* The timer lists. */
850 INIT_LIST_HEAD(&sig->cpu_timers[0]);
851 INIT_LIST_HEAD(&sig->cpu_timers[1]);
852 INIT_LIST_HEAD(&sig->cpu_timers[2]);
855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
857 struct signal_struct *sig;
859 if (clone_flags & CLONE_THREAD)
860 return 0;
862 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
863 tsk->signal = sig;
864 if (!sig)
865 return -ENOMEM;
867 atomic_set(&sig->count, 1);
868 atomic_set(&sig->live, 1);
869 init_waitqueue_head(&sig->wait_chldexit);
870 if (clone_flags & CLONE_NEWPID)
871 sig->flags |= SIGNAL_UNKILLABLE;
872 sig->curr_target = tsk;
873 init_sigpending(&sig->shared_pending);
874 INIT_LIST_HEAD(&sig->posix_timers);
876 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877 sig->real_timer.function = it_real_fn;
879 task_lock(current->group_leader);
880 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
881 task_unlock(current->group_leader);
883 posix_cpu_timers_init_group(sig);
885 tty_audit_fork(sig);
887 sig->oom_adj = current->signal->oom_adj;
889 return 0;
892 void __cleanup_signal(struct signal_struct *sig)
894 thread_group_cputime_free(sig);
895 tty_kref_put(sig->tty);
896 kmem_cache_free(signal_cachep, sig);
899 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
901 unsigned long new_flags = p->flags;
903 new_flags &= ~PF_SUPERPRIV;
904 new_flags |= PF_FORKNOEXEC;
905 new_flags |= PF_STARTING;
906 p->flags = new_flags;
907 clear_freeze_flag(p);
910 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
912 current->clear_child_tid = tidptr;
914 return task_pid_vnr(current);
917 static void rt_mutex_init_task(struct task_struct *p)
919 raw_spin_lock_init(&p->pi_lock);
920 #ifdef CONFIG_RT_MUTEXES
921 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
922 p->pi_blocked_on = NULL;
923 #endif
926 #ifdef CONFIG_MM_OWNER
927 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
929 mm->owner = p;
931 #endif /* CONFIG_MM_OWNER */
934 * Initialize POSIX timer handling for a single task.
936 static void posix_cpu_timers_init(struct task_struct *tsk)
938 tsk->cputime_expires.prof_exp = cputime_zero;
939 tsk->cputime_expires.virt_exp = cputime_zero;
940 tsk->cputime_expires.sched_exp = 0;
941 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
942 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
943 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
947 * This creates a new process as a copy of the old one,
948 * but does not actually start it yet.
950 * It copies the registers, and all the appropriate
951 * parts of the process environment (as per the clone
952 * flags). The actual kick-off is left to the caller.
954 static struct task_struct *copy_process(unsigned long clone_flags,
955 unsigned long stack_start,
956 struct pt_regs *regs,
957 unsigned long stack_size,
958 int __user *child_tidptr,
959 struct pid *pid,
960 int trace)
962 int retval;
963 struct task_struct *p;
964 int cgroup_callbacks_done = 0;
966 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
967 return ERR_PTR(-EINVAL);
970 * Thread groups must share signals as well, and detached threads
971 * can only be started up within the thread group.
973 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
974 return ERR_PTR(-EINVAL);
977 * Shared signal handlers imply shared VM. By way of the above,
978 * thread groups also imply shared VM. Blocking this case allows
979 * for various simplifications in other code.
981 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
982 return ERR_PTR(-EINVAL);
985 * Siblings of global init remain as zombies on exit since they are
986 * not reaped by their parent (swapper). To solve this and to avoid
987 * multi-rooted process trees, prevent global and container-inits
988 * from creating siblings.
990 if ((clone_flags & CLONE_PARENT) &&
991 current->signal->flags & SIGNAL_UNKILLABLE)
992 return ERR_PTR(-EINVAL);
994 retval = security_task_create(clone_flags);
995 if (retval)
996 goto fork_out;
998 retval = -ENOMEM;
999 p = dup_task_struct(current);
1000 if (!p)
1001 goto fork_out;
1003 ftrace_graph_init_task(p);
1005 rt_mutex_init_task(p);
1007 #ifdef CONFIG_PROVE_LOCKING
1008 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1009 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1010 #endif
1011 retval = -EAGAIN;
1012 if (atomic_read(&p->real_cred->user->processes) >=
1013 task_rlimit(p, RLIMIT_NPROC)) {
1014 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1015 p->real_cred->user != INIT_USER)
1016 goto bad_fork_free;
1019 retval = copy_creds(p, clone_flags);
1020 if (retval < 0)
1021 goto bad_fork_free;
1024 * If multiple threads are within copy_process(), then this check
1025 * triggers too late. This doesn't hurt, the check is only there
1026 * to stop root fork bombs.
1028 retval = -EAGAIN;
1029 if (nr_threads >= max_threads)
1030 goto bad_fork_cleanup_count;
1032 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1033 goto bad_fork_cleanup_count;
1035 p->did_exec = 0;
1036 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1037 copy_flags(clone_flags, p);
1038 INIT_LIST_HEAD(&p->children);
1039 INIT_LIST_HEAD(&p->sibling);
1040 rcu_copy_process(p);
1041 p->vfork_done = NULL;
1042 spin_lock_init(&p->alloc_lock);
1044 init_sigpending(&p->pending);
1046 p->utime = cputime_zero;
1047 p->stime = cputime_zero;
1048 p->gtime = cputime_zero;
1049 p->utimescaled = cputime_zero;
1050 p->stimescaled = cputime_zero;
1051 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1052 p->prev_utime = cputime_zero;
1053 p->prev_stime = cputime_zero;
1054 #endif
1056 p->default_timer_slack_ns = current->timer_slack_ns;
1058 task_io_accounting_init(&p->ioac);
1059 acct_clear_integrals(p);
1061 posix_cpu_timers_init(p);
1063 p->lock_depth = -1; /* -1 = no lock */
1064 do_posix_clock_monotonic_gettime(&p->start_time);
1065 p->real_start_time = p->start_time;
1066 monotonic_to_bootbased(&p->real_start_time);
1067 p->io_context = NULL;
1068 p->audit_context = NULL;
1069 cgroup_fork(p);
1070 #ifdef CONFIG_NUMA
1071 p->mempolicy = mpol_dup(p->mempolicy);
1072 if (IS_ERR(p->mempolicy)) {
1073 retval = PTR_ERR(p->mempolicy);
1074 p->mempolicy = NULL;
1075 goto bad_fork_cleanup_cgroup;
1077 mpol_fix_fork_child_flag(p);
1078 #endif
1079 #ifdef CONFIG_TRACE_IRQFLAGS
1080 p->irq_events = 0;
1081 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1082 p->hardirqs_enabled = 1;
1083 #else
1084 p->hardirqs_enabled = 0;
1085 #endif
1086 p->hardirq_enable_ip = 0;
1087 p->hardirq_enable_event = 0;
1088 p->hardirq_disable_ip = _THIS_IP_;
1089 p->hardirq_disable_event = 0;
1090 p->softirqs_enabled = 1;
1091 p->softirq_enable_ip = _THIS_IP_;
1092 p->softirq_enable_event = 0;
1093 p->softirq_disable_ip = 0;
1094 p->softirq_disable_event = 0;
1095 p->hardirq_context = 0;
1096 p->softirq_context = 0;
1097 #endif
1098 #ifdef CONFIG_LOCKDEP
1099 p->lockdep_depth = 0; /* no locks held yet */
1100 p->curr_chain_key = 0;
1101 p->lockdep_recursion = 0;
1102 #endif
1104 #ifdef CONFIG_DEBUG_MUTEXES
1105 p->blocked_on = NULL; /* not blocked yet */
1106 #endif
1107 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1108 p->memcg_batch.do_batch = 0;
1109 p->memcg_batch.memcg = NULL;
1110 #endif
1112 p->bts = NULL;
1114 p->stack_start = stack_start;
1116 /* Perform scheduler related setup. Assign this task to a CPU. */
1117 sched_fork(p, clone_flags);
1119 retval = perf_event_init_task(p);
1120 if (retval)
1121 goto bad_fork_cleanup_policy;
1123 if ((retval = audit_alloc(p)))
1124 goto bad_fork_cleanup_policy;
1125 /* copy all the process information */
1126 if ((retval = copy_semundo(clone_flags, p)))
1127 goto bad_fork_cleanup_audit;
1128 if ((retval = copy_files(clone_flags, p)))
1129 goto bad_fork_cleanup_semundo;
1130 if ((retval = copy_fs(clone_flags, p)))
1131 goto bad_fork_cleanup_files;
1132 if ((retval = copy_sighand(clone_flags, p)))
1133 goto bad_fork_cleanup_fs;
1134 if ((retval = copy_signal(clone_flags, p)))
1135 goto bad_fork_cleanup_sighand;
1136 if ((retval = copy_mm(clone_flags, p)))
1137 goto bad_fork_cleanup_signal;
1138 if ((retval = copy_namespaces(clone_flags, p)))
1139 goto bad_fork_cleanup_mm;
1140 if ((retval = copy_io(clone_flags, p)))
1141 goto bad_fork_cleanup_namespaces;
1142 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1143 if (retval)
1144 goto bad_fork_cleanup_io;
1146 if (pid != &init_struct_pid) {
1147 retval = -ENOMEM;
1148 pid = alloc_pid(p->nsproxy->pid_ns);
1149 if (!pid)
1150 goto bad_fork_cleanup_io;
1152 if (clone_flags & CLONE_NEWPID) {
1153 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1154 if (retval < 0)
1155 goto bad_fork_free_pid;
1159 p->pid = pid_nr(pid);
1160 p->tgid = p->pid;
1161 if (clone_flags & CLONE_THREAD)
1162 p->tgid = current->tgid;
1164 if (current->nsproxy != p->nsproxy) {
1165 retval = ns_cgroup_clone(p, pid);
1166 if (retval)
1167 goto bad_fork_free_pid;
1170 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1172 * Clear TID on mm_release()?
1174 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1175 #ifdef CONFIG_FUTEX
1176 p->robust_list = NULL;
1177 #ifdef CONFIG_COMPAT
1178 p->compat_robust_list = NULL;
1179 #endif
1180 INIT_LIST_HEAD(&p->pi_state_list);
1181 p->pi_state_cache = NULL;
1182 #endif
1184 * sigaltstack should be cleared when sharing the same VM
1186 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1187 p->sas_ss_sp = p->sas_ss_size = 0;
1190 * Syscall tracing and stepping should be turned off in the
1191 * child regardless of CLONE_PTRACE.
1193 user_disable_single_step(p);
1194 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1195 #ifdef TIF_SYSCALL_EMU
1196 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1197 #endif
1198 clear_all_latency_tracing(p);
1200 /* ok, now we should be set up.. */
1201 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1202 p->pdeath_signal = 0;
1203 p->exit_state = 0;
1206 * Ok, make it visible to the rest of the system.
1207 * We dont wake it up yet.
1209 p->group_leader = p;
1210 INIT_LIST_HEAD(&p->thread_group);
1212 /* Now that the task is set up, run cgroup callbacks if
1213 * necessary. We need to run them before the task is visible
1214 * on the tasklist. */
1215 cgroup_fork_callbacks(p);
1216 cgroup_callbacks_done = 1;
1218 /* Need tasklist lock for parent etc handling! */
1219 write_lock_irq(&tasklist_lock);
1221 /* CLONE_PARENT re-uses the old parent */
1222 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1223 p->real_parent = current->real_parent;
1224 p->parent_exec_id = current->parent_exec_id;
1225 } else {
1226 p->real_parent = current;
1227 p->parent_exec_id = current->self_exec_id;
1230 spin_lock(&current->sighand->siglock);
1233 * Process group and session signals need to be delivered to just the
1234 * parent before the fork or both the parent and the child after the
1235 * fork. Restart if a signal comes in before we add the new process to
1236 * it's process group.
1237 * A fatal signal pending means that current will exit, so the new
1238 * thread can't slip out of an OOM kill (or normal SIGKILL).
1240 recalc_sigpending();
1241 if (signal_pending(current)) {
1242 spin_unlock(&current->sighand->siglock);
1243 write_unlock_irq(&tasklist_lock);
1244 retval = -ERESTARTNOINTR;
1245 goto bad_fork_free_pid;
1248 if (clone_flags & CLONE_THREAD) {
1249 atomic_inc(&current->signal->count);
1250 atomic_inc(&current->signal->live);
1251 p->group_leader = current->group_leader;
1252 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1255 if (likely(p->pid)) {
1256 tracehook_finish_clone(p, clone_flags, trace);
1258 if (thread_group_leader(p)) {
1259 if (clone_flags & CLONE_NEWPID)
1260 p->nsproxy->pid_ns->child_reaper = p;
1262 p->signal->leader_pid = pid;
1263 tty_kref_put(p->signal->tty);
1264 p->signal->tty = tty_kref_get(current->signal->tty);
1265 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1266 attach_pid(p, PIDTYPE_SID, task_session(current));
1267 list_add_tail(&p->sibling, &p->real_parent->children);
1268 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1269 __get_cpu_var(process_counts)++;
1271 attach_pid(p, PIDTYPE_PID, pid);
1272 nr_threads++;
1275 total_forks++;
1276 spin_unlock(&current->sighand->siglock);
1277 write_unlock_irq(&tasklist_lock);
1278 proc_fork_connector(p);
1279 cgroup_post_fork(p);
1280 perf_event_fork(p);
1281 return p;
1283 bad_fork_free_pid:
1284 if (pid != &init_struct_pid)
1285 free_pid(pid);
1286 bad_fork_cleanup_io:
1287 if (p->io_context)
1288 exit_io_context(p);
1289 bad_fork_cleanup_namespaces:
1290 exit_task_namespaces(p);
1291 bad_fork_cleanup_mm:
1292 if (p->mm)
1293 mmput(p->mm);
1294 bad_fork_cleanup_signal:
1295 if (!(clone_flags & CLONE_THREAD))
1296 __cleanup_signal(p->signal);
1297 bad_fork_cleanup_sighand:
1298 __cleanup_sighand(p->sighand);
1299 bad_fork_cleanup_fs:
1300 exit_fs(p); /* blocking */
1301 bad_fork_cleanup_files:
1302 exit_files(p); /* blocking */
1303 bad_fork_cleanup_semundo:
1304 exit_sem(p);
1305 bad_fork_cleanup_audit:
1306 audit_free(p);
1307 bad_fork_cleanup_policy:
1308 perf_event_free_task(p);
1309 #ifdef CONFIG_NUMA
1310 mpol_put(p->mempolicy);
1311 bad_fork_cleanup_cgroup:
1312 #endif
1313 cgroup_exit(p, cgroup_callbacks_done);
1314 delayacct_tsk_free(p);
1315 module_put(task_thread_info(p)->exec_domain->module);
1316 bad_fork_cleanup_count:
1317 atomic_dec(&p->cred->user->processes);
1318 exit_creds(p);
1319 bad_fork_free:
1320 free_task(p);
1321 fork_out:
1322 return ERR_PTR(retval);
1325 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1327 memset(regs, 0, sizeof(struct pt_regs));
1328 return regs;
1331 struct task_struct * __cpuinit fork_idle(int cpu)
1333 struct task_struct *task;
1334 struct pt_regs regs;
1336 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1337 &init_struct_pid, 0);
1338 if (!IS_ERR(task))
1339 init_idle(task, cpu);
1341 return task;
1345 * Ok, this is the main fork-routine.
1347 * It copies the process, and if successful kick-starts
1348 * it and waits for it to finish using the VM if required.
1350 long do_fork(unsigned long clone_flags,
1351 unsigned long stack_start,
1352 struct pt_regs *regs,
1353 unsigned long stack_size,
1354 int __user *parent_tidptr,
1355 int __user *child_tidptr)
1357 struct task_struct *p;
1358 int trace = 0;
1359 long nr;
1362 * Do some preliminary argument and permissions checking before we
1363 * actually start allocating stuff
1365 if (clone_flags & CLONE_NEWUSER) {
1366 if (clone_flags & CLONE_THREAD)
1367 return -EINVAL;
1368 /* hopefully this check will go away when userns support is
1369 * complete
1371 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1372 !capable(CAP_SETGID))
1373 return -EPERM;
1377 * We hope to recycle these flags after 2.6.26
1379 if (unlikely(clone_flags & CLONE_STOPPED)) {
1380 static int __read_mostly count = 100;
1382 if (count > 0 && printk_ratelimit()) {
1383 char comm[TASK_COMM_LEN];
1385 count--;
1386 printk(KERN_INFO "fork(): process `%s' used deprecated "
1387 "clone flags 0x%lx\n",
1388 get_task_comm(comm, current),
1389 clone_flags & CLONE_STOPPED);
1394 * When called from kernel_thread, don't do user tracing stuff.
1396 if (likely(user_mode(regs)))
1397 trace = tracehook_prepare_clone(clone_flags);
1399 p = copy_process(clone_flags, stack_start, regs, stack_size,
1400 child_tidptr, NULL, trace);
1402 * Do this prior waking up the new thread - the thread pointer
1403 * might get invalid after that point, if the thread exits quickly.
1405 if (!IS_ERR(p)) {
1406 struct completion vfork;
1408 trace_sched_process_fork(current, p);
1410 nr = task_pid_vnr(p);
1412 if (clone_flags & CLONE_PARENT_SETTID)
1413 put_user(nr, parent_tidptr);
1415 if (clone_flags & CLONE_VFORK) {
1416 p->vfork_done = &vfork;
1417 init_completion(&vfork);
1420 audit_finish_fork(p);
1421 tracehook_report_clone(regs, clone_flags, nr, p);
1424 * We set PF_STARTING at creation in case tracing wants to
1425 * use this to distinguish a fully live task from one that
1426 * hasn't gotten to tracehook_report_clone() yet. Now we
1427 * clear it and set the child going.
1429 p->flags &= ~PF_STARTING;
1431 if (unlikely(clone_flags & CLONE_STOPPED)) {
1433 * We'll start up with an immediate SIGSTOP.
1435 sigaddset(&p->pending.signal, SIGSTOP);
1436 set_tsk_thread_flag(p, TIF_SIGPENDING);
1437 __set_task_state(p, TASK_STOPPED);
1438 } else {
1439 wake_up_new_task(p, clone_flags);
1442 tracehook_report_clone_complete(trace, regs,
1443 clone_flags, nr, p);
1445 if (clone_flags & CLONE_VFORK) {
1446 freezer_do_not_count();
1447 wait_for_completion(&vfork);
1448 freezer_count();
1449 tracehook_report_vfork_done(p, nr);
1451 } else {
1452 nr = PTR_ERR(p);
1454 return nr;
1457 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1458 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1459 #endif
1461 static void sighand_ctor(void *data)
1463 struct sighand_struct *sighand = data;
1465 spin_lock_init(&sighand->siglock);
1466 init_waitqueue_head(&sighand->signalfd_wqh);
1469 void __init proc_caches_init(void)
1471 sighand_cachep = kmem_cache_create("sighand_cache",
1472 sizeof(struct sighand_struct), 0,
1473 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1474 SLAB_NOTRACK, sighand_ctor);
1475 signal_cachep = kmem_cache_create("signal_cache",
1476 sizeof(struct signal_struct), 0,
1477 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1478 files_cachep = kmem_cache_create("files_cache",
1479 sizeof(struct files_struct), 0,
1480 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1481 fs_cachep = kmem_cache_create("fs_cache",
1482 sizeof(struct fs_struct), 0,
1483 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1484 mm_cachep = kmem_cache_create("mm_struct",
1485 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1486 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1487 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1488 mmap_init();
1492 * Check constraints on flags passed to the unshare system call and
1493 * force unsharing of additional process context as appropriate.
1495 static void check_unshare_flags(unsigned long *flags_ptr)
1498 * If unsharing a thread from a thread group, must also
1499 * unshare vm.
1501 if (*flags_ptr & CLONE_THREAD)
1502 *flags_ptr |= CLONE_VM;
1505 * If unsharing vm, must also unshare signal handlers.
1507 if (*flags_ptr & CLONE_VM)
1508 *flags_ptr |= CLONE_SIGHAND;
1511 * If unsharing signal handlers and the task was created
1512 * using CLONE_THREAD, then must unshare the thread
1514 if ((*flags_ptr & CLONE_SIGHAND) &&
1515 (atomic_read(&current->signal->count) > 1))
1516 *flags_ptr |= CLONE_THREAD;
1519 * If unsharing namespace, must also unshare filesystem information.
1521 if (*flags_ptr & CLONE_NEWNS)
1522 *flags_ptr |= CLONE_FS;
1526 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1528 static int unshare_thread(unsigned long unshare_flags)
1530 if (unshare_flags & CLONE_THREAD)
1531 return -EINVAL;
1533 return 0;
1537 * Unshare the filesystem structure if it is being shared
1539 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1541 struct fs_struct *fs = current->fs;
1543 if (!(unshare_flags & CLONE_FS) || !fs)
1544 return 0;
1546 /* don't need lock here; in the worst case we'll do useless copy */
1547 if (fs->users == 1)
1548 return 0;
1550 *new_fsp = copy_fs_struct(fs);
1551 if (!*new_fsp)
1552 return -ENOMEM;
1554 return 0;
1558 * Unsharing of sighand is not supported yet
1560 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1562 struct sighand_struct *sigh = current->sighand;
1564 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1565 return -EINVAL;
1566 else
1567 return 0;
1571 * Unshare vm if it is being shared
1573 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1575 struct mm_struct *mm = current->mm;
1577 if ((unshare_flags & CLONE_VM) &&
1578 (mm && atomic_read(&mm->mm_users) > 1)) {
1579 return -EINVAL;
1582 return 0;
1586 * Unshare file descriptor table if it is being shared
1588 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1590 struct files_struct *fd = current->files;
1591 int error = 0;
1593 if ((unshare_flags & CLONE_FILES) &&
1594 (fd && atomic_read(&fd->count) > 1)) {
1595 *new_fdp = dup_fd(fd, &error);
1596 if (!*new_fdp)
1597 return error;
1600 return 0;
1604 * unshare allows a process to 'unshare' part of the process
1605 * context which was originally shared using clone. copy_*
1606 * functions used by do_fork() cannot be used here directly
1607 * because they modify an inactive task_struct that is being
1608 * constructed. Here we are modifying the current, active,
1609 * task_struct.
1611 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1613 int err = 0;
1614 struct fs_struct *fs, *new_fs = NULL;
1615 struct sighand_struct *new_sigh = NULL;
1616 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1617 struct files_struct *fd, *new_fd = NULL;
1618 struct nsproxy *new_nsproxy = NULL;
1619 int do_sysvsem = 0;
1621 check_unshare_flags(&unshare_flags);
1623 /* Return -EINVAL for all unsupported flags */
1624 err = -EINVAL;
1625 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1626 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1627 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1628 goto bad_unshare_out;
1631 * CLONE_NEWIPC must also detach from the undolist: after switching
1632 * to a new ipc namespace, the semaphore arrays from the old
1633 * namespace are unreachable.
1635 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1636 do_sysvsem = 1;
1637 if ((err = unshare_thread(unshare_flags)))
1638 goto bad_unshare_out;
1639 if ((err = unshare_fs(unshare_flags, &new_fs)))
1640 goto bad_unshare_cleanup_thread;
1641 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1642 goto bad_unshare_cleanup_fs;
1643 if ((err = unshare_vm(unshare_flags, &new_mm)))
1644 goto bad_unshare_cleanup_sigh;
1645 if ((err = unshare_fd(unshare_flags, &new_fd)))
1646 goto bad_unshare_cleanup_vm;
1647 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1648 new_fs)))
1649 goto bad_unshare_cleanup_fd;
1651 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1652 if (do_sysvsem) {
1654 * CLONE_SYSVSEM is equivalent to sys_exit().
1656 exit_sem(current);
1659 if (new_nsproxy) {
1660 switch_task_namespaces(current, new_nsproxy);
1661 new_nsproxy = NULL;
1664 task_lock(current);
1666 if (new_fs) {
1667 fs = current->fs;
1668 write_lock(&fs->lock);
1669 current->fs = new_fs;
1670 if (--fs->users)
1671 new_fs = NULL;
1672 else
1673 new_fs = fs;
1674 write_unlock(&fs->lock);
1677 if (new_mm) {
1678 mm = current->mm;
1679 active_mm = current->active_mm;
1680 current->mm = new_mm;
1681 current->active_mm = new_mm;
1682 activate_mm(active_mm, new_mm);
1683 new_mm = mm;
1686 if (new_fd) {
1687 fd = current->files;
1688 current->files = new_fd;
1689 new_fd = fd;
1692 task_unlock(current);
1695 if (new_nsproxy)
1696 put_nsproxy(new_nsproxy);
1698 bad_unshare_cleanup_fd:
1699 if (new_fd)
1700 put_files_struct(new_fd);
1702 bad_unshare_cleanup_vm:
1703 if (new_mm)
1704 mmput(new_mm);
1706 bad_unshare_cleanup_sigh:
1707 if (new_sigh)
1708 if (atomic_dec_and_test(&new_sigh->count))
1709 kmem_cache_free(sighand_cachep, new_sigh);
1711 bad_unshare_cleanup_fs:
1712 if (new_fs)
1713 free_fs_struct(new_fs);
1715 bad_unshare_cleanup_thread:
1716 bad_unshare_out:
1717 return err;
1721 * Helper to unshare the files of the current task.
1722 * We don't want to expose copy_files internals to
1723 * the exec layer of the kernel.
1726 int unshare_files(struct files_struct **displaced)
1728 struct task_struct *task = current;
1729 struct files_struct *copy = NULL;
1730 int error;
1732 error = unshare_fd(CLONE_FILES, &copy);
1733 if (error || !copy) {
1734 *displaced = NULL;
1735 return error;
1737 *displaced = task->files;
1738 task_lock(task);
1739 task->files = copy;
1740 task_unlock(task);
1741 return 0;