ext4: fix error handling on inode bitmap corruption
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / ialloc.c
blob412469b241a8c3eba95307839e113b1142c24d22
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 int i;
57 if (start_bit >= end_bit)
58 return;
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
75 J_ASSERT_BH(bh, buffer_locked(bh));
77 /* If checksum is bad mark all blocks and inodes use to prevent
78 * allocation, essentially implementing a per-group read-only flag. */
79 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
80 ext4_error(sb, "Checksum bad for group %u", block_group);
81 ext4_free_blks_set(sb, gdp, 0);
82 ext4_free_inodes_set(sb, gdp, 0);
83 ext4_itable_unused_set(sb, gdp, 0);
84 memset(bh->b_data, 0xff, sb->s_blocksize);
85 return 0;
88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 bh->b_data);
92 return EXT4_INODES_PER_GROUP(sb);
96 * Read the inode allocation bitmap for a given block_group, reading
97 * into the specified slot in the superblock's bitmap cache.
99 * Return buffer_head of bitmap on success or NULL.
101 static struct buffer_head *
102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
104 struct ext4_group_desc *desc;
105 struct buffer_head *bh = NULL;
106 ext4_fsblk_t bitmap_blk;
108 desc = ext4_get_group_desc(sb, block_group, NULL);
109 if (!desc)
110 return NULL;
112 bitmap_blk = ext4_inode_bitmap(sb, desc);
113 bh = sb_getblk(sb, bitmap_blk);
114 if (unlikely(!bh)) {
115 ext4_error(sb, "Cannot read inode bitmap - "
116 "block_group = %u, inode_bitmap = %llu",
117 block_group, bitmap_blk);
118 return NULL;
120 if (bitmap_uptodate(bh))
121 return bh;
123 lock_buffer(bh);
124 if (bitmap_uptodate(bh)) {
125 unlock_buffer(bh);
126 return bh;
129 ext4_lock_group(sb, block_group);
130 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
131 ext4_init_inode_bitmap(sb, bh, block_group, desc);
132 set_bitmap_uptodate(bh);
133 set_buffer_uptodate(bh);
134 ext4_unlock_group(sb, block_group);
135 unlock_buffer(bh);
136 return bh;
138 ext4_unlock_group(sb, block_group);
140 if (buffer_uptodate(bh)) {
142 * if not uninit if bh is uptodate,
143 * bitmap is also uptodate
145 set_bitmap_uptodate(bh);
146 unlock_buffer(bh);
147 return bh;
150 * submit the buffer_head for read. We can
151 * safely mark the bitmap as uptodate now.
152 * We do it here so the bitmap uptodate bit
153 * get set with buffer lock held.
155 trace_ext4_load_inode_bitmap(sb, block_group);
156 set_bitmap_uptodate(bh);
157 if (bh_submit_read(bh) < 0) {
158 put_bh(bh);
159 ext4_error(sb, "Cannot read inode bitmap - "
160 "block_group = %u, inode_bitmap = %llu",
161 block_group, bitmap_blk);
162 return NULL;
164 return bh;
168 * NOTE! When we get the inode, we're the only people
169 * that have access to it, and as such there are no
170 * race conditions we have to worry about. The inode
171 * is not on the hash-lists, and it cannot be reached
172 * through the filesystem because the directory entry
173 * has been deleted earlier.
175 * HOWEVER: we must make sure that we get no aliases,
176 * which means that we have to call "clear_inode()"
177 * _before_ we mark the inode not in use in the inode
178 * bitmaps. Otherwise a newly created file might use
179 * the same inode number (not actually the same pointer
180 * though), and then we'd have two inodes sharing the
181 * same inode number and space on the harddisk.
183 void ext4_free_inode(handle_t *handle, struct inode *inode)
185 struct super_block *sb = inode->i_sb;
186 int is_directory;
187 unsigned long ino;
188 struct buffer_head *bitmap_bh = NULL;
189 struct buffer_head *bh2;
190 ext4_group_t block_group;
191 unsigned long bit;
192 struct ext4_group_desc *gdp;
193 struct ext4_super_block *es;
194 struct ext4_sb_info *sbi;
195 int fatal = 0, err, count, cleared;
197 if (atomic_read(&inode->i_count) > 1) {
198 printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
199 atomic_read(&inode->i_count));
200 return;
202 if (inode->i_nlink) {
203 printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
204 inode->i_nlink);
205 return;
207 if (!sb) {
208 printk(KERN_ERR "ext4_free_inode: inode on "
209 "nonexistent device\n");
210 return;
212 sbi = EXT4_SB(sb);
214 ino = inode->i_ino;
215 ext4_debug("freeing inode %lu\n", ino);
216 trace_ext4_free_inode(inode);
219 * Note: we must free any quota before locking the superblock,
220 * as writing the quota to disk may need the lock as well.
222 dquot_initialize(inode);
223 ext4_xattr_delete_inode(handle, inode);
224 dquot_free_inode(inode);
225 dquot_drop(inode);
227 is_directory = S_ISDIR(inode->i_mode);
229 /* Do this BEFORE marking the inode not in use or returning an error */
230 ext4_clear_inode(inode);
232 es = EXT4_SB(sb)->s_es;
233 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
234 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
235 goto error_return;
237 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
238 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
239 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
240 if (!bitmap_bh)
241 goto error_return;
243 BUFFER_TRACE(bitmap_bh, "get_write_access");
244 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
245 if (fatal)
246 goto error_return;
248 fatal = -ESRCH;
249 gdp = ext4_get_group_desc(sb, block_group, &bh2);
250 if (gdp) {
251 BUFFER_TRACE(bh2, "get_write_access");
252 fatal = ext4_journal_get_write_access(handle, bh2);
254 ext4_lock_group(sb, block_group);
255 cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
256 if (fatal || !cleared) {
257 ext4_unlock_group(sb, block_group);
258 goto out;
261 count = ext4_free_inodes_count(sb, gdp) + 1;
262 ext4_free_inodes_set(sb, gdp, count);
263 if (is_directory) {
264 count = ext4_used_dirs_count(sb, gdp) - 1;
265 ext4_used_dirs_set(sb, gdp, count);
266 percpu_counter_dec(&sbi->s_dirs_counter);
268 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
269 ext4_unlock_group(sb, block_group);
271 percpu_counter_inc(&sbi->s_freeinodes_counter);
272 if (sbi->s_log_groups_per_flex) {
273 ext4_group_t f = ext4_flex_group(sbi, block_group);
275 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
276 if (is_directory)
277 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
279 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
280 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
281 out:
282 if (cleared) {
283 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
284 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
285 if (!fatal)
286 fatal = err;
287 ext4_mark_super_dirty(sb);
288 } else
289 ext4_error(sb, "bit already cleared for inode %lu", ino);
291 error_return:
292 brelse(bitmap_bh);
293 ext4_std_error(sb, fatal);
297 * There are two policies for allocating an inode. If the new inode is
298 * a directory, then a forward search is made for a block group with both
299 * free space and a low directory-to-inode ratio; if that fails, then of
300 * the groups with above-average free space, that group with the fewest
301 * directories already is chosen.
303 * For other inodes, search forward from the parent directory\'s block
304 * group to find a free inode.
306 static int find_group_dir(struct super_block *sb, struct inode *parent,
307 ext4_group_t *best_group)
309 ext4_group_t ngroups = ext4_get_groups_count(sb);
310 unsigned int freei, avefreei;
311 struct ext4_group_desc *desc, *best_desc = NULL;
312 ext4_group_t group;
313 int ret = -1;
315 freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
316 avefreei = freei / ngroups;
318 for (group = 0; group < ngroups; group++) {
319 desc = ext4_get_group_desc(sb, group, NULL);
320 if (!desc || !ext4_free_inodes_count(sb, desc))
321 continue;
322 if (ext4_free_inodes_count(sb, desc) < avefreei)
323 continue;
324 if (!best_desc ||
325 (ext4_free_blks_count(sb, desc) >
326 ext4_free_blks_count(sb, best_desc))) {
327 *best_group = group;
328 best_desc = desc;
329 ret = 0;
332 return ret;
335 #define free_block_ratio 10
337 static int find_group_flex(struct super_block *sb, struct inode *parent,
338 ext4_group_t *best_group)
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 struct ext4_group_desc *desc;
342 struct flex_groups *flex_group = sbi->s_flex_groups;
343 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
344 ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
345 ext4_group_t ngroups = ext4_get_groups_count(sb);
346 int flex_size = ext4_flex_bg_size(sbi);
347 ext4_group_t best_flex = parent_fbg_group;
348 int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
349 int flexbg_free_blocks;
350 int flex_freeb_ratio;
351 ext4_group_t n_fbg_groups;
352 ext4_group_t i;
354 n_fbg_groups = (ngroups + flex_size - 1) >>
355 sbi->s_log_groups_per_flex;
357 find_close_to_parent:
358 flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
359 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
360 if (atomic_read(&flex_group[best_flex].free_inodes) &&
361 flex_freeb_ratio > free_block_ratio)
362 goto found_flexbg;
364 if (best_flex && best_flex == parent_fbg_group) {
365 best_flex--;
366 goto find_close_to_parent;
369 for (i = 0; i < n_fbg_groups; i++) {
370 if (i == parent_fbg_group || i == parent_fbg_group - 1)
371 continue;
373 flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
374 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
376 if (flex_freeb_ratio > free_block_ratio &&
377 (atomic_read(&flex_group[i].free_inodes))) {
378 best_flex = i;
379 goto found_flexbg;
382 if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
383 ((atomic_read(&flex_group[i].free_blocks) >
384 atomic_read(&flex_group[best_flex].free_blocks)) &&
385 atomic_read(&flex_group[i].free_inodes)))
386 best_flex = i;
389 if (!atomic_read(&flex_group[best_flex].free_inodes) ||
390 !atomic_read(&flex_group[best_flex].free_blocks))
391 return -1;
393 found_flexbg:
394 for (i = best_flex * flex_size; i < ngroups &&
395 i < (best_flex + 1) * flex_size; i++) {
396 desc = ext4_get_group_desc(sb, i, NULL);
397 if (ext4_free_inodes_count(sb, desc)) {
398 *best_group = i;
399 goto out;
403 return -1;
404 out:
405 return 0;
408 struct orlov_stats {
409 __u32 free_inodes;
410 __u32 free_blocks;
411 __u32 used_dirs;
415 * Helper function for Orlov's allocator; returns critical information
416 * for a particular block group or flex_bg. If flex_size is 1, then g
417 * is a block group number; otherwise it is flex_bg number.
419 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
420 int flex_size, struct orlov_stats *stats)
422 struct ext4_group_desc *desc;
423 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
425 if (flex_size > 1) {
426 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
427 stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
428 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
429 return;
432 desc = ext4_get_group_desc(sb, g, NULL);
433 if (desc) {
434 stats->free_inodes = ext4_free_inodes_count(sb, desc);
435 stats->free_blocks = ext4_free_blks_count(sb, desc);
436 stats->used_dirs = ext4_used_dirs_count(sb, desc);
437 } else {
438 stats->free_inodes = 0;
439 stats->free_blocks = 0;
440 stats->used_dirs = 0;
445 * Orlov's allocator for directories.
447 * We always try to spread first-level directories.
449 * If there are blockgroups with both free inodes and free blocks counts
450 * not worse than average we return one with smallest directory count.
451 * Otherwise we simply return a random group.
453 * For the rest rules look so:
455 * It's OK to put directory into a group unless
456 * it has too many directories already (max_dirs) or
457 * it has too few free inodes left (min_inodes) or
458 * it has too few free blocks left (min_blocks) or
459 * Parent's group is preferred, if it doesn't satisfy these
460 * conditions we search cyclically through the rest. If none
461 * of the groups look good we just look for a group with more
462 * free inodes than average (starting at parent's group).
465 static int find_group_orlov(struct super_block *sb, struct inode *parent,
466 ext4_group_t *group, int mode,
467 const struct qstr *qstr)
469 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
470 struct ext4_sb_info *sbi = EXT4_SB(sb);
471 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
472 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
473 unsigned int freei, avefreei;
474 ext4_fsblk_t freeb, avefreeb;
475 unsigned int ndirs;
476 int max_dirs, min_inodes;
477 ext4_grpblk_t min_blocks;
478 ext4_group_t i, grp, g, ngroups;
479 struct ext4_group_desc *desc;
480 struct orlov_stats stats;
481 int flex_size = ext4_flex_bg_size(sbi);
482 struct dx_hash_info hinfo;
484 ngroups = real_ngroups;
485 if (flex_size > 1) {
486 ngroups = (real_ngroups + flex_size - 1) >>
487 sbi->s_log_groups_per_flex;
488 parent_group >>= sbi->s_log_groups_per_flex;
491 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
492 avefreei = freei / ngroups;
493 freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
494 avefreeb = freeb;
495 do_div(avefreeb, ngroups);
496 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
498 if (S_ISDIR(mode) &&
499 ((parent == sb->s_root->d_inode) ||
500 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
501 int best_ndir = inodes_per_group;
502 int ret = -1;
504 if (qstr) {
505 hinfo.hash_version = DX_HASH_HALF_MD4;
506 hinfo.seed = sbi->s_hash_seed;
507 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
508 grp = hinfo.hash;
509 } else
510 get_random_bytes(&grp, sizeof(grp));
511 parent_group = (unsigned)grp % ngroups;
512 for (i = 0; i < ngroups; i++) {
513 g = (parent_group + i) % ngroups;
514 get_orlov_stats(sb, g, flex_size, &stats);
515 if (!stats.free_inodes)
516 continue;
517 if (stats.used_dirs >= best_ndir)
518 continue;
519 if (stats.free_inodes < avefreei)
520 continue;
521 if (stats.free_blocks < avefreeb)
522 continue;
523 grp = g;
524 ret = 0;
525 best_ndir = stats.used_dirs;
527 if (ret)
528 goto fallback;
529 found_flex_bg:
530 if (flex_size == 1) {
531 *group = grp;
532 return 0;
536 * We pack inodes at the beginning of the flexgroup's
537 * inode tables. Block allocation decisions will do
538 * something similar, although regular files will
539 * start at 2nd block group of the flexgroup. See
540 * ext4_ext_find_goal() and ext4_find_near().
542 grp *= flex_size;
543 for (i = 0; i < flex_size; i++) {
544 if (grp+i >= real_ngroups)
545 break;
546 desc = ext4_get_group_desc(sb, grp+i, NULL);
547 if (desc && ext4_free_inodes_count(sb, desc)) {
548 *group = grp+i;
549 return 0;
552 goto fallback;
555 max_dirs = ndirs / ngroups + inodes_per_group / 16;
556 min_inodes = avefreei - inodes_per_group*flex_size / 4;
557 if (min_inodes < 1)
558 min_inodes = 1;
559 min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
562 * Start looking in the flex group where we last allocated an
563 * inode for this parent directory
565 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
566 parent_group = EXT4_I(parent)->i_last_alloc_group;
567 if (flex_size > 1)
568 parent_group >>= sbi->s_log_groups_per_flex;
571 for (i = 0; i < ngroups; i++) {
572 grp = (parent_group + i) % ngroups;
573 get_orlov_stats(sb, grp, flex_size, &stats);
574 if (stats.used_dirs >= max_dirs)
575 continue;
576 if (stats.free_inodes < min_inodes)
577 continue;
578 if (stats.free_blocks < min_blocks)
579 continue;
580 goto found_flex_bg;
583 fallback:
584 ngroups = real_ngroups;
585 avefreei = freei / ngroups;
586 fallback_retry:
587 parent_group = EXT4_I(parent)->i_block_group;
588 for (i = 0; i < ngroups; i++) {
589 grp = (parent_group + i) % ngroups;
590 desc = ext4_get_group_desc(sb, grp, NULL);
591 if (desc && ext4_free_inodes_count(sb, desc) &&
592 ext4_free_inodes_count(sb, desc) >= avefreei) {
593 *group = grp;
594 return 0;
598 if (avefreei) {
600 * The free-inodes counter is approximate, and for really small
601 * filesystems the above test can fail to find any blockgroups
603 avefreei = 0;
604 goto fallback_retry;
607 return -1;
610 static int find_group_other(struct super_block *sb, struct inode *parent,
611 ext4_group_t *group, int mode)
613 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
614 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
615 struct ext4_group_desc *desc;
616 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
619 * Try to place the inode is the same flex group as its
620 * parent. If we can't find space, use the Orlov algorithm to
621 * find another flex group, and store that information in the
622 * parent directory's inode information so that use that flex
623 * group for future allocations.
625 if (flex_size > 1) {
626 int retry = 0;
628 try_again:
629 parent_group &= ~(flex_size-1);
630 last = parent_group + flex_size;
631 if (last > ngroups)
632 last = ngroups;
633 for (i = parent_group; i < last; i++) {
634 desc = ext4_get_group_desc(sb, i, NULL);
635 if (desc && ext4_free_inodes_count(sb, desc)) {
636 *group = i;
637 return 0;
640 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
641 retry = 1;
642 parent_group = EXT4_I(parent)->i_last_alloc_group;
643 goto try_again;
646 * If this didn't work, use the Orlov search algorithm
647 * to find a new flex group; we pass in the mode to
648 * avoid the topdir algorithms.
650 *group = parent_group + flex_size;
651 if (*group > ngroups)
652 *group = 0;
653 return find_group_orlov(sb, parent, group, mode, NULL);
657 * Try to place the inode in its parent directory
659 *group = parent_group;
660 desc = ext4_get_group_desc(sb, *group, NULL);
661 if (desc && ext4_free_inodes_count(sb, desc) &&
662 ext4_free_blks_count(sb, desc))
663 return 0;
666 * We're going to place this inode in a different blockgroup from its
667 * parent. We want to cause files in a common directory to all land in
668 * the same blockgroup. But we want files which are in a different
669 * directory which shares a blockgroup with our parent to land in a
670 * different blockgroup.
672 * So add our directory's i_ino into the starting point for the hash.
674 *group = (*group + parent->i_ino) % ngroups;
677 * Use a quadratic hash to find a group with a free inode and some free
678 * blocks.
680 for (i = 1; i < ngroups; i <<= 1) {
681 *group += i;
682 if (*group >= ngroups)
683 *group -= ngroups;
684 desc = ext4_get_group_desc(sb, *group, NULL);
685 if (desc && ext4_free_inodes_count(sb, desc) &&
686 ext4_free_blks_count(sb, desc))
687 return 0;
691 * That failed: try linear search for a free inode, even if that group
692 * has no free blocks.
694 *group = parent_group;
695 for (i = 0; i < ngroups; i++) {
696 if (++*group >= ngroups)
697 *group = 0;
698 desc = ext4_get_group_desc(sb, *group, NULL);
699 if (desc && ext4_free_inodes_count(sb, desc))
700 return 0;
703 return -1;
707 * claim the inode from the inode bitmap. If the group
708 * is uninit we need to take the groups's ext4_group_lock
709 * and clear the uninit flag. The inode bitmap update
710 * and group desc uninit flag clear should be done
711 * after holding ext4_group_lock so that ext4_read_inode_bitmap
712 * doesn't race with the ext4_claim_inode
714 static int ext4_claim_inode(struct super_block *sb,
715 struct buffer_head *inode_bitmap_bh,
716 unsigned long ino, ext4_group_t group, int mode)
718 int free = 0, retval = 0, count;
719 struct ext4_sb_info *sbi = EXT4_SB(sb);
720 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
721 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
724 * We have to be sure that new inode allocation does not race with
725 * inode table initialization, because otherwise we may end up
726 * allocating and writing new inode right before sb_issue_zeroout
727 * takes place and overwriting our new inode with zeroes. So we
728 * take alloc_sem to prevent it.
730 down_read(&grp->alloc_sem);
731 ext4_lock_group(sb, group);
732 if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
733 /* not a free inode */
734 retval = 1;
735 goto err_ret;
737 ino++;
738 if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
739 ino > EXT4_INODES_PER_GROUP(sb)) {
740 ext4_unlock_group(sb, group);
741 up_read(&grp->alloc_sem);
742 ext4_error(sb, "reserved inode or inode > inodes count - "
743 "block_group = %u, inode=%lu", group,
744 ino + group * EXT4_INODES_PER_GROUP(sb));
745 return 1;
747 /* If we didn't allocate from within the initialized part of the inode
748 * table then we need to initialize up to this inode. */
749 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
751 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
752 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
753 /* When marking the block group with
754 * ~EXT4_BG_INODE_UNINIT we don't want to depend
755 * on the value of bg_itable_unused even though
756 * mke2fs could have initialized the same for us.
757 * Instead we calculated the value below
760 free = 0;
761 } else {
762 free = EXT4_INODES_PER_GROUP(sb) -
763 ext4_itable_unused_count(sb, gdp);
767 * Check the relative inode number against the last used
768 * relative inode number in this group. if it is greater
769 * we need to update the bg_itable_unused count
772 if (ino > free)
773 ext4_itable_unused_set(sb, gdp,
774 (EXT4_INODES_PER_GROUP(sb) - ino));
776 count = ext4_free_inodes_count(sb, gdp) - 1;
777 ext4_free_inodes_set(sb, gdp, count);
778 if (S_ISDIR(mode)) {
779 count = ext4_used_dirs_count(sb, gdp) + 1;
780 ext4_used_dirs_set(sb, gdp, count);
781 if (sbi->s_log_groups_per_flex) {
782 ext4_group_t f = ext4_flex_group(sbi, group);
784 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
787 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
788 err_ret:
789 ext4_unlock_group(sb, group);
790 up_read(&grp->alloc_sem);
791 return retval;
795 * There are two policies for allocating an inode. If the new inode is
796 * a directory, then a forward search is made for a block group with both
797 * free space and a low directory-to-inode ratio; if that fails, then of
798 * the groups with above-average free space, that group with the fewest
799 * directories already is chosen.
801 * For other inodes, search forward from the parent directory's block
802 * group to find a free inode.
804 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
805 const struct qstr *qstr, __u32 goal)
807 struct super_block *sb;
808 struct buffer_head *inode_bitmap_bh = NULL;
809 struct buffer_head *group_desc_bh;
810 ext4_group_t ngroups, group = 0;
811 unsigned long ino = 0;
812 struct inode *inode;
813 struct ext4_group_desc *gdp = NULL;
814 struct ext4_inode_info *ei;
815 struct ext4_sb_info *sbi;
816 int ret2, err = 0;
817 struct inode *ret;
818 ext4_group_t i;
819 int free = 0;
820 static int once = 1;
821 ext4_group_t flex_group;
823 /* Cannot create files in a deleted directory */
824 if (!dir || !dir->i_nlink)
825 return ERR_PTR(-EPERM);
827 sb = dir->i_sb;
828 ngroups = ext4_get_groups_count(sb);
829 trace_ext4_request_inode(dir, mode);
830 inode = new_inode(sb);
831 if (!inode)
832 return ERR_PTR(-ENOMEM);
833 ei = EXT4_I(inode);
834 sbi = EXT4_SB(sb);
836 if (!goal)
837 goal = sbi->s_inode_goal;
839 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
840 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
841 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
842 ret2 = 0;
843 goto got_group;
846 if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
847 ret2 = find_group_flex(sb, dir, &group);
848 if (ret2 == -1) {
849 ret2 = find_group_other(sb, dir, &group, mode);
850 if (ret2 == 0 && once) {
851 once = 0;
852 printk(KERN_NOTICE "ext4: find_group_flex "
853 "failed, fallback succeeded dir %lu\n",
854 dir->i_ino);
857 goto got_group;
860 if (S_ISDIR(mode)) {
861 if (test_opt(sb, OLDALLOC))
862 ret2 = find_group_dir(sb, dir, &group);
863 else
864 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
865 } else
866 ret2 = find_group_other(sb, dir, &group, mode);
868 got_group:
869 EXT4_I(dir)->i_last_alloc_group = group;
870 err = -ENOSPC;
871 if (ret2 == -1)
872 goto out;
874 for (i = 0; i < ngroups; i++, ino = 0) {
875 err = -EIO;
877 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
878 if (!gdp)
879 goto fail;
881 brelse(inode_bitmap_bh);
882 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
883 if (!inode_bitmap_bh)
884 goto fail;
886 repeat_in_this_group:
887 ino = ext4_find_next_zero_bit((unsigned long *)
888 inode_bitmap_bh->b_data,
889 EXT4_INODES_PER_GROUP(sb), ino);
891 if (ino < EXT4_INODES_PER_GROUP(sb)) {
893 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
894 err = ext4_journal_get_write_access(handle,
895 inode_bitmap_bh);
896 if (err)
897 goto fail;
899 BUFFER_TRACE(group_desc_bh, "get_write_access");
900 err = ext4_journal_get_write_access(handle,
901 group_desc_bh);
902 if (err)
903 goto fail;
904 if (!ext4_claim_inode(sb, inode_bitmap_bh,
905 ino, group, mode)) {
906 /* we won it */
907 BUFFER_TRACE(inode_bitmap_bh,
908 "call ext4_handle_dirty_metadata");
909 err = ext4_handle_dirty_metadata(handle,
910 NULL,
911 inode_bitmap_bh);
912 if (err)
913 goto fail;
914 /* zero bit is inode number 1*/
915 ino++;
916 goto got;
918 /* we lost it */
919 ext4_handle_release_buffer(handle, inode_bitmap_bh);
920 ext4_handle_release_buffer(handle, group_desc_bh);
922 if (++ino < EXT4_INODES_PER_GROUP(sb))
923 goto repeat_in_this_group;
927 * This case is possible in concurrent environment. It is very
928 * rare. We cannot repeat the find_group_xxx() call because
929 * that will simply return the same blockgroup, because the
930 * group descriptor metadata has not yet been updated.
931 * So we just go onto the next blockgroup.
933 if (++group == ngroups)
934 group = 0;
936 err = -ENOSPC;
937 goto out;
939 got:
940 /* We may have to initialize the block bitmap if it isn't already */
941 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
942 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
943 struct buffer_head *block_bitmap_bh;
945 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
946 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
947 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
948 if (err) {
949 brelse(block_bitmap_bh);
950 goto fail;
953 free = 0;
954 ext4_lock_group(sb, group);
955 /* recheck and clear flag under lock if we still need to */
956 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
957 free = ext4_free_blocks_after_init(sb, group, gdp);
958 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
959 ext4_free_blks_set(sb, gdp, free);
960 gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
961 gdp);
963 ext4_unlock_group(sb, group);
965 /* Don't need to dirty bitmap block if we didn't change it */
966 if (free) {
967 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
968 err = ext4_handle_dirty_metadata(handle,
969 NULL, block_bitmap_bh);
972 brelse(block_bitmap_bh);
973 if (err)
974 goto fail;
976 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
977 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
978 if (err)
979 goto fail;
981 percpu_counter_dec(&sbi->s_freeinodes_counter);
982 if (S_ISDIR(mode))
983 percpu_counter_inc(&sbi->s_dirs_counter);
984 ext4_mark_super_dirty(sb);
986 if (sbi->s_log_groups_per_flex) {
987 flex_group = ext4_flex_group(sbi, group);
988 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
991 if (test_opt(sb, GRPID)) {
992 inode->i_mode = mode;
993 inode->i_uid = current_fsuid();
994 inode->i_gid = dir->i_gid;
995 } else
996 inode_init_owner(inode, dir, mode);
998 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
999 /* This is the optimal IO size (for stat), not the fs block size */
1000 inode->i_blocks = 0;
1001 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1002 ext4_current_time(inode);
1004 memset(ei->i_data, 0, sizeof(ei->i_data));
1005 ei->i_dir_start_lookup = 0;
1006 ei->i_disksize = 0;
1009 * Don't inherit extent flag from directory, amongst others. We set
1010 * extent flag on newly created directory and file only if -o extent
1011 * mount option is specified
1013 ei->i_flags =
1014 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1015 ei->i_file_acl = 0;
1016 ei->i_dtime = 0;
1017 ei->i_block_group = group;
1018 ei->i_last_alloc_group = ~0;
1020 ext4_set_inode_flags(inode);
1021 if (IS_DIRSYNC(inode))
1022 ext4_handle_sync(handle);
1023 if (insert_inode_locked(inode) < 0) {
1025 * Likely a bitmap corruption causing inode to be allocated
1026 * twice.
1028 err = -EIO;
1029 goto fail;
1031 spin_lock(&sbi->s_next_gen_lock);
1032 inode->i_generation = sbi->s_next_generation++;
1033 spin_unlock(&sbi->s_next_gen_lock);
1035 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1036 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1038 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1040 ret = inode;
1041 dquot_initialize(inode);
1042 err = dquot_alloc_inode(inode);
1043 if (err)
1044 goto fail_drop;
1046 err = ext4_init_acl(handle, inode, dir);
1047 if (err)
1048 goto fail_free_drop;
1050 err = ext4_init_security(handle, inode, dir, qstr);
1051 if (err)
1052 goto fail_free_drop;
1054 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1055 /* set extent flag only for directory, file and normal symlink*/
1056 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1057 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1058 ext4_ext_tree_init(handle, inode);
1062 if (ext4_handle_valid(handle)) {
1063 ei->i_sync_tid = handle->h_transaction->t_tid;
1064 ei->i_datasync_tid = handle->h_transaction->t_tid;
1067 err = ext4_mark_inode_dirty(handle, inode);
1068 if (err) {
1069 ext4_std_error(sb, err);
1070 goto fail_free_drop;
1073 ext4_debug("allocating inode %lu\n", inode->i_ino);
1074 trace_ext4_allocate_inode(inode, dir, mode);
1075 goto really_out;
1076 fail:
1077 ext4_std_error(sb, err);
1078 out:
1079 iput(inode);
1080 ret = ERR_PTR(err);
1081 really_out:
1082 brelse(inode_bitmap_bh);
1083 return ret;
1085 fail_free_drop:
1086 dquot_free_inode(inode);
1088 fail_drop:
1089 dquot_drop(inode);
1090 inode->i_flags |= S_NOQUOTA;
1091 inode->i_nlink = 0;
1092 unlock_new_inode(inode);
1093 iput(inode);
1094 brelse(inode_bitmap_bh);
1095 return ERR_PTR(err);
1098 /* Verify that we are loading a valid orphan from disk */
1099 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1101 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1102 ext4_group_t block_group;
1103 int bit;
1104 struct buffer_head *bitmap_bh;
1105 struct inode *inode = NULL;
1106 long err = -EIO;
1108 /* Error cases - e2fsck has already cleaned up for us */
1109 if (ino > max_ino) {
1110 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1111 goto error;
1114 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1115 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1116 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1117 if (!bitmap_bh) {
1118 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1119 goto error;
1122 /* Having the inode bit set should be a 100% indicator that this
1123 * is a valid orphan (no e2fsck run on fs). Orphans also include
1124 * inodes that were being truncated, so we can't check i_nlink==0.
1126 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1127 goto bad_orphan;
1129 inode = ext4_iget(sb, ino);
1130 if (IS_ERR(inode))
1131 goto iget_failed;
1134 * If the orphans has i_nlinks > 0 then it should be able to be
1135 * truncated, otherwise it won't be removed from the orphan list
1136 * during processing and an infinite loop will result.
1138 if (inode->i_nlink && !ext4_can_truncate(inode))
1139 goto bad_orphan;
1141 if (NEXT_ORPHAN(inode) > max_ino)
1142 goto bad_orphan;
1143 brelse(bitmap_bh);
1144 return inode;
1146 iget_failed:
1147 err = PTR_ERR(inode);
1148 inode = NULL;
1149 bad_orphan:
1150 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1151 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1152 bit, (unsigned long long)bitmap_bh->b_blocknr,
1153 ext4_test_bit(bit, bitmap_bh->b_data));
1154 printk(KERN_NOTICE "inode=%p\n", inode);
1155 if (inode) {
1156 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1157 is_bad_inode(inode));
1158 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1159 NEXT_ORPHAN(inode));
1160 printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1161 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1162 /* Avoid freeing blocks if we got a bad deleted inode */
1163 if (inode->i_nlink == 0)
1164 inode->i_blocks = 0;
1165 iput(inode);
1167 brelse(bitmap_bh);
1168 error:
1169 return ERR_PTR(err);
1172 unsigned long ext4_count_free_inodes(struct super_block *sb)
1174 unsigned long desc_count;
1175 struct ext4_group_desc *gdp;
1176 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1177 #ifdef EXT4FS_DEBUG
1178 struct ext4_super_block *es;
1179 unsigned long bitmap_count, x;
1180 struct buffer_head *bitmap_bh = NULL;
1182 es = EXT4_SB(sb)->s_es;
1183 desc_count = 0;
1184 bitmap_count = 0;
1185 gdp = NULL;
1186 for (i = 0; i < ngroups; i++) {
1187 gdp = ext4_get_group_desc(sb, i, NULL);
1188 if (!gdp)
1189 continue;
1190 desc_count += ext4_free_inodes_count(sb, gdp);
1191 brelse(bitmap_bh);
1192 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1193 if (!bitmap_bh)
1194 continue;
1196 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1197 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1198 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1199 bitmap_count += x;
1201 brelse(bitmap_bh);
1202 printk(KERN_DEBUG "ext4_count_free_inodes: "
1203 "stored = %u, computed = %lu, %lu\n",
1204 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1205 return desc_count;
1206 #else
1207 desc_count = 0;
1208 for (i = 0; i < ngroups; i++) {
1209 gdp = ext4_get_group_desc(sb, i, NULL);
1210 if (!gdp)
1211 continue;
1212 desc_count += ext4_free_inodes_count(sb, gdp);
1213 cond_resched();
1215 return desc_count;
1216 #endif
1219 /* Called at mount-time, super-block is locked */
1220 unsigned long ext4_count_dirs(struct super_block * sb)
1222 unsigned long count = 0;
1223 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1225 for (i = 0; i < ngroups; i++) {
1226 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1227 if (!gdp)
1228 continue;
1229 count += ext4_used_dirs_count(sb, gdp);
1231 return count;
1235 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1236 * inode table. Must be called without any spinlock held. The only place
1237 * where it is called from on active part of filesystem is ext4lazyinit
1238 * thread, so we do not need any special locks, however we have to prevent
1239 * inode allocation from the current group, so we take alloc_sem lock, to
1240 * block ext4_claim_inode until we are finished.
1242 extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1243 int barrier)
1245 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1246 struct ext4_sb_info *sbi = EXT4_SB(sb);
1247 struct ext4_group_desc *gdp = NULL;
1248 struct buffer_head *group_desc_bh;
1249 handle_t *handle;
1250 ext4_fsblk_t blk;
1251 int num, ret = 0, used_blks = 0;
1253 /* This should not happen, but just to be sure check this */
1254 if (sb->s_flags & MS_RDONLY) {
1255 ret = 1;
1256 goto out;
1259 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1260 if (!gdp)
1261 goto out;
1264 * We do not need to lock this, because we are the only one
1265 * handling this flag.
1267 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1268 goto out;
1270 handle = ext4_journal_start_sb(sb, 1);
1271 if (IS_ERR(handle)) {
1272 ret = PTR_ERR(handle);
1273 goto out;
1276 down_write(&grp->alloc_sem);
1278 * If inode bitmap was already initialized there may be some
1279 * used inodes so we need to skip blocks with used inodes in
1280 * inode table.
1282 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1283 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1284 ext4_itable_unused_count(sb, gdp)),
1285 sbi->s_inodes_per_block);
1287 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1288 ext4_error(sb, "Something is wrong with group %u\n"
1289 "Used itable blocks: %d"
1290 "itable unused count: %u\n",
1291 group, used_blks,
1292 ext4_itable_unused_count(sb, gdp));
1293 ret = 1;
1294 goto out;
1297 blk = ext4_inode_table(sb, gdp) + used_blks;
1298 num = sbi->s_itb_per_group - used_blks;
1300 BUFFER_TRACE(group_desc_bh, "get_write_access");
1301 ret = ext4_journal_get_write_access(handle,
1302 group_desc_bh);
1303 if (ret)
1304 goto err_out;
1307 * Skip zeroout if the inode table is full. But we set the ZEROED
1308 * flag anyway, because obviously, when it is full it does not need
1309 * further zeroing.
1311 if (unlikely(num == 0))
1312 goto skip_zeroout;
1314 ext4_debug("going to zero out inode table in group %d\n",
1315 group);
1316 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1317 if (ret < 0)
1318 goto err_out;
1319 if (barrier)
1320 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1322 skip_zeroout:
1323 ext4_lock_group(sb, group);
1324 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1325 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1326 ext4_unlock_group(sb, group);
1328 BUFFER_TRACE(group_desc_bh,
1329 "call ext4_handle_dirty_metadata");
1330 ret = ext4_handle_dirty_metadata(handle, NULL,
1331 group_desc_bh);
1333 err_out:
1334 up_write(&grp->alloc_sem);
1335 ext4_journal_stop(handle);
1336 out:
1337 return ret;