2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
23 #include <linux/sunrpc/clnt.h>
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id
;
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static kmem_cache_t
*rpc_task_slabp __read_mostly
;
38 static kmem_cache_t
*rpc_buffer_slabp __read_mostly
;
39 static mempool_t
*rpc_task_mempool __read_mostly
;
40 static mempool_t
*rpc_buffer_mempool __read_mostly
;
42 static void __rpc_default_timer(struct rpc_task
*task
);
43 static void rpciod_killall(void);
44 static void rpc_async_schedule(void *);
47 * RPC tasks sit here while waiting for conditions to improve.
49 static RPC_WAITQ(delay_queue
, "delayq");
52 * All RPC tasks are linked into this list
54 static LIST_HEAD(all_tasks
);
57 * rpciod-related stuff
59 static DEFINE_MUTEX(rpciod_mutex
);
60 static unsigned int rpciod_users
;
61 struct workqueue_struct
*rpciod_workqueue
;
64 * Spinlock for other critical sections of code.
66 static DEFINE_SPINLOCK(rpc_sched_lock
);
69 * Disable the timer for a given RPC task. Should be called with
70 * queue->lock and bh_disabled in order to avoid races within
74 __rpc_disable_timer(struct rpc_task
*task
)
76 dprintk("RPC: %4d disabling timer\n", task
->tk_pid
);
77 task
->tk_timeout_fn
= NULL
;
82 * Run a timeout function.
83 * We use the callback in order to allow __rpc_wake_up_task()
84 * and friends to disable the timer synchronously on SMP systems
85 * without calling del_timer_sync(). The latter could cause a
86 * deadlock if called while we're holding spinlocks...
88 static void rpc_run_timer(struct rpc_task
*task
)
90 void (*callback
)(struct rpc_task
*);
92 callback
= task
->tk_timeout_fn
;
93 task
->tk_timeout_fn
= NULL
;
94 if (callback
&& RPC_IS_QUEUED(task
)) {
95 dprintk("RPC: %4d running timer\n", task
->tk_pid
);
98 smp_mb__before_clear_bit();
99 clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
100 smp_mb__after_clear_bit();
104 * Set up a timer for the current task.
107 __rpc_add_timer(struct rpc_task
*task
, rpc_action timer
)
109 if (!task
->tk_timeout
)
112 dprintk("RPC: %4d setting alarm for %lu ms\n",
113 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
116 task
->tk_timeout_fn
= timer
;
118 task
->tk_timeout_fn
= __rpc_default_timer
;
119 set_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
120 mod_timer(&task
->tk_timer
, jiffies
+ task
->tk_timeout
);
124 * Delete any timer for the current task. Because we use del_timer_sync(),
125 * this function should never be called while holding queue->lock.
128 rpc_delete_timer(struct rpc_task
*task
)
130 if (RPC_IS_QUEUED(task
))
132 if (test_and_clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
)) {
133 del_singleshot_timer_sync(&task
->tk_timer
);
134 dprintk("RPC: %4d deleting timer\n", task
->tk_pid
);
139 * Add new request to a priority queue.
141 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
146 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
147 q
= &queue
->tasks
[task
->tk_priority
];
148 if (unlikely(task
->tk_priority
> queue
->maxpriority
))
149 q
= &queue
->tasks
[queue
->maxpriority
];
150 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
151 if (t
->tk_cookie
== task
->tk_cookie
) {
152 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
156 list_add_tail(&task
->u
.tk_wait
.list
, q
);
160 * Add new request to wait queue.
162 * Swapper tasks always get inserted at the head of the queue.
163 * This should avoid many nasty memory deadlocks and hopefully
164 * improve overall performance.
165 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
169 BUG_ON (RPC_IS_QUEUED(task
));
171 if (RPC_IS_PRIORITY(queue
))
172 __rpc_add_wait_queue_priority(queue
, task
);
173 else if (RPC_IS_SWAPPER(task
))
174 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
176 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
177 task
->u
.tk_wait
.rpc_waitq
= queue
;
179 rpc_set_queued(task
);
181 dprintk("RPC: %4d added to queue %p \"%s\"\n",
182 task
->tk_pid
, queue
, rpc_qname(queue
));
186 * Remove request from a priority queue.
188 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
192 if (!list_empty(&task
->u
.tk_wait
.links
)) {
193 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
194 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
195 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
197 list_del(&task
->u
.tk_wait
.list
);
201 * Remove request from queue.
202 * Note: must be called with spin lock held.
204 static void __rpc_remove_wait_queue(struct rpc_task
*task
)
206 struct rpc_wait_queue
*queue
;
207 queue
= task
->u
.tk_wait
.rpc_waitq
;
209 if (RPC_IS_PRIORITY(queue
))
210 __rpc_remove_wait_queue_priority(task
);
212 list_del(&task
->u
.tk_wait
.list
);
214 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
215 task
->tk_pid
, queue
, rpc_qname(queue
));
218 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
220 queue
->priority
= priority
;
221 queue
->count
= 1 << (priority
* 2);
224 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue
*queue
, unsigned long cookie
)
226 queue
->cookie
= cookie
;
227 queue
->nr
= RPC_BATCH_COUNT
;
230 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
232 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
233 rpc_set_waitqueue_cookie(queue
, 0);
236 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, int maxprio
)
240 spin_lock_init(&queue
->lock
);
241 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
242 INIT_LIST_HEAD(&queue
->tasks
[i
]);
243 queue
->maxpriority
= maxprio
;
244 rpc_reset_waitqueue_priority(queue
);
250 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
252 __rpc_init_priority_wait_queue(queue
, qname
, RPC_PRIORITY_HIGH
);
255 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
257 __rpc_init_priority_wait_queue(queue
, qname
, 0);
259 EXPORT_SYMBOL(rpc_init_wait_queue
);
261 static int rpc_wait_bit_interruptible(void *word
)
263 if (signal_pending(current
))
270 * Mark an RPC call as having completed by clearing the 'active' bit
272 static inline void rpc_mark_complete_task(struct rpc_task
*task
)
274 rpc_clear_active(task
);
275 wake_up_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
);
279 * Allow callers to wait for completion of an RPC call
281 int __rpc_wait_for_completion_task(struct rpc_task
*task
, int (*action
)(void *))
284 action
= rpc_wait_bit_interruptible
;
285 return wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
286 action
, TASK_INTERRUPTIBLE
);
288 EXPORT_SYMBOL(__rpc_wait_for_completion_task
);
291 * Make an RPC task runnable.
293 * Note: If the task is ASYNC, this must be called with
294 * the spinlock held to protect the wait queue operation.
296 static void rpc_make_runnable(struct rpc_task
*task
)
300 BUG_ON(task
->tk_timeout_fn
);
301 do_ret
= rpc_test_and_set_running(task
);
302 rpc_clear_queued(task
);
305 if (RPC_IS_ASYNC(task
)) {
308 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
, (void *)task
);
309 status
= queue_work(task
->tk_workqueue
, &task
->u
.tk_work
);
311 printk(KERN_WARNING
"RPC: failed to add task to queue: error: %d!\n", status
);
312 task
->tk_status
= status
;
316 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
320 * Prepare for sleeping on a wait queue.
321 * By always appending tasks to the list we ensure FIFO behavior.
322 * NB: An RPC task will only receive interrupt-driven events as long
323 * as it's on a wait queue.
325 static void __rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
326 rpc_action action
, rpc_action timer
)
328 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task
->tk_pid
,
329 rpc_qname(q
), jiffies
);
331 if (!RPC_IS_ASYNC(task
) && !RPC_IS_ACTIVATED(task
)) {
332 printk(KERN_ERR
"RPC: Inactive synchronous task put to sleep!\n");
336 /* Mark the task as being activated if so needed */
337 rpc_set_active(task
);
339 __rpc_add_wait_queue(q
, task
);
341 BUG_ON(task
->tk_callback
!= NULL
);
342 task
->tk_callback
= action
;
343 __rpc_add_timer(task
, timer
);
346 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
347 rpc_action action
, rpc_action timer
)
350 * Protect the queue operations.
352 spin_lock_bh(&q
->lock
);
353 __rpc_sleep_on(q
, task
, action
, timer
);
354 spin_unlock_bh(&q
->lock
);
358 * __rpc_do_wake_up_task - wake up a single rpc_task
359 * @task: task to be woken up
361 * Caller must hold queue->lock, and have cleared the task queued flag.
363 static void __rpc_do_wake_up_task(struct rpc_task
*task
)
365 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task
->tk_pid
, jiffies
);
368 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
370 /* Has the task been executed yet? If not, we cannot wake it up! */
371 if (!RPC_IS_ACTIVATED(task
)) {
372 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
376 __rpc_disable_timer(task
);
377 __rpc_remove_wait_queue(task
);
379 rpc_make_runnable(task
);
381 dprintk("RPC: __rpc_wake_up_task done\n");
385 * Wake up the specified task
387 static void __rpc_wake_up_task(struct rpc_task
*task
)
389 if (rpc_start_wakeup(task
)) {
390 if (RPC_IS_QUEUED(task
))
391 __rpc_do_wake_up_task(task
);
392 rpc_finish_wakeup(task
);
397 * Default timeout handler if none specified by user
400 __rpc_default_timer(struct rpc_task
*task
)
402 dprintk("RPC: %d timeout (default timer)\n", task
->tk_pid
);
403 task
->tk_status
= -ETIMEDOUT
;
404 rpc_wake_up_task(task
);
408 * Wake up the specified task
410 void rpc_wake_up_task(struct rpc_task
*task
)
412 if (rpc_start_wakeup(task
)) {
413 if (RPC_IS_QUEUED(task
)) {
414 struct rpc_wait_queue
*queue
= task
->u
.tk_wait
.rpc_waitq
;
416 spin_lock_bh(&queue
->lock
);
417 __rpc_do_wake_up_task(task
);
418 spin_unlock_bh(&queue
->lock
);
420 rpc_finish_wakeup(task
);
425 * Wake up the next task on a priority queue.
427 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
430 struct rpc_task
*task
;
433 * Service a batch of tasks from a single cookie.
435 q
= &queue
->tasks
[queue
->priority
];
436 if (!list_empty(q
)) {
437 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
438 if (queue
->cookie
== task
->tk_cookie
) {
441 list_move_tail(&task
->u
.tk_wait
.list
, q
);
444 * Check if we need to switch queues.
451 * Service the next queue.
454 if (q
== &queue
->tasks
[0])
455 q
= &queue
->tasks
[queue
->maxpriority
];
458 if (!list_empty(q
)) {
459 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
462 } while (q
!= &queue
->tasks
[queue
->priority
]);
464 rpc_reset_waitqueue_priority(queue
);
468 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
470 rpc_set_waitqueue_cookie(queue
, task
->tk_cookie
);
472 __rpc_wake_up_task(task
);
477 * Wake up the next task on the wait queue.
479 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
481 struct rpc_task
*task
= NULL
;
483 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue
, rpc_qname(queue
));
484 spin_lock_bh(&queue
->lock
);
485 if (RPC_IS_PRIORITY(queue
))
486 task
= __rpc_wake_up_next_priority(queue
);
488 task_for_first(task
, &queue
->tasks
[0])
489 __rpc_wake_up_task(task
);
491 spin_unlock_bh(&queue
->lock
);
497 * rpc_wake_up - wake up all rpc_tasks
498 * @queue: rpc_wait_queue on which the tasks are sleeping
502 void rpc_wake_up(struct rpc_wait_queue
*queue
)
504 struct rpc_task
*task
, *next
;
505 struct list_head
*head
;
507 spin_lock_bh(&queue
->lock
);
508 head
= &queue
->tasks
[queue
->maxpriority
];
510 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
)
511 __rpc_wake_up_task(task
);
512 if (head
== &queue
->tasks
[0])
516 spin_unlock_bh(&queue
->lock
);
520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521 * @queue: rpc_wait_queue on which the tasks are sleeping
522 * @status: status value to set
526 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
528 struct rpc_task
*task
, *next
;
529 struct list_head
*head
;
531 spin_lock_bh(&queue
->lock
);
532 head
= &queue
->tasks
[queue
->maxpriority
];
534 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
) {
535 task
->tk_status
= status
;
536 __rpc_wake_up_task(task
);
538 if (head
== &queue
->tasks
[0])
542 spin_unlock_bh(&queue
->lock
);
545 static void __rpc_atrun(struct rpc_task
*task
)
547 rpc_wake_up_task(task
);
551 * Run a task at a later time
553 void rpc_delay(struct rpc_task
*task
, unsigned long delay
)
555 task
->tk_timeout
= delay
;
556 rpc_sleep_on(&delay_queue
, task
, NULL
, __rpc_atrun
);
560 * Helper to call task->tk_ops->rpc_call_prepare
562 static void rpc_prepare_task(struct rpc_task
*task
)
564 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
568 * Helper that calls task->tk_ops->rpc_call_done if it exists
570 void rpc_exit_task(struct rpc_task
*task
)
572 task
->tk_action
= NULL
;
573 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
574 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
575 if (task
->tk_action
!= NULL
) {
576 WARN_ON(RPC_ASSASSINATED(task
));
577 /* Always release the RPC slot and buffer memory */
582 EXPORT_SYMBOL(rpc_exit_task
);
585 * This is the RPC `scheduler' (or rather, the finite state machine).
587 static int __rpc_execute(struct rpc_task
*task
)
591 dprintk("RPC: %4d rpc_execute flgs %x\n",
592 task
->tk_pid
, task
->tk_flags
);
594 BUG_ON(RPC_IS_QUEUED(task
));
598 * Garbage collection of pending timers...
600 rpc_delete_timer(task
);
603 * Execute any pending callback.
605 if (RPC_DO_CALLBACK(task
)) {
606 /* Define a callback save pointer */
607 void (*save_callback
)(struct rpc_task
*);
610 * If a callback exists, save it, reset it,
612 * The save is needed to stop from resetting
613 * another callback set within the callback handler
616 save_callback
=task
->tk_callback
;
617 task
->tk_callback
=NULL
;
624 * Perform the next FSM step.
625 * tk_action may be NULL when the task has been killed
628 if (!RPC_IS_QUEUED(task
)) {
629 if (task
->tk_action
== NULL
)
632 task
->tk_action(task
);
637 * Lockless check for whether task is sleeping or not.
639 if (!RPC_IS_QUEUED(task
))
641 rpc_clear_running(task
);
642 if (RPC_IS_ASYNC(task
)) {
643 /* Careful! we may have raced... */
644 if (RPC_IS_QUEUED(task
))
646 if (rpc_test_and_set_running(task
))
651 /* sync task: sleep here */
652 dprintk("RPC: %4d sync task going to sleep\n", task
->tk_pid
);
653 /* Note: Caller should be using rpc_clnt_sigmask() */
654 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
655 RPC_TASK_QUEUED
, rpc_wait_bit_interruptible
,
657 if (status
== -ERESTARTSYS
) {
659 * When a sync task receives a signal, it exits with
660 * -ERESTARTSYS. In order to catch any callbacks that
661 * clean up after sleeping on some queue, we don't
662 * break the loop here, but go around once more.
664 dprintk("RPC: %4d got signal\n", task
->tk_pid
);
665 task
->tk_flags
|= RPC_TASK_KILLED
;
666 rpc_exit(task
, -ERESTARTSYS
);
667 rpc_wake_up_task(task
);
669 rpc_set_running(task
);
670 dprintk("RPC: %4d sync task resuming\n", task
->tk_pid
);
673 dprintk("RPC: %4d, return %d, status %d\n", task
->tk_pid
, status
, task
->tk_status
);
674 /* Wake up anyone who is waiting for task completion */
675 rpc_mark_complete_task(task
);
676 /* Release all resources associated with the task */
677 rpc_release_task(task
);
682 * User-visible entry point to the scheduler.
684 * This may be called recursively if e.g. an async NFS task updates
685 * the attributes and finds that dirty pages must be flushed.
686 * NOTE: Upon exit of this function the task is guaranteed to be
687 * released. In particular note that tk_release() will have
688 * been called, so your task memory may have been freed.
691 rpc_execute(struct rpc_task
*task
)
693 rpc_set_active(task
);
694 rpc_set_running(task
);
695 return __rpc_execute(task
);
698 static void rpc_async_schedule(void *arg
)
700 __rpc_execute((struct rpc_task
*)arg
);
704 * rpc_malloc - allocate an RPC buffer
705 * @task: RPC task that will use this buffer
706 * @size: requested byte size
708 * We try to ensure that some NFS reads and writes can always proceed
709 * by using a mempool when allocating 'small' buffers.
710 * In order to avoid memory starvation triggering more writebacks of
711 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
713 void * rpc_malloc(struct rpc_task
*task
, size_t size
)
715 struct rpc_rqst
*req
= task
->tk_rqstp
;
718 if (task
->tk_flags
& RPC_TASK_SWAPPER
)
723 if (size
> RPC_BUFFER_MAXSIZE
) {
724 req
->rq_buffer
= kmalloc(size
, gfp
);
726 req
->rq_bufsize
= size
;
728 req
->rq_buffer
= mempool_alloc(rpc_buffer_mempool
, gfp
);
730 req
->rq_bufsize
= RPC_BUFFER_MAXSIZE
;
732 return req
->rq_buffer
;
736 * rpc_free - free buffer allocated via rpc_malloc
737 * @task: RPC task with a buffer to be freed
740 void rpc_free(struct rpc_task
*task
)
742 struct rpc_rqst
*req
= task
->tk_rqstp
;
744 if (req
->rq_buffer
) {
745 if (req
->rq_bufsize
== RPC_BUFFER_MAXSIZE
)
746 mempool_free(req
->rq_buffer
, rpc_buffer_mempool
);
748 kfree(req
->rq_buffer
);
749 req
->rq_buffer
= NULL
;
755 * Creation and deletion of RPC task structures
757 void rpc_init_task(struct rpc_task
*task
, struct rpc_clnt
*clnt
, int flags
, const struct rpc_call_ops
*tk_ops
, void *calldata
)
759 memset(task
, 0, sizeof(*task
));
760 init_timer(&task
->tk_timer
);
761 task
->tk_timer
.data
= (unsigned long) task
;
762 task
->tk_timer
.function
= (void (*)(unsigned long)) rpc_run_timer
;
763 atomic_set(&task
->tk_count
, 1);
764 task
->tk_client
= clnt
;
765 task
->tk_flags
= flags
;
766 task
->tk_ops
= tk_ops
;
767 if (tk_ops
->rpc_call_prepare
!= NULL
)
768 task
->tk_action
= rpc_prepare_task
;
769 task
->tk_calldata
= calldata
;
771 /* Initialize retry counters */
772 task
->tk_garb_retry
= 2;
773 task
->tk_cred_retry
= 2;
775 task
->tk_priority
= RPC_PRIORITY_NORMAL
;
776 task
->tk_cookie
= (unsigned long)current
;
778 /* Initialize workqueue for async tasks */
779 task
->tk_workqueue
= rpciod_workqueue
;
782 atomic_inc(&clnt
->cl_users
);
783 if (clnt
->cl_softrtry
)
784 task
->tk_flags
|= RPC_TASK_SOFT
;
786 task
->tk_flags
|= RPC_TASK_NOINTR
;
790 task
->tk_magic
= RPC_TASK_MAGIC_ID
;
791 task
->tk_pid
= rpc_task_id
++;
793 /* Add to global list of all tasks */
794 spin_lock(&rpc_sched_lock
);
795 list_add_tail(&task
->tk_task
, &all_tasks
);
796 spin_unlock(&rpc_sched_lock
);
798 BUG_ON(task
->tk_ops
== NULL
);
800 /* starting timestamp */
801 task
->tk_start
= jiffies
;
803 dprintk("RPC: %4d new task procpid %d\n", task
->tk_pid
,
807 static struct rpc_task
*
810 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
813 static void rpc_free_task(struct rpc_task
*task
)
815 dprintk("RPC: %4d freeing task\n", task
->tk_pid
);
816 mempool_free(task
, rpc_task_mempool
);
820 * Create a new task for the specified client. We have to
821 * clean up after an allocation failure, as the client may
822 * have specified "oneshot".
824 struct rpc_task
*rpc_new_task(struct rpc_clnt
*clnt
, int flags
, const struct rpc_call_ops
*tk_ops
, void *calldata
)
826 struct rpc_task
*task
;
828 task
= rpc_alloc_task();
832 rpc_init_task(task
, clnt
, flags
, tk_ops
, calldata
);
834 dprintk("RPC: %4d allocated task\n", task
->tk_pid
);
835 task
->tk_flags
|= RPC_TASK_DYNAMIC
;
840 /* Check whether to release the client */
842 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
843 atomic_read(&clnt
->cl_users
), clnt
->cl_oneshot
);
844 atomic_inc(&clnt
->cl_users
); /* pretend we were used ... */
845 rpc_release_client(clnt
);
850 void rpc_release_task(struct rpc_task
*task
)
852 const struct rpc_call_ops
*tk_ops
= task
->tk_ops
;
853 void *calldata
= task
->tk_calldata
;
856 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
858 if (!atomic_dec_and_test(&task
->tk_count
))
860 dprintk("RPC: %4d release task\n", task
->tk_pid
);
862 /* Remove from global task list */
863 spin_lock(&rpc_sched_lock
);
864 list_del(&task
->tk_task
);
865 spin_unlock(&rpc_sched_lock
);
867 BUG_ON (RPC_IS_QUEUED(task
));
869 /* Synchronously delete any running timer */
870 rpc_delete_timer(task
);
872 /* Release resources */
875 if (task
->tk_msg
.rpc_cred
)
876 rpcauth_unbindcred(task
);
877 if (task
->tk_client
) {
878 rpc_release_client(task
->tk_client
);
879 task
->tk_client
= NULL
;
885 if (task
->tk_flags
& RPC_TASK_DYNAMIC
)
887 if (tk_ops
->rpc_release
)
888 tk_ops
->rpc_release(calldata
);
892 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
893 * @clnt: pointer to RPC client
896 * @data: user call data
898 struct rpc_task
*rpc_run_task(struct rpc_clnt
*clnt
, int flags
,
899 const struct rpc_call_ops
*ops
,
902 struct rpc_task
*task
;
903 task
= rpc_new_task(clnt
, flags
, ops
, data
);
905 if (ops
->rpc_release
!= NULL
)
906 ops
->rpc_release(data
);
907 return ERR_PTR(-ENOMEM
);
909 atomic_inc(&task
->tk_count
);
913 EXPORT_SYMBOL(rpc_run_task
);
916 * Kill all tasks for the given client.
917 * XXX: kill their descendants as well?
919 void rpc_killall_tasks(struct rpc_clnt
*clnt
)
921 struct rpc_task
*rovr
;
922 struct list_head
*le
;
924 dprintk("RPC: killing all tasks for client %p\n", clnt
);
927 * Spin lock all_tasks to prevent changes...
929 spin_lock(&rpc_sched_lock
);
930 alltask_for_each(rovr
, le
, &all_tasks
) {
931 if (! RPC_IS_ACTIVATED(rovr
))
933 if (!clnt
|| rovr
->tk_client
== clnt
) {
934 rovr
->tk_flags
|= RPC_TASK_KILLED
;
935 rpc_exit(rovr
, -EIO
);
936 rpc_wake_up_task(rovr
);
939 spin_unlock(&rpc_sched_lock
);
942 static DECLARE_MUTEX_LOCKED(rpciod_running
);
944 static void rpciod_killall(void)
948 while (!list_empty(&all_tasks
)) {
949 clear_thread_flag(TIF_SIGPENDING
);
950 rpc_killall_tasks(NULL
);
951 flush_workqueue(rpciod_workqueue
);
952 if (!list_empty(&all_tasks
)) {
953 dprintk("rpciod_killall: waiting for tasks to exit\n");
958 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
960 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
964 * Start up the rpciod process if it's not already running.
969 struct workqueue_struct
*wq
;
972 mutex_lock(&rpciod_mutex
);
973 dprintk("rpciod_up: users %d\n", rpciod_users
);
975 if (rpciod_workqueue
)
978 * If there's no pid, we should be the first user.
980 if (rpciod_users
> 1)
981 printk(KERN_WARNING
"rpciod_up: no workqueue, %d users??\n", rpciod_users
);
983 * Create the rpciod thread and wait for it to start.
986 wq
= create_workqueue("rpciod");
988 printk(KERN_WARNING
"rpciod_up: create workqueue failed, error=%d\n", error
);
992 rpciod_workqueue
= wq
;
995 mutex_unlock(&rpciod_mutex
);
1002 mutex_lock(&rpciod_mutex
);
1003 dprintk("rpciod_down sema %d\n", rpciod_users
);
1008 printk(KERN_WARNING
"rpciod_down: no users??\n");
1010 if (!rpciod_workqueue
) {
1011 dprintk("rpciod_down: Nothing to do!\n");
1016 destroy_workqueue(rpciod_workqueue
);
1017 rpciod_workqueue
= NULL
;
1019 mutex_unlock(&rpciod_mutex
);
1023 void rpc_show_tasks(void)
1025 struct list_head
*le
;
1028 spin_lock(&rpc_sched_lock
);
1029 if (list_empty(&all_tasks
)) {
1030 spin_unlock(&rpc_sched_lock
);
1033 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1034 "-rpcwait -action- ---ops--\n");
1035 alltask_for_each(t
, le
, &all_tasks
) {
1036 const char *rpc_waitq
= "none";
1038 if (RPC_IS_QUEUED(t
))
1039 rpc_waitq
= rpc_qname(t
->u
.tk_wait
.rpc_waitq
);
1041 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1043 (t
->tk_msg
.rpc_proc
? t
->tk_msg
.rpc_proc
->p_proc
: -1),
1044 t
->tk_flags
, t
->tk_status
,
1046 (t
->tk_client
? t
->tk_client
->cl_prog
: 0),
1047 t
->tk_rqstp
, t
->tk_timeout
,
1049 t
->tk_action
, t
->tk_ops
);
1051 spin_unlock(&rpc_sched_lock
);
1056 rpc_destroy_mempool(void)
1058 if (rpc_buffer_mempool
)
1059 mempool_destroy(rpc_buffer_mempool
);
1060 if (rpc_task_mempool
)
1061 mempool_destroy(rpc_task_mempool
);
1063 kmem_cache_destroy(rpc_task_slabp
);
1064 if (rpc_buffer_slabp
)
1065 kmem_cache_destroy(rpc_buffer_slabp
);
1069 rpc_init_mempool(void)
1071 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1072 sizeof(struct rpc_task
),
1073 0, SLAB_HWCACHE_ALIGN
,
1075 if (!rpc_task_slabp
)
1077 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1079 0, SLAB_HWCACHE_ALIGN
,
1081 if (!rpc_buffer_slabp
)
1083 rpc_task_mempool
= mempool_create_slab_pool(RPC_TASK_POOLSIZE
,
1085 if (!rpc_task_mempool
)
1087 rpc_buffer_mempool
= mempool_create_slab_pool(RPC_BUFFER_POOLSIZE
,
1089 if (!rpc_buffer_mempool
)
1093 rpc_destroy_mempool();