2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/jiffies.h>
15 unsigned long blk_max_low_pfn
;
16 EXPORT_SYMBOL(blk_max_low_pfn
);
18 unsigned long blk_max_pfn
;
21 * blk_queue_prep_rq - set a prepare_request function for queue
23 * @pfn: prepare_request function
25 * It's possible for a queue to register a prepare_request callback which
26 * is invoked before the request is handed to the request_fn. The goal of
27 * the function is to prepare a request for I/O, it can be used to build a
28 * cdb from the request data for instance.
31 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
35 EXPORT_SYMBOL(blk_queue_prep_rq
);
38 * blk_queue_merge_bvec - set a merge_bvec function for queue
40 * @mbfn: merge_bvec_fn
42 * Usually queues have static limitations on the max sectors or segments that
43 * we can put in a request. Stacking drivers may have some settings that
44 * are dynamic, and thus we have to query the queue whether it is ok to
45 * add a new bio_vec to a bio at a given offset or not. If the block device
46 * has such limitations, it needs to register a merge_bvec_fn to control
47 * the size of bio's sent to it. Note that a block device *must* allow a
48 * single page to be added to an empty bio. The block device driver may want
49 * to use the bio_split() function to deal with these bio's. By default
50 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
53 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
55 q
->merge_bvec_fn
= mbfn
;
57 EXPORT_SYMBOL(blk_queue_merge_bvec
);
59 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
61 q
->softirq_done_fn
= fn
;
63 EXPORT_SYMBOL(blk_queue_softirq_done
);
65 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
67 q
->rq_timeout
= timeout
;
69 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
71 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
73 q
->rq_timed_out_fn
= fn
;
75 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
77 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
81 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
84 * blk_set_default_limits - reset limits to default values
85 * @lim: the queue_limits structure to reset
88 * Returns a queue_limit struct to its default state. Can be used by
89 * stacking drivers like DM that stage table swaps and reuse an
90 * existing device queue.
92 void blk_set_default_limits(struct queue_limits
*lim
)
94 lim
->max_segments
= BLK_MAX_SEGMENTS
;
95 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
96 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
97 lim
->max_sectors
= BLK_DEF_MAX_SECTORS
;
98 lim
->max_hw_sectors
= INT_MAX
;
99 lim
->max_discard_sectors
= 0;
100 lim
->discard_granularity
= 0;
101 lim
->discard_alignment
= 0;
102 lim
->discard_misaligned
= 0;
103 lim
->discard_zeroes_data
= -1;
104 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
105 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
106 lim
->alignment_offset
= 0;
111 EXPORT_SYMBOL(blk_set_default_limits
);
114 * blk_queue_make_request - define an alternate make_request function for a device
115 * @q: the request queue for the device to be affected
116 * @mfn: the alternate make_request function
119 * The normal way for &struct bios to be passed to a device
120 * driver is for them to be collected into requests on a request
121 * queue, and then to allow the device driver to select requests
122 * off that queue when it is ready. This works well for many block
123 * devices. However some block devices (typically virtual devices
124 * such as md or lvm) do not benefit from the processing on the
125 * request queue, and are served best by having the requests passed
126 * directly to them. This can be achieved by providing a function
127 * to blk_queue_make_request().
130 * The driver that does this *must* be able to deal appropriately
131 * with buffers in "highmemory". This can be accomplished by either calling
132 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
133 * blk_queue_bounce() to create a buffer in normal memory.
135 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
140 q
->nr_requests
= BLKDEV_MAX_RQ
;
142 q
->make_request_fn
= mfn
;
143 blk_queue_dma_alignment(q
, 511);
144 blk_queue_congestion_threshold(q
);
145 q
->nr_batching
= BLK_BATCH_REQ
;
147 q
->unplug_thresh
= 4; /* hmm */
148 q
->unplug_delay
= msecs_to_jiffies(3); /* 3 milliseconds */
149 if (q
->unplug_delay
== 0)
152 q
->unplug_timer
.function
= blk_unplug_timeout
;
153 q
->unplug_timer
.data
= (unsigned long)q
;
155 blk_set_default_limits(&q
->limits
);
156 blk_queue_max_hw_sectors(q
, BLK_SAFE_MAX_SECTORS
);
159 * If the caller didn't supply a lock, fall back to our embedded
163 q
->queue_lock
= &q
->__queue_lock
;
166 * by default assume old behaviour and bounce for any highmem page
168 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
170 EXPORT_SYMBOL(blk_queue_make_request
);
173 * blk_queue_bounce_limit - set bounce buffer limit for queue
174 * @q: the request queue for the device
175 * @dma_mask: the maximum address the device can handle
178 * Different hardware can have different requirements as to what pages
179 * it can do I/O directly to. A low level driver can call
180 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
181 * buffers for doing I/O to pages residing above @dma_mask.
183 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_mask
)
185 unsigned long b_pfn
= dma_mask
>> PAGE_SHIFT
;
188 q
->bounce_gfp
= GFP_NOIO
;
189 #if BITS_PER_LONG == 64
191 * Assume anything <= 4GB can be handled by IOMMU. Actually
192 * some IOMMUs can handle everything, but I don't know of a
193 * way to test this here.
195 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
197 q
->limits
.bounce_pfn
= max_low_pfn
;
199 if (b_pfn
< blk_max_low_pfn
)
201 q
->limits
.bounce_pfn
= b_pfn
;
204 init_emergency_isa_pool();
205 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
206 q
->limits
.bounce_pfn
= b_pfn
;
209 EXPORT_SYMBOL(blk_queue_bounce_limit
);
212 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
213 * @q: the request queue for the device
214 * @max_hw_sectors: max hardware sectors in the usual 512b unit
217 * Enables a low level driver to set a hard upper limit,
218 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
219 * the device driver based upon the combined capabilities of I/O
220 * controller and storage device.
222 * max_sectors is a soft limit imposed by the block layer for
223 * filesystem type requests. This value can be overridden on a
224 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
225 * The soft limit can not exceed max_hw_sectors.
227 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
229 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
230 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
231 printk(KERN_INFO
"%s: set to minimum %d\n",
232 __func__
, max_hw_sectors
);
235 q
->limits
.max_hw_sectors
= max_hw_sectors
;
236 q
->limits
.max_sectors
= min_t(unsigned int, max_hw_sectors
,
237 BLK_DEF_MAX_SECTORS
);
239 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
242 * blk_queue_max_discard_sectors - set max sectors for a single discard
243 * @q: the request queue for the device
244 * @max_discard_sectors: maximum number of sectors to discard
246 void blk_queue_max_discard_sectors(struct request_queue
*q
,
247 unsigned int max_discard_sectors
)
249 q
->limits
.max_discard_sectors
= max_discard_sectors
;
251 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
254 * blk_queue_max_segments - set max hw segments for a request for this queue
255 * @q: the request queue for the device
256 * @max_segments: max number of segments
259 * Enables a low level driver to set an upper limit on the number of
260 * hw data segments in a request.
262 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
266 printk(KERN_INFO
"%s: set to minimum %d\n",
267 __func__
, max_segments
);
270 q
->limits
.max_segments
= max_segments
;
272 EXPORT_SYMBOL(blk_queue_max_segments
);
275 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
276 * @q: the request queue for the device
277 * @max_size: max size of segment in bytes
280 * Enables a low level driver to set an upper limit on the size of a
283 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
285 if (max_size
< PAGE_CACHE_SIZE
) {
286 max_size
= PAGE_CACHE_SIZE
;
287 printk(KERN_INFO
"%s: set to minimum %d\n",
291 q
->limits
.max_segment_size
= max_size
;
293 EXPORT_SYMBOL(blk_queue_max_segment_size
);
296 * blk_queue_logical_block_size - set logical block size for the queue
297 * @q: the request queue for the device
298 * @size: the logical block size, in bytes
301 * This should be set to the lowest possible block size that the
302 * storage device can address. The default of 512 covers most
305 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
307 q
->limits
.logical_block_size
= size
;
309 if (q
->limits
.physical_block_size
< size
)
310 q
->limits
.physical_block_size
= size
;
312 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
313 q
->limits
.io_min
= q
->limits
.physical_block_size
;
315 EXPORT_SYMBOL(blk_queue_logical_block_size
);
318 * blk_queue_physical_block_size - set physical block size for the queue
319 * @q: the request queue for the device
320 * @size: the physical block size, in bytes
323 * This should be set to the lowest possible sector size that the
324 * hardware can operate on without reverting to read-modify-write
327 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned short size
)
329 q
->limits
.physical_block_size
= size
;
331 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
332 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
334 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
335 q
->limits
.io_min
= q
->limits
.physical_block_size
;
337 EXPORT_SYMBOL(blk_queue_physical_block_size
);
340 * blk_queue_alignment_offset - set physical block alignment offset
341 * @q: the request queue for the device
342 * @offset: alignment offset in bytes
345 * Some devices are naturally misaligned to compensate for things like
346 * the legacy DOS partition table 63-sector offset. Low-level drivers
347 * should call this function for devices whose first sector is not
350 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
352 q
->limits
.alignment_offset
=
353 offset
& (q
->limits
.physical_block_size
- 1);
354 q
->limits
.misaligned
= 0;
356 EXPORT_SYMBOL(blk_queue_alignment_offset
);
359 * blk_limits_io_min - set minimum request size for a device
360 * @limits: the queue limits
361 * @min: smallest I/O size in bytes
364 * Some devices have an internal block size bigger than the reported
365 * hardware sector size. This function can be used to signal the
366 * smallest I/O the device can perform without incurring a performance
369 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
371 limits
->io_min
= min
;
373 if (limits
->io_min
< limits
->logical_block_size
)
374 limits
->io_min
= limits
->logical_block_size
;
376 if (limits
->io_min
< limits
->physical_block_size
)
377 limits
->io_min
= limits
->physical_block_size
;
379 EXPORT_SYMBOL(blk_limits_io_min
);
382 * blk_queue_io_min - set minimum request size for the queue
383 * @q: the request queue for the device
384 * @min: smallest I/O size in bytes
387 * Storage devices may report a granularity or preferred minimum I/O
388 * size which is the smallest request the device can perform without
389 * incurring a performance penalty. For disk drives this is often the
390 * physical block size. For RAID arrays it is often the stripe chunk
391 * size. A properly aligned multiple of minimum_io_size is the
392 * preferred request size for workloads where a high number of I/O
393 * operations is desired.
395 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
397 blk_limits_io_min(&q
->limits
, min
);
399 EXPORT_SYMBOL(blk_queue_io_min
);
402 * blk_limits_io_opt - set optimal request size for a device
403 * @limits: the queue limits
404 * @opt: smallest I/O size in bytes
407 * Storage devices may report an optimal I/O size, which is the
408 * device's preferred unit for sustained I/O. This is rarely reported
409 * for disk drives. For RAID arrays it is usually the stripe width or
410 * the internal track size. A properly aligned multiple of
411 * optimal_io_size is the preferred request size for workloads where
412 * sustained throughput is desired.
414 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
416 limits
->io_opt
= opt
;
418 EXPORT_SYMBOL(blk_limits_io_opt
);
421 * blk_queue_io_opt - set optimal request size for the queue
422 * @q: the request queue for the device
423 * @opt: optimal request size in bytes
426 * Storage devices may report an optimal I/O size, which is the
427 * device's preferred unit for sustained I/O. This is rarely reported
428 * for disk drives. For RAID arrays it is usually the stripe width or
429 * the internal track size. A properly aligned multiple of
430 * optimal_io_size is the preferred request size for workloads where
431 * sustained throughput is desired.
433 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
435 blk_limits_io_opt(&q
->limits
, opt
);
437 EXPORT_SYMBOL(blk_queue_io_opt
);
440 * Returns the minimum that is _not_ zero, unless both are zero.
442 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
445 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
446 * @t: the stacking driver (top)
447 * @b: the underlying device (bottom)
449 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
451 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
455 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
457 spin_lock_irqsave(t
->queue_lock
, flags
);
458 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
459 spin_unlock_irqrestore(t
->queue_lock
, flags
);
462 EXPORT_SYMBOL(blk_queue_stack_limits
);
464 static unsigned int lcm(unsigned int a
, unsigned int b
)
467 return (a
* b
) / gcd(a
, b
);
475 * blk_stack_limits - adjust queue_limits for stacked devices
476 * @t: the stacking driver limits (top device)
477 * @b: the underlying queue limits (bottom, component device)
478 * @start: first data sector within component device
481 * This function is used by stacking drivers like MD and DM to ensure
482 * that all component devices have compatible block sizes and
483 * alignments. The stacking driver must provide a queue_limits
484 * struct (top) and then iteratively call the stacking function for
485 * all component (bottom) devices. The stacking function will
486 * attempt to combine the values and ensure proper alignment.
488 * Returns 0 if the top and bottom queue_limits are compatible. The
489 * top device's block sizes and alignment offsets may be adjusted to
490 * ensure alignment with the bottom device. If no compatible sizes
491 * and alignments exist, -1 is returned and the resulting top
492 * queue_limits will have the misaligned flag set to indicate that
493 * the alignment_offset is undefined.
495 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
498 unsigned int top
, bottom
, alignment
, ret
= 0;
500 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
501 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
502 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
504 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
505 b
->seg_boundary_mask
);
507 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
509 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
510 b
->max_segment_size
);
512 t
->misaligned
|= b
->misaligned
;
514 alignment
= queue_limit_alignment_offset(b
, start
);
516 /* Bottom device has different alignment. Check that it is
517 * compatible with the current top alignment.
519 if (t
->alignment_offset
!= alignment
) {
521 top
= max(t
->physical_block_size
, t
->io_min
)
522 + t
->alignment_offset
;
523 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
525 /* Verify that top and bottom intervals line up */
526 if (max(top
, bottom
) & (min(top
, bottom
) - 1)) {
532 t
->logical_block_size
= max(t
->logical_block_size
,
533 b
->logical_block_size
);
535 t
->physical_block_size
= max(t
->physical_block_size
,
536 b
->physical_block_size
);
538 t
->io_min
= max(t
->io_min
, b
->io_min
);
539 t
->io_opt
= lcm(t
->io_opt
, b
->io_opt
);
541 t
->no_cluster
|= b
->no_cluster
;
542 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
544 /* Physical block size a multiple of the logical block size? */
545 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
546 t
->physical_block_size
= t
->logical_block_size
;
551 /* Minimum I/O a multiple of the physical block size? */
552 if (t
->io_min
& (t
->physical_block_size
- 1)) {
553 t
->io_min
= t
->physical_block_size
;
558 /* Optimal I/O a multiple of the physical block size? */
559 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
565 /* Find lowest common alignment_offset */
566 t
->alignment_offset
= lcm(t
->alignment_offset
, alignment
)
567 & (max(t
->physical_block_size
, t
->io_min
) - 1);
569 /* Verify that new alignment_offset is on a logical block boundary */
570 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
575 /* Discard alignment and granularity */
576 if (b
->discard_granularity
) {
577 alignment
= queue_limit_discard_alignment(b
, start
);
579 if (t
->discard_granularity
!= 0 &&
580 t
->discard_alignment
!= alignment
) {
581 top
= t
->discard_granularity
+ t
->discard_alignment
;
582 bottom
= b
->discard_granularity
+ alignment
;
584 /* Verify that top and bottom intervals line up */
585 if (max(top
, bottom
) & (min(top
, bottom
) - 1))
586 t
->discard_misaligned
= 1;
589 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
590 b
->max_discard_sectors
);
591 t
->discard_granularity
= max(t
->discard_granularity
,
592 b
->discard_granularity
);
593 t
->discard_alignment
= lcm(t
->discard_alignment
, alignment
) &
594 (t
->discard_granularity
- 1);
599 EXPORT_SYMBOL(blk_stack_limits
);
602 * bdev_stack_limits - adjust queue limits for stacked drivers
603 * @t: the stacking driver limits (top device)
604 * @bdev: the component block_device (bottom)
605 * @start: first data sector within component device
608 * Merges queue limits for a top device and a block_device. Returns
609 * 0 if alignment didn't change. Returns -1 if adding the bottom
610 * device caused misalignment.
612 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
615 struct request_queue
*bq
= bdev_get_queue(bdev
);
617 start
+= get_start_sect(bdev
);
619 return blk_stack_limits(t
, &bq
->limits
, start
);
621 EXPORT_SYMBOL(bdev_stack_limits
);
624 * disk_stack_limits - adjust queue limits for stacked drivers
625 * @disk: MD/DM gendisk (top)
626 * @bdev: the underlying block device (bottom)
627 * @offset: offset to beginning of data within component device
630 * Merges the limits for a top level gendisk and a bottom level
633 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
636 struct request_queue
*t
= disk
->queue
;
637 struct request_queue
*b
= bdev_get_queue(bdev
);
639 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
640 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
642 disk_name(disk
, 0, top
);
643 bdevname(bdev
, bottom
);
645 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
651 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
654 spin_lock_irqsave(t
->queue_lock
, flags
);
655 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
656 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
657 spin_unlock_irqrestore(t
->queue_lock
, flags
);
660 EXPORT_SYMBOL(disk_stack_limits
);
663 * blk_queue_dma_pad - set pad mask
664 * @q: the request queue for the device
669 * Appending pad buffer to a request modifies the last entry of a
670 * scatter list such that it includes the pad buffer.
672 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
674 q
->dma_pad_mask
= mask
;
676 EXPORT_SYMBOL(blk_queue_dma_pad
);
679 * blk_queue_update_dma_pad - update pad mask
680 * @q: the request queue for the device
683 * Update dma pad mask.
685 * Appending pad buffer to a request modifies the last entry of a
686 * scatter list such that it includes the pad buffer.
688 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
690 if (mask
> q
->dma_pad_mask
)
691 q
->dma_pad_mask
= mask
;
693 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
696 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
697 * @q: the request queue for the device
698 * @dma_drain_needed: fn which returns non-zero if drain is necessary
699 * @buf: physically contiguous buffer
700 * @size: size of the buffer in bytes
702 * Some devices have excess DMA problems and can't simply discard (or
703 * zero fill) the unwanted piece of the transfer. They have to have a
704 * real area of memory to transfer it into. The use case for this is
705 * ATAPI devices in DMA mode. If the packet command causes a transfer
706 * bigger than the transfer size some HBAs will lock up if there
707 * aren't DMA elements to contain the excess transfer. What this API
708 * does is adjust the queue so that the buf is always appended
709 * silently to the scatterlist.
711 * Note: This routine adjusts max_hw_segments to make room for appending
712 * the drain buffer. If you call blk_queue_max_segments() after calling
713 * this routine, you must set the limit to one fewer than your device
714 * can support otherwise there won't be room for the drain buffer.
716 int blk_queue_dma_drain(struct request_queue
*q
,
717 dma_drain_needed_fn
*dma_drain_needed
,
718 void *buf
, unsigned int size
)
720 if (queue_max_segments(q
) < 2)
722 /* make room for appending the drain */
723 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
724 q
->dma_drain_needed
= dma_drain_needed
;
725 q
->dma_drain_buffer
= buf
;
726 q
->dma_drain_size
= size
;
730 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
733 * blk_queue_segment_boundary - set boundary rules for segment merging
734 * @q: the request queue for the device
735 * @mask: the memory boundary mask
737 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
739 if (mask
< PAGE_CACHE_SIZE
- 1) {
740 mask
= PAGE_CACHE_SIZE
- 1;
741 printk(KERN_INFO
"%s: set to minimum %lx\n",
745 q
->limits
.seg_boundary_mask
= mask
;
747 EXPORT_SYMBOL(blk_queue_segment_boundary
);
750 * blk_queue_dma_alignment - set dma length and memory alignment
751 * @q: the request queue for the device
752 * @mask: alignment mask
755 * set required memory and length alignment for direct dma transactions.
756 * this is used when building direct io requests for the queue.
759 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
761 q
->dma_alignment
= mask
;
763 EXPORT_SYMBOL(blk_queue_dma_alignment
);
766 * blk_queue_update_dma_alignment - update dma length and memory alignment
767 * @q: the request queue for the device
768 * @mask: alignment mask
771 * update required memory and length alignment for direct dma transactions.
772 * If the requested alignment is larger than the current alignment, then
773 * the current queue alignment is updated to the new value, otherwise it
774 * is left alone. The design of this is to allow multiple objects
775 * (driver, device, transport etc) to set their respective
776 * alignments without having them interfere.
779 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
781 BUG_ON(mask
> PAGE_SIZE
);
783 if (mask
> q
->dma_alignment
)
784 q
->dma_alignment
= mask
;
786 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
788 static int __init
blk_settings_init(void)
790 blk_max_low_pfn
= max_low_pfn
- 1;
791 blk_max_pfn
= max_pfn
- 1;
794 subsys_initcall(blk_settings_init
);