2 * Architecture-specific unaligned trap handling.
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/smp_lock.h>
19 #include <linux/tty.h>
21 #include <asm/intrinsics.h>
22 #include <asm/processor.h>
24 #include <asm/uaccess.h>
25 #include <asm/unaligned.h>
27 extern void die_if_kernel(char *str
, struct pt_regs
*regs
, long err
);
29 #undef DEBUG_UNALIGNED_TRAP
31 #ifdef DEBUG_UNALIGNED_TRAP
32 # define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0)
33 # define DDUMP(str,vp,len) dump(str, vp, len)
36 dump (const char *str
, void *vp
, size_t len
)
38 unsigned char *cp
= vp
;
42 for (i
= 0; i
< len
; ++i
)
43 printk (" %02x", *cp
++);
48 # define DDUMP(str,vp,len)
51 #define IA64_FIRST_STACKED_GR 32
52 #define IA64_FIRST_ROTATING_FR 32
53 #define SIGN_EXT9 0xffffffffffffff00ul
56 * sysctl settable hook which tells the kernel whether to honor the
57 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
58 * to allow the super user to enable/disable this for security reasons
59 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
61 int no_unaligned_warning
;
62 static int noprint_warning
;
68 * --------|------|---------|
69 * [40-37] | [36] | [35:30] |
70 * --------|------|---------|
71 * 4 | 1 | 6 | = 11 bits
72 * --------------------------
73 * However bits [31:30] are not directly useful to distinguish between
74 * load/store so we can use [35:32] instead, which gives the following
75 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
76 * checking the m-bit until later in the load/store emulation.
78 #define IA64_OPCODE_MASK 0x1ef
79 #define IA64_OPCODE_SHIFT 32
82 * Table C-28 Integer Load/Store
84 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
86 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
87 * the address (bits [8:3]), so we must failed.
93 #define LDBIAS_OP 0x084
94 #define LDACQ_OP 0x085
95 /* 0x086, 0x087 are not relevant */
96 #define LDCCLR_OP 0x088
97 #define LDCNC_OP 0x089
98 #define LDCCLRACQ_OP 0x08a
100 #define STREL_OP 0x08d
101 /* 0x08e,0x8f are not relevant */
104 * Table C-29 Integer Load +Reg
106 * we use the ld->m (bit [36:36]) field to determine whether or not we have
107 * a load/store of this form.
111 * Table C-30 Integer Load/Store +Imm
113 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
115 * ld8.fill, st8.fill must be aligned because the Nat register are based on
116 * the address, so we must fail and the program must be fixed.
118 #define LD_IMM_OP 0x0a0
119 #define LDS_IMM_OP 0x0a1
120 #define LDA_IMM_OP 0x0a2
121 #define LDSA_IMM_OP 0x0a3
122 #define LDBIAS_IMM_OP 0x0a4
123 #define LDACQ_IMM_OP 0x0a5
124 /* 0x0a6, 0xa7 are not relevant */
125 #define LDCCLR_IMM_OP 0x0a8
126 #define LDCNC_IMM_OP 0x0a9
127 #define LDCCLRACQ_IMM_OP 0x0aa
128 #define ST_IMM_OP 0x0ac
129 #define STREL_IMM_OP 0x0ad
130 /* 0x0ae,0xaf are not relevant */
133 * Table C-32 Floating-point Load/Store
136 #define LDFS_OP 0x0c1
137 #define LDFA_OP 0x0c2
138 #define LDFSA_OP 0x0c3
139 /* 0x0c6 is irrelevant */
140 #define LDFCCLR_OP 0x0c8
141 #define LDFCNC_OP 0x0c9
142 /* 0x0cb is irrelevant */
146 * Table C-33 Floating-point Load +Reg
148 * we use the ld->m (bit [36:36]) field to determine whether or not we have
149 * a load/store of this form.
153 * Table C-34 Floating-point Load/Store +Imm
155 #define LDF_IMM_OP 0x0e0
156 #define LDFS_IMM_OP 0x0e1
157 #define LDFA_IMM_OP 0x0e2
158 #define LDFSA_IMM_OP 0x0e3
159 /* 0x0e6 is irrelevant */
160 #define LDFCCLR_IMM_OP 0x0e8
161 #define LDFCNC_IMM_OP 0x0e9
162 #define STF_IMM_OP 0x0ec
165 unsigned long qp
:6; /* [0:5] */
166 unsigned long r1
:7; /* [6:12] */
167 unsigned long imm
:7; /* [13:19] */
168 unsigned long r3
:7; /* [20:26] */
169 unsigned long x
:1; /* [27:27] */
170 unsigned long hint
:2; /* [28:29] */
171 unsigned long x6_sz
:2; /* [30:31] */
172 unsigned long x6_op
:4; /* [32:35], x6 = x6_sz|x6_op */
173 unsigned long m
:1; /* [36:36] */
174 unsigned long op
:4; /* [37:40] */
175 unsigned long pad
:23; /* [41:63] */
180 UPD_IMMEDIATE
, /* ldXZ r1=[r3],imm(9) */
181 UPD_REG
/* ldXZ r1=[r3],r2 */
185 * We use tables to keep track of the offsets of registers in the saved state.
186 * This way we save having big switch/case statements.
188 * We use bit 0 to indicate switch_stack or pt_regs.
189 * The offset is simply shifted by 1 bit.
190 * A 2-byte value should be enough to hold any kind of offset
192 * In case the calling convention changes (and thus pt_regs/switch_stack)
193 * simply use RSW instead of RPT or vice-versa.
196 #define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
197 #define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
199 #define RPT(x) (RPO(x) << 1)
200 #define RSW(x) (1| RSO(x)<<1)
202 #define GR_OFFS(x) (gr_info[x]>>1)
203 #define GR_IN_SW(x) (gr_info[x] & 0x1)
205 #define FR_OFFS(x) (fr_info[x]>>1)
206 #define FR_IN_SW(x) (fr_info[x] & 0x1)
208 static u16 gr_info
[32]={
209 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
211 RPT(r1
), RPT(r2
), RPT(r3
),
213 RSW(r4
), RSW(r5
), RSW(r6
), RSW(r7
),
215 RPT(r8
), RPT(r9
), RPT(r10
), RPT(r11
),
216 RPT(r12
), RPT(r13
), RPT(r14
), RPT(r15
),
218 RPT(r16
), RPT(r17
), RPT(r18
), RPT(r19
),
219 RPT(r20
), RPT(r21
), RPT(r22
), RPT(r23
),
220 RPT(r24
), RPT(r25
), RPT(r26
), RPT(r27
),
221 RPT(r28
), RPT(r29
), RPT(r30
), RPT(r31
)
224 static u16 fr_info
[32]={
225 0, /* constant : WE SHOULD NEVER GET THIS */
226 0, /* constant : WE SHOULD NEVER GET THIS */
228 RSW(f2
), RSW(f3
), RSW(f4
), RSW(f5
),
230 RPT(f6
), RPT(f7
), RPT(f8
), RPT(f9
),
233 RSW(f12
), RSW(f13
), RSW(f14
),
234 RSW(f15
), RSW(f16
), RSW(f17
), RSW(f18
), RSW(f19
),
235 RSW(f20
), RSW(f21
), RSW(f22
), RSW(f23
), RSW(f24
),
236 RSW(f25
), RSW(f26
), RSW(f27
), RSW(f28
), RSW(f29
),
240 /* Invalidate ALAT entry for integer register REGNO. */
242 invala_gr (int regno
)
244 # define F(reg) case reg: ia64_invala_gr(reg); break
247 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
248 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
249 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
250 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
251 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
252 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
253 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
254 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
255 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
256 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
257 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
258 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
259 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
260 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
261 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
262 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
267 /* Invalidate ALAT entry for floating-point register REGNO. */
269 invala_fr (int regno
)
271 # define F(reg) case reg: ia64_invala_fr(reg); break
274 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
275 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
276 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
277 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
278 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
279 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
280 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
281 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
282 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
283 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
284 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
285 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
286 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
287 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
288 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
289 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
294 static inline unsigned long
295 rotate_reg (unsigned long sor
, unsigned long rrb
, unsigned long reg
)
304 set_rse_reg (struct pt_regs
*regs
, unsigned long r1
, unsigned long val
, int nat
)
306 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
307 unsigned long *bsp
, *bspstore
, *addr
, *rnat_addr
, *ubs_end
;
308 unsigned long *kbs
= (void *) current
+ IA64_RBS_OFFSET
;
309 unsigned long rnats
, nat_mask
;
310 unsigned long on_kbs
;
311 long sof
= (regs
->cr_ifs
) & 0x7f;
312 long sor
= 8 * ((regs
->cr_ifs
>> 14) & 0xf);
313 long rrb_gr
= (regs
->cr_ifs
>> 18) & 0x7f;
317 /* this should never happen, as the "rsvd register fault" has higher priority */
318 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1
, sof
);
323 ridx
= rotate_reg(sor
, rrb_gr
, ridx
);
325 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
326 r1
, sw
->ar_bspstore
, regs
->ar_bspstore
, sof
, (regs
->cr_ifs
>> 7) & 0x7f, ridx
);
328 on_kbs
= ia64_rse_num_regs(kbs
, (unsigned long *) sw
->ar_bspstore
);
329 addr
= ia64_rse_skip_regs((unsigned long *) sw
->ar_bspstore
, -sof
+ ridx
);
331 /* the register is on the kernel backing store: easy... */
332 rnat_addr
= ia64_rse_rnat_addr(addr
);
333 if ((unsigned long) rnat_addr
>= sw
->ar_bspstore
)
334 rnat_addr
= &sw
->ar_rnat
;
335 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
339 *rnat_addr
|= nat_mask
;
341 *rnat_addr
&= ~nat_mask
;
345 if (!user_stack(current
, regs
)) {
346 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1
);
350 bspstore
= (unsigned long *)regs
->ar_bspstore
;
351 ubs_end
= ia64_rse_skip_regs(bspstore
, on_kbs
);
352 bsp
= ia64_rse_skip_regs(ubs_end
, -sof
);
353 addr
= ia64_rse_skip_regs(bsp
, ridx
);
355 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end
, (void *) bsp
, (void *) addr
);
357 ia64_poke(current
, sw
, (unsigned long) ubs_end
, (unsigned long) addr
, val
);
359 rnat_addr
= ia64_rse_rnat_addr(addr
);
361 ia64_peek(current
, sw
, (unsigned long) ubs_end
, (unsigned long) rnat_addr
, &rnats
);
362 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
363 (void *) rnat_addr
, rnats
, nat
, (rnats
>> ia64_rse_slot_num(addr
)) & 1);
365 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
370 ia64_poke(current
, sw
, (unsigned long) ubs_end
, (unsigned long) rnat_addr
, rnats
);
372 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr
, rnats
);
377 get_rse_reg (struct pt_regs
*regs
, unsigned long r1
, unsigned long *val
, int *nat
)
379 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
380 unsigned long *bsp
, *addr
, *rnat_addr
, *ubs_end
, *bspstore
;
381 unsigned long *kbs
= (void *) current
+ IA64_RBS_OFFSET
;
382 unsigned long rnats
, nat_mask
;
383 unsigned long on_kbs
;
384 long sof
= (regs
->cr_ifs
) & 0x7f;
385 long sor
= 8 * ((regs
->cr_ifs
>> 14) & 0xf);
386 long rrb_gr
= (regs
->cr_ifs
>> 18) & 0x7f;
390 /* read of out-of-frame register returns an undefined value; 0 in our case. */
391 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1
, sof
);
396 ridx
= rotate_reg(sor
, rrb_gr
, ridx
);
398 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
399 r1
, sw
->ar_bspstore
, regs
->ar_bspstore
, sof
, (regs
->cr_ifs
>> 7) & 0x7f, ridx
);
401 on_kbs
= ia64_rse_num_regs(kbs
, (unsigned long *) sw
->ar_bspstore
);
402 addr
= ia64_rse_skip_regs((unsigned long *) sw
->ar_bspstore
, -sof
+ ridx
);
404 /* the register is on the kernel backing store: easy... */
407 rnat_addr
= ia64_rse_rnat_addr(addr
);
408 if ((unsigned long) rnat_addr
>= sw
->ar_bspstore
)
409 rnat_addr
= &sw
->ar_rnat
;
410 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
411 *nat
= (*rnat_addr
& nat_mask
) != 0;
416 if (!user_stack(current
, regs
)) {
417 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1
);
421 bspstore
= (unsigned long *)regs
->ar_bspstore
;
422 ubs_end
= ia64_rse_skip_regs(bspstore
, on_kbs
);
423 bsp
= ia64_rse_skip_regs(ubs_end
, -sof
);
424 addr
= ia64_rse_skip_regs(bsp
, ridx
);
426 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end
, (void *) bsp
, (void *) addr
);
428 ia64_peek(current
, sw
, (unsigned long) ubs_end
, (unsigned long) addr
, val
);
431 rnat_addr
= ia64_rse_rnat_addr(addr
);
432 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
434 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr
, rnats
);
436 ia64_peek(current
, sw
, (unsigned long) ubs_end
, (unsigned long) rnat_addr
, &rnats
);
437 *nat
= (rnats
& nat_mask
) != 0;
450 setreg (unsigned long regnum
, unsigned long val
, int nat
, struct pt_regs
*regs
)
452 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
454 unsigned long bitmask
;
458 * First takes care of stacked registers
460 if (regnum
>= IA64_FIRST_STACKED_GR
) {
461 set_rse_reg(regs
, regnum
, val
, nat
);
466 * Using r0 as a target raises a General Exception fault which has higher priority
467 * than the Unaligned Reference fault.
471 * Now look at registers in [0-31] range and init correct UNAT
473 if (GR_IN_SW(regnum
)) {
474 addr
= (unsigned long)sw
;
477 addr
= (unsigned long)regs
;
478 unat
= &sw
->caller_unat
;
480 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
481 addr
, unat
==&sw
->ar_unat
? "yes":"no", GR_OFFS(regnum
));
483 * add offset from base of struct
486 addr
+= GR_OFFS(regnum
);
488 *(unsigned long *)addr
= val
;
491 * We need to clear the corresponding UNAT bit to fully emulate the load
492 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
494 bitmask
= 1UL << (addr
>> 3 & 0x3f);
495 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr
, val
, nat
, (void *) unat
, *unat
);
501 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr
, val
, nat
, (void *) unat
,*unat
);
505 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
506 * range from 32-127, result is in the range from 0-95.
508 static inline unsigned long
509 fph_index (struct pt_regs
*regs
, long regnum
)
511 unsigned long rrb_fr
= (regs
->cr_ifs
>> 25) & 0x7f;
512 return rotate_reg(96, rrb_fr
, (regnum
- IA64_FIRST_ROTATING_FR
));
516 setfpreg (unsigned long regnum
, struct ia64_fpreg
*fpval
, struct pt_regs
*regs
)
518 struct switch_stack
*sw
= (struct switch_stack
*)regs
- 1;
522 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
523 * Fault. Thus, when we get here, we know the partition is enabled.
524 * To update f32-f127, there are three choices:
526 * (1) save f32-f127 to thread.fph and update the values there
527 * (2) use a gigantic switch statement to directly access the registers
528 * (3) generate code on the fly to update the desired register
530 * For now, we are using approach (1).
532 if (regnum
>= IA64_FIRST_ROTATING_FR
) {
533 ia64_sync_fph(current
);
534 current
->thread
.fph
[fph_index(regs
, regnum
)] = *fpval
;
537 * pt_regs or switch_stack ?
539 if (FR_IN_SW(regnum
)) {
540 addr
= (unsigned long)sw
;
542 addr
= (unsigned long)regs
;
545 DPRINT("tmp_base=%lx offset=%d\n", addr
, FR_OFFS(regnum
));
547 addr
+= FR_OFFS(regnum
);
548 *(struct ia64_fpreg
*)addr
= *fpval
;
551 * mark the low partition as being used now
553 * It is highly unlikely that this bit is not already set, but
554 * let's do it for safety.
556 regs
->cr_ipsr
|= IA64_PSR_MFL
;
561 * Those 2 inline functions generate the spilled versions of the constant floating point
562 * registers which can be used with stfX
565 float_spill_f0 (struct ia64_fpreg
*final
)
567 ia64_stf_spill(final
, 0);
571 float_spill_f1 (struct ia64_fpreg
*final
)
573 ia64_stf_spill(final
, 1);
577 getfpreg (unsigned long regnum
, struct ia64_fpreg
*fpval
, struct pt_regs
*regs
)
579 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
583 * From EAS-2.5: FPDisableFault has higher priority than
584 * Unaligned Fault. Thus, when we get here, we know the partition is
587 * When regnum > 31, the register is still live and we need to force a save
588 * to current->thread.fph to get access to it. See discussion in setfpreg()
589 * for reasons and other ways of doing this.
591 if (regnum
>= IA64_FIRST_ROTATING_FR
) {
592 ia64_flush_fph(current
);
593 *fpval
= current
->thread
.fph
[fph_index(regs
, regnum
)];
596 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
597 * not saved, we must generate their spilled form on the fly
601 float_spill_f0(fpval
);
604 float_spill_f1(fpval
);
608 * pt_regs or switch_stack ?
610 addr
= FR_IN_SW(regnum
) ? (unsigned long)sw
611 : (unsigned long)regs
;
613 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
614 FR_IN_SW(regnum
), addr
, FR_OFFS(regnum
));
616 addr
+= FR_OFFS(regnum
);
617 *fpval
= *(struct ia64_fpreg
*)addr
;
624 getreg (unsigned long regnum
, unsigned long *val
, int *nat
, struct pt_regs
*regs
)
626 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
627 unsigned long addr
, *unat
;
629 if (regnum
>= IA64_FIRST_STACKED_GR
) {
630 get_rse_reg(regs
, regnum
, val
, nat
);
635 * take care of r0 (read-only always evaluate to 0)
645 * Now look at registers in [0-31] range and init correct UNAT
647 if (GR_IN_SW(regnum
)) {
648 addr
= (unsigned long)sw
;
651 addr
= (unsigned long)regs
;
652 unat
= &sw
->caller_unat
;
655 DPRINT("addr_base=%lx offset=0x%x\n", addr
, GR_OFFS(regnum
));
657 addr
+= GR_OFFS(regnum
);
659 *val
= *(unsigned long *)addr
;
662 * do it only when requested
665 *nat
= (*unat
>> (addr
>> 3 & 0x3f)) & 0x1UL
;
669 emulate_load_updates (update_t type
, load_store_t ld
, struct pt_regs
*regs
, unsigned long ifa
)
673 * Given the way we handle unaligned speculative loads, we should
674 * not get to this point in the code but we keep this sanity check,
677 if (ld
.x6_op
== 1 || ld
.x6_op
== 3) {
678 printk(KERN_ERR
"%s: register update on speculative load, error\n", __FUNCTION__
);
679 die_if_kernel("unaligned reference on speculative load with register update\n",
685 * at this point, we know that the base register to update is valid i.e.,
688 if (type
== UPD_IMMEDIATE
) {
692 * Load +Imm: ldXZ r1=[r3],imm(9)
695 * form imm9: [13:19] contain the first 7 bits
697 imm
= ld
.x
<< 7 | ld
.imm
;
700 * sign extend (1+8bits) if m set
702 if (ld
.m
) imm
|= SIGN_EXT9
;
705 * ifa == r3 and we know that the NaT bit on r3 was clear so
706 * we can directly use ifa.
710 setreg(ld
.r3
, ifa
, 0, regs
);
712 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld
.x
, ld
.m
, imm
, ifa
);
719 * Load +Reg Opcode: ldXZ r1=[r3],r2
721 * Note: that we update r3 even in the case of ldfX.a
722 * (where the load does not happen)
724 * The way the load algorithm works, we know that r3 does not
725 * have its NaT bit set (would have gotten NaT consumption
726 * before getting the unaligned fault). So we can use ifa
727 * which equals r3 at this point.
730 * The above statement holds ONLY because we know that we
731 * never reach this code when trying to do a ldX.s.
732 * If we ever make it to here on an ldfX.s then
734 getreg(ld
.imm
, &r2
, &nat_r2
, regs
);
739 * propagate Nat r2 -> r3
741 setreg(ld
.r3
, ifa
, nat_r2
, regs
);
743 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld
.imm
, r2
, ifa
, nat_r2
);
749 emulate_load_int (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
751 unsigned int len
= 1 << ld
.x6_sz
;
752 unsigned long val
= 0;
755 * r0, as target, doesn't need to be checked because Illegal Instruction
756 * faults have higher priority than unaligned faults.
758 * r0 cannot be found as the base as it would never generate an
759 * unaligned reference.
763 * ldX.a we will emulate load and also invalidate the ALAT entry.
764 * See comment below for explanation on how we handle ldX.a
767 if (len
!= 2 && len
!= 4 && len
!= 8) {
768 DPRINT("unknown size: x6=%d\n", ld
.x6_sz
);
771 /* this assumes little-endian byte-order: */
772 if (copy_from_user(&val
, (void __user
*) ifa
, len
))
774 setreg(ld
.r1
, val
, 0, regs
);
777 * check for updates on any kind of loads
779 if (ld
.op
== 0x5 || ld
.m
)
780 emulate_load_updates(ld
.op
== 0x5 ? UPD_IMMEDIATE
: UPD_REG
, ld
, regs
, ifa
);
783 * handling of various loads (based on EAS2.4):
785 * ldX.acq (ordered load):
786 * - acquire semantics would have been used, so force fence instead.
788 * ldX.c.clr (check load and clear):
789 * - if we get to this handler, it's because the entry was not in the ALAT.
790 * Therefore the operation reverts to a normal load
792 * ldX.c.nc (check load no clear):
793 * - same as previous one
795 * ldX.c.clr.acq (ordered check load and clear):
796 * - same as above for c.clr part. The load needs to have acquire semantics. So
797 * we use the fence semantics which is stronger and thus ensures correctness.
799 * ldX.a (advanced load):
800 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
801 * address doesn't match requested size alignment. This means that we would
802 * possibly need more than one load to get the result.
804 * The load part can be handled just like a normal load, however the difficult
805 * part is to get the right thing into the ALAT. The critical piece of information
806 * in the base address of the load & size. To do that, a ld.a must be executed,
807 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
808 * if we use the same target register, we will be okay for the check.a instruction.
809 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
810 * which would overlap within [r3,r3+X] (the size of the load was store in the
811 * ALAT). If such an entry is found the entry is invalidated. But this is not good
812 * enough, take the following example:
816 * Could be emulated by doing:
818 * store to temporary;
820 * store & shift to temporary;
822 * store & shift to temporary;
824 * store & shift to temporary;
827 * So in this case, you would get the right value is r1 but the wrong info in
828 * the ALAT. Notice that you could do it in reverse to finish with address 3
829 * but you would still get the size wrong. To get the size right, one needs to
830 * execute exactly the same kind of load. You could do it from a aligned
831 * temporary location, but you would get the address wrong.
833 * So no matter what, it is not possible to emulate an advanced load
834 * correctly. But is that really critical ?
836 * We will always convert ld.a into a normal load with ALAT invalidated. This
837 * will enable compiler to do optimization where certain code path after ld.a
838 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
840 * If there is a store after the advanced load, one must either do a ld.c.* or
841 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
842 * entry found in ALAT), and that's perfectly ok because:
844 * - ld.c.*, if the entry is not present a normal load is executed
845 * - chk.a.*, if the entry is not present, execution jumps to recovery code
847 * In either case, the load can be potentially retried in another form.
849 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
850 * up a stale entry later). The register base update MUST also be performed.
854 * when the load has the .acq completer then
855 * use ordering fence.
857 if (ld
.x6_op
== 0x5 || ld
.x6_op
== 0xa)
861 * invalidate ALAT entry in case of advanced load
870 emulate_store_int (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
873 unsigned int len
= 1 << ld
.x6_sz
;
876 * if we get to this handler, Nat bits on both r3 and r2 have already
877 * been checked. so we don't need to do it
879 * extract the value to be stored
881 getreg(ld
.imm
, &r2
, NULL
, regs
);
884 * we rely on the macros in unaligned.h for now i.e.,
885 * we let the compiler figure out how to read memory gracefully.
887 * We need this switch/case because the way the inline function
888 * works. The code is optimized by the compiler and looks like
889 * a single switch/case.
891 DPRINT("st%d [%lx]=%lx\n", len
, ifa
, r2
);
893 if (len
!= 2 && len
!= 4 && len
!= 8) {
894 DPRINT("unknown size: x6=%d\n", ld
.x6_sz
);
898 /* this assumes little-endian byte-order: */
899 if (copy_to_user((void __user
*) ifa
, &r2
, len
))
906 * ld.r3 can never be r0, because r0 would not generate an
913 * form imm9: [12:6] contain first 7bits
915 imm
= ld
.x
<< 7 | ld
.r1
;
917 * sign extend (8bits) if m set
919 if (ld
.m
) imm
|= SIGN_EXT9
;
921 * ifa == r3 (NaT is necessarily cleared)
925 DPRINT("imm=%lx r3=%lx\n", imm
, ifa
);
927 setreg(ld
.r3
, ifa
, 0, regs
);
930 * we don't have alat_invalidate_multiple() so we need
931 * to do the complete flush :-<<
936 * stX.rel: use fence instead of release
945 * floating point operations sizes in bytes
947 static const unsigned char float_fsz
[4]={
948 10, /* extended precision (e) */
950 4, /* single precision (s) */
951 8 /* double precision (d) */
955 mem2float_extended (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
959 ia64_stf_spill(final
, 6);
963 mem2float_integer (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
967 ia64_stf_spill(final
, 6);
971 mem2float_single (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
975 ia64_stf_spill(final
, 6);
979 mem2float_double (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
983 ia64_stf_spill(final
, 6);
987 float2mem_extended (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
989 ia64_ldf_fill(6, init
);
995 float2mem_integer (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
997 ia64_ldf_fill(6, init
);
1003 float2mem_single (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
1005 ia64_ldf_fill(6, init
);
1007 ia64_stfs(final
, 6);
1011 float2mem_double (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
1013 ia64_ldf_fill(6, init
);
1015 ia64_stfd(final
, 6);
1019 emulate_load_floatpair (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
1021 struct ia64_fpreg fpr_init
[2];
1022 struct ia64_fpreg fpr_final
[2];
1023 unsigned long len
= float_fsz
[ld
.x6_sz
];
1026 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1027 * higher priority than unaligned faults.
1029 * r0 cannot be found as the base as it would never generate an unaligned
1034 * make sure we get clean buffers
1036 memset(&fpr_init
, 0, sizeof(fpr_init
));
1037 memset(&fpr_final
, 0, sizeof(fpr_final
));
1040 * ldfpX.a: we don't try to emulate anything but we must
1041 * invalidate the ALAT entry and execute updates, if any.
1043 if (ld
.x6_op
!= 0x2) {
1045 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1048 if (copy_from_user(&fpr_init
[0], (void __user
*) ifa
, len
)
1049 || copy_from_user(&fpr_init
[1], (void __user
*) (ifa
+ len
), len
))
1052 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld
.r1
, ld
.imm
, ld
.x6_sz
);
1053 DDUMP("frp_init =", &fpr_init
, 2*len
);
1056 * Could optimize inlines by using ldfpX & 2 spills
1058 switch( ld
.x6_sz
) {
1060 mem2float_extended(&fpr_init
[0], &fpr_final
[0]);
1061 mem2float_extended(&fpr_init
[1], &fpr_final
[1]);
1064 mem2float_integer(&fpr_init
[0], &fpr_final
[0]);
1065 mem2float_integer(&fpr_init
[1], &fpr_final
[1]);
1068 mem2float_single(&fpr_init
[0], &fpr_final
[0]);
1069 mem2float_single(&fpr_init
[1], &fpr_final
[1]);
1072 mem2float_double(&fpr_init
[0], &fpr_final
[0]);
1073 mem2float_double(&fpr_init
[1], &fpr_final
[1]);
1076 DDUMP("fpr_final =", &fpr_final
, 2*len
);
1080 * A possible optimization would be to drop fpr_final and directly
1081 * use the storage from the saved context i.e., the actual final
1082 * destination (pt_regs, switch_stack or thread structure).
1084 setfpreg(ld
.r1
, &fpr_final
[0], regs
);
1085 setfpreg(ld
.imm
, &fpr_final
[1], regs
);
1089 * Check for updates: only immediate updates are available for this
1094 * the immediate is implicit given the ldsz of the operation:
1095 * single: 8 (2x4) and for all others it's 16 (2x8)
1101 * the fact that we force the NaT of r3 to zero is ONLY valid
1102 * as long as we don't come here with a ldfpX.s.
1103 * For this reason we keep this sanity check
1105 if (ld
.x6_op
== 1 || ld
.x6_op
== 3)
1106 printk(KERN_ERR
"%s: register update on speculative load pair, error\n",
1109 setreg(ld
.r3
, ifa
, 0, regs
);
1113 * Invalidate ALAT entries, if any, for both registers.
1115 if (ld
.x6_op
== 0x2) {
1124 emulate_load_float (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
1126 struct ia64_fpreg fpr_init
;
1127 struct ia64_fpreg fpr_final
;
1128 unsigned long len
= float_fsz
[ld
.x6_sz
];
1131 * fr0 & fr1 don't need to be checked because Illegal Instruction
1132 * faults have higher priority than unaligned faults.
1134 * r0 cannot be found as the base as it would never generate an
1135 * unaligned reference.
1139 * make sure we get clean buffers
1141 memset(&fpr_init
,0, sizeof(fpr_init
));
1142 memset(&fpr_final
,0, sizeof(fpr_final
));
1145 * ldfX.a we don't try to emulate anything but we must
1146 * invalidate the ALAT entry.
1147 * See comments in ldX for descriptions on how the various loads are handled.
1149 if (ld
.x6_op
!= 0x2) {
1150 if (copy_from_user(&fpr_init
, (void __user
*) ifa
, len
))
1153 DPRINT("ld.r1=%d x6_sz=%d\n", ld
.r1
, ld
.x6_sz
);
1154 DDUMP("fpr_init =", &fpr_init
, len
);
1156 * we only do something for x6_op={0,8,9}
1158 switch( ld
.x6_sz
) {
1160 mem2float_extended(&fpr_init
, &fpr_final
);
1163 mem2float_integer(&fpr_init
, &fpr_final
);
1166 mem2float_single(&fpr_init
, &fpr_final
);
1169 mem2float_double(&fpr_init
, &fpr_final
);
1172 DDUMP("fpr_final =", &fpr_final
, len
);
1176 * A possible optimization would be to drop fpr_final and directly
1177 * use the storage from the saved context i.e., the actual final
1178 * destination (pt_regs, switch_stack or thread structure).
1180 setfpreg(ld
.r1
, &fpr_final
, regs
);
1184 * check for updates on any loads
1186 if (ld
.op
== 0x7 || ld
.m
)
1187 emulate_load_updates(ld
.op
== 0x7 ? UPD_IMMEDIATE
: UPD_REG
, ld
, regs
, ifa
);
1190 * invalidate ALAT entry in case of advanced floating point loads
1192 if (ld
.x6_op
== 0x2)
1200 emulate_store_float (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
1202 struct ia64_fpreg fpr_init
;
1203 struct ia64_fpreg fpr_final
;
1204 unsigned long len
= float_fsz
[ld
.x6_sz
];
1207 * make sure we get clean buffers
1209 memset(&fpr_init
,0, sizeof(fpr_init
));
1210 memset(&fpr_final
,0, sizeof(fpr_final
));
1213 * if we get to this handler, Nat bits on both r3 and r2 have already
1214 * been checked. so we don't need to do it
1216 * extract the value to be stored
1218 getfpreg(ld
.imm
, &fpr_init
, regs
);
1220 * during this step, we extract the spilled registers from the saved
1221 * context i.e., we refill. Then we store (no spill) to temporary
1224 switch( ld
.x6_sz
) {
1226 float2mem_extended(&fpr_init
, &fpr_final
);
1229 float2mem_integer(&fpr_init
, &fpr_final
);
1232 float2mem_single(&fpr_init
, &fpr_final
);
1235 float2mem_double(&fpr_init
, &fpr_final
);
1238 DPRINT("ld.r1=%d x6_sz=%d\n", ld
.r1
, ld
.x6_sz
);
1239 DDUMP("fpr_init =", &fpr_init
, len
);
1240 DDUMP("fpr_final =", &fpr_final
, len
);
1242 if (copy_to_user((void __user
*) ifa
, &fpr_final
, len
))
1246 * stfX [r3]=r2,imm(9)
1249 * ld.r3 can never be r0, because r0 would not generate an
1256 * form imm9: [12:6] contain first 7bits
1258 imm
= ld
.x
<< 7 | ld
.r1
;
1260 * sign extend (8bits) if m set
1265 * ifa == r3 (NaT is necessarily cleared)
1269 DPRINT("imm=%lx r3=%lx\n", imm
, ifa
);
1271 setreg(ld
.r3
, ifa
, 0, regs
);
1274 * we don't have alat_invalidate_multiple() so we need
1275 * to do the complete flush :-<<
1283 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1284 * eventually fix the program. However, we don't want to do that for every access so we
1285 * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
1289 within_logging_rate_limit (void)
1291 static unsigned long count
, last_time
;
1293 if (jiffies
- last_time
> 5*HZ
)
1296 last_time
= jiffies
;
1305 ia64_handle_unaligned (unsigned long ifa
, struct pt_regs
*regs
)
1307 struct ia64_psr
*ipsr
= ia64_psr(regs
);
1308 mm_segment_t old_fs
= get_fs();
1309 unsigned long bundle
[2];
1310 unsigned long opcode
;
1312 const struct exception_table_entry
*eh
= NULL
;
1319 if (ia64_psr(regs
)->be
) {
1320 /* we don't support big-endian accesses */
1321 die_if_kernel("big-endian unaligned accesses are not supported", regs
, 0);
1326 * Treat kernel accesses for which there is an exception handler entry the same as
1327 * user-level unaligned accesses. Otherwise, a clever program could trick this
1328 * handler into reading an arbitrary kernel addresses...
1330 if (!user_mode(regs
))
1331 eh
= search_exception_tables(regs
->cr_iip
+ ia64_psr(regs
)->ri
);
1332 if (user_mode(regs
) || eh
) {
1333 if ((current
->thread
.flags
& IA64_THREAD_UAC_SIGBUS
) != 0)
1336 if (!no_unaligned_warning
&&
1337 !(current
->thread
.flags
& IA64_THREAD_UAC_NOPRINT
) &&
1338 within_logging_rate_limit())
1340 char buf
[200]; /* comm[] is at most 16 bytes... */
1343 len
= sprintf(buf
, "%s(%d): unaligned access to 0x%016lx, "
1344 "ip=0x%016lx\n\r", current
->comm
, current
->pid
,
1345 ifa
, regs
->cr_iip
+ ipsr
->ri
);
1347 * Don't call tty_write_message() if we're in the kernel; we might
1348 * be holding locks...
1350 if (user_mode(regs
))
1351 tty_write_message(current
->signal
->tty
, buf
);
1352 buf
[len
-1] = '\0'; /* drop '\r' */
1353 /* watch for command names containing %s */
1354 printk(KERN_WARNING
"%s", buf
);
1356 if (no_unaligned_warning
&& !noprint_warning
) {
1357 noprint_warning
= 1;
1358 printk(KERN_WARNING
"%s(%d) encountered an "
1359 "unaligned exception which required\n"
1360 "kernel assistance, which degrades "
1361 "the performance of the application.\n"
1362 "Unaligned exception warnings have "
1363 "been disabled by the system "
1365 "echo 0 > /proc/sys/kernel/ignore-"
1366 "unaligned-usertrap to re-enable\n",
1367 current
->comm
, current
->pid
);
1371 if (within_logging_rate_limit())
1372 printk(KERN_WARNING
"kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1373 ifa
, regs
->cr_iip
+ ipsr
->ri
);
1377 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1378 regs
->cr_iip
, ifa
, regs
->cr_ipsr
, ipsr
->ri
, ipsr
->it
);
1380 if (__copy_from_user(bundle
, (void __user
*) regs
->cr_iip
, 16))
1384 * extract the instruction from the bundle given the slot number
1387 case 0: u
.l
= (bundle
[0] >> 5); break;
1388 case 1: u
.l
= (bundle
[0] >> 46) | (bundle
[1] << 18); break;
1389 case 2: u
.l
= (bundle
[1] >> 23); break;
1391 opcode
= (u
.l
>> IA64_OPCODE_SHIFT
) & IA64_OPCODE_MASK
;
1393 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1394 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode
, u
.insn
.qp
, u
.insn
.r1
, u
.insn
.imm
,
1395 u
.insn
.r3
, u
.insn
.x
, u
.insn
.hint
, u
.insn
.x6_sz
, u
.insn
.m
, u
.insn
.op
);
1399 * Notice that the switch statement DOES not cover all possible instructions
1400 * that DO generate unaligned references. This is made on purpose because for some
1401 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1402 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1403 * the program will get a signal and die:
1408 * Reason: RNATs are based on addresses
1411 * Reason: ld16 and st16 are supposed to occur in a single
1418 * Reason: ATOMIC operations cannot be emulated properly using multiple
1421 * speculative loads:
1423 * Reason: side effects, code must be ready to deal with failure so simpler
1424 * to let the load fail.
1425 * ---------------------------------------------------------------------------------
1428 * I would like to get rid of this switch case and do something
1435 /* oops, really a semaphore op (cmpxchg, etc) */
1444 * The instruction will be retried with deferred exceptions turned on, and
1445 * we should get Nat bit installed
1447 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1448 * are actually executed even though the operation failed. So we don't
1449 * need to take care of this.
1451 DPRINT("forcing PSR_ED\n");
1452 regs
->cr_ipsr
|= IA64_PSR_ED
;
1463 /* oops, really a semaphore op (cmpxchg, etc) */
1472 case LDCCLRACQ_IMM_OP
:
1473 ret
= emulate_load_int(ifa
, u
.insn
, regs
);
1479 /* oops, really a semaphore op (cmpxchg, etc) */
1484 ret
= emulate_store_int(ifa
, u
.insn
, regs
);
1493 case LDFCCLR_IMM_OP
:
1496 ret
= emulate_load_floatpair(ifa
, u
.insn
, regs
);
1498 ret
= emulate_load_float(ifa
, u
.insn
, regs
);
1503 ret
= emulate_store_float(ifa
, u
.insn
, regs
);
1509 DPRINT("ret=%d\n", ret
);
1515 * given today's architecture this case is not likely to happen because a
1516 * memory access instruction (M) can never be in the last slot of a
1517 * bundle. But let's keep it for now.
1520 ipsr
->ri
= (ipsr
->ri
+ 1) & 0x3;
1522 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr
->ri
, regs
->cr_iip
);
1524 set_fs(old_fs
); /* restore original address limit */
1528 /* something went wrong... */
1529 if (!user_mode(regs
)) {
1531 ia64_handle_exception(regs
, eh
);
1534 die_if_kernel("error during unaligned kernel access\n", regs
, ret
);
1538 si
.si_signo
= SIGBUS
;
1540 si
.si_code
= BUS_ADRALN
;
1541 si
.si_addr
= (void __user
*) ifa
;
1545 force_sig_info(SIGBUS
, &si
, current
);