korina: Move the IDT driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / hpsa.c
blobec61bdb833ac4baeab42c6c0473801dc02ec6743
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 "Use 'simple mode' rather than 'performant mode'");
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
110 static struct board_type products[] = {
111 {0x3241103C, "Smart Array P212", &SA5_access},
112 {0x3243103C, "Smart Array P410", &SA5_access},
113 {0x3245103C, "Smart Array P410i", &SA5_access},
114 {0x3247103C, "Smart Array P411", &SA5_access},
115 {0x3249103C, "Smart Array P812", &SA5_access},
116 {0x324a103C, "Smart Array P712m", &SA5_access},
117 {0x324b103C, "Smart Array P711m", &SA5_access},
118 {0x3350103C, "Smart Array", &SA5_access},
119 {0x3351103C, "Smart Array", &SA5_access},
120 {0x3352103C, "Smart Array", &SA5_access},
121 {0x3353103C, "Smart Array", &SA5_access},
122 {0x3354103C, "Smart Array", &SA5_access},
123 {0x3355103C, "Smart Array", &SA5_access},
124 {0x3356103C, "Smart Array", &SA5_access},
125 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 static int number_of_controllers;
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 int cmd_type);
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 int qdepth, int reason);
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
181 unsigned long *priv = shost_priv(sdev->host);
182 return (struct ctlr_info *) *priv;
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
187 unsigned long *priv = shost_priv(sh);
188 return (struct ctlr_info *) *priv;
191 static int check_for_unit_attention(struct ctlr_info *h,
192 struct CommandList *c)
194 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 return 0;
197 switch (c->err_info->SenseInfo[12]) {
198 case STATE_CHANGED:
199 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 "detected, command retried\n", h->ctlr);
201 break;
202 case LUN_FAILED:
203 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 "detected, action required\n", h->ctlr);
205 break;
206 case REPORT_LUNS_CHANGED:
207 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 "changed, action required\n", h->ctlr);
210 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
212 break;
213 case POWER_OR_RESET:
214 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 "or device reset detected\n", h->ctlr);
216 break;
217 case UNIT_ATTENTION_CLEARED:
218 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 "cleared by another initiator\n", h->ctlr);
220 break;
221 default:
222 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 "unit attention detected\n", h->ctlr);
224 break;
226 return 1;
229 static ssize_t host_store_rescan(struct device *dev,
230 struct device_attribute *attr,
231 const char *buf, size_t count)
233 struct ctlr_info *h;
234 struct Scsi_Host *shost = class_to_shost(dev);
235 h = shost_to_hba(shost);
236 hpsa_scan_start(h->scsi_host);
237 return count;
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct ctlr_info *h;
244 struct Scsi_Host *shost = class_to_shost(dev);
245 unsigned char *fwrev;
247 h = shost_to_hba(shost);
248 if (!h->hba_inquiry_data)
249 return 0;
250 fwrev = &h->hba_inquiry_data[32];
251 return snprintf(buf, 20, "%c%c%c%c\n",
252 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 struct device_attribute *attr, char *buf)
258 struct Scsi_Host *shost = class_to_shost(dev);
259 struct ctlr_info *h = shost_to_hba(shost);
261 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
264 static ssize_t host_show_transport_mode(struct device *dev,
265 struct device_attribute *attr, char *buf)
267 struct ctlr_info *h;
268 struct Scsi_Host *shost = class_to_shost(dev);
270 h = shost_to_hba(shost);
271 return snprintf(buf, 20, "%s\n",
272 h->transMethod & CFGTBL_Trans_Performant ?
273 "performant" : "simple");
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 0x324a103C, /* Smart Array P712m */
279 0x324b103C, /* SmartArray P711m */
280 0x3223103C, /* Smart Array P800 */
281 0x3234103C, /* Smart Array P400 */
282 0x3235103C, /* Smart Array P400i */
283 0x3211103C, /* Smart Array E200i */
284 0x3212103C, /* Smart Array E200 */
285 0x3213103C, /* Smart Array E200i */
286 0x3214103C, /* Smart Array E200i */
287 0x3215103C, /* Smart Array E200i */
288 0x3237103C, /* Smart Array E500 */
289 0x323D103C, /* Smart Array P700m */
290 0x409C0E11, /* Smart Array 6400 */
291 0x409D0E11, /* Smart Array 6400 EM */
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296 /* Exclude 640x boards. These are two pci devices in one slot
297 * which share a battery backed cache module. One controls the
298 * cache, the other accesses the cache through the one that controls
299 * it. If we reset the one controlling the cache, the other will
300 * likely not be happy. Just forbid resetting this conjoined mess.
301 * The 640x isn't really supported by hpsa anyway.
303 0x409C0E11, /* Smart Array 6400 */
304 0x409D0E11, /* Smart Array 6400 EM */
307 static int ctlr_is_hard_resettable(u32 board_id)
309 int i;
311 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312 if (unresettable_controller[i] == board_id)
313 return 0;
314 return 1;
317 static int ctlr_is_soft_resettable(u32 board_id)
319 int i;
321 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322 if (soft_unresettable_controller[i] == board_id)
323 return 0;
324 return 1;
327 static int ctlr_is_resettable(u32 board_id)
329 return ctlr_is_hard_resettable(board_id) ||
330 ctlr_is_soft_resettable(board_id);
333 static ssize_t host_show_resettable(struct device *dev,
334 struct device_attribute *attr, char *buf)
336 struct ctlr_info *h;
337 struct Scsi_Host *shost = class_to_shost(dev);
339 h = shost_to_hba(shost);
340 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
345 return (scsi3addr[3] & 0xC0) == 0x40;
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349 "UNKNOWN"
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
353 static ssize_t raid_level_show(struct device *dev,
354 struct device_attribute *attr, char *buf)
356 ssize_t l = 0;
357 unsigned char rlevel;
358 struct ctlr_info *h;
359 struct scsi_device *sdev;
360 struct hpsa_scsi_dev_t *hdev;
361 unsigned long flags;
363 sdev = to_scsi_device(dev);
364 h = sdev_to_hba(sdev);
365 spin_lock_irqsave(&h->lock, flags);
366 hdev = sdev->hostdata;
367 if (!hdev) {
368 spin_unlock_irqrestore(&h->lock, flags);
369 return -ENODEV;
372 /* Is this even a logical drive? */
373 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374 spin_unlock_irqrestore(&h->lock, flags);
375 l = snprintf(buf, PAGE_SIZE, "N/A\n");
376 return l;
379 rlevel = hdev->raid_level;
380 spin_unlock_irqrestore(&h->lock, flags);
381 if (rlevel > RAID_UNKNOWN)
382 rlevel = RAID_UNKNOWN;
383 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384 return l;
387 static ssize_t lunid_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
390 struct ctlr_info *h;
391 struct scsi_device *sdev;
392 struct hpsa_scsi_dev_t *hdev;
393 unsigned long flags;
394 unsigned char lunid[8];
396 sdev = to_scsi_device(dev);
397 h = sdev_to_hba(sdev);
398 spin_lock_irqsave(&h->lock, flags);
399 hdev = sdev->hostdata;
400 if (!hdev) {
401 spin_unlock_irqrestore(&h->lock, flags);
402 return -ENODEV;
404 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405 spin_unlock_irqrestore(&h->lock, flags);
406 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407 lunid[0], lunid[1], lunid[2], lunid[3],
408 lunid[4], lunid[5], lunid[6], lunid[7]);
411 static ssize_t unique_id_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
414 struct ctlr_info *h;
415 struct scsi_device *sdev;
416 struct hpsa_scsi_dev_t *hdev;
417 unsigned long flags;
418 unsigned char sn[16];
420 sdev = to_scsi_device(dev);
421 h = sdev_to_hba(sdev);
422 spin_lock_irqsave(&h->lock, flags);
423 hdev = sdev->hostdata;
424 if (!hdev) {
425 spin_unlock_irqrestore(&h->lock, flags);
426 return -ENODEV;
428 memcpy(sn, hdev->device_id, sizeof(sn));
429 spin_unlock_irqrestore(&h->lock, flags);
430 return snprintf(buf, 16 * 2 + 2,
431 "%02X%02X%02X%02X%02X%02X%02X%02X"
432 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
433 sn[0], sn[1], sn[2], sn[3],
434 sn[4], sn[5], sn[6], sn[7],
435 sn[8], sn[9], sn[10], sn[11],
436 sn[12], sn[13], sn[14], sn[15]);
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444 host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446 host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448 host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450 host_show_resettable, NULL);
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453 &dev_attr_raid_level,
454 &dev_attr_lunid,
455 &dev_attr_unique_id,
456 NULL,
459 static struct device_attribute *hpsa_shost_attrs[] = {
460 &dev_attr_rescan,
461 &dev_attr_firmware_revision,
462 &dev_attr_commands_outstanding,
463 &dev_attr_transport_mode,
464 &dev_attr_resettable,
465 NULL,
468 static struct scsi_host_template hpsa_driver_template = {
469 .module = THIS_MODULE,
470 .name = "hpsa",
471 .proc_name = "hpsa",
472 .queuecommand = hpsa_scsi_queue_command,
473 .scan_start = hpsa_scan_start,
474 .scan_finished = hpsa_scan_finished,
475 .change_queue_depth = hpsa_change_queue_depth,
476 .this_id = -1,
477 .use_clustering = ENABLE_CLUSTERING,
478 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
479 .ioctl = hpsa_ioctl,
480 .slave_alloc = hpsa_slave_alloc,
481 .slave_destroy = hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483 .compat_ioctl = hpsa_compat_ioctl,
484 #endif
485 .sdev_attrs = hpsa_sdev_attrs,
486 .shost_attrs = hpsa_shost_attrs,
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
493 list_add_tail(&c->list, list);
496 static inline u32 next_command(struct ctlr_info *h)
498 u32 a;
500 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501 return h->access.command_completed(h);
503 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505 (h->reply_pool_head)++;
506 h->commands_outstanding--;
507 } else {
508 a = FIFO_EMPTY;
510 /* Check for wraparound */
511 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512 h->reply_pool_head = h->reply_pool;
513 h->reply_pool_wraparound ^= 1;
515 return a;
518 /* set_performant_mode: Modify the tag for cciss performant
519 * set bit 0 for pull model, bits 3-1 for block fetch
520 * register number
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
524 if (likely(h->transMethod & CFGTBL_Trans_Performant))
525 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529 struct CommandList *c)
531 unsigned long flags;
533 set_performant_mode(h, c);
534 spin_lock_irqsave(&h->lock, flags);
535 addQ(&h->reqQ, c);
536 h->Qdepth++;
537 start_io(h);
538 spin_unlock_irqrestore(&h->lock, flags);
541 static inline void removeQ(struct CommandList *c)
543 if (WARN_ON(list_empty(&c->list)))
544 return;
545 list_del_init(&c->list);
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
550 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
555 if (!h->hba_inquiry_data)
556 return 0;
557 if ((h->hba_inquiry_data[2] & 0x07) == 5)
558 return 1;
559 return 0;
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563 unsigned char scsi3addr[], int bus, int *target, int *lun)
565 /* finds an unused bus, target, lun for a new physical device
566 * assumes h->devlock is held
568 int i, found = 0;
569 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
571 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
573 for (i = 0; i < h->ndevices; i++) {
574 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575 set_bit(h->dev[i]->target, lun_taken);
578 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579 if (!test_bit(i, lun_taken)) {
580 /* *bus = 1; */
581 *target = i;
582 *lun = 0;
583 found = 1;
584 break;
587 return !found;
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592 struct hpsa_scsi_dev_t *device,
593 struct hpsa_scsi_dev_t *added[], int *nadded)
595 /* assumes h->devlock is held */
596 int n = h->ndevices;
597 int i;
598 unsigned char addr1[8], addr2[8];
599 struct hpsa_scsi_dev_t *sd;
601 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602 dev_err(&h->pdev->dev, "too many devices, some will be "
603 "inaccessible.\n");
604 return -1;
607 /* physical devices do not have lun or target assigned until now. */
608 if (device->lun != -1)
609 /* Logical device, lun is already assigned. */
610 goto lun_assigned;
612 /* If this device a non-zero lun of a multi-lun device
613 * byte 4 of the 8-byte LUN addr will contain the logical
614 * unit no, zero otherise.
616 if (device->scsi3addr[4] == 0) {
617 /* This is not a non-zero lun of a multi-lun device */
618 if (hpsa_find_target_lun(h, device->scsi3addr,
619 device->bus, &device->target, &device->lun) != 0)
620 return -1;
621 goto lun_assigned;
624 /* This is a non-zero lun of a multi-lun device.
625 * Search through our list and find the device which
626 * has the same 8 byte LUN address, excepting byte 4.
627 * Assign the same bus and target for this new LUN.
628 * Use the logical unit number from the firmware.
630 memcpy(addr1, device->scsi3addr, 8);
631 addr1[4] = 0;
632 for (i = 0; i < n; i++) {
633 sd = h->dev[i];
634 memcpy(addr2, sd->scsi3addr, 8);
635 addr2[4] = 0;
636 /* differ only in byte 4? */
637 if (memcmp(addr1, addr2, 8) == 0) {
638 device->bus = sd->bus;
639 device->target = sd->target;
640 device->lun = device->scsi3addr[4];
641 break;
644 if (device->lun == -1) {
645 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646 " suspect firmware bug or unsupported hardware "
647 "configuration.\n");
648 return -1;
651 lun_assigned:
653 h->dev[n] = device;
654 h->ndevices++;
655 added[*nadded] = device;
656 (*nadded)++;
658 /* initially, (before registering with scsi layer) we don't
659 * know our hostno and we don't want to print anything first
660 * time anyway (the scsi layer's inquiries will show that info)
662 /* if (hostno != -1) */
663 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664 scsi_device_type(device->devtype), hostno,
665 device->bus, device->target, device->lun);
666 return 0;
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671 int entry, struct hpsa_scsi_dev_t *new_entry,
672 struct hpsa_scsi_dev_t *added[], int *nadded,
673 struct hpsa_scsi_dev_t *removed[], int *nremoved)
675 /* assumes h->devlock is held */
676 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677 removed[*nremoved] = h->dev[entry];
678 (*nremoved)++;
679 h->dev[entry] = new_entry;
680 added[*nadded] = new_entry;
681 (*nadded)++;
682 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
683 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
684 new_entry->target, new_entry->lun);
687 /* Remove an entry from h->dev[] array. */
688 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
689 struct hpsa_scsi_dev_t *removed[], int *nremoved)
691 /* assumes h->devlock is held */
692 int i;
693 struct hpsa_scsi_dev_t *sd;
695 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
697 sd = h->dev[entry];
698 removed[*nremoved] = h->dev[entry];
699 (*nremoved)++;
701 for (i = entry; i < h->ndevices-1; i++)
702 h->dev[i] = h->dev[i+1];
703 h->ndevices--;
704 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
705 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
706 sd->lun);
709 #define SCSI3ADDR_EQ(a, b) ( \
710 (a)[7] == (b)[7] && \
711 (a)[6] == (b)[6] && \
712 (a)[5] == (b)[5] && \
713 (a)[4] == (b)[4] && \
714 (a)[3] == (b)[3] && \
715 (a)[2] == (b)[2] && \
716 (a)[1] == (b)[1] && \
717 (a)[0] == (b)[0])
719 static void fixup_botched_add(struct ctlr_info *h,
720 struct hpsa_scsi_dev_t *added)
722 /* called when scsi_add_device fails in order to re-adjust
723 * h->dev[] to match the mid layer's view.
725 unsigned long flags;
726 int i, j;
728 spin_lock_irqsave(&h->lock, flags);
729 for (i = 0; i < h->ndevices; i++) {
730 if (h->dev[i] == added) {
731 for (j = i; j < h->ndevices-1; j++)
732 h->dev[j] = h->dev[j+1];
733 h->ndevices--;
734 break;
737 spin_unlock_irqrestore(&h->lock, flags);
738 kfree(added);
741 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
742 struct hpsa_scsi_dev_t *dev2)
744 /* we compare everything except lun and target as these
745 * are not yet assigned. Compare parts likely
746 * to differ first
748 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
749 sizeof(dev1->scsi3addr)) != 0)
750 return 0;
751 if (memcmp(dev1->device_id, dev2->device_id,
752 sizeof(dev1->device_id)) != 0)
753 return 0;
754 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
755 return 0;
756 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
757 return 0;
758 if (dev1->devtype != dev2->devtype)
759 return 0;
760 if (dev1->bus != dev2->bus)
761 return 0;
762 return 1;
765 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
766 * and return needle location in *index. If scsi3addr matches, but not
767 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772 int *index)
774 int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778 for (i = 0; i < haystack_size; i++) {
779 if (haystack[i] == NULL) /* previously removed. */
780 continue;
781 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
782 *index = i;
783 if (device_is_the_same(needle, haystack[i]))
784 return DEVICE_SAME;
785 else
786 return DEVICE_CHANGED;
789 *index = -1;
790 return DEVICE_NOT_FOUND;
793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
794 struct hpsa_scsi_dev_t *sd[], int nsds)
796 /* sd contains scsi3 addresses and devtypes, and inquiry
797 * data. This function takes what's in sd to be the current
798 * reality and updates h->dev[] to reflect that reality.
800 int i, entry, device_change, changes = 0;
801 struct hpsa_scsi_dev_t *csd;
802 unsigned long flags;
803 struct hpsa_scsi_dev_t **added, **removed;
804 int nadded, nremoved;
805 struct Scsi_Host *sh = NULL;
807 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808 GFP_KERNEL);
809 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
810 GFP_KERNEL);
812 if (!added || !removed) {
813 dev_warn(&h->pdev->dev, "out of memory in "
814 "adjust_hpsa_scsi_table\n");
815 goto free_and_out;
818 spin_lock_irqsave(&h->devlock, flags);
820 /* find any devices in h->dev[] that are not in
821 * sd[] and remove them from h->dev[], and for any
822 * devices which have changed, remove the old device
823 * info and add the new device info.
825 i = 0;
826 nremoved = 0;
827 nadded = 0;
828 while (i < h->ndevices) {
829 csd = h->dev[i];
830 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
831 if (device_change == DEVICE_NOT_FOUND) {
832 changes++;
833 hpsa_scsi_remove_entry(h, hostno, i,
834 removed, &nremoved);
835 continue; /* remove ^^^, hence i not incremented */
836 } else if (device_change == DEVICE_CHANGED) {
837 changes++;
838 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
839 added, &nadded, removed, &nremoved);
840 /* Set it to NULL to prevent it from being freed
841 * at the bottom of hpsa_update_scsi_devices()
843 sd[entry] = NULL;
845 i++;
848 /* Now, make sure every device listed in sd[] is also
849 * listed in h->dev[], adding them if they aren't found
852 for (i = 0; i < nsds; i++) {
853 if (!sd[i]) /* if already added above. */
854 continue;
855 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
856 h->ndevices, &entry);
857 if (device_change == DEVICE_NOT_FOUND) {
858 changes++;
859 if (hpsa_scsi_add_entry(h, hostno, sd[i],
860 added, &nadded) != 0)
861 break;
862 sd[i] = NULL; /* prevent from being freed later. */
863 } else if (device_change == DEVICE_CHANGED) {
864 /* should never happen... */
865 changes++;
866 dev_warn(&h->pdev->dev,
867 "device unexpectedly changed.\n");
868 /* but if it does happen, we just ignore that device */
871 spin_unlock_irqrestore(&h->devlock, flags);
873 /* Don't notify scsi mid layer of any changes the first time through
874 * (or if there are no changes) scsi_scan_host will do it later the
875 * first time through.
877 if (hostno == -1 || !changes)
878 goto free_and_out;
880 sh = h->scsi_host;
881 /* Notify scsi mid layer of any removed devices */
882 for (i = 0; i < nremoved; i++) {
883 struct scsi_device *sdev =
884 scsi_device_lookup(sh, removed[i]->bus,
885 removed[i]->target, removed[i]->lun);
886 if (sdev != NULL) {
887 scsi_remove_device(sdev);
888 scsi_device_put(sdev);
889 } else {
890 /* We don't expect to get here.
891 * future cmds to this device will get selection
892 * timeout as if the device was gone.
894 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
895 " for removal.", hostno, removed[i]->bus,
896 removed[i]->target, removed[i]->lun);
898 kfree(removed[i]);
899 removed[i] = NULL;
902 /* Notify scsi mid layer of any added devices */
903 for (i = 0; i < nadded; i++) {
904 if (scsi_add_device(sh, added[i]->bus,
905 added[i]->target, added[i]->lun) == 0)
906 continue;
907 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
908 "device not added.\n", hostno, added[i]->bus,
909 added[i]->target, added[i]->lun);
910 /* now we have to remove it from h->dev,
911 * since it didn't get added to scsi mid layer
913 fixup_botched_add(h, added[i]);
916 free_and_out:
917 kfree(added);
918 kfree(removed);
922 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
923 * Assume's h->devlock is held.
925 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
926 int bus, int target, int lun)
928 int i;
929 struct hpsa_scsi_dev_t *sd;
931 for (i = 0; i < h->ndevices; i++) {
932 sd = h->dev[i];
933 if (sd->bus == bus && sd->target == target && sd->lun == lun)
934 return sd;
936 return NULL;
939 /* link sdev->hostdata to our per-device structure. */
940 static int hpsa_slave_alloc(struct scsi_device *sdev)
942 struct hpsa_scsi_dev_t *sd;
943 unsigned long flags;
944 struct ctlr_info *h;
946 h = sdev_to_hba(sdev);
947 spin_lock_irqsave(&h->devlock, flags);
948 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
949 sdev_id(sdev), sdev->lun);
950 if (sd != NULL)
951 sdev->hostdata = sd;
952 spin_unlock_irqrestore(&h->devlock, flags);
953 return 0;
956 static void hpsa_slave_destroy(struct scsi_device *sdev)
958 /* nothing to do. */
961 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
963 int i;
965 if (!h->cmd_sg_list)
966 return;
967 for (i = 0; i < h->nr_cmds; i++) {
968 kfree(h->cmd_sg_list[i]);
969 h->cmd_sg_list[i] = NULL;
971 kfree(h->cmd_sg_list);
972 h->cmd_sg_list = NULL;
975 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
977 int i;
979 if (h->chainsize <= 0)
980 return 0;
982 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
983 GFP_KERNEL);
984 if (!h->cmd_sg_list)
985 return -ENOMEM;
986 for (i = 0; i < h->nr_cmds; i++) {
987 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
988 h->chainsize, GFP_KERNEL);
989 if (!h->cmd_sg_list[i])
990 goto clean;
992 return 0;
994 clean:
995 hpsa_free_sg_chain_blocks(h);
996 return -ENOMEM;
999 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1000 struct CommandList *c)
1002 struct SGDescriptor *chain_sg, *chain_block;
1003 u64 temp64;
1005 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1006 chain_block = h->cmd_sg_list[c->cmdindex];
1007 chain_sg->Ext = HPSA_SG_CHAIN;
1008 chain_sg->Len = sizeof(*chain_sg) *
1009 (c->Header.SGTotal - h->max_cmd_sg_entries);
1010 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1011 PCI_DMA_TODEVICE);
1012 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1013 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1016 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1017 struct CommandList *c)
1019 struct SGDescriptor *chain_sg;
1020 union u64bit temp64;
1022 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1023 return;
1025 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1026 temp64.val32.lower = chain_sg->Addr.lower;
1027 temp64.val32.upper = chain_sg->Addr.upper;
1028 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1031 static void complete_scsi_command(struct CommandList *cp)
1033 struct scsi_cmnd *cmd;
1034 struct ctlr_info *h;
1035 struct ErrorInfo *ei;
1037 unsigned char sense_key;
1038 unsigned char asc; /* additional sense code */
1039 unsigned char ascq; /* additional sense code qualifier */
1040 unsigned long sense_data_size;
1042 ei = cp->err_info;
1043 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1044 h = cp->h;
1046 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1047 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1048 hpsa_unmap_sg_chain_block(h, cp);
1050 cmd->result = (DID_OK << 16); /* host byte */
1051 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1052 cmd->result |= ei->ScsiStatus;
1054 /* copy the sense data whether we need to or not. */
1055 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1056 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1057 else
1058 sense_data_size = sizeof(ei->SenseInfo);
1059 if (ei->SenseLen < sense_data_size)
1060 sense_data_size = ei->SenseLen;
1062 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1063 scsi_set_resid(cmd, ei->ResidualCnt);
1065 if (ei->CommandStatus == 0) {
1066 cmd->scsi_done(cmd);
1067 cmd_free(h, cp);
1068 return;
1071 /* an error has occurred */
1072 switch (ei->CommandStatus) {
1074 case CMD_TARGET_STATUS:
1075 if (ei->ScsiStatus) {
1076 /* Get sense key */
1077 sense_key = 0xf & ei->SenseInfo[2];
1078 /* Get additional sense code */
1079 asc = ei->SenseInfo[12];
1080 /* Get addition sense code qualifier */
1081 ascq = ei->SenseInfo[13];
1084 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1085 if (check_for_unit_attention(h, cp)) {
1086 cmd->result = DID_SOFT_ERROR << 16;
1087 break;
1089 if (sense_key == ILLEGAL_REQUEST) {
1091 * SCSI REPORT_LUNS is commonly unsupported on
1092 * Smart Array. Suppress noisy complaint.
1094 if (cp->Request.CDB[0] == REPORT_LUNS)
1095 break;
1097 /* If ASC/ASCQ indicate Logical Unit
1098 * Not Supported condition,
1100 if ((asc == 0x25) && (ascq == 0x0)) {
1101 dev_warn(&h->pdev->dev, "cp %p "
1102 "has check condition\n", cp);
1103 break;
1107 if (sense_key == NOT_READY) {
1108 /* If Sense is Not Ready, Logical Unit
1109 * Not ready, Manual Intervention
1110 * required
1112 if ((asc == 0x04) && (ascq == 0x03)) {
1113 dev_warn(&h->pdev->dev, "cp %p "
1114 "has check condition: unit "
1115 "not ready, manual "
1116 "intervention required\n", cp);
1117 break;
1120 if (sense_key == ABORTED_COMMAND) {
1121 /* Aborted command is retryable */
1122 dev_warn(&h->pdev->dev, "cp %p "
1123 "has check condition: aborted command: "
1124 "ASC: 0x%x, ASCQ: 0x%x\n",
1125 cp, asc, ascq);
1126 cmd->result = DID_SOFT_ERROR << 16;
1127 break;
1129 /* Must be some other type of check condition */
1130 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1131 "unknown type: "
1132 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1133 "Returning result: 0x%x, "
1134 "cmd=[%02x %02x %02x %02x %02x "
1135 "%02x %02x %02x %02x %02x %02x "
1136 "%02x %02x %02x %02x %02x]\n",
1137 cp, sense_key, asc, ascq,
1138 cmd->result,
1139 cmd->cmnd[0], cmd->cmnd[1],
1140 cmd->cmnd[2], cmd->cmnd[3],
1141 cmd->cmnd[4], cmd->cmnd[5],
1142 cmd->cmnd[6], cmd->cmnd[7],
1143 cmd->cmnd[8], cmd->cmnd[9],
1144 cmd->cmnd[10], cmd->cmnd[11],
1145 cmd->cmnd[12], cmd->cmnd[13],
1146 cmd->cmnd[14], cmd->cmnd[15]);
1147 break;
1151 /* Problem was not a check condition
1152 * Pass it up to the upper layers...
1154 if (ei->ScsiStatus) {
1155 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1156 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1157 "Returning result: 0x%x\n",
1158 cp, ei->ScsiStatus,
1159 sense_key, asc, ascq,
1160 cmd->result);
1161 } else { /* scsi status is zero??? How??? */
1162 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1163 "Returning no connection.\n", cp),
1165 /* Ordinarily, this case should never happen,
1166 * but there is a bug in some released firmware
1167 * revisions that allows it to happen if, for
1168 * example, a 4100 backplane loses power and
1169 * the tape drive is in it. We assume that
1170 * it's a fatal error of some kind because we
1171 * can't show that it wasn't. We will make it
1172 * look like selection timeout since that is
1173 * the most common reason for this to occur,
1174 * and it's severe enough.
1177 cmd->result = DID_NO_CONNECT << 16;
1179 break;
1181 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1182 break;
1183 case CMD_DATA_OVERRUN:
1184 dev_warn(&h->pdev->dev, "cp %p has"
1185 " completed with data overrun "
1186 "reported\n", cp);
1187 break;
1188 case CMD_INVALID: {
1189 /* print_bytes(cp, sizeof(*cp), 1, 0);
1190 print_cmd(cp); */
1191 /* We get CMD_INVALID if you address a non-existent device
1192 * instead of a selection timeout (no response). You will
1193 * see this if you yank out a drive, then try to access it.
1194 * This is kind of a shame because it means that any other
1195 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1196 * missing target. */
1197 cmd->result = DID_NO_CONNECT << 16;
1199 break;
1200 case CMD_PROTOCOL_ERR:
1201 dev_warn(&h->pdev->dev, "cp %p has "
1202 "protocol error \n", cp);
1203 break;
1204 case CMD_HARDWARE_ERR:
1205 cmd->result = DID_ERROR << 16;
1206 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1207 break;
1208 case CMD_CONNECTION_LOST:
1209 cmd->result = DID_ERROR << 16;
1210 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1211 break;
1212 case CMD_ABORTED:
1213 cmd->result = DID_ABORT << 16;
1214 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1215 cp, ei->ScsiStatus);
1216 break;
1217 case CMD_ABORT_FAILED:
1218 cmd->result = DID_ERROR << 16;
1219 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1220 break;
1221 case CMD_UNSOLICITED_ABORT:
1222 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1223 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1224 "abort\n", cp);
1225 break;
1226 case CMD_TIMEOUT:
1227 cmd->result = DID_TIME_OUT << 16;
1228 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1229 break;
1230 case CMD_UNABORTABLE:
1231 cmd->result = DID_ERROR << 16;
1232 dev_warn(&h->pdev->dev, "Command unabortable\n");
1233 break;
1234 default:
1235 cmd->result = DID_ERROR << 16;
1236 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1237 cp, ei->CommandStatus);
1239 cmd->scsi_done(cmd);
1240 cmd_free(h, cp);
1243 static int hpsa_scsi_detect(struct ctlr_info *h)
1245 struct Scsi_Host *sh;
1246 int error;
1248 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1249 if (sh == NULL)
1250 goto fail;
1252 sh->io_port = 0;
1253 sh->n_io_port = 0;
1254 sh->this_id = -1;
1255 sh->max_channel = 3;
1256 sh->max_cmd_len = MAX_COMMAND_SIZE;
1257 sh->max_lun = HPSA_MAX_LUN;
1258 sh->max_id = HPSA_MAX_LUN;
1259 sh->can_queue = h->nr_cmds;
1260 sh->cmd_per_lun = h->nr_cmds;
1261 sh->sg_tablesize = h->maxsgentries;
1262 h->scsi_host = sh;
1263 sh->hostdata[0] = (unsigned long) h;
1264 sh->irq = h->intr[h->intr_mode];
1265 sh->unique_id = sh->irq;
1266 error = scsi_add_host(sh, &h->pdev->dev);
1267 if (error)
1268 goto fail_host_put;
1269 scsi_scan_host(sh);
1270 return 0;
1272 fail_host_put:
1273 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1274 " failed for controller %d\n", h->ctlr);
1275 scsi_host_put(sh);
1276 return error;
1277 fail:
1278 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1279 " failed for controller %d\n", h->ctlr);
1280 return -ENOMEM;
1283 static void hpsa_pci_unmap(struct pci_dev *pdev,
1284 struct CommandList *c, int sg_used, int data_direction)
1286 int i;
1287 union u64bit addr64;
1289 for (i = 0; i < sg_used; i++) {
1290 addr64.val32.lower = c->SG[i].Addr.lower;
1291 addr64.val32.upper = c->SG[i].Addr.upper;
1292 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1293 data_direction);
1297 static void hpsa_map_one(struct pci_dev *pdev,
1298 struct CommandList *cp,
1299 unsigned char *buf,
1300 size_t buflen,
1301 int data_direction)
1303 u64 addr64;
1305 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1306 cp->Header.SGList = 0;
1307 cp->Header.SGTotal = 0;
1308 return;
1311 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1312 cp->SG[0].Addr.lower =
1313 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1314 cp->SG[0].Addr.upper =
1315 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1316 cp->SG[0].Len = buflen;
1317 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1318 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1321 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1322 struct CommandList *c)
1324 DECLARE_COMPLETION_ONSTACK(wait);
1326 c->waiting = &wait;
1327 enqueue_cmd_and_start_io(h, c);
1328 wait_for_completion(&wait);
1331 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1332 struct CommandList *c, int data_direction)
1334 int retry_count = 0;
1336 do {
1337 memset(c->err_info, 0, sizeof(*c->err_info));
1338 hpsa_scsi_do_simple_cmd_core(h, c);
1339 retry_count++;
1340 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1341 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1344 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1346 struct ErrorInfo *ei;
1347 struct device *d = &cp->h->pdev->dev;
1349 ei = cp->err_info;
1350 switch (ei->CommandStatus) {
1351 case CMD_TARGET_STATUS:
1352 dev_warn(d, "cmd %p has completed with errors\n", cp);
1353 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1354 ei->ScsiStatus);
1355 if (ei->ScsiStatus == 0)
1356 dev_warn(d, "SCSI status is abnormally zero. "
1357 "(probably indicates selection timeout "
1358 "reported incorrectly due to a known "
1359 "firmware bug, circa July, 2001.)\n");
1360 break;
1361 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1362 dev_info(d, "UNDERRUN\n");
1363 break;
1364 case CMD_DATA_OVERRUN:
1365 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1366 break;
1367 case CMD_INVALID: {
1368 /* controller unfortunately reports SCSI passthru's
1369 * to non-existent targets as invalid commands.
1371 dev_warn(d, "cp %p is reported invalid (probably means "
1372 "target device no longer present)\n", cp);
1373 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1374 print_cmd(cp); */
1376 break;
1377 case CMD_PROTOCOL_ERR:
1378 dev_warn(d, "cp %p has protocol error \n", cp);
1379 break;
1380 case CMD_HARDWARE_ERR:
1381 /* cmd->result = DID_ERROR << 16; */
1382 dev_warn(d, "cp %p had hardware error\n", cp);
1383 break;
1384 case CMD_CONNECTION_LOST:
1385 dev_warn(d, "cp %p had connection lost\n", cp);
1386 break;
1387 case CMD_ABORTED:
1388 dev_warn(d, "cp %p was aborted\n", cp);
1389 break;
1390 case CMD_ABORT_FAILED:
1391 dev_warn(d, "cp %p reports abort failed\n", cp);
1392 break;
1393 case CMD_UNSOLICITED_ABORT:
1394 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1395 break;
1396 case CMD_TIMEOUT:
1397 dev_warn(d, "cp %p timed out\n", cp);
1398 break;
1399 case CMD_UNABORTABLE:
1400 dev_warn(d, "Command unabortable\n");
1401 break;
1402 default:
1403 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1404 ei->CommandStatus);
1408 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1409 unsigned char page, unsigned char *buf,
1410 unsigned char bufsize)
1412 int rc = IO_OK;
1413 struct CommandList *c;
1414 struct ErrorInfo *ei;
1416 c = cmd_special_alloc(h);
1418 if (c == NULL) { /* trouble... */
1419 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1420 return -ENOMEM;
1423 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1424 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1425 ei = c->err_info;
1426 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1427 hpsa_scsi_interpret_error(c);
1428 rc = -1;
1430 cmd_special_free(h, c);
1431 return rc;
1434 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1436 int rc = IO_OK;
1437 struct CommandList *c;
1438 struct ErrorInfo *ei;
1440 c = cmd_special_alloc(h);
1442 if (c == NULL) { /* trouble... */
1443 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1444 return -ENOMEM;
1447 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1448 hpsa_scsi_do_simple_cmd_core(h, c);
1449 /* no unmap needed here because no data xfer. */
1451 ei = c->err_info;
1452 if (ei->CommandStatus != 0) {
1453 hpsa_scsi_interpret_error(c);
1454 rc = -1;
1456 cmd_special_free(h, c);
1457 return rc;
1460 static void hpsa_get_raid_level(struct ctlr_info *h,
1461 unsigned char *scsi3addr, unsigned char *raid_level)
1463 int rc;
1464 unsigned char *buf;
1466 *raid_level = RAID_UNKNOWN;
1467 buf = kzalloc(64, GFP_KERNEL);
1468 if (!buf)
1469 return;
1470 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1471 if (rc == 0)
1472 *raid_level = buf[8];
1473 if (*raid_level > RAID_UNKNOWN)
1474 *raid_level = RAID_UNKNOWN;
1475 kfree(buf);
1476 return;
1479 /* Get the device id from inquiry page 0x83 */
1480 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1481 unsigned char *device_id, int buflen)
1483 int rc;
1484 unsigned char *buf;
1486 if (buflen > 16)
1487 buflen = 16;
1488 buf = kzalloc(64, GFP_KERNEL);
1489 if (!buf)
1490 return -1;
1491 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1492 if (rc == 0)
1493 memcpy(device_id, &buf[8], buflen);
1494 kfree(buf);
1495 return rc != 0;
1498 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1499 struct ReportLUNdata *buf, int bufsize,
1500 int extended_response)
1502 int rc = IO_OK;
1503 struct CommandList *c;
1504 unsigned char scsi3addr[8];
1505 struct ErrorInfo *ei;
1507 c = cmd_special_alloc(h);
1508 if (c == NULL) { /* trouble... */
1509 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1510 return -1;
1512 /* address the controller */
1513 memset(scsi3addr, 0, sizeof(scsi3addr));
1514 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1515 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1516 if (extended_response)
1517 c->Request.CDB[1] = extended_response;
1518 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1519 ei = c->err_info;
1520 if (ei->CommandStatus != 0 &&
1521 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1522 hpsa_scsi_interpret_error(c);
1523 rc = -1;
1525 cmd_special_free(h, c);
1526 return rc;
1529 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1530 struct ReportLUNdata *buf,
1531 int bufsize, int extended_response)
1533 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1536 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1537 struct ReportLUNdata *buf, int bufsize)
1539 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1542 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1543 int bus, int target, int lun)
1545 device->bus = bus;
1546 device->target = target;
1547 device->lun = lun;
1550 static int hpsa_update_device_info(struct ctlr_info *h,
1551 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1553 #define OBDR_TAPE_INQ_SIZE 49
1554 unsigned char *inq_buff;
1556 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1557 if (!inq_buff)
1558 goto bail_out;
1560 /* Do an inquiry to the device to see what it is. */
1561 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1562 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1563 /* Inquiry failed (msg printed already) */
1564 dev_err(&h->pdev->dev,
1565 "hpsa_update_device_info: inquiry failed\n");
1566 goto bail_out;
1569 this_device->devtype = (inq_buff[0] & 0x1f);
1570 memcpy(this_device->scsi3addr, scsi3addr, 8);
1571 memcpy(this_device->vendor, &inq_buff[8],
1572 sizeof(this_device->vendor));
1573 memcpy(this_device->model, &inq_buff[16],
1574 sizeof(this_device->model));
1575 memset(this_device->device_id, 0,
1576 sizeof(this_device->device_id));
1577 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1578 sizeof(this_device->device_id));
1580 if (this_device->devtype == TYPE_DISK &&
1581 is_logical_dev_addr_mode(scsi3addr))
1582 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1583 else
1584 this_device->raid_level = RAID_UNKNOWN;
1586 kfree(inq_buff);
1587 return 0;
1589 bail_out:
1590 kfree(inq_buff);
1591 return 1;
1594 static unsigned char *msa2xxx_model[] = {
1595 "MSA2012",
1596 "MSA2024",
1597 "MSA2312",
1598 "MSA2324",
1599 "P2000 G3 SAS",
1600 NULL,
1603 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1605 int i;
1607 for (i = 0; msa2xxx_model[i]; i++)
1608 if (strncmp(device->model, msa2xxx_model[i],
1609 strlen(msa2xxx_model[i])) == 0)
1610 return 1;
1611 return 0;
1614 /* Helper function to assign bus, target, lun mapping of devices.
1615 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1616 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1617 * Logical drive target and lun are assigned at this time, but
1618 * physical device lun and target assignment are deferred (assigned
1619 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1621 static void figure_bus_target_lun(struct ctlr_info *h,
1622 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1623 struct hpsa_scsi_dev_t *device)
1625 u32 lunid;
1627 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1628 /* logical device */
1629 if (unlikely(is_scsi_rev_5(h))) {
1630 /* p1210m, logical drives lun assignments
1631 * match SCSI REPORT LUNS data.
1633 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1634 *bus = 0;
1635 *target = 0;
1636 *lun = (lunid & 0x3fff) + 1;
1637 } else {
1638 /* not p1210m... */
1639 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1640 if (is_msa2xxx(h, device)) {
1641 /* msa2xxx way, put logicals on bus 1
1642 * and match target/lun numbers box
1643 * reports.
1645 *bus = 1;
1646 *target = (lunid >> 16) & 0x3fff;
1647 *lun = lunid & 0x00ff;
1648 } else {
1649 /* Traditional smart array way. */
1650 *bus = 0;
1651 *lun = 0;
1652 *target = lunid & 0x3fff;
1655 } else {
1656 /* physical device */
1657 if (is_hba_lunid(lunaddrbytes))
1658 if (unlikely(is_scsi_rev_5(h))) {
1659 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1660 *target = 0;
1661 *lun = 0;
1662 return;
1663 } else
1664 *bus = 3; /* traditional smartarray */
1665 else
1666 *bus = 2; /* physical disk */
1667 *target = -1;
1668 *lun = -1; /* we will fill these in later. */
1673 * If there is no lun 0 on a target, linux won't find any devices.
1674 * For the MSA2xxx boxes, we have to manually detect the enclosure
1675 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1676 * it for some reason. *tmpdevice is the target we're adding,
1677 * this_device is a pointer into the current element of currentsd[]
1678 * that we're building up in update_scsi_devices(), below.
1679 * lunzerobits is a bitmap that tracks which targets already have a
1680 * lun 0 assigned.
1681 * Returns 1 if an enclosure was added, 0 if not.
1683 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1684 struct hpsa_scsi_dev_t *tmpdevice,
1685 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1686 int bus, int target, int lun, unsigned long lunzerobits[],
1687 int *nmsa2xxx_enclosures)
1689 unsigned char scsi3addr[8];
1691 if (test_bit(target, lunzerobits))
1692 return 0; /* There is already a lun 0 on this target. */
1694 if (!is_logical_dev_addr_mode(lunaddrbytes))
1695 return 0; /* It's the logical targets that may lack lun 0. */
1697 if (!is_msa2xxx(h, tmpdevice))
1698 return 0; /* It's only the MSA2xxx that have this problem. */
1700 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1701 return 0;
1703 memset(scsi3addr, 0, 8);
1704 scsi3addr[3] = target;
1705 if (is_hba_lunid(scsi3addr))
1706 return 0; /* Don't add the RAID controller here. */
1708 if (is_scsi_rev_5(h))
1709 return 0; /* p1210m doesn't need to do this. */
1711 #define MAX_MSA2XXX_ENCLOSURES 32
1712 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1713 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1714 "enclosures exceeded. Check your hardware "
1715 "configuration.");
1716 return 0;
1719 if (hpsa_update_device_info(h, scsi3addr, this_device))
1720 return 0;
1721 (*nmsa2xxx_enclosures)++;
1722 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1723 set_bit(target, lunzerobits);
1724 return 1;
1728 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1729 * logdev. The number of luns in physdev and logdev are returned in
1730 * *nphysicals and *nlogicals, respectively.
1731 * Returns 0 on success, -1 otherwise.
1733 static int hpsa_gather_lun_info(struct ctlr_info *h,
1734 int reportlunsize,
1735 struct ReportLUNdata *physdev, u32 *nphysicals,
1736 struct ReportLUNdata *logdev, u32 *nlogicals)
1738 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1739 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1740 return -1;
1742 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1743 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1744 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1745 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1746 *nphysicals - HPSA_MAX_PHYS_LUN);
1747 *nphysicals = HPSA_MAX_PHYS_LUN;
1749 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1750 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1751 return -1;
1753 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1754 /* Reject Logicals in excess of our max capability. */
1755 if (*nlogicals > HPSA_MAX_LUN) {
1756 dev_warn(&h->pdev->dev,
1757 "maximum logical LUNs (%d) exceeded. "
1758 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1759 *nlogicals - HPSA_MAX_LUN);
1760 *nlogicals = HPSA_MAX_LUN;
1762 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1763 dev_warn(&h->pdev->dev,
1764 "maximum logical + physical LUNs (%d) exceeded. "
1765 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1766 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1767 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1769 return 0;
1772 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1773 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1774 struct ReportLUNdata *logdev_list)
1776 /* Helper function, figure out where the LUN ID info is coming from
1777 * given index i, lists of physical and logical devices, where in
1778 * the list the raid controller is supposed to appear (first or last)
1781 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1782 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1784 if (i == raid_ctlr_position)
1785 return RAID_CTLR_LUNID;
1787 if (i < logicals_start)
1788 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1790 if (i < last_device)
1791 return &logdev_list->LUN[i - nphysicals -
1792 (raid_ctlr_position == 0)][0];
1793 BUG();
1794 return NULL;
1797 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1799 /* the idea here is we could get notified
1800 * that some devices have changed, so we do a report
1801 * physical luns and report logical luns cmd, and adjust
1802 * our list of devices accordingly.
1804 * The scsi3addr's of devices won't change so long as the
1805 * adapter is not reset. That means we can rescan and
1806 * tell which devices we already know about, vs. new
1807 * devices, vs. disappearing devices.
1809 struct ReportLUNdata *physdev_list = NULL;
1810 struct ReportLUNdata *logdev_list = NULL;
1811 unsigned char *inq_buff = NULL;
1812 u32 nphysicals = 0;
1813 u32 nlogicals = 0;
1814 u32 ndev_allocated = 0;
1815 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1816 int ncurrent = 0;
1817 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1818 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1819 int bus, target, lun;
1820 int raid_ctlr_position;
1821 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1823 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1824 GFP_KERNEL);
1825 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1826 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1827 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1828 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1830 if (!currentsd || !physdev_list || !logdev_list ||
1831 !inq_buff || !tmpdevice) {
1832 dev_err(&h->pdev->dev, "out of memory\n");
1833 goto out;
1835 memset(lunzerobits, 0, sizeof(lunzerobits));
1837 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1838 logdev_list, &nlogicals))
1839 goto out;
1841 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1842 * but each of them 4 times through different paths. The plus 1
1843 * is for the RAID controller.
1845 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1847 /* Allocate the per device structures */
1848 for (i = 0; i < ndevs_to_allocate; i++) {
1849 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1850 if (!currentsd[i]) {
1851 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1852 __FILE__, __LINE__);
1853 goto out;
1855 ndev_allocated++;
1858 if (unlikely(is_scsi_rev_5(h)))
1859 raid_ctlr_position = 0;
1860 else
1861 raid_ctlr_position = nphysicals + nlogicals;
1863 /* adjust our table of devices */
1864 nmsa2xxx_enclosures = 0;
1865 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1866 u8 *lunaddrbytes;
1868 /* Figure out where the LUN ID info is coming from */
1869 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1870 i, nphysicals, nlogicals, physdev_list, logdev_list);
1871 /* skip masked physical devices. */
1872 if (lunaddrbytes[3] & 0xC0 &&
1873 i < nphysicals + (raid_ctlr_position == 0))
1874 continue;
1876 /* Get device type, vendor, model, device id */
1877 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1878 continue; /* skip it if we can't talk to it. */
1879 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1880 tmpdevice);
1881 this_device = currentsd[ncurrent];
1884 * For the msa2xxx boxes, we have to insert a LUN 0 which
1885 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1886 * is nonetheless an enclosure device there. We have to
1887 * present that otherwise linux won't find anything if
1888 * there is no lun 0.
1890 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1891 lunaddrbytes, bus, target, lun, lunzerobits,
1892 &nmsa2xxx_enclosures)) {
1893 ncurrent++;
1894 this_device = currentsd[ncurrent];
1897 *this_device = *tmpdevice;
1898 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1900 switch (this_device->devtype) {
1901 case TYPE_ROM: {
1902 /* We don't *really* support actual CD-ROM devices,
1903 * just "One Button Disaster Recovery" tape drive
1904 * which temporarily pretends to be a CD-ROM drive.
1905 * So we check that the device is really an OBDR tape
1906 * device by checking for "$DR-10" in bytes 43-48 of
1907 * the inquiry data.
1909 char obdr_sig[7];
1910 #define OBDR_TAPE_SIG "$DR-10"
1911 strncpy(obdr_sig, &inq_buff[43], 6);
1912 obdr_sig[6] = '\0';
1913 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1914 /* Not OBDR device, ignore it. */
1915 break;
1917 ncurrent++;
1918 break;
1919 case TYPE_DISK:
1920 if (i < nphysicals)
1921 break;
1922 ncurrent++;
1923 break;
1924 case TYPE_TAPE:
1925 case TYPE_MEDIUM_CHANGER:
1926 ncurrent++;
1927 break;
1928 case TYPE_RAID:
1929 /* Only present the Smartarray HBA as a RAID controller.
1930 * If it's a RAID controller other than the HBA itself
1931 * (an external RAID controller, MSA500 or similar)
1932 * don't present it.
1934 if (!is_hba_lunid(lunaddrbytes))
1935 break;
1936 ncurrent++;
1937 break;
1938 default:
1939 break;
1941 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1942 break;
1944 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1945 out:
1946 kfree(tmpdevice);
1947 for (i = 0; i < ndev_allocated; i++)
1948 kfree(currentsd[i]);
1949 kfree(currentsd);
1950 kfree(inq_buff);
1951 kfree(physdev_list);
1952 kfree(logdev_list);
1955 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1956 * dma mapping and fills in the scatter gather entries of the
1957 * hpsa command, cp.
1959 static int hpsa_scatter_gather(struct ctlr_info *h,
1960 struct CommandList *cp,
1961 struct scsi_cmnd *cmd)
1963 unsigned int len;
1964 struct scatterlist *sg;
1965 u64 addr64;
1966 int use_sg, i, sg_index, chained;
1967 struct SGDescriptor *curr_sg;
1969 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1971 use_sg = scsi_dma_map(cmd);
1972 if (use_sg < 0)
1973 return use_sg;
1975 if (!use_sg)
1976 goto sglist_finished;
1978 curr_sg = cp->SG;
1979 chained = 0;
1980 sg_index = 0;
1981 scsi_for_each_sg(cmd, sg, use_sg, i) {
1982 if (i == h->max_cmd_sg_entries - 1 &&
1983 use_sg > h->max_cmd_sg_entries) {
1984 chained = 1;
1985 curr_sg = h->cmd_sg_list[cp->cmdindex];
1986 sg_index = 0;
1988 addr64 = (u64) sg_dma_address(sg);
1989 len = sg_dma_len(sg);
1990 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1991 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1992 curr_sg->Len = len;
1993 curr_sg->Ext = 0; /* we are not chaining */
1994 curr_sg++;
1997 if (use_sg + chained > h->maxSG)
1998 h->maxSG = use_sg + chained;
2000 if (chained) {
2001 cp->Header.SGList = h->max_cmd_sg_entries;
2002 cp->Header.SGTotal = (u16) (use_sg + 1);
2003 hpsa_map_sg_chain_block(h, cp);
2004 return 0;
2007 sglist_finished:
2009 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2010 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2011 return 0;
2015 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2016 void (*done)(struct scsi_cmnd *))
2018 struct ctlr_info *h;
2019 struct hpsa_scsi_dev_t *dev;
2020 unsigned char scsi3addr[8];
2021 struct CommandList *c;
2022 unsigned long flags;
2024 /* Get the ptr to our adapter structure out of cmd->host. */
2025 h = sdev_to_hba(cmd->device);
2026 dev = cmd->device->hostdata;
2027 if (!dev) {
2028 cmd->result = DID_NO_CONNECT << 16;
2029 done(cmd);
2030 return 0;
2032 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2034 /* Need a lock as this is being allocated from the pool */
2035 spin_lock_irqsave(&h->lock, flags);
2036 c = cmd_alloc(h);
2037 spin_unlock_irqrestore(&h->lock, flags);
2038 if (c == NULL) { /* trouble... */
2039 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2040 return SCSI_MLQUEUE_HOST_BUSY;
2043 /* Fill in the command list header */
2045 cmd->scsi_done = done; /* save this for use by completion code */
2047 /* save c in case we have to abort it */
2048 cmd->host_scribble = (unsigned char *) c;
2050 c->cmd_type = CMD_SCSI;
2051 c->scsi_cmd = cmd;
2052 c->Header.ReplyQueue = 0; /* unused in simple mode */
2053 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2054 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2055 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2057 /* Fill in the request block... */
2059 c->Request.Timeout = 0;
2060 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2061 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2062 c->Request.CDBLen = cmd->cmd_len;
2063 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2064 c->Request.Type.Type = TYPE_CMD;
2065 c->Request.Type.Attribute = ATTR_SIMPLE;
2066 switch (cmd->sc_data_direction) {
2067 case DMA_TO_DEVICE:
2068 c->Request.Type.Direction = XFER_WRITE;
2069 break;
2070 case DMA_FROM_DEVICE:
2071 c->Request.Type.Direction = XFER_READ;
2072 break;
2073 case DMA_NONE:
2074 c->Request.Type.Direction = XFER_NONE;
2075 break;
2076 case DMA_BIDIRECTIONAL:
2077 /* This can happen if a buggy application does a scsi passthru
2078 * and sets both inlen and outlen to non-zero. ( see
2079 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2082 c->Request.Type.Direction = XFER_RSVD;
2083 /* This is technically wrong, and hpsa controllers should
2084 * reject it with CMD_INVALID, which is the most correct
2085 * response, but non-fibre backends appear to let it
2086 * slide by, and give the same results as if this field
2087 * were set correctly. Either way is acceptable for
2088 * our purposes here.
2091 break;
2093 default:
2094 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2095 cmd->sc_data_direction);
2096 BUG();
2097 break;
2100 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2101 cmd_free(h, c);
2102 return SCSI_MLQUEUE_HOST_BUSY;
2104 enqueue_cmd_and_start_io(h, c);
2105 /* the cmd'll come back via intr handler in complete_scsi_command() */
2106 return 0;
2109 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2111 static void hpsa_scan_start(struct Scsi_Host *sh)
2113 struct ctlr_info *h = shost_to_hba(sh);
2114 unsigned long flags;
2116 /* wait until any scan already in progress is finished. */
2117 while (1) {
2118 spin_lock_irqsave(&h->scan_lock, flags);
2119 if (h->scan_finished)
2120 break;
2121 spin_unlock_irqrestore(&h->scan_lock, flags);
2122 wait_event(h->scan_wait_queue, h->scan_finished);
2123 /* Note: We don't need to worry about a race between this
2124 * thread and driver unload because the midlayer will
2125 * have incremented the reference count, so unload won't
2126 * happen if we're in here.
2129 h->scan_finished = 0; /* mark scan as in progress */
2130 spin_unlock_irqrestore(&h->scan_lock, flags);
2132 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2134 spin_lock_irqsave(&h->scan_lock, flags);
2135 h->scan_finished = 1; /* mark scan as finished. */
2136 wake_up_all(&h->scan_wait_queue);
2137 spin_unlock_irqrestore(&h->scan_lock, flags);
2140 static int hpsa_scan_finished(struct Scsi_Host *sh,
2141 unsigned long elapsed_time)
2143 struct ctlr_info *h = shost_to_hba(sh);
2144 unsigned long flags;
2145 int finished;
2147 spin_lock_irqsave(&h->scan_lock, flags);
2148 finished = h->scan_finished;
2149 spin_unlock_irqrestore(&h->scan_lock, flags);
2150 return finished;
2153 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2154 int qdepth, int reason)
2156 struct ctlr_info *h = sdev_to_hba(sdev);
2158 if (reason != SCSI_QDEPTH_DEFAULT)
2159 return -ENOTSUPP;
2161 if (qdepth < 1)
2162 qdepth = 1;
2163 else
2164 if (qdepth > h->nr_cmds)
2165 qdepth = h->nr_cmds;
2166 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2167 return sdev->queue_depth;
2170 static void hpsa_unregister_scsi(struct ctlr_info *h)
2172 /* we are being forcibly unloaded, and may not refuse. */
2173 scsi_remove_host(h->scsi_host);
2174 scsi_host_put(h->scsi_host);
2175 h->scsi_host = NULL;
2178 static int hpsa_register_scsi(struct ctlr_info *h)
2180 int rc;
2182 rc = hpsa_scsi_detect(h);
2183 if (rc != 0)
2184 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2185 " hpsa_scsi_detect(), rc is %d\n", rc);
2186 return rc;
2189 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2190 unsigned char lunaddr[])
2192 int rc = 0;
2193 int count = 0;
2194 int waittime = 1; /* seconds */
2195 struct CommandList *c;
2197 c = cmd_special_alloc(h);
2198 if (!c) {
2199 dev_warn(&h->pdev->dev, "out of memory in "
2200 "wait_for_device_to_become_ready.\n");
2201 return IO_ERROR;
2204 /* Send test unit ready until device ready, or give up. */
2205 while (count < HPSA_TUR_RETRY_LIMIT) {
2207 /* Wait for a bit. do this first, because if we send
2208 * the TUR right away, the reset will just abort it.
2210 msleep(1000 * waittime);
2211 count++;
2213 /* Increase wait time with each try, up to a point. */
2214 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2215 waittime = waittime * 2;
2217 /* Send the Test Unit Ready */
2218 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2219 hpsa_scsi_do_simple_cmd_core(h, c);
2220 /* no unmap needed here because no data xfer. */
2222 if (c->err_info->CommandStatus == CMD_SUCCESS)
2223 break;
2225 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2226 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2227 (c->err_info->SenseInfo[2] == NO_SENSE ||
2228 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2229 break;
2231 dev_warn(&h->pdev->dev, "waiting %d secs "
2232 "for device to become ready.\n", waittime);
2233 rc = 1; /* device not ready. */
2236 if (rc)
2237 dev_warn(&h->pdev->dev, "giving up on device.\n");
2238 else
2239 dev_warn(&h->pdev->dev, "device is ready.\n");
2241 cmd_special_free(h, c);
2242 return rc;
2245 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2246 * complaining. Doing a host- or bus-reset can't do anything good here.
2248 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2250 int rc;
2251 struct ctlr_info *h;
2252 struct hpsa_scsi_dev_t *dev;
2254 /* find the controller to which the command to be aborted was sent */
2255 h = sdev_to_hba(scsicmd->device);
2256 if (h == NULL) /* paranoia */
2257 return FAILED;
2258 dev = scsicmd->device->hostdata;
2259 if (!dev) {
2260 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2261 "device lookup failed.\n");
2262 return FAILED;
2264 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2265 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2266 /* send a reset to the SCSI LUN which the command was sent to */
2267 rc = hpsa_send_reset(h, dev->scsi3addr);
2268 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2269 return SUCCESS;
2271 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2272 return FAILED;
2276 * For operations that cannot sleep, a command block is allocated at init,
2277 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2278 * which ones are free or in use. Lock must be held when calling this.
2279 * cmd_free() is the complement.
2281 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2283 struct CommandList *c;
2284 int i;
2285 union u64bit temp64;
2286 dma_addr_t cmd_dma_handle, err_dma_handle;
2288 do {
2289 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2290 if (i == h->nr_cmds)
2291 return NULL;
2292 } while (test_and_set_bit
2293 (i & (BITS_PER_LONG - 1),
2294 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2295 c = h->cmd_pool + i;
2296 memset(c, 0, sizeof(*c));
2297 cmd_dma_handle = h->cmd_pool_dhandle
2298 + i * sizeof(*c);
2299 c->err_info = h->errinfo_pool + i;
2300 memset(c->err_info, 0, sizeof(*c->err_info));
2301 err_dma_handle = h->errinfo_pool_dhandle
2302 + i * sizeof(*c->err_info);
2303 h->nr_allocs++;
2305 c->cmdindex = i;
2307 INIT_LIST_HEAD(&c->list);
2308 c->busaddr = (u32) cmd_dma_handle;
2309 temp64.val = (u64) err_dma_handle;
2310 c->ErrDesc.Addr.lower = temp64.val32.lower;
2311 c->ErrDesc.Addr.upper = temp64.val32.upper;
2312 c->ErrDesc.Len = sizeof(*c->err_info);
2314 c->h = h;
2315 return c;
2318 /* For operations that can wait for kmalloc to possibly sleep,
2319 * this routine can be called. Lock need not be held to call
2320 * cmd_special_alloc. cmd_special_free() is the complement.
2322 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2324 struct CommandList *c;
2325 union u64bit temp64;
2326 dma_addr_t cmd_dma_handle, err_dma_handle;
2328 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2329 if (c == NULL)
2330 return NULL;
2331 memset(c, 0, sizeof(*c));
2333 c->cmdindex = -1;
2335 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2336 &err_dma_handle);
2338 if (c->err_info == NULL) {
2339 pci_free_consistent(h->pdev,
2340 sizeof(*c), c, cmd_dma_handle);
2341 return NULL;
2343 memset(c->err_info, 0, sizeof(*c->err_info));
2345 INIT_LIST_HEAD(&c->list);
2346 c->busaddr = (u32) cmd_dma_handle;
2347 temp64.val = (u64) err_dma_handle;
2348 c->ErrDesc.Addr.lower = temp64.val32.lower;
2349 c->ErrDesc.Addr.upper = temp64.val32.upper;
2350 c->ErrDesc.Len = sizeof(*c->err_info);
2352 c->h = h;
2353 return c;
2356 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2358 int i;
2360 i = c - h->cmd_pool;
2361 clear_bit(i & (BITS_PER_LONG - 1),
2362 h->cmd_pool_bits + (i / BITS_PER_LONG));
2363 h->nr_frees++;
2366 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2368 union u64bit temp64;
2370 temp64.val32.lower = c->ErrDesc.Addr.lower;
2371 temp64.val32.upper = c->ErrDesc.Addr.upper;
2372 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2373 c->err_info, (dma_addr_t) temp64.val);
2374 pci_free_consistent(h->pdev, sizeof(*c),
2375 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2378 #ifdef CONFIG_COMPAT
2380 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2382 IOCTL32_Command_struct __user *arg32 =
2383 (IOCTL32_Command_struct __user *) arg;
2384 IOCTL_Command_struct arg64;
2385 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2386 int err;
2387 u32 cp;
2389 memset(&arg64, 0, sizeof(arg64));
2390 err = 0;
2391 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2392 sizeof(arg64.LUN_info));
2393 err |= copy_from_user(&arg64.Request, &arg32->Request,
2394 sizeof(arg64.Request));
2395 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2396 sizeof(arg64.error_info));
2397 err |= get_user(arg64.buf_size, &arg32->buf_size);
2398 err |= get_user(cp, &arg32->buf);
2399 arg64.buf = compat_ptr(cp);
2400 err |= copy_to_user(p, &arg64, sizeof(arg64));
2402 if (err)
2403 return -EFAULT;
2405 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2406 if (err)
2407 return err;
2408 err |= copy_in_user(&arg32->error_info, &p->error_info,
2409 sizeof(arg32->error_info));
2410 if (err)
2411 return -EFAULT;
2412 return err;
2415 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2416 int cmd, void *arg)
2418 BIG_IOCTL32_Command_struct __user *arg32 =
2419 (BIG_IOCTL32_Command_struct __user *) arg;
2420 BIG_IOCTL_Command_struct arg64;
2421 BIG_IOCTL_Command_struct __user *p =
2422 compat_alloc_user_space(sizeof(arg64));
2423 int err;
2424 u32 cp;
2426 memset(&arg64, 0, sizeof(arg64));
2427 err = 0;
2428 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2429 sizeof(arg64.LUN_info));
2430 err |= copy_from_user(&arg64.Request, &arg32->Request,
2431 sizeof(arg64.Request));
2432 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2433 sizeof(arg64.error_info));
2434 err |= get_user(arg64.buf_size, &arg32->buf_size);
2435 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2436 err |= get_user(cp, &arg32->buf);
2437 arg64.buf = compat_ptr(cp);
2438 err |= copy_to_user(p, &arg64, sizeof(arg64));
2440 if (err)
2441 return -EFAULT;
2443 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2444 if (err)
2445 return err;
2446 err |= copy_in_user(&arg32->error_info, &p->error_info,
2447 sizeof(arg32->error_info));
2448 if (err)
2449 return -EFAULT;
2450 return err;
2453 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2455 switch (cmd) {
2456 case CCISS_GETPCIINFO:
2457 case CCISS_GETINTINFO:
2458 case CCISS_SETINTINFO:
2459 case CCISS_GETNODENAME:
2460 case CCISS_SETNODENAME:
2461 case CCISS_GETHEARTBEAT:
2462 case CCISS_GETBUSTYPES:
2463 case CCISS_GETFIRMVER:
2464 case CCISS_GETDRIVVER:
2465 case CCISS_REVALIDVOLS:
2466 case CCISS_DEREGDISK:
2467 case CCISS_REGNEWDISK:
2468 case CCISS_REGNEWD:
2469 case CCISS_RESCANDISK:
2470 case CCISS_GETLUNINFO:
2471 return hpsa_ioctl(dev, cmd, arg);
2473 case CCISS_PASSTHRU32:
2474 return hpsa_ioctl32_passthru(dev, cmd, arg);
2475 case CCISS_BIG_PASSTHRU32:
2476 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2478 default:
2479 return -ENOIOCTLCMD;
2482 #endif
2484 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2486 struct hpsa_pci_info pciinfo;
2488 if (!argp)
2489 return -EINVAL;
2490 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2491 pciinfo.bus = h->pdev->bus->number;
2492 pciinfo.dev_fn = h->pdev->devfn;
2493 pciinfo.board_id = h->board_id;
2494 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2495 return -EFAULT;
2496 return 0;
2499 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2501 DriverVer_type DriverVer;
2502 unsigned char vmaj, vmin, vsubmin;
2503 int rc;
2505 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2506 &vmaj, &vmin, &vsubmin);
2507 if (rc != 3) {
2508 dev_info(&h->pdev->dev, "driver version string '%s' "
2509 "unrecognized.", HPSA_DRIVER_VERSION);
2510 vmaj = 0;
2511 vmin = 0;
2512 vsubmin = 0;
2514 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2515 if (!argp)
2516 return -EINVAL;
2517 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2518 return -EFAULT;
2519 return 0;
2522 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2524 IOCTL_Command_struct iocommand;
2525 struct CommandList *c;
2526 char *buff = NULL;
2527 union u64bit temp64;
2529 if (!argp)
2530 return -EINVAL;
2531 if (!capable(CAP_SYS_RAWIO))
2532 return -EPERM;
2533 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2534 return -EFAULT;
2535 if ((iocommand.buf_size < 1) &&
2536 (iocommand.Request.Type.Direction != XFER_NONE)) {
2537 return -EINVAL;
2539 if (iocommand.buf_size > 0) {
2540 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2541 if (buff == NULL)
2542 return -EFAULT;
2543 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2544 /* Copy the data into the buffer we created */
2545 if (copy_from_user(buff, iocommand.buf,
2546 iocommand.buf_size)) {
2547 kfree(buff);
2548 return -EFAULT;
2550 } else {
2551 memset(buff, 0, iocommand.buf_size);
2554 c = cmd_special_alloc(h);
2555 if (c == NULL) {
2556 kfree(buff);
2557 return -ENOMEM;
2559 /* Fill in the command type */
2560 c->cmd_type = CMD_IOCTL_PEND;
2561 /* Fill in Command Header */
2562 c->Header.ReplyQueue = 0; /* unused in simple mode */
2563 if (iocommand.buf_size > 0) { /* buffer to fill */
2564 c->Header.SGList = 1;
2565 c->Header.SGTotal = 1;
2566 } else { /* no buffers to fill */
2567 c->Header.SGList = 0;
2568 c->Header.SGTotal = 0;
2570 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2571 /* use the kernel address the cmd block for tag */
2572 c->Header.Tag.lower = c->busaddr;
2574 /* Fill in Request block */
2575 memcpy(&c->Request, &iocommand.Request,
2576 sizeof(c->Request));
2578 /* Fill in the scatter gather information */
2579 if (iocommand.buf_size > 0) {
2580 temp64.val = pci_map_single(h->pdev, buff,
2581 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2582 c->SG[0].Addr.lower = temp64.val32.lower;
2583 c->SG[0].Addr.upper = temp64.val32.upper;
2584 c->SG[0].Len = iocommand.buf_size;
2585 c->SG[0].Ext = 0; /* we are not chaining*/
2587 hpsa_scsi_do_simple_cmd_core(h, c);
2588 if (iocommand.buf_size > 0)
2589 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2590 check_ioctl_unit_attention(h, c);
2592 /* Copy the error information out */
2593 memcpy(&iocommand.error_info, c->err_info,
2594 sizeof(iocommand.error_info));
2595 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2596 kfree(buff);
2597 cmd_special_free(h, c);
2598 return -EFAULT;
2600 if (iocommand.Request.Type.Direction == XFER_READ &&
2601 iocommand.buf_size > 0) {
2602 /* Copy the data out of the buffer we created */
2603 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2604 kfree(buff);
2605 cmd_special_free(h, c);
2606 return -EFAULT;
2609 kfree(buff);
2610 cmd_special_free(h, c);
2611 return 0;
2614 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2616 BIG_IOCTL_Command_struct *ioc;
2617 struct CommandList *c;
2618 unsigned char **buff = NULL;
2619 int *buff_size = NULL;
2620 union u64bit temp64;
2621 BYTE sg_used = 0;
2622 int status = 0;
2623 int i;
2624 u32 left;
2625 u32 sz;
2626 BYTE __user *data_ptr;
2628 if (!argp)
2629 return -EINVAL;
2630 if (!capable(CAP_SYS_RAWIO))
2631 return -EPERM;
2632 ioc = (BIG_IOCTL_Command_struct *)
2633 kmalloc(sizeof(*ioc), GFP_KERNEL);
2634 if (!ioc) {
2635 status = -ENOMEM;
2636 goto cleanup1;
2638 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2639 status = -EFAULT;
2640 goto cleanup1;
2642 if ((ioc->buf_size < 1) &&
2643 (ioc->Request.Type.Direction != XFER_NONE)) {
2644 status = -EINVAL;
2645 goto cleanup1;
2647 /* Check kmalloc limits using all SGs */
2648 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2649 status = -EINVAL;
2650 goto cleanup1;
2652 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2653 status = -EINVAL;
2654 goto cleanup1;
2656 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2657 if (!buff) {
2658 status = -ENOMEM;
2659 goto cleanup1;
2661 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2662 if (!buff_size) {
2663 status = -ENOMEM;
2664 goto cleanup1;
2666 left = ioc->buf_size;
2667 data_ptr = ioc->buf;
2668 while (left) {
2669 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2670 buff_size[sg_used] = sz;
2671 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2672 if (buff[sg_used] == NULL) {
2673 status = -ENOMEM;
2674 goto cleanup1;
2676 if (ioc->Request.Type.Direction == XFER_WRITE) {
2677 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2678 status = -ENOMEM;
2679 goto cleanup1;
2681 } else
2682 memset(buff[sg_used], 0, sz);
2683 left -= sz;
2684 data_ptr += sz;
2685 sg_used++;
2687 c = cmd_special_alloc(h);
2688 if (c == NULL) {
2689 status = -ENOMEM;
2690 goto cleanup1;
2692 c->cmd_type = CMD_IOCTL_PEND;
2693 c->Header.ReplyQueue = 0;
2694 c->Header.SGList = c->Header.SGTotal = sg_used;
2695 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2696 c->Header.Tag.lower = c->busaddr;
2697 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2698 if (ioc->buf_size > 0) {
2699 int i;
2700 for (i = 0; i < sg_used; i++) {
2701 temp64.val = pci_map_single(h->pdev, buff[i],
2702 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2703 c->SG[i].Addr.lower = temp64.val32.lower;
2704 c->SG[i].Addr.upper = temp64.val32.upper;
2705 c->SG[i].Len = buff_size[i];
2706 /* we are not chaining */
2707 c->SG[i].Ext = 0;
2710 hpsa_scsi_do_simple_cmd_core(h, c);
2711 if (sg_used)
2712 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2713 check_ioctl_unit_attention(h, c);
2714 /* Copy the error information out */
2715 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2716 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2717 cmd_special_free(h, c);
2718 status = -EFAULT;
2719 goto cleanup1;
2721 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2722 /* Copy the data out of the buffer we created */
2723 BYTE __user *ptr = ioc->buf;
2724 for (i = 0; i < sg_used; i++) {
2725 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2726 cmd_special_free(h, c);
2727 status = -EFAULT;
2728 goto cleanup1;
2730 ptr += buff_size[i];
2733 cmd_special_free(h, c);
2734 status = 0;
2735 cleanup1:
2736 if (buff) {
2737 for (i = 0; i < sg_used; i++)
2738 kfree(buff[i]);
2739 kfree(buff);
2741 kfree(buff_size);
2742 kfree(ioc);
2743 return status;
2746 static void check_ioctl_unit_attention(struct ctlr_info *h,
2747 struct CommandList *c)
2749 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2750 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2751 (void) check_for_unit_attention(h, c);
2754 * ioctl
2756 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2758 struct ctlr_info *h;
2759 void __user *argp = (void __user *)arg;
2761 h = sdev_to_hba(dev);
2763 switch (cmd) {
2764 case CCISS_DEREGDISK:
2765 case CCISS_REGNEWDISK:
2766 case CCISS_REGNEWD:
2767 hpsa_scan_start(h->scsi_host);
2768 return 0;
2769 case CCISS_GETPCIINFO:
2770 return hpsa_getpciinfo_ioctl(h, argp);
2771 case CCISS_GETDRIVVER:
2772 return hpsa_getdrivver_ioctl(h, argp);
2773 case CCISS_PASSTHRU:
2774 return hpsa_passthru_ioctl(h, argp);
2775 case CCISS_BIG_PASSTHRU:
2776 return hpsa_big_passthru_ioctl(h, argp);
2777 default:
2778 return -ENOTTY;
2782 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2783 unsigned char *scsi3addr, u8 reset_type)
2785 struct CommandList *c;
2787 c = cmd_alloc(h);
2788 if (!c)
2789 return -ENOMEM;
2790 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2791 RAID_CTLR_LUNID, TYPE_MSG);
2792 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2793 c->waiting = NULL;
2794 enqueue_cmd_and_start_io(h, c);
2795 /* Don't wait for completion, the reset won't complete. Don't free
2796 * the command either. This is the last command we will send before
2797 * re-initializing everything, so it doesn't matter and won't leak.
2799 return 0;
2802 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2803 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2804 int cmd_type)
2806 int pci_dir = XFER_NONE;
2808 c->cmd_type = CMD_IOCTL_PEND;
2809 c->Header.ReplyQueue = 0;
2810 if (buff != NULL && size > 0) {
2811 c->Header.SGList = 1;
2812 c->Header.SGTotal = 1;
2813 } else {
2814 c->Header.SGList = 0;
2815 c->Header.SGTotal = 0;
2817 c->Header.Tag.lower = c->busaddr;
2818 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2820 c->Request.Type.Type = cmd_type;
2821 if (cmd_type == TYPE_CMD) {
2822 switch (cmd) {
2823 case HPSA_INQUIRY:
2824 /* are we trying to read a vital product page */
2825 if (page_code != 0) {
2826 c->Request.CDB[1] = 0x01;
2827 c->Request.CDB[2] = page_code;
2829 c->Request.CDBLen = 6;
2830 c->Request.Type.Attribute = ATTR_SIMPLE;
2831 c->Request.Type.Direction = XFER_READ;
2832 c->Request.Timeout = 0;
2833 c->Request.CDB[0] = HPSA_INQUIRY;
2834 c->Request.CDB[4] = size & 0xFF;
2835 break;
2836 case HPSA_REPORT_LOG:
2837 case HPSA_REPORT_PHYS:
2838 /* Talking to controller so It's a physical command
2839 mode = 00 target = 0. Nothing to write.
2841 c->Request.CDBLen = 12;
2842 c->Request.Type.Attribute = ATTR_SIMPLE;
2843 c->Request.Type.Direction = XFER_READ;
2844 c->Request.Timeout = 0;
2845 c->Request.CDB[0] = cmd;
2846 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2847 c->Request.CDB[7] = (size >> 16) & 0xFF;
2848 c->Request.CDB[8] = (size >> 8) & 0xFF;
2849 c->Request.CDB[9] = size & 0xFF;
2850 break;
2851 case HPSA_CACHE_FLUSH:
2852 c->Request.CDBLen = 12;
2853 c->Request.Type.Attribute = ATTR_SIMPLE;
2854 c->Request.Type.Direction = XFER_WRITE;
2855 c->Request.Timeout = 0;
2856 c->Request.CDB[0] = BMIC_WRITE;
2857 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2858 break;
2859 case TEST_UNIT_READY:
2860 c->Request.CDBLen = 6;
2861 c->Request.Type.Attribute = ATTR_SIMPLE;
2862 c->Request.Type.Direction = XFER_NONE;
2863 c->Request.Timeout = 0;
2864 break;
2865 default:
2866 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2867 BUG();
2868 return;
2870 } else if (cmd_type == TYPE_MSG) {
2871 switch (cmd) {
2873 case HPSA_DEVICE_RESET_MSG:
2874 c->Request.CDBLen = 16;
2875 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2876 c->Request.Type.Attribute = ATTR_SIMPLE;
2877 c->Request.Type.Direction = XFER_NONE;
2878 c->Request.Timeout = 0; /* Don't time out */
2879 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2880 c->Request.CDB[0] = cmd;
2881 c->Request.CDB[1] = 0x03; /* Reset target above */
2882 /* If bytes 4-7 are zero, it means reset the */
2883 /* LunID device */
2884 c->Request.CDB[4] = 0x00;
2885 c->Request.CDB[5] = 0x00;
2886 c->Request.CDB[6] = 0x00;
2887 c->Request.CDB[7] = 0x00;
2888 break;
2890 default:
2891 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2892 cmd);
2893 BUG();
2895 } else {
2896 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2897 BUG();
2900 switch (c->Request.Type.Direction) {
2901 case XFER_READ:
2902 pci_dir = PCI_DMA_FROMDEVICE;
2903 break;
2904 case XFER_WRITE:
2905 pci_dir = PCI_DMA_TODEVICE;
2906 break;
2907 case XFER_NONE:
2908 pci_dir = PCI_DMA_NONE;
2909 break;
2910 default:
2911 pci_dir = PCI_DMA_BIDIRECTIONAL;
2914 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2916 return;
2920 * Map (physical) PCI mem into (virtual) kernel space
2922 static void __iomem *remap_pci_mem(ulong base, ulong size)
2924 ulong page_base = ((ulong) base) & PAGE_MASK;
2925 ulong page_offs = ((ulong) base) - page_base;
2926 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2928 return page_remapped ? (page_remapped + page_offs) : NULL;
2931 /* Takes cmds off the submission queue and sends them to the hardware,
2932 * then puts them on the queue of cmds waiting for completion.
2934 static void start_io(struct ctlr_info *h)
2936 struct CommandList *c;
2938 while (!list_empty(&h->reqQ)) {
2939 c = list_entry(h->reqQ.next, struct CommandList, list);
2940 /* can't do anything if fifo is full */
2941 if ((h->access.fifo_full(h))) {
2942 dev_warn(&h->pdev->dev, "fifo full\n");
2943 break;
2946 /* Get the first entry from the Request Q */
2947 removeQ(c);
2948 h->Qdepth--;
2950 /* Tell the controller execute command */
2951 h->access.submit_command(h, c);
2953 /* Put job onto the completed Q */
2954 addQ(&h->cmpQ, c);
2958 static inline unsigned long get_next_completion(struct ctlr_info *h)
2960 return h->access.command_completed(h);
2963 static inline bool interrupt_pending(struct ctlr_info *h)
2965 return h->access.intr_pending(h);
2968 static inline long interrupt_not_for_us(struct ctlr_info *h)
2970 return (h->access.intr_pending(h) == 0) ||
2971 (h->interrupts_enabled == 0);
2974 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2975 u32 raw_tag)
2977 if (unlikely(tag_index >= h->nr_cmds)) {
2978 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2979 return 1;
2981 return 0;
2984 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2986 removeQ(c);
2987 if (likely(c->cmd_type == CMD_SCSI))
2988 complete_scsi_command(c);
2989 else if (c->cmd_type == CMD_IOCTL_PEND)
2990 complete(c->waiting);
2993 static inline u32 hpsa_tag_contains_index(u32 tag)
2995 return tag & DIRECT_LOOKUP_BIT;
2998 static inline u32 hpsa_tag_to_index(u32 tag)
3000 return tag >> DIRECT_LOOKUP_SHIFT;
3004 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3006 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3007 #define HPSA_SIMPLE_ERROR_BITS 0x03
3008 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3009 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3010 return tag & ~HPSA_PERF_ERROR_BITS;
3013 /* process completion of an indexed ("direct lookup") command */
3014 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3015 u32 raw_tag)
3017 u32 tag_index;
3018 struct CommandList *c;
3020 tag_index = hpsa_tag_to_index(raw_tag);
3021 if (bad_tag(h, tag_index, raw_tag))
3022 return next_command(h);
3023 c = h->cmd_pool + tag_index;
3024 finish_cmd(c, raw_tag);
3025 return next_command(h);
3028 /* process completion of a non-indexed command */
3029 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3030 u32 raw_tag)
3032 u32 tag;
3033 struct CommandList *c = NULL;
3035 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3036 list_for_each_entry(c, &h->cmpQ, list) {
3037 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3038 finish_cmd(c, raw_tag);
3039 return next_command(h);
3042 bad_tag(h, h->nr_cmds + 1, raw_tag);
3043 return next_command(h);
3046 /* Some controllers, like p400, will give us one interrupt
3047 * after a soft reset, even if we turned interrupts off.
3048 * Only need to check for this in the hpsa_xxx_discard_completions
3049 * functions.
3051 static int ignore_bogus_interrupt(struct ctlr_info *h)
3053 if (likely(!reset_devices))
3054 return 0;
3056 if (likely(h->interrupts_enabled))
3057 return 0;
3059 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3060 "(known firmware bug.) Ignoring.\n");
3062 return 1;
3065 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3067 struct ctlr_info *h = dev_id;
3068 unsigned long flags;
3069 u32 raw_tag;
3071 if (ignore_bogus_interrupt(h))
3072 return IRQ_NONE;
3074 if (interrupt_not_for_us(h))
3075 return IRQ_NONE;
3076 spin_lock_irqsave(&h->lock, flags);
3077 while (interrupt_pending(h)) {
3078 raw_tag = get_next_completion(h);
3079 while (raw_tag != FIFO_EMPTY)
3080 raw_tag = next_command(h);
3082 spin_unlock_irqrestore(&h->lock, flags);
3083 return IRQ_HANDLED;
3086 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3088 struct ctlr_info *h = dev_id;
3089 unsigned long flags;
3090 u32 raw_tag;
3092 if (ignore_bogus_interrupt(h))
3093 return IRQ_NONE;
3095 spin_lock_irqsave(&h->lock, flags);
3096 raw_tag = get_next_completion(h);
3097 while (raw_tag != FIFO_EMPTY)
3098 raw_tag = next_command(h);
3099 spin_unlock_irqrestore(&h->lock, flags);
3100 return IRQ_HANDLED;
3103 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3105 struct ctlr_info *h = dev_id;
3106 unsigned long flags;
3107 u32 raw_tag;
3109 if (interrupt_not_for_us(h))
3110 return IRQ_NONE;
3111 spin_lock_irqsave(&h->lock, flags);
3112 while (interrupt_pending(h)) {
3113 raw_tag = get_next_completion(h);
3114 while (raw_tag != FIFO_EMPTY) {
3115 if (hpsa_tag_contains_index(raw_tag))
3116 raw_tag = process_indexed_cmd(h, raw_tag);
3117 else
3118 raw_tag = process_nonindexed_cmd(h, raw_tag);
3121 spin_unlock_irqrestore(&h->lock, flags);
3122 return IRQ_HANDLED;
3125 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3127 struct ctlr_info *h = dev_id;
3128 unsigned long flags;
3129 u32 raw_tag;
3131 spin_lock_irqsave(&h->lock, flags);
3132 raw_tag = get_next_completion(h);
3133 while (raw_tag != FIFO_EMPTY) {
3134 if (hpsa_tag_contains_index(raw_tag))
3135 raw_tag = process_indexed_cmd(h, raw_tag);
3136 else
3137 raw_tag = process_nonindexed_cmd(h, raw_tag);
3139 spin_unlock_irqrestore(&h->lock, flags);
3140 return IRQ_HANDLED;
3143 /* Send a message CDB to the firmware. Careful, this only works
3144 * in simple mode, not performant mode due to the tag lookup.
3145 * We only ever use this immediately after a controller reset.
3147 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3148 unsigned char type)
3150 struct Command {
3151 struct CommandListHeader CommandHeader;
3152 struct RequestBlock Request;
3153 struct ErrDescriptor ErrorDescriptor;
3155 struct Command *cmd;
3156 static const size_t cmd_sz = sizeof(*cmd) +
3157 sizeof(cmd->ErrorDescriptor);
3158 dma_addr_t paddr64;
3159 uint32_t paddr32, tag;
3160 void __iomem *vaddr;
3161 int i, err;
3163 vaddr = pci_ioremap_bar(pdev, 0);
3164 if (vaddr == NULL)
3165 return -ENOMEM;
3167 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3168 * CCISS commands, so they must be allocated from the lower 4GiB of
3169 * memory.
3171 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3172 if (err) {
3173 iounmap(vaddr);
3174 return -ENOMEM;
3177 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3178 if (cmd == NULL) {
3179 iounmap(vaddr);
3180 return -ENOMEM;
3183 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3184 * although there's no guarantee, we assume that the address is at
3185 * least 4-byte aligned (most likely, it's page-aligned).
3187 paddr32 = paddr64;
3189 cmd->CommandHeader.ReplyQueue = 0;
3190 cmd->CommandHeader.SGList = 0;
3191 cmd->CommandHeader.SGTotal = 0;
3192 cmd->CommandHeader.Tag.lower = paddr32;
3193 cmd->CommandHeader.Tag.upper = 0;
3194 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3196 cmd->Request.CDBLen = 16;
3197 cmd->Request.Type.Type = TYPE_MSG;
3198 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3199 cmd->Request.Type.Direction = XFER_NONE;
3200 cmd->Request.Timeout = 0; /* Don't time out */
3201 cmd->Request.CDB[0] = opcode;
3202 cmd->Request.CDB[1] = type;
3203 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3204 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3205 cmd->ErrorDescriptor.Addr.upper = 0;
3206 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3208 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3210 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3211 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3212 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3213 break;
3214 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3217 iounmap(vaddr);
3219 /* we leak the DMA buffer here ... no choice since the controller could
3220 * still complete the command.
3222 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3223 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3224 opcode, type);
3225 return -ETIMEDOUT;
3228 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3230 if (tag & HPSA_ERROR_BIT) {
3231 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3232 opcode, type);
3233 return -EIO;
3236 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3237 opcode, type);
3238 return 0;
3241 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3243 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3244 void * __iomem vaddr, u32 use_doorbell)
3246 u16 pmcsr;
3247 int pos;
3249 if (use_doorbell) {
3250 /* For everything after the P600, the PCI power state method
3251 * of resetting the controller doesn't work, so we have this
3252 * other way using the doorbell register.
3254 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3255 writel(use_doorbell, vaddr + SA5_DOORBELL);
3256 } else { /* Try to do it the PCI power state way */
3258 /* Quoting from the Open CISS Specification: "The Power
3259 * Management Control/Status Register (CSR) controls the power
3260 * state of the device. The normal operating state is D0,
3261 * CSR=00h. The software off state is D3, CSR=03h. To reset
3262 * the controller, place the interface device in D3 then to D0,
3263 * this causes a secondary PCI reset which will reset the
3264 * controller." */
3266 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3267 if (pos == 0) {
3268 dev_err(&pdev->dev,
3269 "hpsa_reset_controller: "
3270 "PCI PM not supported\n");
3271 return -ENODEV;
3273 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3274 /* enter the D3hot power management state */
3275 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3276 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3277 pmcsr |= PCI_D3hot;
3278 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3280 msleep(500);
3282 /* enter the D0 power management state */
3283 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3284 pmcsr |= PCI_D0;
3285 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3287 return 0;
3290 static __devinit void init_driver_version(char *driver_version, int len)
3292 memset(driver_version, 0, len);
3293 strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3296 static __devinit int write_driver_ver_to_cfgtable(
3297 struct CfgTable __iomem *cfgtable)
3299 char *driver_version;
3300 int i, size = sizeof(cfgtable->driver_version);
3302 driver_version = kmalloc(size, GFP_KERNEL);
3303 if (!driver_version)
3304 return -ENOMEM;
3306 init_driver_version(driver_version, size);
3307 for (i = 0; i < size; i++)
3308 writeb(driver_version[i], &cfgtable->driver_version[i]);
3309 kfree(driver_version);
3310 return 0;
3313 static __devinit void read_driver_ver_from_cfgtable(
3314 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3316 int i;
3318 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3319 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3322 static __devinit int controller_reset_failed(
3323 struct CfgTable __iomem *cfgtable)
3326 char *driver_ver, *old_driver_ver;
3327 int rc, size = sizeof(cfgtable->driver_version);
3329 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3330 if (!old_driver_ver)
3331 return -ENOMEM;
3332 driver_ver = old_driver_ver + size;
3334 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3335 * should have been changed, otherwise we know the reset failed.
3337 init_driver_version(old_driver_ver, size);
3338 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3339 rc = !memcmp(driver_ver, old_driver_ver, size);
3340 kfree(old_driver_ver);
3341 return rc;
3343 /* This does a hard reset of the controller using PCI power management
3344 * states or the using the doorbell register.
3346 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3348 u64 cfg_offset;
3349 u32 cfg_base_addr;
3350 u64 cfg_base_addr_index;
3351 void __iomem *vaddr;
3352 unsigned long paddr;
3353 u32 misc_fw_support;
3354 int rc;
3355 struct CfgTable __iomem *cfgtable;
3356 u32 use_doorbell;
3357 u32 board_id;
3358 u16 command_register;
3360 /* For controllers as old as the P600, this is very nearly
3361 * the same thing as
3363 * pci_save_state(pci_dev);
3364 * pci_set_power_state(pci_dev, PCI_D3hot);
3365 * pci_set_power_state(pci_dev, PCI_D0);
3366 * pci_restore_state(pci_dev);
3368 * For controllers newer than the P600, the pci power state
3369 * method of resetting doesn't work so we have another way
3370 * using the doorbell register.
3373 rc = hpsa_lookup_board_id(pdev, &board_id);
3374 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3375 dev_warn(&pdev->dev, "Not resetting device.\n");
3376 return -ENODEV;
3379 /* if controller is soft- but not hard resettable... */
3380 if (!ctlr_is_hard_resettable(board_id))
3381 return -ENOTSUPP; /* try soft reset later. */
3383 /* Save the PCI command register */
3384 pci_read_config_word(pdev, 4, &command_register);
3385 /* Turn the board off. This is so that later pci_restore_state()
3386 * won't turn the board on before the rest of config space is ready.
3388 pci_disable_device(pdev);
3389 pci_save_state(pdev);
3391 /* find the first memory BAR, so we can find the cfg table */
3392 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3393 if (rc)
3394 return rc;
3395 vaddr = remap_pci_mem(paddr, 0x250);
3396 if (!vaddr)
3397 return -ENOMEM;
3399 /* find cfgtable in order to check if reset via doorbell is supported */
3400 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3401 &cfg_base_addr_index, &cfg_offset);
3402 if (rc)
3403 goto unmap_vaddr;
3404 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3405 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3406 if (!cfgtable) {
3407 rc = -ENOMEM;
3408 goto unmap_vaddr;
3410 rc = write_driver_ver_to_cfgtable(cfgtable);
3411 if (rc)
3412 goto unmap_vaddr;
3414 /* If reset via doorbell register is supported, use that.
3415 * There are two such methods. Favor the newest method.
3417 misc_fw_support = readl(&cfgtable->misc_fw_support);
3418 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3419 if (use_doorbell) {
3420 use_doorbell = DOORBELL_CTLR_RESET2;
3421 } else {
3422 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3423 if (use_doorbell) {
3424 dev_warn(&pdev->dev, "Controller claims that "
3425 "'Bit 2 doorbell reset' is "
3426 "supported, but not 'bit 5 doorbell reset'. "
3427 "Firmware update is recommended.\n");
3428 rc = -ENOTSUPP; /* try soft reset */
3429 goto unmap_cfgtable;
3433 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3434 if (rc)
3435 goto unmap_cfgtable;
3437 pci_restore_state(pdev);
3438 rc = pci_enable_device(pdev);
3439 if (rc) {
3440 dev_warn(&pdev->dev, "failed to enable device.\n");
3441 goto unmap_cfgtable;
3443 pci_write_config_word(pdev, 4, command_register);
3445 /* Some devices (notably the HP Smart Array 5i Controller)
3446 need a little pause here */
3447 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3449 /* Wait for board to become not ready, then ready. */
3450 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3451 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3452 if (rc) {
3453 dev_warn(&pdev->dev,
3454 "failed waiting for board to reset."
3455 " Will try soft reset.\n");
3456 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3457 goto unmap_cfgtable;
3459 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3460 if (rc) {
3461 dev_warn(&pdev->dev,
3462 "failed waiting for board to become ready "
3463 "after hard reset\n");
3464 goto unmap_cfgtable;
3467 rc = controller_reset_failed(vaddr);
3468 if (rc < 0)
3469 goto unmap_cfgtable;
3470 if (rc) {
3471 dev_warn(&pdev->dev, "Unable to successfully reset "
3472 "controller. Will try soft reset.\n");
3473 rc = -ENOTSUPP;
3474 } else {
3475 dev_info(&pdev->dev, "board ready after hard reset.\n");
3478 unmap_cfgtable:
3479 iounmap(cfgtable);
3481 unmap_vaddr:
3482 iounmap(vaddr);
3483 return rc;
3487 * We cannot read the structure directly, for portability we must use
3488 * the io functions.
3489 * This is for debug only.
3491 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3493 #ifdef HPSA_DEBUG
3494 int i;
3495 char temp_name[17];
3497 dev_info(dev, "Controller Configuration information\n");
3498 dev_info(dev, "------------------------------------\n");
3499 for (i = 0; i < 4; i++)
3500 temp_name[i] = readb(&(tb->Signature[i]));
3501 temp_name[4] = '\0';
3502 dev_info(dev, " Signature = %s\n", temp_name);
3503 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3504 dev_info(dev, " Transport methods supported = 0x%x\n",
3505 readl(&(tb->TransportSupport)));
3506 dev_info(dev, " Transport methods active = 0x%x\n",
3507 readl(&(tb->TransportActive)));
3508 dev_info(dev, " Requested transport Method = 0x%x\n",
3509 readl(&(tb->HostWrite.TransportRequest)));
3510 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3511 readl(&(tb->HostWrite.CoalIntDelay)));
3512 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3513 readl(&(tb->HostWrite.CoalIntCount)));
3514 dev_info(dev, " Max outstanding commands = 0x%d\n",
3515 readl(&(tb->CmdsOutMax)));
3516 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3517 for (i = 0; i < 16; i++)
3518 temp_name[i] = readb(&(tb->ServerName[i]));
3519 temp_name[16] = '\0';
3520 dev_info(dev, " Server Name = %s\n", temp_name);
3521 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3522 readl(&(tb->HeartBeat)));
3523 #endif /* HPSA_DEBUG */
3526 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3528 int i, offset, mem_type, bar_type;
3530 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3531 return 0;
3532 offset = 0;
3533 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3534 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3535 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3536 offset += 4;
3537 else {
3538 mem_type = pci_resource_flags(pdev, i) &
3539 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3540 switch (mem_type) {
3541 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3542 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3543 offset += 4; /* 32 bit */
3544 break;
3545 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3546 offset += 8;
3547 break;
3548 default: /* reserved in PCI 2.2 */
3549 dev_warn(&pdev->dev,
3550 "base address is invalid\n");
3551 return -1;
3552 break;
3555 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3556 return i + 1;
3558 return -1;
3561 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3562 * controllers that are capable. If not, we use IO-APIC mode.
3565 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3567 #ifdef CONFIG_PCI_MSI
3568 int err;
3569 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3570 {0, 2}, {0, 3}
3573 /* Some boards advertise MSI but don't really support it */
3574 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3575 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3576 goto default_int_mode;
3577 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3578 dev_info(&h->pdev->dev, "MSIX\n");
3579 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3580 if (!err) {
3581 h->intr[0] = hpsa_msix_entries[0].vector;
3582 h->intr[1] = hpsa_msix_entries[1].vector;
3583 h->intr[2] = hpsa_msix_entries[2].vector;
3584 h->intr[3] = hpsa_msix_entries[3].vector;
3585 h->msix_vector = 1;
3586 return;
3588 if (err > 0) {
3589 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3590 "available\n", err);
3591 goto default_int_mode;
3592 } else {
3593 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3594 err);
3595 goto default_int_mode;
3598 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3599 dev_info(&h->pdev->dev, "MSI\n");
3600 if (!pci_enable_msi(h->pdev))
3601 h->msi_vector = 1;
3602 else
3603 dev_warn(&h->pdev->dev, "MSI init failed\n");
3605 default_int_mode:
3606 #endif /* CONFIG_PCI_MSI */
3607 /* if we get here we're going to use the default interrupt mode */
3608 h->intr[h->intr_mode] = h->pdev->irq;
3611 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3613 int i;
3614 u32 subsystem_vendor_id, subsystem_device_id;
3616 subsystem_vendor_id = pdev->subsystem_vendor;
3617 subsystem_device_id = pdev->subsystem_device;
3618 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3619 subsystem_vendor_id;
3621 for (i = 0; i < ARRAY_SIZE(products); i++)
3622 if (*board_id == products[i].board_id)
3623 return i;
3625 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3626 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3627 !hpsa_allow_any) {
3628 dev_warn(&pdev->dev, "unrecognized board ID: "
3629 "0x%08x, ignoring.\n", *board_id);
3630 return -ENODEV;
3632 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3635 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3637 u16 command;
3639 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3640 return ((command & PCI_COMMAND_MEMORY) == 0);
3643 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3644 unsigned long *memory_bar)
3646 int i;
3648 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3649 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3650 /* addressing mode bits already removed */
3651 *memory_bar = pci_resource_start(pdev, i);
3652 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3653 *memory_bar);
3654 return 0;
3656 dev_warn(&pdev->dev, "no memory BAR found\n");
3657 return -ENODEV;
3660 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3661 void __iomem *vaddr, int wait_for_ready)
3663 int i, iterations;
3664 u32 scratchpad;
3665 if (wait_for_ready)
3666 iterations = HPSA_BOARD_READY_ITERATIONS;
3667 else
3668 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3670 for (i = 0; i < iterations; i++) {
3671 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3672 if (wait_for_ready) {
3673 if (scratchpad == HPSA_FIRMWARE_READY)
3674 return 0;
3675 } else {
3676 if (scratchpad != HPSA_FIRMWARE_READY)
3677 return 0;
3679 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3681 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3682 return -ENODEV;
3685 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3686 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3687 u64 *cfg_offset)
3689 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3690 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3691 *cfg_base_addr &= (u32) 0x0000ffff;
3692 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3693 if (*cfg_base_addr_index == -1) {
3694 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3695 return -ENODEV;
3697 return 0;
3700 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3702 u64 cfg_offset;
3703 u32 cfg_base_addr;
3704 u64 cfg_base_addr_index;
3705 u32 trans_offset;
3706 int rc;
3708 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3709 &cfg_base_addr_index, &cfg_offset);
3710 if (rc)
3711 return rc;
3712 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3713 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3714 if (!h->cfgtable)
3715 return -ENOMEM;
3716 rc = write_driver_ver_to_cfgtable(h->cfgtable);
3717 if (rc)
3718 return rc;
3719 /* Find performant mode table. */
3720 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3721 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3722 cfg_base_addr_index)+cfg_offset+trans_offset,
3723 sizeof(*h->transtable));
3724 if (!h->transtable)
3725 return -ENOMEM;
3726 return 0;
3729 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3731 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3733 /* Limit commands in memory limited kdump scenario. */
3734 if (reset_devices && h->max_commands > 32)
3735 h->max_commands = 32;
3737 if (h->max_commands < 16) {
3738 dev_warn(&h->pdev->dev, "Controller reports "
3739 "max supported commands of %d, an obvious lie. "
3740 "Using 16. Ensure that firmware is up to date.\n",
3741 h->max_commands);
3742 h->max_commands = 16;
3746 /* Interrogate the hardware for some limits:
3747 * max commands, max SG elements without chaining, and with chaining,
3748 * SG chain block size, etc.
3750 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3752 hpsa_get_max_perf_mode_cmds(h);
3753 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3754 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3756 * Limit in-command s/g elements to 32 save dma'able memory.
3757 * Howvever spec says if 0, use 31
3759 h->max_cmd_sg_entries = 31;
3760 if (h->maxsgentries > 512) {
3761 h->max_cmd_sg_entries = 32;
3762 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3763 h->maxsgentries--; /* save one for chain pointer */
3764 } else {
3765 h->maxsgentries = 31; /* default to traditional values */
3766 h->chainsize = 0;
3770 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3772 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3773 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3774 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3775 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3776 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3777 return false;
3779 return true;
3782 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3783 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3785 #ifdef CONFIG_X86
3786 u32 prefetch;
3788 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3789 prefetch |= 0x100;
3790 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3791 #endif
3794 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3795 * in a prefetch beyond physical memory.
3797 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3799 u32 dma_prefetch;
3801 if (h->board_id != 0x3225103C)
3802 return;
3803 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3804 dma_prefetch |= 0x8000;
3805 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3808 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3810 int i;
3811 u32 doorbell_value;
3812 unsigned long flags;
3814 /* under certain very rare conditions, this can take awhile.
3815 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3816 * as we enter this code.)
3818 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3819 spin_lock_irqsave(&h->lock, flags);
3820 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3821 spin_unlock_irqrestore(&h->lock, flags);
3822 if (!(doorbell_value & CFGTBL_ChangeReq))
3823 break;
3824 /* delay and try again */
3825 usleep_range(10000, 20000);
3829 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3831 u32 trans_support;
3833 trans_support = readl(&(h->cfgtable->TransportSupport));
3834 if (!(trans_support & SIMPLE_MODE))
3835 return -ENOTSUPP;
3837 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3838 /* Update the field, and then ring the doorbell */
3839 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3840 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3841 hpsa_wait_for_mode_change_ack(h);
3842 print_cfg_table(&h->pdev->dev, h->cfgtable);
3843 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3844 dev_warn(&h->pdev->dev,
3845 "unable to get board into simple mode\n");
3846 return -ENODEV;
3848 h->transMethod = CFGTBL_Trans_Simple;
3849 return 0;
3852 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3854 int prod_index, err;
3856 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3857 if (prod_index < 0)
3858 return -ENODEV;
3859 h->product_name = products[prod_index].product_name;
3860 h->access = *(products[prod_index].access);
3862 if (hpsa_board_disabled(h->pdev)) {
3863 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3864 return -ENODEV;
3866 err = pci_enable_device(h->pdev);
3867 if (err) {
3868 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3869 return err;
3872 err = pci_request_regions(h->pdev, "hpsa");
3873 if (err) {
3874 dev_err(&h->pdev->dev,
3875 "cannot obtain PCI resources, aborting\n");
3876 return err;
3878 hpsa_interrupt_mode(h);
3879 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3880 if (err)
3881 goto err_out_free_res;
3882 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3883 if (!h->vaddr) {
3884 err = -ENOMEM;
3885 goto err_out_free_res;
3887 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3888 if (err)
3889 goto err_out_free_res;
3890 err = hpsa_find_cfgtables(h);
3891 if (err)
3892 goto err_out_free_res;
3893 hpsa_find_board_params(h);
3895 if (!hpsa_CISS_signature_present(h)) {
3896 err = -ENODEV;
3897 goto err_out_free_res;
3899 hpsa_enable_scsi_prefetch(h);
3900 hpsa_p600_dma_prefetch_quirk(h);
3901 err = hpsa_enter_simple_mode(h);
3902 if (err)
3903 goto err_out_free_res;
3904 return 0;
3906 err_out_free_res:
3907 if (h->transtable)
3908 iounmap(h->transtable);
3909 if (h->cfgtable)
3910 iounmap(h->cfgtable);
3911 if (h->vaddr)
3912 iounmap(h->vaddr);
3914 * Deliberately omit pci_disable_device(): it does something nasty to
3915 * Smart Array controllers that pci_enable_device does not undo
3917 pci_release_regions(h->pdev);
3918 return err;
3921 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3923 int rc;
3925 #define HBA_INQUIRY_BYTE_COUNT 64
3926 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3927 if (!h->hba_inquiry_data)
3928 return;
3929 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3930 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3931 if (rc != 0) {
3932 kfree(h->hba_inquiry_data);
3933 h->hba_inquiry_data = NULL;
3937 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3939 int rc, i;
3941 if (!reset_devices)
3942 return 0;
3944 /* Reset the controller with a PCI power-cycle or via doorbell */
3945 rc = hpsa_kdump_hard_reset_controller(pdev);
3947 /* -ENOTSUPP here means we cannot reset the controller
3948 * but it's already (and still) up and running in
3949 * "performant mode". Or, it might be 640x, which can't reset
3950 * due to concerns about shared bbwc between 6402/6404 pair.
3952 if (rc == -ENOTSUPP)
3953 return rc; /* just try to do the kdump anyhow. */
3954 if (rc)
3955 return -ENODEV;
3957 /* Now try to get the controller to respond to a no-op */
3958 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3959 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3960 if (hpsa_noop(pdev) == 0)
3961 break;
3962 else
3963 dev_warn(&pdev->dev, "no-op failed%s\n",
3964 (i < 11 ? "; re-trying" : ""));
3966 return 0;
3969 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3971 h->cmd_pool_bits = kzalloc(
3972 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3973 sizeof(unsigned long), GFP_KERNEL);
3974 h->cmd_pool = pci_alloc_consistent(h->pdev,
3975 h->nr_cmds * sizeof(*h->cmd_pool),
3976 &(h->cmd_pool_dhandle));
3977 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3978 h->nr_cmds * sizeof(*h->errinfo_pool),
3979 &(h->errinfo_pool_dhandle));
3980 if ((h->cmd_pool_bits == NULL)
3981 || (h->cmd_pool == NULL)
3982 || (h->errinfo_pool == NULL)) {
3983 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3984 return -ENOMEM;
3986 return 0;
3989 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3991 kfree(h->cmd_pool_bits);
3992 if (h->cmd_pool)
3993 pci_free_consistent(h->pdev,
3994 h->nr_cmds * sizeof(struct CommandList),
3995 h->cmd_pool, h->cmd_pool_dhandle);
3996 if (h->errinfo_pool)
3997 pci_free_consistent(h->pdev,
3998 h->nr_cmds * sizeof(struct ErrorInfo),
3999 h->errinfo_pool,
4000 h->errinfo_pool_dhandle);
4003 static int hpsa_request_irq(struct ctlr_info *h,
4004 irqreturn_t (*msixhandler)(int, void *),
4005 irqreturn_t (*intxhandler)(int, void *))
4007 int rc;
4009 if (h->msix_vector || h->msi_vector)
4010 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4011 IRQF_DISABLED, h->devname, h);
4012 else
4013 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4014 IRQF_DISABLED, h->devname, h);
4015 if (rc) {
4016 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4017 h->intr[h->intr_mode], h->devname);
4018 return -ENODEV;
4020 return 0;
4023 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4025 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4026 HPSA_RESET_TYPE_CONTROLLER)) {
4027 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4028 return -EIO;
4031 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4032 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4033 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4034 return -1;
4037 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4038 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4039 dev_warn(&h->pdev->dev, "Board failed to become ready "
4040 "after soft reset.\n");
4041 return -1;
4044 return 0;
4047 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4049 free_irq(h->intr[h->intr_mode], h);
4050 #ifdef CONFIG_PCI_MSI
4051 if (h->msix_vector)
4052 pci_disable_msix(h->pdev);
4053 else if (h->msi_vector)
4054 pci_disable_msi(h->pdev);
4055 #endif /* CONFIG_PCI_MSI */
4056 hpsa_free_sg_chain_blocks(h);
4057 hpsa_free_cmd_pool(h);
4058 kfree(h->blockFetchTable);
4059 pci_free_consistent(h->pdev, h->reply_pool_size,
4060 h->reply_pool, h->reply_pool_dhandle);
4061 if (h->vaddr)
4062 iounmap(h->vaddr);
4063 if (h->transtable)
4064 iounmap(h->transtable);
4065 if (h->cfgtable)
4066 iounmap(h->cfgtable);
4067 pci_release_regions(h->pdev);
4068 kfree(h);
4071 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4072 const struct pci_device_id *ent)
4074 int dac, rc;
4075 struct ctlr_info *h;
4076 int try_soft_reset = 0;
4077 unsigned long flags;
4079 if (number_of_controllers == 0)
4080 printk(KERN_INFO DRIVER_NAME "\n");
4082 rc = hpsa_init_reset_devices(pdev);
4083 if (rc) {
4084 if (rc != -ENOTSUPP)
4085 return rc;
4086 /* If the reset fails in a particular way (it has no way to do
4087 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4088 * a soft reset once we get the controller configured up to the
4089 * point that it can accept a command.
4091 try_soft_reset = 1;
4092 rc = 0;
4095 reinit_after_soft_reset:
4097 /* Command structures must be aligned on a 32-byte boundary because
4098 * the 5 lower bits of the address are used by the hardware. and by
4099 * the driver. See comments in hpsa.h for more info.
4101 #define COMMANDLIST_ALIGNMENT 32
4102 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4103 h = kzalloc(sizeof(*h), GFP_KERNEL);
4104 if (!h)
4105 return -ENOMEM;
4107 h->pdev = pdev;
4108 h->busy_initializing = 1;
4109 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4110 INIT_LIST_HEAD(&h->cmpQ);
4111 INIT_LIST_HEAD(&h->reqQ);
4112 spin_lock_init(&h->lock);
4113 spin_lock_init(&h->scan_lock);
4114 rc = hpsa_pci_init(h);
4115 if (rc != 0)
4116 goto clean1;
4118 sprintf(h->devname, "hpsa%d", number_of_controllers);
4119 h->ctlr = number_of_controllers;
4120 number_of_controllers++;
4122 /* configure PCI DMA stuff */
4123 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4124 if (rc == 0) {
4125 dac = 1;
4126 } else {
4127 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4128 if (rc == 0) {
4129 dac = 0;
4130 } else {
4131 dev_err(&pdev->dev, "no suitable DMA available\n");
4132 goto clean1;
4136 /* make sure the board interrupts are off */
4137 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4139 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4140 goto clean2;
4141 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4142 h->devname, pdev->device,
4143 h->intr[h->intr_mode], dac ? "" : " not");
4144 if (hpsa_allocate_cmd_pool(h))
4145 goto clean4;
4146 if (hpsa_allocate_sg_chain_blocks(h))
4147 goto clean4;
4148 init_waitqueue_head(&h->scan_wait_queue);
4149 h->scan_finished = 1; /* no scan currently in progress */
4151 pci_set_drvdata(pdev, h);
4152 h->ndevices = 0;
4153 h->scsi_host = NULL;
4154 spin_lock_init(&h->devlock);
4155 hpsa_put_ctlr_into_performant_mode(h);
4157 /* At this point, the controller is ready to take commands.
4158 * Now, if reset_devices and the hard reset didn't work, try
4159 * the soft reset and see if that works.
4161 if (try_soft_reset) {
4163 /* This is kind of gross. We may or may not get a completion
4164 * from the soft reset command, and if we do, then the value
4165 * from the fifo may or may not be valid. So, we wait 10 secs
4166 * after the reset throwing away any completions we get during
4167 * that time. Unregister the interrupt handler and register
4168 * fake ones to scoop up any residual completions.
4170 spin_lock_irqsave(&h->lock, flags);
4171 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4172 spin_unlock_irqrestore(&h->lock, flags);
4173 free_irq(h->intr[h->intr_mode], h);
4174 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4175 hpsa_intx_discard_completions);
4176 if (rc) {
4177 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4178 "soft reset.\n");
4179 goto clean4;
4182 rc = hpsa_kdump_soft_reset(h);
4183 if (rc)
4184 /* Neither hard nor soft reset worked, we're hosed. */
4185 goto clean4;
4187 dev_info(&h->pdev->dev, "Board READY.\n");
4188 dev_info(&h->pdev->dev,
4189 "Waiting for stale completions to drain.\n");
4190 h->access.set_intr_mask(h, HPSA_INTR_ON);
4191 msleep(10000);
4192 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4194 rc = controller_reset_failed(h->cfgtable);
4195 if (rc)
4196 dev_info(&h->pdev->dev,
4197 "Soft reset appears to have failed.\n");
4199 /* since the controller's reset, we have to go back and re-init
4200 * everything. Easiest to just forget what we've done and do it
4201 * all over again.
4203 hpsa_undo_allocations_after_kdump_soft_reset(h);
4204 try_soft_reset = 0;
4205 if (rc)
4206 /* don't go to clean4, we already unallocated */
4207 return -ENODEV;
4209 goto reinit_after_soft_reset;
4212 /* Turn the interrupts on so we can service requests */
4213 h->access.set_intr_mask(h, HPSA_INTR_ON);
4215 hpsa_hba_inquiry(h);
4216 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4217 h->busy_initializing = 0;
4218 return 1;
4220 clean4:
4221 hpsa_free_sg_chain_blocks(h);
4222 hpsa_free_cmd_pool(h);
4223 free_irq(h->intr[h->intr_mode], h);
4224 clean2:
4225 clean1:
4226 h->busy_initializing = 0;
4227 kfree(h);
4228 return rc;
4231 static void hpsa_flush_cache(struct ctlr_info *h)
4233 char *flush_buf;
4234 struct CommandList *c;
4236 flush_buf = kzalloc(4, GFP_KERNEL);
4237 if (!flush_buf)
4238 return;
4240 c = cmd_special_alloc(h);
4241 if (!c) {
4242 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4243 goto out_of_memory;
4245 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4246 RAID_CTLR_LUNID, TYPE_CMD);
4247 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4248 if (c->err_info->CommandStatus != 0)
4249 dev_warn(&h->pdev->dev,
4250 "error flushing cache on controller\n");
4251 cmd_special_free(h, c);
4252 out_of_memory:
4253 kfree(flush_buf);
4256 static void hpsa_shutdown(struct pci_dev *pdev)
4258 struct ctlr_info *h;
4260 h = pci_get_drvdata(pdev);
4261 /* Turn board interrupts off and send the flush cache command
4262 * sendcmd will turn off interrupt, and send the flush...
4263 * To write all data in the battery backed cache to disks
4265 hpsa_flush_cache(h);
4266 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4267 free_irq(h->intr[h->intr_mode], h);
4268 #ifdef CONFIG_PCI_MSI
4269 if (h->msix_vector)
4270 pci_disable_msix(h->pdev);
4271 else if (h->msi_vector)
4272 pci_disable_msi(h->pdev);
4273 #endif /* CONFIG_PCI_MSI */
4276 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4278 struct ctlr_info *h;
4280 if (pci_get_drvdata(pdev) == NULL) {
4281 dev_err(&pdev->dev, "unable to remove device \n");
4282 return;
4284 h = pci_get_drvdata(pdev);
4285 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4286 hpsa_shutdown(pdev);
4287 iounmap(h->vaddr);
4288 iounmap(h->transtable);
4289 iounmap(h->cfgtable);
4290 hpsa_free_sg_chain_blocks(h);
4291 pci_free_consistent(h->pdev,
4292 h->nr_cmds * sizeof(struct CommandList),
4293 h->cmd_pool, h->cmd_pool_dhandle);
4294 pci_free_consistent(h->pdev,
4295 h->nr_cmds * sizeof(struct ErrorInfo),
4296 h->errinfo_pool, h->errinfo_pool_dhandle);
4297 pci_free_consistent(h->pdev, h->reply_pool_size,
4298 h->reply_pool, h->reply_pool_dhandle);
4299 kfree(h->cmd_pool_bits);
4300 kfree(h->blockFetchTable);
4301 kfree(h->hba_inquiry_data);
4303 * Deliberately omit pci_disable_device(): it does something nasty to
4304 * Smart Array controllers that pci_enable_device does not undo
4306 pci_release_regions(pdev);
4307 pci_set_drvdata(pdev, NULL);
4308 kfree(h);
4311 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4312 __attribute__((unused)) pm_message_t state)
4314 return -ENOSYS;
4317 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4319 return -ENOSYS;
4322 static struct pci_driver hpsa_pci_driver = {
4323 .name = "hpsa",
4324 .probe = hpsa_init_one,
4325 .remove = __devexit_p(hpsa_remove_one),
4326 .id_table = hpsa_pci_device_id, /* id_table */
4327 .shutdown = hpsa_shutdown,
4328 .suspend = hpsa_suspend,
4329 .resume = hpsa_resume,
4332 /* Fill in bucket_map[], given nsgs (the max number of
4333 * scatter gather elements supported) and bucket[],
4334 * which is an array of 8 integers. The bucket[] array
4335 * contains 8 different DMA transfer sizes (in 16
4336 * byte increments) which the controller uses to fetch
4337 * commands. This function fills in bucket_map[], which
4338 * maps a given number of scatter gather elements to one of
4339 * the 8 DMA transfer sizes. The point of it is to allow the
4340 * controller to only do as much DMA as needed to fetch the
4341 * command, with the DMA transfer size encoded in the lower
4342 * bits of the command address.
4344 static void calc_bucket_map(int bucket[], int num_buckets,
4345 int nsgs, int *bucket_map)
4347 int i, j, b, size;
4349 /* even a command with 0 SGs requires 4 blocks */
4350 #define MINIMUM_TRANSFER_BLOCKS 4
4351 #define NUM_BUCKETS 8
4352 /* Note, bucket_map must have nsgs+1 entries. */
4353 for (i = 0; i <= nsgs; i++) {
4354 /* Compute size of a command with i SG entries */
4355 size = i + MINIMUM_TRANSFER_BLOCKS;
4356 b = num_buckets; /* Assume the biggest bucket */
4357 /* Find the bucket that is just big enough */
4358 for (j = 0; j < 8; j++) {
4359 if (bucket[j] >= size) {
4360 b = j;
4361 break;
4364 /* for a command with i SG entries, use bucket b. */
4365 bucket_map[i] = b;
4369 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4370 u32 use_short_tags)
4372 int i;
4373 unsigned long register_value;
4375 /* This is a bit complicated. There are 8 registers on
4376 * the controller which we write to to tell it 8 different
4377 * sizes of commands which there may be. It's a way of
4378 * reducing the DMA done to fetch each command. Encoded into
4379 * each command's tag are 3 bits which communicate to the controller
4380 * which of the eight sizes that command fits within. The size of
4381 * each command depends on how many scatter gather entries there are.
4382 * Each SG entry requires 16 bytes. The eight registers are programmed
4383 * with the number of 16-byte blocks a command of that size requires.
4384 * The smallest command possible requires 5 such 16 byte blocks.
4385 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4386 * blocks. Note, this only extends to the SG entries contained
4387 * within the command block, and does not extend to chained blocks
4388 * of SG elements. bft[] contains the eight values we write to
4389 * the registers. They are not evenly distributed, but have more
4390 * sizes for small commands, and fewer sizes for larger commands.
4392 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4393 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4394 /* 5 = 1 s/g entry or 4k
4395 * 6 = 2 s/g entry or 8k
4396 * 8 = 4 s/g entry or 16k
4397 * 10 = 6 s/g entry or 24k
4400 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4402 /* Controller spec: zero out this buffer. */
4403 memset(h->reply_pool, 0, h->reply_pool_size);
4404 h->reply_pool_head = h->reply_pool;
4406 bft[7] = h->max_sg_entries + 4;
4407 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4408 for (i = 0; i < 8; i++)
4409 writel(bft[i], &h->transtable->BlockFetch[i]);
4411 /* size of controller ring buffer */
4412 writel(h->max_commands, &h->transtable->RepQSize);
4413 writel(1, &h->transtable->RepQCount);
4414 writel(0, &h->transtable->RepQCtrAddrLow32);
4415 writel(0, &h->transtable->RepQCtrAddrHigh32);
4416 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4417 writel(0, &h->transtable->RepQAddr0High32);
4418 writel(CFGTBL_Trans_Performant | use_short_tags,
4419 &(h->cfgtable->HostWrite.TransportRequest));
4420 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4421 hpsa_wait_for_mode_change_ack(h);
4422 register_value = readl(&(h->cfgtable->TransportActive));
4423 if (!(register_value & CFGTBL_Trans_Performant)) {
4424 dev_warn(&h->pdev->dev, "unable to get board into"
4425 " performant mode\n");
4426 return;
4428 /* Change the access methods to the performant access methods */
4429 h->access = SA5_performant_access;
4430 h->transMethod = CFGTBL_Trans_Performant;
4433 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4435 u32 trans_support;
4437 if (hpsa_simple_mode)
4438 return;
4440 trans_support = readl(&(h->cfgtable->TransportSupport));
4441 if (!(trans_support & PERFORMANT_MODE))
4442 return;
4444 hpsa_get_max_perf_mode_cmds(h);
4445 h->max_sg_entries = 32;
4446 /* Performant mode ring buffer and supporting data structures */
4447 h->reply_pool_size = h->max_commands * sizeof(u64);
4448 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4449 &(h->reply_pool_dhandle));
4451 /* Need a block fetch table for performant mode */
4452 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4453 sizeof(u32)), GFP_KERNEL);
4455 if ((h->reply_pool == NULL)
4456 || (h->blockFetchTable == NULL))
4457 goto clean_up;
4459 hpsa_enter_performant_mode(h,
4460 trans_support & CFGTBL_Trans_use_short_tags);
4462 return;
4464 clean_up:
4465 if (h->reply_pool)
4466 pci_free_consistent(h->pdev, h->reply_pool_size,
4467 h->reply_pool, h->reply_pool_dhandle);
4468 kfree(h->blockFetchTable);
4472 * This is it. Register the PCI driver information for the cards we control
4473 * the OS will call our registered routines when it finds one of our cards.
4475 static int __init hpsa_init(void)
4477 return pci_register_driver(&hpsa_pci_driver);
4480 static void __exit hpsa_cleanup(void)
4482 pci_unregister_driver(&hpsa_pci_driver);
4485 module_init(hpsa_init);
4486 module_exit(hpsa_cleanup);