ipw2100/ipw2200: note firmware loading caveat in Kconfig help text
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob89e6286a7f57823e0427b7eeb84e6e39340764e1
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
45 int i;
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
57 int i;
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
75 unsigned long address)
77 int nid;
78 struct page *page = NULL;
79 struct mempolicy *mpol;
80 struct zonelist *zonelist = huge_zonelist(vma, address,
81 htlb_alloc_mask, &mpol);
82 struct zone **z;
84 for (z = zonelist->zones; *z; z++) {
85 nid = zone_to_nid(*z);
86 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
87 !list_empty(&hugepage_freelists[nid])) {
88 page = list_entry(hugepage_freelists[nid].next,
89 struct page, lru);
90 list_del(&page->lru);
91 free_huge_pages--;
92 free_huge_pages_node[nid]--;
93 if (vma && vma->vm_flags & VM_MAYSHARE)
94 resv_huge_pages--;
95 break;
98 mpol_free(mpol); /* unref if mpol !NULL */
99 return page;
102 static void update_and_free_page(struct page *page)
104 int i;
105 nr_huge_pages--;
106 nr_huge_pages_node[page_to_nid(page)]--;
107 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
108 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
109 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
110 1 << PG_private | 1<< PG_writeback);
112 set_compound_page_dtor(page, NULL);
113 set_page_refcounted(page);
114 __free_pages(page, HUGETLB_PAGE_ORDER);
117 static void free_huge_page(struct page *page)
119 int nid = page_to_nid(page);
120 struct address_space *mapping;
122 mapping = (struct address_space *) page_private(page);
123 set_page_private(page, 0);
124 BUG_ON(page_count(page));
125 INIT_LIST_HEAD(&page->lru);
127 spin_lock(&hugetlb_lock);
128 if (surplus_huge_pages_node[nid]) {
129 update_and_free_page(page);
130 surplus_huge_pages--;
131 surplus_huge_pages_node[nid]--;
132 } else {
133 enqueue_huge_page(page);
135 spin_unlock(&hugetlb_lock);
136 if (mapping)
137 hugetlb_put_quota(mapping, 1);
141 * Increment or decrement surplus_huge_pages. Keep node-specific counters
142 * balanced by operating on them in a round-robin fashion.
143 * Returns 1 if an adjustment was made.
145 static int adjust_pool_surplus(int delta)
147 static int prev_nid;
148 int nid = prev_nid;
149 int ret = 0;
151 VM_BUG_ON(delta != -1 && delta != 1);
152 do {
153 nid = next_node(nid, node_online_map);
154 if (nid == MAX_NUMNODES)
155 nid = first_node(node_online_map);
157 /* To shrink on this node, there must be a surplus page */
158 if (delta < 0 && !surplus_huge_pages_node[nid])
159 continue;
160 /* Surplus cannot exceed the total number of pages */
161 if (delta > 0 && surplus_huge_pages_node[nid] >=
162 nr_huge_pages_node[nid])
163 continue;
165 surplus_huge_pages += delta;
166 surplus_huge_pages_node[nid] += delta;
167 ret = 1;
168 break;
169 } while (nid != prev_nid);
171 prev_nid = nid;
172 return ret;
175 static struct page *alloc_fresh_huge_page_node(int nid)
177 struct page *page;
179 page = alloc_pages_node(nid,
180 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
181 HUGETLB_PAGE_ORDER);
182 if (page) {
183 set_compound_page_dtor(page, free_huge_page);
184 spin_lock(&hugetlb_lock);
185 nr_huge_pages++;
186 nr_huge_pages_node[nid]++;
187 spin_unlock(&hugetlb_lock);
188 put_page(page); /* free it into the hugepage allocator */
191 return page;
194 static int alloc_fresh_huge_page(void)
196 struct page *page;
197 int start_nid;
198 int next_nid;
199 int ret = 0;
201 start_nid = hugetlb_next_nid;
203 do {
204 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
205 if (page)
206 ret = 1;
208 * Use a helper variable to find the next node and then
209 * copy it back to hugetlb_next_nid afterwards:
210 * otherwise there's a window in which a racer might
211 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
212 * But we don't need to use a spin_lock here: it really
213 * doesn't matter if occasionally a racer chooses the
214 * same nid as we do. Move nid forward in the mask even
215 * if we just successfully allocated a hugepage so that
216 * the next caller gets hugepages on the next node.
218 next_nid = next_node(hugetlb_next_nid, node_online_map);
219 if (next_nid == MAX_NUMNODES)
220 next_nid = first_node(node_online_map);
221 hugetlb_next_nid = next_nid;
222 } while (!page && hugetlb_next_nid != start_nid);
224 return ret;
227 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
228 unsigned long address)
230 struct page *page;
231 unsigned int nid;
234 * Assume we will successfully allocate the surplus page to
235 * prevent racing processes from causing the surplus to exceed
236 * overcommit
238 * This however introduces a different race, where a process B
239 * tries to grow the static hugepage pool while alloc_pages() is
240 * called by process A. B will only examine the per-node
241 * counters in determining if surplus huge pages can be
242 * converted to normal huge pages in adjust_pool_surplus(). A
243 * won't be able to increment the per-node counter, until the
244 * lock is dropped by B, but B doesn't drop hugetlb_lock until
245 * no more huge pages can be converted from surplus to normal
246 * state (and doesn't try to convert again). Thus, we have a
247 * case where a surplus huge page exists, the pool is grown, and
248 * the surplus huge page still exists after, even though it
249 * should just have been converted to a normal huge page. This
250 * does not leak memory, though, as the hugepage will be freed
251 * once it is out of use. It also does not allow the counters to
252 * go out of whack in adjust_pool_surplus() as we don't modify
253 * the node values until we've gotten the hugepage and only the
254 * per-node value is checked there.
256 spin_lock(&hugetlb_lock);
257 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
258 spin_unlock(&hugetlb_lock);
259 return NULL;
260 } else {
261 nr_huge_pages++;
262 surplus_huge_pages++;
264 spin_unlock(&hugetlb_lock);
266 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
267 HUGETLB_PAGE_ORDER);
269 spin_lock(&hugetlb_lock);
270 if (page) {
271 nid = page_to_nid(page);
272 set_compound_page_dtor(page, free_huge_page);
274 * We incremented the global counters already
276 nr_huge_pages_node[nid]++;
277 surplus_huge_pages_node[nid]++;
278 } else {
279 nr_huge_pages--;
280 surplus_huge_pages--;
282 spin_unlock(&hugetlb_lock);
284 return page;
288 * Increase the hugetlb pool such that it can accomodate a reservation
289 * of size 'delta'.
291 static int gather_surplus_pages(int delta)
293 struct list_head surplus_list;
294 struct page *page, *tmp;
295 int ret, i;
296 int needed, allocated;
298 needed = (resv_huge_pages + delta) - free_huge_pages;
299 if (needed <= 0)
300 return 0;
302 allocated = 0;
303 INIT_LIST_HEAD(&surplus_list);
305 ret = -ENOMEM;
306 retry:
307 spin_unlock(&hugetlb_lock);
308 for (i = 0; i < needed; i++) {
309 page = alloc_buddy_huge_page(NULL, 0);
310 if (!page) {
312 * We were not able to allocate enough pages to
313 * satisfy the entire reservation so we free what
314 * we've allocated so far.
316 spin_lock(&hugetlb_lock);
317 needed = 0;
318 goto free;
321 list_add(&page->lru, &surplus_list);
323 allocated += needed;
326 * After retaking hugetlb_lock, we need to recalculate 'needed'
327 * because either resv_huge_pages or free_huge_pages may have changed.
329 spin_lock(&hugetlb_lock);
330 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
331 if (needed > 0)
332 goto retry;
335 * The surplus_list now contains _at_least_ the number of extra pages
336 * needed to accomodate the reservation. Add the appropriate number
337 * of pages to the hugetlb pool and free the extras back to the buddy
338 * allocator.
340 needed += allocated;
341 ret = 0;
342 free:
343 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
344 list_del(&page->lru);
345 if ((--needed) >= 0)
346 enqueue_huge_page(page);
347 else {
349 * Decrement the refcount and free the page using its
350 * destructor. This must be done with hugetlb_lock
351 * unlocked which is safe because free_huge_page takes
352 * hugetlb_lock before deciding how to free the page.
354 spin_unlock(&hugetlb_lock);
355 put_page(page);
356 spin_lock(&hugetlb_lock);
360 return ret;
364 * When releasing a hugetlb pool reservation, any surplus pages that were
365 * allocated to satisfy the reservation must be explicitly freed if they were
366 * never used.
368 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
370 static int nid = -1;
371 struct page *page;
372 unsigned long nr_pages;
374 nr_pages = min(unused_resv_pages, surplus_huge_pages);
376 while (nr_pages) {
377 nid = next_node(nid, node_online_map);
378 if (nid == MAX_NUMNODES)
379 nid = first_node(node_online_map);
381 if (!surplus_huge_pages_node[nid])
382 continue;
384 if (!list_empty(&hugepage_freelists[nid])) {
385 page = list_entry(hugepage_freelists[nid].next,
386 struct page, lru);
387 list_del(&page->lru);
388 update_and_free_page(page);
389 free_huge_pages--;
390 free_huge_pages_node[nid]--;
391 surplus_huge_pages--;
392 surplus_huge_pages_node[nid]--;
393 nr_pages--;
399 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
400 unsigned long addr)
402 struct page *page;
404 spin_lock(&hugetlb_lock);
405 page = dequeue_huge_page(vma, addr);
406 spin_unlock(&hugetlb_lock);
407 return page ? page : ERR_PTR(-VM_FAULT_OOM);
410 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
411 unsigned long addr)
413 struct page *page = NULL;
415 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
416 return ERR_PTR(-VM_FAULT_SIGBUS);
418 spin_lock(&hugetlb_lock);
419 if (free_huge_pages > resv_huge_pages)
420 page = dequeue_huge_page(vma, addr);
421 spin_unlock(&hugetlb_lock);
422 if (!page) {
423 page = alloc_buddy_huge_page(vma, addr);
424 if (!page) {
425 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
426 return ERR_PTR(-VM_FAULT_OOM);
429 return page;
432 static struct page *alloc_huge_page(struct vm_area_struct *vma,
433 unsigned long addr)
435 struct page *page;
436 struct address_space *mapping = vma->vm_file->f_mapping;
438 if (vma->vm_flags & VM_MAYSHARE)
439 page = alloc_huge_page_shared(vma, addr);
440 else
441 page = alloc_huge_page_private(vma, addr);
443 if (!IS_ERR(page)) {
444 set_page_refcounted(page);
445 set_page_private(page, (unsigned long) mapping);
447 return page;
450 static int __init hugetlb_init(void)
452 unsigned long i;
454 if (HPAGE_SHIFT == 0)
455 return 0;
457 for (i = 0; i < MAX_NUMNODES; ++i)
458 INIT_LIST_HEAD(&hugepage_freelists[i]);
460 hugetlb_next_nid = first_node(node_online_map);
462 for (i = 0; i < max_huge_pages; ++i) {
463 if (!alloc_fresh_huge_page())
464 break;
466 max_huge_pages = free_huge_pages = nr_huge_pages = i;
467 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
468 return 0;
470 module_init(hugetlb_init);
472 static int __init hugetlb_setup(char *s)
474 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
475 max_huge_pages = 0;
476 return 1;
478 __setup("hugepages=", hugetlb_setup);
480 static unsigned int cpuset_mems_nr(unsigned int *array)
482 int node;
483 unsigned int nr = 0;
485 for_each_node_mask(node, cpuset_current_mems_allowed)
486 nr += array[node];
488 return nr;
491 #ifdef CONFIG_SYSCTL
492 #ifdef CONFIG_HIGHMEM
493 static void try_to_free_low(unsigned long count)
495 int i;
497 for (i = 0; i < MAX_NUMNODES; ++i) {
498 struct page *page, *next;
499 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
500 if (count >= nr_huge_pages)
501 return;
502 if (PageHighMem(page))
503 continue;
504 list_del(&page->lru);
505 update_and_free_page(page);
506 free_huge_pages--;
507 free_huge_pages_node[page_to_nid(page)]--;
511 #else
512 static inline void try_to_free_low(unsigned long count)
515 #endif
517 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
518 static unsigned long set_max_huge_pages(unsigned long count)
520 unsigned long min_count, ret;
523 * Increase the pool size
524 * First take pages out of surplus state. Then make up the
525 * remaining difference by allocating fresh huge pages.
527 * We might race with alloc_buddy_huge_page() here and be unable
528 * to convert a surplus huge page to a normal huge page. That is
529 * not critical, though, it just means the overall size of the
530 * pool might be one hugepage larger than it needs to be, but
531 * within all the constraints specified by the sysctls.
533 spin_lock(&hugetlb_lock);
534 while (surplus_huge_pages && count > persistent_huge_pages) {
535 if (!adjust_pool_surplus(-1))
536 break;
539 while (count > persistent_huge_pages) {
540 int ret;
542 * If this allocation races such that we no longer need the
543 * page, free_huge_page will handle it by freeing the page
544 * and reducing the surplus.
546 spin_unlock(&hugetlb_lock);
547 ret = alloc_fresh_huge_page();
548 spin_lock(&hugetlb_lock);
549 if (!ret)
550 goto out;
555 * Decrease the pool size
556 * First return free pages to the buddy allocator (being careful
557 * to keep enough around to satisfy reservations). Then place
558 * pages into surplus state as needed so the pool will shrink
559 * to the desired size as pages become free.
561 * By placing pages into the surplus state independent of the
562 * overcommit value, we are allowing the surplus pool size to
563 * exceed overcommit. There are few sane options here. Since
564 * alloc_buddy_huge_page() is checking the global counter,
565 * though, we'll note that we're not allowed to exceed surplus
566 * and won't grow the pool anywhere else. Not until one of the
567 * sysctls are changed, or the surplus pages go out of use.
569 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
570 min_count = max(count, min_count);
571 try_to_free_low(min_count);
572 while (min_count < persistent_huge_pages) {
573 struct page *page = dequeue_huge_page(NULL, 0);
574 if (!page)
575 break;
576 update_and_free_page(page);
578 while (count < persistent_huge_pages) {
579 if (!adjust_pool_surplus(1))
580 break;
582 out:
583 ret = persistent_huge_pages;
584 spin_unlock(&hugetlb_lock);
585 return ret;
588 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
589 struct file *file, void __user *buffer,
590 size_t *length, loff_t *ppos)
592 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
593 max_huge_pages = set_max_huge_pages(max_huge_pages);
594 return 0;
597 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
598 struct file *file, void __user *buffer,
599 size_t *length, loff_t *ppos)
601 proc_dointvec(table, write, file, buffer, length, ppos);
602 if (hugepages_treat_as_movable)
603 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
604 else
605 htlb_alloc_mask = GFP_HIGHUSER;
606 return 0;
609 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
610 struct file *file, void __user *buffer,
611 size_t *length, loff_t *ppos)
613 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
614 spin_lock(&hugetlb_lock);
615 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
616 spin_unlock(&hugetlb_lock);
617 return 0;
620 #endif /* CONFIG_SYSCTL */
622 int hugetlb_report_meminfo(char *buf)
624 return sprintf(buf,
625 "HugePages_Total: %5lu\n"
626 "HugePages_Free: %5lu\n"
627 "HugePages_Rsvd: %5lu\n"
628 "HugePages_Surp: %5lu\n"
629 "Hugepagesize: %5lu kB\n",
630 nr_huge_pages,
631 free_huge_pages,
632 resv_huge_pages,
633 surplus_huge_pages,
634 HPAGE_SIZE/1024);
637 int hugetlb_report_node_meminfo(int nid, char *buf)
639 return sprintf(buf,
640 "Node %d HugePages_Total: %5u\n"
641 "Node %d HugePages_Free: %5u\n",
642 nid, nr_huge_pages_node[nid],
643 nid, free_huge_pages_node[nid]);
646 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
647 unsigned long hugetlb_total_pages(void)
649 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
653 * We cannot handle pagefaults against hugetlb pages at all. They cause
654 * handle_mm_fault() to try to instantiate regular-sized pages in the
655 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
656 * this far.
658 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
660 BUG();
661 return 0;
664 struct vm_operations_struct hugetlb_vm_ops = {
665 .fault = hugetlb_vm_op_fault,
668 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
669 int writable)
671 pte_t entry;
673 if (writable) {
674 entry =
675 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
676 } else {
677 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
679 entry = pte_mkyoung(entry);
680 entry = pte_mkhuge(entry);
682 return entry;
685 static void set_huge_ptep_writable(struct vm_area_struct *vma,
686 unsigned long address, pte_t *ptep)
688 pte_t entry;
690 entry = pte_mkwrite(pte_mkdirty(*ptep));
691 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
692 update_mmu_cache(vma, address, entry);
697 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
698 struct vm_area_struct *vma)
700 pte_t *src_pte, *dst_pte, entry;
701 struct page *ptepage;
702 unsigned long addr;
703 int cow;
705 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
707 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
708 src_pte = huge_pte_offset(src, addr);
709 if (!src_pte)
710 continue;
711 dst_pte = huge_pte_alloc(dst, addr);
712 if (!dst_pte)
713 goto nomem;
715 /* If the pagetables are shared don't copy or take references */
716 if (dst_pte == src_pte)
717 continue;
719 spin_lock(&dst->page_table_lock);
720 spin_lock(&src->page_table_lock);
721 if (!pte_none(*src_pte)) {
722 if (cow)
723 ptep_set_wrprotect(src, addr, src_pte);
724 entry = *src_pte;
725 ptepage = pte_page(entry);
726 get_page(ptepage);
727 set_huge_pte_at(dst, addr, dst_pte, entry);
729 spin_unlock(&src->page_table_lock);
730 spin_unlock(&dst->page_table_lock);
732 return 0;
734 nomem:
735 return -ENOMEM;
738 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
739 unsigned long end)
741 struct mm_struct *mm = vma->vm_mm;
742 unsigned long address;
743 pte_t *ptep;
744 pte_t pte;
745 struct page *page;
746 struct page *tmp;
748 * A page gathering list, protected by per file i_mmap_lock. The
749 * lock is used to avoid list corruption from multiple unmapping
750 * of the same page since we are using page->lru.
752 LIST_HEAD(page_list);
754 WARN_ON(!is_vm_hugetlb_page(vma));
755 BUG_ON(start & ~HPAGE_MASK);
756 BUG_ON(end & ~HPAGE_MASK);
758 spin_lock(&mm->page_table_lock);
759 for (address = start; address < end; address += HPAGE_SIZE) {
760 ptep = huge_pte_offset(mm, address);
761 if (!ptep)
762 continue;
764 if (huge_pmd_unshare(mm, &address, ptep))
765 continue;
767 pte = huge_ptep_get_and_clear(mm, address, ptep);
768 if (pte_none(pte))
769 continue;
771 page = pte_page(pte);
772 if (pte_dirty(pte))
773 set_page_dirty(page);
774 list_add(&page->lru, &page_list);
776 spin_unlock(&mm->page_table_lock);
777 flush_tlb_range(vma, start, end);
778 list_for_each_entry_safe(page, tmp, &page_list, lru) {
779 list_del(&page->lru);
780 put_page(page);
784 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
785 unsigned long end)
788 * It is undesirable to test vma->vm_file as it should be non-null
789 * for valid hugetlb area. However, vm_file will be NULL in the error
790 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
791 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
792 * to clean up. Since no pte has actually been setup, it is safe to
793 * do nothing in this case.
795 if (vma->vm_file) {
796 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
797 __unmap_hugepage_range(vma, start, end);
798 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
802 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
803 unsigned long address, pte_t *ptep, pte_t pte)
805 struct page *old_page, *new_page;
806 int avoidcopy;
808 old_page = pte_page(pte);
810 /* If no-one else is actually using this page, avoid the copy
811 * and just make the page writable */
812 avoidcopy = (page_count(old_page) == 1);
813 if (avoidcopy) {
814 set_huge_ptep_writable(vma, address, ptep);
815 return 0;
818 page_cache_get(old_page);
819 new_page = alloc_huge_page(vma, address);
821 if (IS_ERR(new_page)) {
822 page_cache_release(old_page);
823 return -PTR_ERR(new_page);
826 spin_unlock(&mm->page_table_lock);
827 copy_huge_page(new_page, old_page, address, vma);
828 __SetPageUptodate(new_page);
829 spin_lock(&mm->page_table_lock);
831 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
832 if (likely(pte_same(*ptep, pte))) {
833 /* Break COW */
834 set_huge_pte_at(mm, address, ptep,
835 make_huge_pte(vma, new_page, 1));
836 /* Make the old page be freed below */
837 new_page = old_page;
839 page_cache_release(new_page);
840 page_cache_release(old_page);
841 return 0;
844 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
845 unsigned long address, pte_t *ptep, int write_access)
847 int ret = VM_FAULT_SIGBUS;
848 unsigned long idx;
849 unsigned long size;
850 struct page *page;
851 struct address_space *mapping;
852 pte_t new_pte;
854 mapping = vma->vm_file->f_mapping;
855 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
856 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
859 * Use page lock to guard against racing truncation
860 * before we get page_table_lock.
862 retry:
863 page = find_lock_page(mapping, idx);
864 if (!page) {
865 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
866 if (idx >= size)
867 goto out;
868 page = alloc_huge_page(vma, address);
869 if (IS_ERR(page)) {
870 ret = -PTR_ERR(page);
871 goto out;
873 clear_huge_page(page, address);
874 __SetPageUptodate(page);
876 if (vma->vm_flags & VM_SHARED) {
877 int err;
878 struct inode *inode = mapping->host;
880 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
881 if (err) {
882 put_page(page);
883 if (err == -EEXIST)
884 goto retry;
885 goto out;
888 spin_lock(&inode->i_lock);
889 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
890 spin_unlock(&inode->i_lock);
891 } else
892 lock_page(page);
895 spin_lock(&mm->page_table_lock);
896 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
897 if (idx >= size)
898 goto backout;
900 ret = 0;
901 if (!pte_none(*ptep))
902 goto backout;
904 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
905 && (vma->vm_flags & VM_SHARED)));
906 set_huge_pte_at(mm, address, ptep, new_pte);
908 if (write_access && !(vma->vm_flags & VM_SHARED)) {
909 /* Optimization, do the COW without a second fault */
910 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
913 spin_unlock(&mm->page_table_lock);
914 unlock_page(page);
915 out:
916 return ret;
918 backout:
919 spin_unlock(&mm->page_table_lock);
920 unlock_page(page);
921 put_page(page);
922 goto out;
925 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
926 unsigned long address, int write_access)
928 pte_t *ptep;
929 pte_t entry;
930 int ret;
931 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
933 ptep = huge_pte_alloc(mm, address);
934 if (!ptep)
935 return VM_FAULT_OOM;
938 * Serialize hugepage allocation and instantiation, so that we don't
939 * get spurious allocation failures if two CPUs race to instantiate
940 * the same page in the page cache.
942 mutex_lock(&hugetlb_instantiation_mutex);
943 entry = *ptep;
944 if (pte_none(entry)) {
945 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
946 mutex_unlock(&hugetlb_instantiation_mutex);
947 return ret;
950 ret = 0;
952 spin_lock(&mm->page_table_lock);
953 /* Check for a racing update before calling hugetlb_cow */
954 if (likely(pte_same(entry, *ptep)))
955 if (write_access && !pte_write(entry))
956 ret = hugetlb_cow(mm, vma, address, ptep, entry);
957 spin_unlock(&mm->page_table_lock);
958 mutex_unlock(&hugetlb_instantiation_mutex);
960 return ret;
963 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
964 struct page **pages, struct vm_area_struct **vmas,
965 unsigned long *position, int *length, int i,
966 int write)
968 unsigned long pfn_offset;
969 unsigned long vaddr = *position;
970 int remainder = *length;
972 spin_lock(&mm->page_table_lock);
973 while (vaddr < vma->vm_end && remainder) {
974 pte_t *pte;
975 struct page *page;
978 * Some archs (sparc64, sh*) have multiple pte_ts to
979 * each hugepage. We have to make * sure we get the
980 * first, for the page indexing below to work.
982 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
984 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
985 int ret;
987 spin_unlock(&mm->page_table_lock);
988 ret = hugetlb_fault(mm, vma, vaddr, write);
989 spin_lock(&mm->page_table_lock);
990 if (!(ret & VM_FAULT_ERROR))
991 continue;
993 remainder = 0;
994 if (!i)
995 i = -EFAULT;
996 break;
999 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1000 page = pte_page(*pte);
1001 same_page:
1002 if (pages) {
1003 get_page(page);
1004 pages[i] = page + pfn_offset;
1007 if (vmas)
1008 vmas[i] = vma;
1010 vaddr += PAGE_SIZE;
1011 ++pfn_offset;
1012 --remainder;
1013 ++i;
1014 if (vaddr < vma->vm_end && remainder &&
1015 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1017 * We use pfn_offset to avoid touching the pageframes
1018 * of this compound page.
1020 goto same_page;
1023 spin_unlock(&mm->page_table_lock);
1024 *length = remainder;
1025 *position = vaddr;
1027 return i;
1030 void hugetlb_change_protection(struct vm_area_struct *vma,
1031 unsigned long address, unsigned long end, pgprot_t newprot)
1033 struct mm_struct *mm = vma->vm_mm;
1034 unsigned long start = address;
1035 pte_t *ptep;
1036 pte_t pte;
1038 BUG_ON(address >= end);
1039 flush_cache_range(vma, address, end);
1041 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1042 spin_lock(&mm->page_table_lock);
1043 for (; address < end; address += HPAGE_SIZE) {
1044 ptep = huge_pte_offset(mm, address);
1045 if (!ptep)
1046 continue;
1047 if (huge_pmd_unshare(mm, &address, ptep))
1048 continue;
1049 if (!pte_none(*ptep)) {
1050 pte = huge_ptep_get_and_clear(mm, address, ptep);
1051 pte = pte_mkhuge(pte_modify(pte, newprot));
1052 set_huge_pte_at(mm, address, ptep, pte);
1055 spin_unlock(&mm->page_table_lock);
1056 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1058 flush_tlb_range(vma, start, end);
1061 struct file_region {
1062 struct list_head link;
1063 long from;
1064 long to;
1067 static long region_add(struct list_head *head, long f, long t)
1069 struct file_region *rg, *nrg, *trg;
1071 /* Locate the region we are either in or before. */
1072 list_for_each_entry(rg, head, link)
1073 if (f <= rg->to)
1074 break;
1076 /* Round our left edge to the current segment if it encloses us. */
1077 if (f > rg->from)
1078 f = rg->from;
1080 /* Check for and consume any regions we now overlap with. */
1081 nrg = rg;
1082 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1083 if (&rg->link == head)
1084 break;
1085 if (rg->from > t)
1086 break;
1088 /* If this area reaches higher then extend our area to
1089 * include it completely. If this is not the first area
1090 * which we intend to reuse, free it. */
1091 if (rg->to > t)
1092 t = rg->to;
1093 if (rg != nrg) {
1094 list_del(&rg->link);
1095 kfree(rg);
1098 nrg->from = f;
1099 nrg->to = t;
1100 return 0;
1103 static long region_chg(struct list_head *head, long f, long t)
1105 struct file_region *rg, *nrg;
1106 long chg = 0;
1108 /* Locate the region we are before or in. */
1109 list_for_each_entry(rg, head, link)
1110 if (f <= rg->to)
1111 break;
1113 /* If we are below the current region then a new region is required.
1114 * Subtle, allocate a new region at the position but make it zero
1115 * size such that we can guarantee to record the reservation. */
1116 if (&rg->link == head || t < rg->from) {
1117 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1118 if (!nrg)
1119 return -ENOMEM;
1120 nrg->from = f;
1121 nrg->to = f;
1122 INIT_LIST_HEAD(&nrg->link);
1123 list_add(&nrg->link, rg->link.prev);
1125 return t - f;
1128 /* Round our left edge to the current segment if it encloses us. */
1129 if (f > rg->from)
1130 f = rg->from;
1131 chg = t - f;
1133 /* Check for and consume any regions we now overlap with. */
1134 list_for_each_entry(rg, rg->link.prev, link) {
1135 if (&rg->link == head)
1136 break;
1137 if (rg->from > t)
1138 return chg;
1140 /* We overlap with this area, if it extends futher than
1141 * us then we must extend ourselves. Account for its
1142 * existing reservation. */
1143 if (rg->to > t) {
1144 chg += rg->to - t;
1145 t = rg->to;
1147 chg -= rg->to - rg->from;
1149 return chg;
1152 static long region_truncate(struct list_head *head, long end)
1154 struct file_region *rg, *trg;
1155 long chg = 0;
1157 /* Locate the region we are either in or before. */
1158 list_for_each_entry(rg, head, link)
1159 if (end <= rg->to)
1160 break;
1161 if (&rg->link == head)
1162 return 0;
1164 /* If we are in the middle of a region then adjust it. */
1165 if (end > rg->from) {
1166 chg = rg->to - end;
1167 rg->to = end;
1168 rg = list_entry(rg->link.next, typeof(*rg), link);
1171 /* Drop any remaining regions. */
1172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1173 if (&rg->link == head)
1174 break;
1175 chg += rg->to - rg->from;
1176 list_del(&rg->link);
1177 kfree(rg);
1179 return chg;
1182 static int hugetlb_acct_memory(long delta)
1184 int ret = -ENOMEM;
1186 spin_lock(&hugetlb_lock);
1188 * When cpuset is configured, it breaks the strict hugetlb page
1189 * reservation as the accounting is done on a global variable. Such
1190 * reservation is completely rubbish in the presence of cpuset because
1191 * the reservation is not checked against page availability for the
1192 * current cpuset. Application can still potentially OOM'ed by kernel
1193 * with lack of free htlb page in cpuset that the task is in.
1194 * Attempt to enforce strict accounting with cpuset is almost
1195 * impossible (or too ugly) because cpuset is too fluid that
1196 * task or memory node can be dynamically moved between cpusets.
1198 * The change of semantics for shared hugetlb mapping with cpuset is
1199 * undesirable. However, in order to preserve some of the semantics,
1200 * we fall back to check against current free page availability as
1201 * a best attempt and hopefully to minimize the impact of changing
1202 * semantics that cpuset has.
1204 if (delta > 0) {
1205 if (gather_surplus_pages(delta) < 0)
1206 goto out;
1208 if (delta > cpuset_mems_nr(free_huge_pages_node))
1209 goto out;
1212 ret = 0;
1213 resv_huge_pages += delta;
1214 if (delta < 0)
1215 return_unused_surplus_pages((unsigned long) -delta);
1217 out:
1218 spin_unlock(&hugetlb_lock);
1219 return ret;
1222 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1224 long ret, chg;
1226 chg = region_chg(&inode->i_mapping->private_list, from, to);
1227 if (chg < 0)
1228 return chg;
1230 if (hugetlb_get_quota(inode->i_mapping, chg))
1231 return -ENOSPC;
1232 ret = hugetlb_acct_memory(chg);
1233 if (ret < 0) {
1234 hugetlb_put_quota(inode->i_mapping, chg);
1235 return ret;
1237 region_add(&inode->i_mapping->private_list, from, to);
1238 return 0;
1241 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1243 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1245 spin_lock(&inode->i_lock);
1246 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1247 spin_unlock(&inode->i_lock);
1249 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1250 hugetlb_acct_memory(-(chg - freed));