KVM: Remove redundant reading of rax on OUT instructions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blobbd3161c6daed04b8a24d676efccc74f78043253e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <trace/events/kvm.h>
43 #undef TRACE_INCLUDE_FILE
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
47 #include <asm/debugreg.h>
48 #include <asm/uaccess.h>
49 #include <asm/msr.h>
50 #include <asm/desc.h>
51 #include <asm/mtrr.h>
52 #include <asm/mce.h>
54 #define MAX_IO_MSRS 256
55 #define CR0_RESERVED_BITS \
56 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
57 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
58 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
59 #define CR4_RESERVED_BITS \
60 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
61 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
62 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
63 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
65 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
67 #define KVM_MAX_MCE_BANKS 32
68 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
70 /* EFER defaults:
71 * - enable syscall per default because its emulated by KVM
72 * - enable LME and LMA per default on 64 bit KVM
74 #ifdef CONFIG_X86_64
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
76 #else
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
78 #endif
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85 struct kvm_cpuid_entry2 __user *entries);
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93 #define KVM_NR_SHARED_MSRS 16
95 struct kvm_shared_msrs_global {
96 int nr;
97 u32 msrs[KVM_NR_SHARED_MSRS];
100 struct kvm_shared_msrs {
101 struct user_return_notifier urn;
102 bool registered;
103 struct kvm_shared_msr_values {
104 u64 host;
105 u64 curr;
106 } values[KVM_NR_SHARED_MSRS];
109 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
110 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
112 struct kvm_stats_debugfs_item debugfs_entries[] = {
113 { "pf_fixed", VCPU_STAT(pf_fixed) },
114 { "pf_guest", VCPU_STAT(pf_guest) },
115 { "tlb_flush", VCPU_STAT(tlb_flush) },
116 { "invlpg", VCPU_STAT(invlpg) },
117 { "exits", VCPU_STAT(exits) },
118 { "io_exits", VCPU_STAT(io_exits) },
119 { "mmio_exits", VCPU_STAT(mmio_exits) },
120 { "signal_exits", VCPU_STAT(signal_exits) },
121 { "irq_window", VCPU_STAT(irq_window_exits) },
122 { "nmi_window", VCPU_STAT(nmi_window_exits) },
123 { "halt_exits", VCPU_STAT(halt_exits) },
124 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
125 { "hypercalls", VCPU_STAT(hypercalls) },
126 { "request_irq", VCPU_STAT(request_irq_exits) },
127 { "irq_exits", VCPU_STAT(irq_exits) },
128 { "host_state_reload", VCPU_STAT(host_state_reload) },
129 { "efer_reload", VCPU_STAT(efer_reload) },
130 { "fpu_reload", VCPU_STAT(fpu_reload) },
131 { "insn_emulation", VCPU_STAT(insn_emulation) },
132 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
133 { "irq_injections", VCPU_STAT(irq_injections) },
134 { "nmi_injections", VCPU_STAT(nmi_injections) },
135 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
136 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
137 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
138 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
139 { "mmu_flooded", VM_STAT(mmu_flooded) },
140 { "mmu_recycled", VM_STAT(mmu_recycled) },
141 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
142 { "mmu_unsync", VM_STAT(mmu_unsync) },
143 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
144 { "largepages", VM_STAT(lpages) },
145 { NULL }
148 static void kvm_on_user_return(struct user_return_notifier *urn)
150 unsigned slot;
151 struct kvm_shared_msrs *locals
152 = container_of(urn, struct kvm_shared_msrs, urn);
153 struct kvm_shared_msr_values *values;
155 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
156 values = &locals->values[slot];
157 if (values->host != values->curr) {
158 wrmsrl(shared_msrs_global.msrs[slot], values->host);
159 values->curr = values->host;
162 locals->registered = false;
163 user_return_notifier_unregister(urn);
166 static void shared_msr_update(unsigned slot, u32 msr)
168 struct kvm_shared_msrs *smsr;
169 u64 value;
171 smsr = &__get_cpu_var(shared_msrs);
172 /* only read, and nobody should modify it at this time,
173 * so don't need lock */
174 if (slot >= shared_msrs_global.nr) {
175 printk(KERN_ERR "kvm: invalid MSR slot!");
176 return;
178 rdmsrl_safe(msr, &value);
179 smsr->values[slot].host = value;
180 smsr->values[slot].curr = value;
183 void kvm_define_shared_msr(unsigned slot, u32 msr)
185 if (slot >= shared_msrs_global.nr)
186 shared_msrs_global.nr = slot + 1;
187 shared_msrs_global.msrs[slot] = msr;
188 /* we need ensured the shared_msr_global have been updated */
189 smp_wmb();
191 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
193 static void kvm_shared_msr_cpu_online(void)
195 unsigned i;
197 for (i = 0; i < shared_msrs_global.nr; ++i)
198 shared_msr_update(i, shared_msrs_global.msrs[i]);
201 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
203 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
205 if (((value ^ smsr->values[slot].curr) & mask) == 0)
206 return;
207 smsr->values[slot].curr = value;
208 wrmsrl(shared_msrs_global.msrs[slot], value);
209 if (!smsr->registered) {
210 smsr->urn.on_user_return = kvm_on_user_return;
211 user_return_notifier_register(&smsr->urn);
212 smsr->registered = true;
215 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
217 static void drop_user_return_notifiers(void *ignore)
219 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221 if (smsr->registered)
222 kvm_on_user_return(&smsr->urn);
225 unsigned long segment_base(u16 selector)
227 struct descriptor_table gdt;
228 struct desc_struct *d;
229 unsigned long table_base;
230 unsigned long v;
232 if (selector == 0)
233 return 0;
235 kvm_get_gdt(&gdt);
236 table_base = gdt.base;
238 if (selector & 4) { /* from ldt */
239 u16 ldt_selector = kvm_read_ldt();
241 table_base = segment_base(ldt_selector);
243 d = (struct desc_struct *)(table_base + (selector & ~7));
244 v = get_desc_base(d);
245 #ifdef CONFIG_X86_64
246 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
247 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
248 #endif
249 return v;
251 EXPORT_SYMBOL_GPL(segment_base);
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 if (irqchip_in_kernel(vcpu->kvm))
256 return vcpu->arch.apic_base;
257 else
258 return vcpu->arch.apic_base;
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
262 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
264 /* TODO: reserve bits check */
265 if (irqchip_in_kernel(vcpu->kvm))
266 kvm_lapic_set_base(vcpu, data);
267 else
268 vcpu->arch.apic_base = data;
270 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
272 #define EXCPT_BENIGN 0
273 #define EXCPT_CONTRIBUTORY 1
274 #define EXCPT_PF 2
276 static int exception_class(int vector)
278 switch (vector) {
279 case PF_VECTOR:
280 return EXCPT_PF;
281 case DE_VECTOR:
282 case TS_VECTOR:
283 case NP_VECTOR:
284 case SS_VECTOR:
285 case GP_VECTOR:
286 return EXCPT_CONTRIBUTORY;
287 default:
288 break;
290 return EXCPT_BENIGN;
293 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
294 unsigned nr, bool has_error, u32 error_code)
296 u32 prev_nr;
297 int class1, class2;
299 if (!vcpu->arch.exception.pending) {
300 queue:
301 vcpu->arch.exception.pending = true;
302 vcpu->arch.exception.has_error_code = has_error;
303 vcpu->arch.exception.nr = nr;
304 vcpu->arch.exception.error_code = error_code;
305 return;
308 /* to check exception */
309 prev_nr = vcpu->arch.exception.nr;
310 if (prev_nr == DF_VECTOR) {
311 /* triple fault -> shutdown */
312 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
313 return;
315 class1 = exception_class(prev_nr);
316 class2 = exception_class(nr);
317 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
318 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
319 /* generate double fault per SDM Table 5-5 */
320 vcpu->arch.exception.pending = true;
321 vcpu->arch.exception.has_error_code = true;
322 vcpu->arch.exception.nr = DF_VECTOR;
323 vcpu->arch.exception.error_code = 0;
324 } else
325 /* replace previous exception with a new one in a hope
326 that instruction re-execution will regenerate lost
327 exception */
328 goto queue;
331 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 kvm_multiple_exception(vcpu, nr, false, 0);
335 EXPORT_SYMBOL_GPL(kvm_queue_exception);
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
338 u32 error_code)
340 ++vcpu->stat.pf_guest;
341 vcpu->arch.cr2 = addr;
342 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
345 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
347 vcpu->arch.nmi_pending = 1;
349 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
351 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
353 kvm_multiple_exception(vcpu, nr, true, error_code);
355 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
358 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
359 * a #GP and return false.
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
363 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364 return true;
365 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366 return false;
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
371 * Load the pae pdptrs. Return true is they are all valid.
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
375 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377 int i;
378 int ret;
379 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
381 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382 offset * sizeof(u64), sizeof(pdpte));
383 if (ret < 0) {
384 ret = 0;
385 goto out;
387 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388 if (is_present_gpte(pdpte[i]) &&
389 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390 ret = 0;
391 goto out;
394 ret = 1;
396 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397 __set_bit(VCPU_EXREG_PDPTR,
398 (unsigned long *)&vcpu->arch.regs_avail);
399 __set_bit(VCPU_EXREG_PDPTR,
400 (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
403 return ret;
405 EXPORT_SYMBOL_GPL(load_pdptrs);
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
409 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410 bool changed = true;
411 int r;
413 if (is_long_mode(vcpu) || !is_pae(vcpu))
414 return false;
416 if (!test_bit(VCPU_EXREG_PDPTR,
417 (unsigned long *)&vcpu->arch.regs_avail))
418 return true;
420 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421 if (r < 0)
422 goto out;
423 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
426 return changed;
429 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
431 cr0 |= X86_CR0_ET;
433 #ifdef CONFIG_X86_64
434 if (cr0 & 0xffffffff00000000UL) {
435 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
436 cr0, kvm_read_cr0(vcpu));
437 kvm_inject_gp(vcpu, 0);
438 return;
440 #endif
442 cr0 &= ~CR0_RESERVED_BITS;
444 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
445 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
446 kvm_inject_gp(vcpu, 0);
447 return;
450 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
451 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
452 "and a clear PE flag\n");
453 kvm_inject_gp(vcpu, 0);
454 return;
457 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
458 #ifdef CONFIG_X86_64
459 if ((vcpu->arch.efer & EFER_LME)) {
460 int cs_db, cs_l;
462 if (!is_pae(vcpu)) {
463 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464 "in long mode while PAE is disabled\n");
465 kvm_inject_gp(vcpu, 0);
466 return;
468 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469 if (cs_l) {
470 printk(KERN_DEBUG "set_cr0: #GP, start paging "
471 "in long mode while CS.L == 1\n");
472 kvm_inject_gp(vcpu, 0);
473 return;
476 } else
477 #endif
478 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
479 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
480 "reserved bits\n");
481 kvm_inject_gp(vcpu, 0);
482 return;
487 kvm_x86_ops->set_cr0(vcpu, cr0);
488 vcpu->arch.cr0 = cr0;
490 kvm_mmu_reset_context(vcpu);
491 return;
493 EXPORT_SYMBOL_GPL(kvm_set_cr0);
495 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
497 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
499 EXPORT_SYMBOL_GPL(kvm_lmsw);
501 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
503 unsigned long old_cr4 = kvm_read_cr4(vcpu);
504 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
506 if (cr4 & CR4_RESERVED_BITS) {
507 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508 kvm_inject_gp(vcpu, 0);
509 return;
512 if (is_long_mode(vcpu)) {
513 if (!(cr4 & X86_CR4_PAE)) {
514 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515 "in long mode\n");
516 kvm_inject_gp(vcpu, 0);
517 return;
519 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
520 && ((cr4 ^ old_cr4) & pdptr_bits)
521 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
522 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
523 kvm_inject_gp(vcpu, 0);
524 return;
527 if (cr4 & X86_CR4_VMXE) {
528 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
529 kvm_inject_gp(vcpu, 0);
530 return;
532 kvm_x86_ops->set_cr4(vcpu, cr4);
533 vcpu->arch.cr4 = cr4;
534 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
535 kvm_mmu_reset_context(vcpu);
537 EXPORT_SYMBOL_GPL(kvm_set_cr4);
539 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
541 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
542 kvm_mmu_sync_roots(vcpu);
543 kvm_mmu_flush_tlb(vcpu);
544 return;
547 if (is_long_mode(vcpu)) {
548 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
549 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
550 kvm_inject_gp(vcpu, 0);
551 return;
553 } else {
554 if (is_pae(vcpu)) {
555 if (cr3 & CR3_PAE_RESERVED_BITS) {
556 printk(KERN_DEBUG
557 "set_cr3: #GP, reserved bits\n");
558 kvm_inject_gp(vcpu, 0);
559 return;
561 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
562 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
563 "reserved bits\n");
564 kvm_inject_gp(vcpu, 0);
565 return;
569 * We don't check reserved bits in nonpae mode, because
570 * this isn't enforced, and VMware depends on this.
575 * Does the new cr3 value map to physical memory? (Note, we
576 * catch an invalid cr3 even in real-mode, because it would
577 * cause trouble later on when we turn on paging anyway.)
579 * A real CPU would silently accept an invalid cr3 and would
580 * attempt to use it - with largely undefined (and often hard
581 * to debug) behavior on the guest side.
583 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
584 kvm_inject_gp(vcpu, 0);
585 else {
586 vcpu->arch.cr3 = cr3;
587 vcpu->arch.mmu.new_cr3(vcpu);
590 EXPORT_SYMBOL_GPL(kvm_set_cr3);
592 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
594 if (cr8 & CR8_RESERVED_BITS) {
595 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
596 kvm_inject_gp(vcpu, 0);
597 return;
599 if (irqchip_in_kernel(vcpu->kvm))
600 kvm_lapic_set_tpr(vcpu, cr8);
601 else
602 vcpu->arch.cr8 = cr8;
604 EXPORT_SYMBOL_GPL(kvm_set_cr8);
606 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
608 if (irqchip_in_kernel(vcpu->kvm))
609 return kvm_lapic_get_cr8(vcpu);
610 else
611 return vcpu->arch.cr8;
613 EXPORT_SYMBOL_GPL(kvm_get_cr8);
615 static inline u32 bit(int bitno)
617 return 1 << (bitno & 31);
621 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
622 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
624 * This list is modified at module load time to reflect the
625 * capabilities of the host cpu. This capabilities test skips MSRs that are
626 * kvm-specific. Those are put in the beginning of the list.
629 #define KVM_SAVE_MSRS_BEGIN 5
630 static u32 msrs_to_save[] = {
631 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
632 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
633 HV_X64_MSR_APIC_ASSIST_PAGE,
634 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
635 MSR_K6_STAR,
636 #ifdef CONFIG_X86_64
637 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
638 #endif
639 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
642 static unsigned num_msrs_to_save;
644 static u32 emulated_msrs[] = {
645 MSR_IA32_MISC_ENABLE,
648 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
650 if (efer & efer_reserved_bits) {
651 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
652 efer);
653 kvm_inject_gp(vcpu, 0);
654 return;
657 if (is_paging(vcpu)
658 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
659 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
660 kvm_inject_gp(vcpu, 0);
661 return;
664 if (efer & EFER_FFXSR) {
665 struct kvm_cpuid_entry2 *feat;
667 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
668 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
669 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
670 kvm_inject_gp(vcpu, 0);
671 return;
675 if (efer & EFER_SVME) {
676 struct kvm_cpuid_entry2 *feat;
678 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
679 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
680 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
681 kvm_inject_gp(vcpu, 0);
682 return;
686 kvm_x86_ops->set_efer(vcpu, efer);
688 efer &= ~EFER_LMA;
689 efer |= vcpu->arch.efer & EFER_LMA;
691 vcpu->arch.efer = efer;
693 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
694 kvm_mmu_reset_context(vcpu);
697 void kvm_enable_efer_bits(u64 mask)
699 efer_reserved_bits &= ~mask;
701 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
705 * Writes msr value into into the appropriate "register".
706 * Returns 0 on success, non-0 otherwise.
707 * Assumes vcpu_load() was already called.
709 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
711 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
715 * Adapt set_msr() to msr_io()'s calling convention
717 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
719 return kvm_set_msr(vcpu, index, *data);
722 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
724 static int version;
725 struct pvclock_wall_clock wc;
726 struct timespec boot;
728 if (!wall_clock)
729 return;
731 version++;
733 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
736 * The guest calculates current wall clock time by adding
737 * system time (updated by kvm_write_guest_time below) to the
738 * wall clock specified here. guest system time equals host
739 * system time for us, thus we must fill in host boot time here.
741 getboottime(&boot);
743 wc.sec = boot.tv_sec;
744 wc.nsec = boot.tv_nsec;
745 wc.version = version;
747 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
749 version++;
750 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
753 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
755 uint32_t quotient, remainder;
757 /* Don't try to replace with do_div(), this one calculates
758 * "(dividend << 32) / divisor" */
759 __asm__ ( "divl %4"
760 : "=a" (quotient), "=d" (remainder)
761 : "0" (0), "1" (dividend), "r" (divisor) );
762 return quotient;
765 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
767 uint64_t nsecs = 1000000000LL;
768 int32_t shift = 0;
769 uint64_t tps64;
770 uint32_t tps32;
772 tps64 = tsc_khz * 1000LL;
773 while (tps64 > nsecs*2) {
774 tps64 >>= 1;
775 shift--;
778 tps32 = (uint32_t)tps64;
779 while (tps32 <= (uint32_t)nsecs) {
780 tps32 <<= 1;
781 shift++;
784 hv_clock->tsc_shift = shift;
785 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
787 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
788 __func__, tsc_khz, hv_clock->tsc_shift,
789 hv_clock->tsc_to_system_mul);
792 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
794 static void kvm_write_guest_time(struct kvm_vcpu *v)
796 struct timespec ts;
797 unsigned long flags;
798 struct kvm_vcpu_arch *vcpu = &v->arch;
799 void *shared_kaddr;
800 unsigned long this_tsc_khz;
802 if ((!vcpu->time_page))
803 return;
805 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
806 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
807 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
808 vcpu->hv_clock_tsc_khz = this_tsc_khz;
810 put_cpu_var(cpu_tsc_khz);
812 /* Keep irq disabled to prevent changes to the clock */
813 local_irq_save(flags);
814 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
815 ktime_get_ts(&ts);
816 monotonic_to_bootbased(&ts);
817 local_irq_restore(flags);
819 /* With all the info we got, fill in the values */
821 vcpu->hv_clock.system_time = ts.tv_nsec +
822 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
825 * The interface expects us to write an even number signaling that the
826 * update is finished. Since the guest won't see the intermediate
827 * state, we just increase by 2 at the end.
829 vcpu->hv_clock.version += 2;
831 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
833 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
834 sizeof(vcpu->hv_clock));
836 kunmap_atomic(shared_kaddr, KM_USER0);
838 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
841 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
843 struct kvm_vcpu_arch *vcpu = &v->arch;
845 if (!vcpu->time_page)
846 return 0;
847 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
848 return 1;
851 static bool msr_mtrr_valid(unsigned msr)
853 switch (msr) {
854 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
855 case MSR_MTRRfix64K_00000:
856 case MSR_MTRRfix16K_80000:
857 case MSR_MTRRfix16K_A0000:
858 case MSR_MTRRfix4K_C0000:
859 case MSR_MTRRfix4K_C8000:
860 case MSR_MTRRfix4K_D0000:
861 case MSR_MTRRfix4K_D8000:
862 case MSR_MTRRfix4K_E0000:
863 case MSR_MTRRfix4K_E8000:
864 case MSR_MTRRfix4K_F0000:
865 case MSR_MTRRfix4K_F8000:
866 case MSR_MTRRdefType:
867 case MSR_IA32_CR_PAT:
868 return true;
869 case 0x2f8:
870 return true;
872 return false;
875 static bool valid_pat_type(unsigned t)
877 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
880 static bool valid_mtrr_type(unsigned t)
882 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
885 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
887 int i;
889 if (!msr_mtrr_valid(msr))
890 return false;
892 if (msr == MSR_IA32_CR_PAT) {
893 for (i = 0; i < 8; i++)
894 if (!valid_pat_type((data >> (i * 8)) & 0xff))
895 return false;
896 return true;
897 } else if (msr == MSR_MTRRdefType) {
898 if (data & ~0xcff)
899 return false;
900 return valid_mtrr_type(data & 0xff);
901 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
902 for (i = 0; i < 8 ; i++)
903 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
904 return false;
905 return true;
908 /* variable MTRRs */
909 return valid_mtrr_type(data & 0xff);
912 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
914 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
916 if (!mtrr_valid(vcpu, msr, data))
917 return 1;
919 if (msr == MSR_MTRRdefType) {
920 vcpu->arch.mtrr_state.def_type = data;
921 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
922 } else if (msr == MSR_MTRRfix64K_00000)
923 p[0] = data;
924 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
925 p[1 + msr - MSR_MTRRfix16K_80000] = data;
926 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
927 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
928 else if (msr == MSR_IA32_CR_PAT)
929 vcpu->arch.pat = data;
930 else { /* Variable MTRRs */
931 int idx, is_mtrr_mask;
932 u64 *pt;
934 idx = (msr - 0x200) / 2;
935 is_mtrr_mask = msr - 0x200 - 2 * idx;
936 if (!is_mtrr_mask)
937 pt =
938 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
939 else
940 pt =
941 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
942 *pt = data;
945 kvm_mmu_reset_context(vcpu);
946 return 0;
949 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
951 u64 mcg_cap = vcpu->arch.mcg_cap;
952 unsigned bank_num = mcg_cap & 0xff;
954 switch (msr) {
955 case MSR_IA32_MCG_STATUS:
956 vcpu->arch.mcg_status = data;
957 break;
958 case MSR_IA32_MCG_CTL:
959 if (!(mcg_cap & MCG_CTL_P))
960 return 1;
961 if (data != 0 && data != ~(u64)0)
962 return -1;
963 vcpu->arch.mcg_ctl = data;
964 break;
965 default:
966 if (msr >= MSR_IA32_MC0_CTL &&
967 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
968 u32 offset = msr - MSR_IA32_MC0_CTL;
969 /* only 0 or all 1s can be written to IA32_MCi_CTL */
970 if ((offset & 0x3) == 0 &&
971 data != 0 && data != ~(u64)0)
972 return -1;
973 vcpu->arch.mce_banks[offset] = data;
974 break;
976 return 1;
978 return 0;
981 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
983 struct kvm *kvm = vcpu->kvm;
984 int lm = is_long_mode(vcpu);
985 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
986 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
987 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
988 : kvm->arch.xen_hvm_config.blob_size_32;
989 u32 page_num = data & ~PAGE_MASK;
990 u64 page_addr = data & PAGE_MASK;
991 u8 *page;
992 int r;
994 r = -E2BIG;
995 if (page_num >= blob_size)
996 goto out;
997 r = -ENOMEM;
998 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
999 if (!page)
1000 goto out;
1001 r = -EFAULT;
1002 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1003 goto out_free;
1004 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1005 goto out_free;
1006 r = 0;
1007 out_free:
1008 kfree(page);
1009 out:
1010 return r;
1013 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1015 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1018 static bool kvm_hv_msr_partition_wide(u32 msr)
1020 bool r = false;
1021 switch (msr) {
1022 case HV_X64_MSR_GUEST_OS_ID:
1023 case HV_X64_MSR_HYPERCALL:
1024 r = true;
1025 break;
1028 return r;
1031 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1033 struct kvm *kvm = vcpu->kvm;
1035 switch (msr) {
1036 case HV_X64_MSR_GUEST_OS_ID:
1037 kvm->arch.hv_guest_os_id = data;
1038 /* setting guest os id to zero disables hypercall page */
1039 if (!kvm->arch.hv_guest_os_id)
1040 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1041 break;
1042 case HV_X64_MSR_HYPERCALL: {
1043 u64 gfn;
1044 unsigned long addr;
1045 u8 instructions[4];
1047 /* if guest os id is not set hypercall should remain disabled */
1048 if (!kvm->arch.hv_guest_os_id)
1049 break;
1050 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1051 kvm->arch.hv_hypercall = data;
1052 break;
1054 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1055 addr = gfn_to_hva(kvm, gfn);
1056 if (kvm_is_error_hva(addr))
1057 return 1;
1058 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1059 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1060 if (copy_to_user((void __user *)addr, instructions, 4))
1061 return 1;
1062 kvm->arch.hv_hypercall = data;
1063 break;
1065 default:
1066 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1067 "data 0x%llx\n", msr, data);
1068 return 1;
1070 return 0;
1073 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1075 switch (msr) {
1076 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1077 unsigned long addr;
1079 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1080 vcpu->arch.hv_vapic = data;
1081 break;
1083 addr = gfn_to_hva(vcpu->kvm, data >>
1084 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1085 if (kvm_is_error_hva(addr))
1086 return 1;
1087 if (clear_user((void __user *)addr, PAGE_SIZE))
1088 return 1;
1089 vcpu->arch.hv_vapic = data;
1090 break;
1092 case HV_X64_MSR_EOI:
1093 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1094 case HV_X64_MSR_ICR:
1095 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1096 case HV_X64_MSR_TPR:
1097 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1098 default:
1099 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1100 "data 0x%llx\n", msr, data);
1101 return 1;
1104 return 0;
1107 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1109 switch (msr) {
1110 case MSR_EFER:
1111 set_efer(vcpu, data);
1112 break;
1113 case MSR_K7_HWCR:
1114 data &= ~(u64)0x40; /* ignore flush filter disable */
1115 if (data != 0) {
1116 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1117 data);
1118 return 1;
1120 break;
1121 case MSR_FAM10H_MMIO_CONF_BASE:
1122 if (data != 0) {
1123 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1124 "0x%llx\n", data);
1125 return 1;
1127 break;
1128 case MSR_AMD64_NB_CFG:
1129 break;
1130 case MSR_IA32_DEBUGCTLMSR:
1131 if (!data) {
1132 /* We support the non-activated case already */
1133 break;
1134 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1135 /* Values other than LBR and BTF are vendor-specific,
1136 thus reserved and should throw a #GP */
1137 return 1;
1139 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1140 __func__, data);
1141 break;
1142 case MSR_IA32_UCODE_REV:
1143 case MSR_IA32_UCODE_WRITE:
1144 case MSR_VM_HSAVE_PA:
1145 case MSR_AMD64_PATCH_LOADER:
1146 break;
1147 case 0x200 ... 0x2ff:
1148 return set_msr_mtrr(vcpu, msr, data);
1149 case MSR_IA32_APICBASE:
1150 kvm_set_apic_base(vcpu, data);
1151 break;
1152 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1153 return kvm_x2apic_msr_write(vcpu, msr, data);
1154 case MSR_IA32_MISC_ENABLE:
1155 vcpu->arch.ia32_misc_enable_msr = data;
1156 break;
1157 case MSR_KVM_WALL_CLOCK:
1158 vcpu->kvm->arch.wall_clock = data;
1159 kvm_write_wall_clock(vcpu->kvm, data);
1160 break;
1161 case MSR_KVM_SYSTEM_TIME: {
1162 if (vcpu->arch.time_page) {
1163 kvm_release_page_dirty(vcpu->arch.time_page);
1164 vcpu->arch.time_page = NULL;
1167 vcpu->arch.time = data;
1169 /* we verify if the enable bit is set... */
1170 if (!(data & 1))
1171 break;
1173 /* ...but clean it before doing the actual write */
1174 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1176 vcpu->arch.time_page =
1177 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1179 if (is_error_page(vcpu->arch.time_page)) {
1180 kvm_release_page_clean(vcpu->arch.time_page);
1181 vcpu->arch.time_page = NULL;
1184 kvm_request_guest_time_update(vcpu);
1185 break;
1187 case MSR_IA32_MCG_CTL:
1188 case MSR_IA32_MCG_STATUS:
1189 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1190 return set_msr_mce(vcpu, msr, data);
1192 /* Performance counters are not protected by a CPUID bit,
1193 * so we should check all of them in the generic path for the sake of
1194 * cross vendor migration.
1195 * Writing a zero into the event select MSRs disables them,
1196 * which we perfectly emulate ;-). Any other value should be at least
1197 * reported, some guests depend on them.
1199 case MSR_P6_EVNTSEL0:
1200 case MSR_P6_EVNTSEL1:
1201 case MSR_K7_EVNTSEL0:
1202 case MSR_K7_EVNTSEL1:
1203 case MSR_K7_EVNTSEL2:
1204 case MSR_K7_EVNTSEL3:
1205 if (data != 0)
1206 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1207 "0x%x data 0x%llx\n", msr, data);
1208 break;
1209 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1210 * so we ignore writes to make it happy.
1212 case MSR_P6_PERFCTR0:
1213 case MSR_P6_PERFCTR1:
1214 case MSR_K7_PERFCTR0:
1215 case MSR_K7_PERFCTR1:
1216 case MSR_K7_PERFCTR2:
1217 case MSR_K7_PERFCTR3:
1218 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1219 "0x%x data 0x%llx\n", msr, data);
1220 break;
1221 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1222 if (kvm_hv_msr_partition_wide(msr)) {
1223 int r;
1224 mutex_lock(&vcpu->kvm->lock);
1225 r = set_msr_hyperv_pw(vcpu, msr, data);
1226 mutex_unlock(&vcpu->kvm->lock);
1227 return r;
1228 } else
1229 return set_msr_hyperv(vcpu, msr, data);
1230 break;
1231 default:
1232 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1233 return xen_hvm_config(vcpu, data);
1234 if (!ignore_msrs) {
1235 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1236 msr, data);
1237 return 1;
1238 } else {
1239 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1240 msr, data);
1241 break;
1244 return 0;
1246 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1250 * Reads an msr value (of 'msr_index') into 'pdata'.
1251 * Returns 0 on success, non-0 otherwise.
1252 * Assumes vcpu_load() was already called.
1254 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1256 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1259 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1261 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1263 if (!msr_mtrr_valid(msr))
1264 return 1;
1266 if (msr == MSR_MTRRdefType)
1267 *pdata = vcpu->arch.mtrr_state.def_type +
1268 (vcpu->arch.mtrr_state.enabled << 10);
1269 else if (msr == MSR_MTRRfix64K_00000)
1270 *pdata = p[0];
1271 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1272 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1273 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1274 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1275 else if (msr == MSR_IA32_CR_PAT)
1276 *pdata = vcpu->arch.pat;
1277 else { /* Variable MTRRs */
1278 int idx, is_mtrr_mask;
1279 u64 *pt;
1281 idx = (msr - 0x200) / 2;
1282 is_mtrr_mask = msr - 0x200 - 2 * idx;
1283 if (!is_mtrr_mask)
1284 pt =
1285 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1286 else
1287 pt =
1288 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1289 *pdata = *pt;
1292 return 0;
1295 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1297 u64 data;
1298 u64 mcg_cap = vcpu->arch.mcg_cap;
1299 unsigned bank_num = mcg_cap & 0xff;
1301 switch (msr) {
1302 case MSR_IA32_P5_MC_ADDR:
1303 case MSR_IA32_P5_MC_TYPE:
1304 data = 0;
1305 break;
1306 case MSR_IA32_MCG_CAP:
1307 data = vcpu->arch.mcg_cap;
1308 break;
1309 case MSR_IA32_MCG_CTL:
1310 if (!(mcg_cap & MCG_CTL_P))
1311 return 1;
1312 data = vcpu->arch.mcg_ctl;
1313 break;
1314 case MSR_IA32_MCG_STATUS:
1315 data = vcpu->arch.mcg_status;
1316 break;
1317 default:
1318 if (msr >= MSR_IA32_MC0_CTL &&
1319 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1320 u32 offset = msr - MSR_IA32_MC0_CTL;
1321 data = vcpu->arch.mce_banks[offset];
1322 break;
1324 return 1;
1326 *pdata = data;
1327 return 0;
1330 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1332 u64 data = 0;
1333 struct kvm *kvm = vcpu->kvm;
1335 switch (msr) {
1336 case HV_X64_MSR_GUEST_OS_ID:
1337 data = kvm->arch.hv_guest_os_id;
1338 break;
1339 case HV_X64_MSR_HYPERCALL:
1340 data = kvm->arch.hv_hypercall;
1341 break;
1342 default:
1343 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1344 return 1;
1347 *pdata = data;
1348 return 0;
1351 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1353 u64 data = 0;
1355 switch (msr) {
1356 case HV_X64_MSR_VP_INDEX: {
1357 int r;
1358 struct kvm_vcpu *v;
1359 kvm_for_each_vcpu(r, v, vcpu->kvm)
1360 if (v == vcpu)
1361 data = r;
1362 break;
1364 case HV_X64_MSR_EOI:
1365 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1366 case HV_X64_MSR_ICR:
1367 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1368 case HV_X64_MSR_TPR:
1369 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1370 default:
1371 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1372 return 1;
1374 *pdata = data;
1375 return 0;
1378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1380 u64 data;
1382 switch (msr) {
1383 case MSR_IA32_PLATFORM_ID:
1384 case MSR_IA32_UCODE_REV:
1385 case MSR_IA32_EBL_CR_POWERON:
1386 case MSR_IA32_DEBUGCTLMSR:
1387 case MSR_IA32_LASTBRANCHFROMIP:
1388 case MSR_IA32_LASTBRANCHTOIP:
1389 case MSR_IA32_LASTINTFROMIP:
1390 case MSR_IA32_LASTINTTOIP:
1391 case MSR_K8_SYSCFG:
1392 case MSR_K7_HWCR:
1393 case MSR_VM_HSAVE_PA:
1394 case MSR_P6_PERFCTR0:
1395 case MSR_P6_PERFCTR1:
1396 case MSR_P6_EVNTSEL0:
1397 case MSR_P6_EVNTSEL1:
1398 case MSR_K7_EVNTSEL0:
1399 case MSR_K7_PERFCTR0:
1400 case MSR_K8_INT_PENDING_MSG:
1401 case MSR_AMD64_NB_CFG:
1402 case MSR_FAM10H_MMIO_CONF_BASE:
1403 data = 0;
1404 break;
1405 case MSR_MTRRcap:
1406 data = 0x500 | KVM_NR_VAR_MTRR;
1407 break;
1408 case 0x200 ... 0x2ff:
1409 return get_msr_mtrr(vcpu, msr, pdata);
1410 case 0xcd: /* fsb frequency */
1411 data = 3;
1412 break;
1413 case MSR_IA32_APICBASE:
1414 data = kvm_get_apic_base(vcpu);
1415 break;
1416 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1417 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1418 break;
1419 case MSR_IA32_MISC_ENABLE:
1420 data = vcpu->arch.ia32_misc_enable_msr;
1421 break;
1422 case MSR_IA32_PERF_STATUS:
1423 /* TSC increment by tick */
1424 data = 1000ULL;
1425 /* CPU multiplier */
1426 data |= (((uint64_t)4ULL) << 40);
1427 break;
1428 case MSR_EFER:
1429 data = vcpu->arch.efer;
1430 break;
1431 case MSR_KVM_WALL_CLOCK:
1432 data = vcpu->kvm->arch.wall_clock;
1433 break;
1434 case MSR_KVM_SYSTEM_TIME:
1435 data = vcpu->arch.time;
1436 break;
1437 case MSR_IA32_P5_MC_ADDR:
1438 case MSR_IA32_P5_MC_TYPE:
1439 case MSR_IA32_MCG_CAP:
1440 case MSR_IA32_MCG_CTL:
1441 case MSR_IA32_MCG_STATUS:
1442 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1443 return get_msr_mce(vcpu, msr, pdata);
1444 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1445 if (kvm_hv_msr_partition_wide(msr)) {
1446 int r;
1447 mutex_lock(&vcpu->kvm->lock);
1448 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1449 mutex_unlock(&vcpu->kvm->lock);
1450 return r;
1451 } else
1452 return get_msr_hyperv(vcpu, msr, pdata);
1453 break;
1454 default:
1455 if (!ignore_msrs) {
1456 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1457 return 1;
1458 } else {
1459 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1460 data = 0;
1462 break;
1464 *pdata = data;
1465 return 0;
1467 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1470 * Read or write a bunch of msrs. All parameters are kernel addresses.
1472 * @return number of msrs set successfully.
1474 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1475 struct kvm_msr_entry *entries,
1476 int (*do_msr)(struct kvm_vcpu *vcpu,
1477 unsigned index, u64 *data))
1479 int i, idx;
1481 vcpu_load(vcpu);
1483 idx = srcu_read_lock(&vcpu->kvm->srcu);
1484 for (i = 0; i < msrs->nmsrs; ++i)
1485 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1486 break;
1487 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1489 vcpu_put(vcpu);
1491 return i;
1495 * Read or write a bunch of msrs. Parameters are user addresses.
1497 * @return number of msrs set successfully.
1499 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1500 int (*do_msr)(struct kvm_vcpu *vcpu,
1501 unsigned index, u64 *data),
1502 int writeback)
1504 struct kvm_msrs msrs;
1505 struct kvm_msr_entry *entries;
1506 int r, n;
1507 unsigned size;
1509 r = -EFAULT;
1510 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1511 goto out;
1513 r = -E2BIG;
1514 if (msrs.nmsrs >= MAX_IO_MSRS)
1515 goto out;
1517 r = -ENOMEM;
1518 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1519 entries = vmalloc(size);
1520 if (!entries)
1521 goto out;
1523 r = -EFAULT;
1524 if (copy_from_user(entries, user_msrs->entries, size))
1525 goto out_free;
1527 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1528 if (r < 0)
1529 goto out_free;
1531 r = -EFAULT;
1532 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1533 goto out_free;
1535 r = n;
1537 out_free:
1538 vfree(entries);
1539 out:
1540 return r;
1543 int kvm_dev_ioctl_check_extension(long ext)
1545 int r;
1547 switch (ext) {
1548 case KVM_CAP_IRQCHIP:
1549 case KVM_CAP_HLT:
1550 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1551 case KVM_CAP_SET_TSS_ADDR:
1552 case KVM_CAP_EXT_CPUID:
1553 case KVM_CAP_CLOCKSOURCE:
1554 case KVM_CAP_PIT:
1555 case KVM_CAP_NOP_IO_DELAY:
1556 case KVM_CAP_MP_STATE:
1557 case KVM_CAP_SYNC_MMU:
1558 case KVM_CAP_REINJECT_CONTROL:
1559 case KVM_CAP_IRQ_INJECT_STATUS:
1560 case KVM_CAP_ASSIGN_DEV_IRQ:
1561 case KVM_CAP_IRQFD:
1562 case KVM_CAP_IOEVENTFD:
1563 case KVM_CAP_PIT2:
1564 case KVM_CAP_PIT_STATE2:
1565 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1566 case KVM_CAP_XEN_HVM:
1567 case KVM_CAP_ADJUST_CLOCK:
1568 case KVM_CAP_VCPU_EVENTS:
1569 case KVM_CAP_HYPERV:
1570 case KVM_CAP_HYPERV_VAPIC:
1571 case KVM_CAP_HYPERV_SPIN:
1572 case KVM_CAP_PCI_SEGMENT:
1573 r = 1;
1574 break;
1575 case KVM_CAP_COALESCED_MMIO:
1576 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1577 break;
1578 case KVM_CAP_VAPIC:
1579 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1580 break;
1581 case KVM_CAP_NR_VCPUS:
1582 r = KVM_MAX_VCPUS;
1583 break;
1584 case KVM_CAP_NR_MEMSLOTS:
1585 r = KVM_MEMORY_SLOTS;
1586 break;
1587 case KVM_CAP_PV_MMU: /* obsolete */
1588 r = 0;
1589 break;
1590 case KVM_CAP_IOMMU:
1591 r = iommu_found();
1592 break;
1593 case KVM_CAP_MCE:
1594 r = KVM_MAX_MCE_BANKS;
1595 break;
1596 default:
1597 r = 0;
1598 break;
1600 return r;
1604 long kvm_arch_dev_ioctl(struct file *filp,
1605 unsigned int ioctl, unsigned long arg)
1607 void __user *argp = (void __user *)arg;
1608 long r;
1610 switch (ioctl) {
1611 case KVM_GET_MSR_INDEX_LIST: {
1612 struct kvm_msr_list __user *user_msr_list = argp;
1613 struct kvm_msr_list msr_list;
1614 unsigned n;
1616 r = -EFAULT;
1617 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1618 goto out;
1619 n = msr_list.nmsrs;
1620 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1621 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1622 goto out;
1623 r = -E2BIG;
1624 if (n < msr_list.nmsrs)
1625 goto out;
1626 r = -EFAULT;
1627 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1628 num_msrs_to_save * sizeof(u32)))
1629 goto out;
1630 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1631 &emulated_msrs,
1632 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1633 goto out;
1634 r = 0;
1635 break;
1637 case KVM_GET_SUPPORTED_CPUID: {
1638 struct kvm_cpuid2 __user *cpuid_arg = argp;
1639 struct kvm_cpuid2 cpuid;
1641 r = -EFAULT;
1642 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1643 goto out;
1644 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1645 cpuid_arg->entries);
1646 if (r)
1647 goto out;
1649 r = -EFAULT;
1650 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1651 goto out;
1652 r = 0;
1653 break;
1655 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1656 u64 mce_cap;
1658 mce_cap = KVM_MCE_CAP_SUPPORTED;
1659 r = -EFAULT;
1660 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1661 goto out;
1662 r = 0;
1663 break;
1665 default:
1666 r = -EINVAL;
1668 out:
1669 return r;
1672 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1674 kvm_x86_ops->vcpu_load(vcpu, cpu);
1675 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1676 unsigned long khz = cpufreq_quick_get(cpu);
1677 if (!khz)
1678 khz = tsc_khz;
1679 per_cpu(cpu_tsc_khz, cpu) = khz;
1681 kvm_request_guest_time_update(vcpu);
1684 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1686 kvm_put_guest_fpu(vcpu);
1687 kvm_x86_ops->vcpu_put(vcpu);
1690 static int is_efer_nx(void)
1692 unsigned long long efer = 0;
1694 rdmsrl_safe(MSR_EFER, &efer);
1695 return efer & EFER_NX;
1698 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1700 int i;
1701 struct kvm_cpuid_entry2 *e, *entry;
1703 entry = NULL;
1704 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1705 e = &vcpu->arch.cpuid_entries[i];
1706 if (e->function == 0x80000001) {
1707 entry = e;
1708 break;
1711 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1712 entry->edx &= ~(1 << 20);
1713 printk(KERN_INFO "kvm: guest NX capability removed\n");
1717 /* when an old userspace process fills a new kernel module */
1718 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1719 struct kvm_cpuid *cpuid,
1720 struct kvm_cpuid_entry __user *entries)
1722 int r, i;
1723 struct kvm_cpuid_entry *cpuid_entries;
1725 r = -E2BIG;
1726 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1727 goto out;
1728 r = -ENOMEM;
1729 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1730 if (!cpuid_entries)
1731 goto out;
1732 r = -EFAULT;
1733 if (copy_from_user(cpuid_entries, entries,
1734 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1735 goto out_free;
1736 for (i = 0; i < cpuid->nent; i++) {
1737 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1738 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1739 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1740 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1741 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1742 vcpu->arch.cpuid_entries[i].index = 0;
1743 vcpu->arch.cpuid_entries[i].flags = 0;
1744 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1745 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1746 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1748 vcpu->arch.cpuid_nent = cpuid->nent;
1749 cpuid_fix_nx_cap(vcpu);
1750 r = 0;
1751 kvm_apic_set_version(vcpu);
1752 kvm_x86_ops->cpuid_update(vcpu);
1754 out_free:
1755 vfree(cpuid_entries);
1756 out:
1757 return r;
1760 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1761 struct kvm_cpuid2 *cpuid,
1762 struct kvm_cpuid_entry2 __user *entries)
1764 int r;
1766 r = -E2BIG;
1767 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1768 goto out;
1769 r = -EFAULT;
1770 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1771 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1772 goto out;
1773 vcpu->arch.cpuid_nent = cpuid->nent;
1774 kvm_apic_set_version(vcpu);
1775 kvm_x86_ops->cpuid_update(vcpu);
1776 return 0;
1778 out:
1779 return r;
1782 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1783 struct kvm_cpuid2 *cpuid,
1784 struct kvm_cpuid_entry2 __user *entries)
1786 int r;
1788 r = -E2BIG;
1789 if (cpuid->nent < vcpu->arch.cpuid_nent)
1790 goto out;
1791 r = -EFAULT;
1792 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1793 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1794 goto out;
1795 return 0;
1797 out:
1798 cpuid->nent = vcpu->arch.cpuid_nent;
1799 return r;
1802 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1803 u32 index)
1805 entry->function = function;
1806 entry->index = index;
1807 cpuid_count(entry->function, entry->index,
1808 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1809 entry->flags = 0;
1812 #define F(x) bit(X86_FEATURE_##x)
1814 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1815 u32 index, int *nent, int maxnent)
1817 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1818 #ifdef CONFIG_X86_64
1819 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1820 ? F(GBPAGES) : 0;
1821 unsigned f_lm = F(LM);
1822 #else
1823 unsigned f_gbpages = 0;
1824 unsigned f_lm = 0;
1825 #endif
1826 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1828 /* cpuid 1.edx */
1829 const u32 kvm_supported_word0_x86_features =
1830 F(FPU) | F(VME) | F(DE) | F(PSE) |
1831 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1832 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1833 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1834 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1835 0 /* Reserved, DS, ACPI */ | F(MMX) |
1836 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1837 0 /* HTT, TM, Reserved, PBE */;
1838 /* cpuid 0x80000001.edx */
1839 const u32 kvm_supported_word1_x86_features =
1840 F(FPU) | F(VME) | F(DE) | F(PSE) |
1841 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1842 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1843 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1844 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1845 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1846 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1847 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1848 /* cpuid 1.ecx */
1849 const u32 kvm_supported_word4_x86_features =
1850 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1851 0 /* DS-CPL, VMX, SMX, EST */ |
1852 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1853 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1854 0 /* Reserved, DCA */ | F(XMM4_1) |
1855 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1856 0 /* Reserved, XSAVE, OSXSAVE */;
1857 /* cpuid 0x80000001.ecx */
1858 const u32 kvm_supported_word6_x86_features =
1859 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1860 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1861 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1862 0 /* SKINIT */ | 0 /* WDT */;
1864 /* all calls to cpuid_count() should be made on the same cpu */
1865 get_cpu();
1866 do_cpuid_1_ent(entry, function, index);
1867 ++*nent;
1869 switch (function) {
1870 case 0:
1871 entry->eax = min(entry->eax, (u32)0xb);
1872 break;
1873 case 1:
1874 entry->edx &= kvm_supported_word0_x86_features;
1875 entry->ecx &= kvm_supported_word4_x86_features;
1876 /* we support x2apic emulation even if host does not support
1877 * it since we emulate x2apic in software */
1878 entry->ecx |= F(X2APIC);
1879 break;
1880 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1881 * may return different values. This forces us to get_cpu() before
1882 * issuing the first command, and also to emulate this annoying behavior
1883 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1884 case 2: {
1885 int t, times = entry->eax & 0xff;
1887 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1888 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1889 for (t = 1; t < times && *nent < maxnent; ++t) {
1890 do_cpuid_1_ent(&entry[t], function, 0);
1891 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1892 ++*nent;
1894 break;
1896 /* function 4 and 0xb have additional index. */
1897 case 4: {
1898 int i, cache_type;
1900 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1901 /* read more entries until cache_type is zero */
1902 for (i = 1; *nent < maxnent; ++i) {
1903 cache_type = entry[i - 1].eax & 0x1f;
1904 if (!cache_type)
1905 break;
1906 do_cpuid_1_ent(&entry[i], function, i);
1907 entry[i].flags |=
1908 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1909 ++*nent;
1911 break;
1913 case 0xb: {
1914 int i, level_type;
1916 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1917 /* read more entries until level_type is zero */
1918 for (i = 1; *nent < maxnent; ++i) {
1919 level_type = entry[i - 1].ecx & 0xff00;
1920 if (!level_type)
1921 break;
1922 do_cpuid_1_ent(&entry[i], function, i);
1923 entry[i].flags |=
1924 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1925 ++*nent;
1927 break;
1929 case 0x80000000:
1930 entry->eax = min(entry->eax, 0x8000001a);
1931 break;
1932 case 0x80000001:
1933 entry->edx &= kvm_supported_word1_x86_features;
1934 entry->ecx &= kvm_supported_word6_x86_features;
1935 break;
1937 put_cpu();
1940 #undef F
1942 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1943 struct kvm_cpuid_entry2 __user *entries)
1945 struct kvm_cpuid_entry2 *cpuid_entries;
1946 int limit, nent = 0, r = -E2BIG;
1947 u32 func;
1949 if (cpuid->nent < 1)
1950 goto out;
1951 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1952 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1953 r = -ENOMEM;
1954 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1955 if (!cpuid_entries)
1956 goto out;
1958 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1959 limit = cpuid_entries[0].eax;
1960 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1961 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1962 &nent, cpuid->nent);
1963 r = -E2BIG;
1964 if (nent >= cpuid->nent)
1965 goto out_free;
1967 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1968 limit = cpuid_entries[nent - 1].eax;
1969 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1970 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1971 &nent, cpuid->nent);
1972 r = -E2BIG;
1973 if (nent >= cpuid->nent)
1974 goto out_free;
1976 r = -EFAULT;
1977 if (copy_to_user(entries, cpuid_entries,
1978 nent * sizeof(struct kvm_cpuid_entry2)))
1979 goto out_free;
1980 cpuid->nent = nent;
1981 r = 0;
1983 out_free:
1984 vfree(cpuid_entries);
1985 out:
1986 return r;
1989 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1990 struct kvm_lapic_state *s)
1992 vcpu_load(vcpu);
1993 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1994 vcpu_put(vcpu);
1996 return 0;
1999 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2000 struct kvm_lapic_state *s)
2002 vcpu_load(vcpu);
2003 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2004 kvm_apic_post_state_restore(vcpu);
2005 update_cr8_intercept(vcpu);
2006 vcpu_put(vcpu);
2008 return 0;
2011 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2012 struct kvm_interrupt *irq)
2014 if (irq->irq < 0 || irq->irq >= 256)
2015 return -EINVAL;
2016 if (irqchip_in_kernel(vcpu->kvm))
2017 return -ENXIO;
2018 vcpu_load(vcpu);
2020 kvm_queue_interrupt(vcpu, irq->irq, false);
2022 vcpu_put(vcpu);
2024 return 0;
2027 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2029 vcpu_load(vcpu);
2030 kvm_inject_nmi(vcpu);
2031 vcpu_put(vcpu);
2033 return 0;
2036 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2037 struct kvm_tpr_access_ctl *tac)
2039 if (tac->flags)
2040 return -EINVAL;
2041 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2042 return 0;
2045 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2046 u64 mcg_cap)
2048 int r;
2049 unsigned bank_num = mcg_cap & 0xff, bank;
2051 r = -EINVAL;
2052 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2053 goto out;
2054 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2055 goto out;
2056 r = 0;
2057 vcpu->arch.mcg_cap = mcg_cap;
2058 /* Init IA32_MCG_CTL to all 1s */
2059 if (mcg_cap & MCG_CTL_P)
2060 vcpu->arch.mcg_ctl = ~(u64)0;
2061 /* Init IA32_MCi_CTL to all 1s */
2062 for (bank = 0; bank < bank_num; bank++)
2063 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2064 out:
2065 return r;
2068 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2069 struct kvm_x86_mce *mce)
2071 u64 mcg_cap = vcpu->arch.mcg_cap;
2072 unsigned bank_num = mcg_cap & 0xff;
2073 u64 *banks = vcpu->arch.mce_banks;
2075 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2076 return -EINVAL;
2078 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2079 * reporting is disabled
2081 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2082 vcpu->arch.mcg_ctl != ~(u64)0)
2083 return 0;
2084 banks += 4 * mce->bank;
2086 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2087 * reporting is disabled for the bank
2089 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2090 return 0;
2091 if (mce->status & MCI_STATUS_UC) {
2092 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2093 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2094 printk(KERN_DEBUG "kvm: set_mce: "
2095 "injects mce exception while "
2096 "previous one is in progress!\n");
2097 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2098 return 0;
2100 if (banks[1] & MCI_STATUS_VAL)
2101 mce->status |= MCI_STATUS_OVER;
2102 banks[2] = mce->addr;
2103 banks[3] = mce->misc;
2104 vcpu->arch.mcg_status = mce->mcg_status;
2105 banks[1] = mce->status;
2106 kvm_queue_exception(vcpu, MC_VECTOR);
2107 } else if (!(banks[1] & MCI_STATUS_VAL)
2108 || !(banks[1] & MCI_STATUS_UC)) {
2109 if (banks[1] & MCI_STATUS_VAL)
2110 mce->status |= MCI_STATUS_OVER;
2111 banks[2] = mce->addr;
2112 banks[3] = mce->misc;
2113 banks[1] = mce->status;
2114 } else
2115 banks[1] |= MCI_STATUS_OVER;
2116 return 0;
2119 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2120 struct kvm_vcpu_events *events)
2122 vcpu_load(vcpu);
2124 events->exception.injected = vcpu->arch.exception.pending;
2125 events->exception.nr = vcpu->arch.exception.nr;
2126 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2127 events->exception.error_code = vcpu->arch.exception.error_code;
2129 events->interrupt.injected = vcpu->arch.interrupt.pending;
2130 events->interrupt.nr = vcpu->arch.interrupt.nr;
2131 events->interrupt.soft = vcpu->arch.interrupt.soft;
2133 events->nmi.injected = vcpu->arch.nmi_injected;
2134 events->nmi.pending = vcpu->arch.nmi_pending;
2135 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2137 events->sipi_vector = vcpu->arch.sipi_vector;
2139 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2140 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2142 vcpu_put(vcpu);
2145 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2146 struct kvm_vcpu_events *events)
2148 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2149 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2150 return -EINVAL;
2152 vcpu_load(vcpu);
2154 vcpu->arch.exception.pending = events->exception.injected;
2155 vcpu->arch.exception.nr = events->exception.nr;
2156 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2157 vcpu->arch.exception.error_code = events->exception.error_code;
2159 vcpu->arch.interrupt.pending = events->interrupt.injected;
2160 vcpu->arch.interrupt.nr = events->interrupt.nr;
2161 vcpu->arch.interrupt.soft = events->interrupt.soft;
2162 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2163 kvm_pic_clear_isr_ack(vcpu->kvm);
2165 vcpu->arch.nmi_injected = events->nmi.injected;
2166 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2167 vcpu->arch.nmi_pending = events->nmi.pending;
2168 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2170 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2171 vcpu->arch.sipi_vector = events->sipi_vector;
2173 vcpu_put(vcpu);
2175 return 0;
2178 long kvm_arch_vcpu_ioctl(struct file *filp,
2179 unsigned int ioctl, unsigned long arg)
2181 struct kvm_vcpu *vcpu = filp->private_data;
2182 void __user *argp = (void __user *)arg;
2183 int r;
2184 struct kvm_lapic_state *lapic = NULL;
2186 switch (ioctl) {
2187 case KVM_GET_LAPIC: {
2188 r = -EINVAL;
2189 if (!vcpu->arch.apic)
2190 goto out;
2191 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2193 r = -ENOMEM;
2194 if (!lapic)
2195 goto out;
2196 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2197 if (r)
2198 goto out;
2199 r = -EFAULT;
2200 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2201 goto out;
2202 r = 0;
2203 break;
2205 case KVM_SET_LAPIC: {
2206 r = -EINVAL;
2207 if (!vcpu->arch.apic)
2208 goto out;
2209 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2210 r = -ENOMEM;
2211 if (!lapic)
2212 goto out;
2213 r = -EFAULT;
2214 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2215 goto out;
2216 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2217 if (r)
2218 goto out;
2219 r = 0;
2220 break;
2222 case KVM_INTERRUPT: {
2223 struct kvm_interrupt irq;
2225 r = -EFAULT;
2226 if (copy_from_user(&irq, argp, sizeof irq))
2227 goto out;
2228 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2229 if (r)
2230 goto out;
2231 r = 0;
2232 break;
2234 case KVM_NMI: {
2235 r = kvm_vcpu_ioctl_nmi(vcpu);
2236 if (r)
2237 goto out;
2238 r = 0;
2239 break;
2241 case KVM_SET_CPUID: {
2242 struct kvm_cpuid __user *cpuid_arg = argp;
2243 struct kvm_cpuid cpuid;
2245 r = -EFAULT;
2246 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2247 goto out;
2248 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2249 if (r)
2250 goto out;
2251 break;
2253 case KVM_SET_CPUID2: {
2254 struct kvm_cpuid2 __user *cpuid_arg = argp;
2255 struct kvm_cpuid2 cpuid;
2257 r = -EFAULT;
2258 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2259 goto out;
2260 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2261 cpuid_arg->entries);
2262 if (r)
2263 goto out;
2264 break;
2266 case KVM_GET_CPUID2: {
2267 struct kvm_cpuid2 __user *cpuid_arg = argp;
2268 struct kvm_cpuid2 cpuid;
2270 r = -EFAULT;
2271 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2272 goto out;
2273 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2274 cpuid_arg->entries);
2275 if (r)
2276 goto out;
2277 r = -EFAULT;
2278 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2279 goto out;
2280 r = 0;
2281 break;
2283 case KVM_GET_MSRS:
2284 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2285 break;
2286 case KVM_SET_MSRS:
2287 r = msr_io(vcpu, argp, do_set_msr, 0);
2288 break;
2289 case KVM_TPR_ACCESS_REPORTING: {
2290 struct kvm_tpr_access_ctl tac;
2292 r = -EFAULT;
2293 if (copy_from_user(&tac, argp, sizeof tac))
2294 goto out;
2295 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2296 if (r)
2297 goto out;
2298 r = -EFAULT;
2299 if (copy_to_user(argp, &tac, sizeof tac))
2300 goto out;
2301 r = 0;
2302 break;
2304 case KVM_SET_VAPIC_ADDR: {
2305 struct kvm_vapic_addr va;
2307 r = -EINVAL;
2308 if (!irqchip_in_kernel(vcpu->kvm))
2309 goto out;
2310 r = -EFAULT;
2311 if (copy_from_user(&va, argp, sizeof va))
2312 goto out;
2313 r = 0;
2314 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2315 break;
2317 case KVM_X86_SETUP_MCE: {
2318 u64 mcg_cap;
2320 r = -EFAULT;
2321 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2322 goto out;
2323 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2324 break;
2326 case KVM_X86_SET_MCE: {
2327 struct kvm_x86_mce mce;
2329 r = -EFAULT;
2330 if (copy_from_user(&mce, argp, sizeof mce))
2331 goto out;
2332 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2333 break;
2335 case KVM_GET_VCPU_EVENTS: {
2336 struct kvm_vcpu_events events;
2338 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2340 r = -EFAULT;
2341 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2342 break;
2343 r = 0;
2344 break;
2346 case KVM_SET_VCPU_EVENTS: {
2347 struct kvm_vcpu_events events;
2349 r = -EFAULT;
2350 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2351 break;
2353 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2354 break;
2356 default:
2357 r = -EINVAL;
2359 out:
2360 kfree(lapic);
2361 return r;
2364 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2366 int ret;
2368 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2369 return -1;
2370 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2371 return ret;
2374 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2375 u64 ident_addr)
2377 kvm->arch.ept_identity_map_addr = ident_addr;
2378 return 0;
2381 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2382 u32 kvm_nr_mmu_pages)
2384 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2385 return -EINVAL;
2387 mutex_lock(&kvm->slots_lock);
2388 spin_lock(&kvm->mmu_lock);
2390 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2391 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2393 spin_unlock(&kvm->mmu_lock);
2394 mutex_unlock(&kvm->slots_lock);
2395 return 0;
2398 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2400 return kvm->arch.n_alloc_mmu_pages;
2403 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2405 int i;
2406 struct kvm_mem_alias *alias;
2407 struct kvm_mem_aliases *aliases;
2409 aliases = rcu_dereference(kvm->arch.aliases);
2411 for (i = 0; i < aliases->naliases; ++i) {
2412 alias = &aliases->aliases[i];
2413 if (alias->flags & KVM_ALIAS_INVALID)
2414 continue;
2415 if (gfn >= alias->base_gfn
2416 && gfn < alias->base_gfn + alias->npages)
2417 return alias->target_gfn + gfn - alias->base_gfn;
2419 return gfn;
2422 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2424 int i;
2425 struct kvm_mem_alias *alias;
2426 struct kvm_mem_aliases *aliases;
2428 aliases = rcu_dereference(kvm->arch.aliases);
2430 for (i = 0; i < aliases->naliases; ++i) {
2431 alias = &aliases->aliases[i];
2432 if (gfn >= alias->base_gfn
2433 && gfn < alias->base_gfn + alias->npages)
2434 return alias->target_gfn + gfn - alias->base_gfn;
2436 return gfn;
2440 * Set a new alias region. Aliases map a portion of physical memory into
2441 * another portion. This is useful for memory windows, for example the PC
2442 * VGA region.
2444 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2445 struct kvm_memory_alias *alias)
2447 int r, n;
2448 struct kvm_mem_alias *p;
2449 struct kvm_mem_aliases *aliases, *old_aliases;
2451 r = -EINVAL;
2452 /* General sanity checks */
2453 if (alias->memory_size & (PAGE_SIZE - 1))
2454 goto out;
2455 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2456 goto out;
2457 if (alias->slot >= KVM_ALIAS_SLOTS)
2458 goto out;
2459 if (alias->guest_phys_addr + alias->memory_size
2460 < alias->guest_phys_addr)
2461 goto out;
2462 if (alias->target_phys_addr + alias->memory_size
2463 < alias->target_phys_addr)
2464 goto out;
2466 r = -ENOMEM;
2467 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2468 if (!aliases)
2469 goto out;
2471 mutex_lock(&kvm->slots_lock);
2473 /* invalidate any gfn reference in case of deletion/shrinking */
2474 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2475 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2476 old_aliases = kvm->arch.aliases;
2477 rcu_assign_pointer(kvm->arch.aliases, aliases);
2478 synchronize_srcu_expedited(&kvm->srcu);
2479 kvm_mmu_zap_all(kvm);
2480 kfree(old_aliases);
2482 r = -ENOMEM;
2483 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2484 if (!aliases)
2485 goto out_unlock;
2487 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2489 p = &aliases->aliases[alias->slot];
2490 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2491 p->npages = alias->memory_size >> PAGE_SHIFT;
2492 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2493 p->flags &= ~(KVM_ALIAS_INVALID);
2495 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2496 if (aliases->aliases[n - 1].npages)
2497 break;
2498 aliases->naliases = n;
2500 old_aliases = kvm->arch.aliases;
2501 rcu_assign_pointer(kvm->arch.aliases, aliases);
2502 synchronize_srcu_expedited(&kvm->srcu);
2503 kfree(old_aliases);
2504 r = 0;
2506 out_unlock:
2507 mutex_unlock(&kvm->slots_lock);
2508 out:
2509 return r;
2512 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2514 int r;
2516 r = 0;
2517 switch (chip->chip_id) {
2518 case KVM_IRQCHIP_PIC_MASTER:
2519 memcpy(&chip->chip.pic,
2520 &pic_irqchip(kvm)->pics[0],
2521 sizeof(struct kvm_pic_state));
2522 break;
2523 case KVM_IRQCHIP_PIC_SLAVE:
2524 memcpy(&chip->chip.pic,
2525 &pic_irqchip(kvm)->pics[1],
2526 sizeof(struct kvm_pic_state));
2527 break;
2528 case KVM_IRQCHIP_IOAPIC:
2529 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2530 break;
2531 default:
2532 r = -EINVAL;
2533 break;
2535 return r;
2538 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2540 int r;
2542 r = 0;
2543 switch (chip->chip_id) {
2544 case KVM_IRQCHIP_PIC_MASTER:
2545 spin_lock(&pic_irqchip(kvm)->lock);
2546 memcpy(&pic_irqchip(kvm)->pics[0],
2547 &chip->chip.pic,
2548 sizeof(struct kvm_pic_state));
2549 spin_unlock(&pic_irqchip(kvm)->lock);
2550 break;
2551 case KVM_IRQCHIP_PIC_SLAVE:
2552 spin_lock(&pic_irqchip(kvm)->lock);
2553 memcpy(&pic_irqchip(kvm)->pics[1],
2554 &chip->chip.pic,
2555 sizeof(struct kvm_pic_state));
2556 spin_unlock(&pic_irqchip(kvm)->lock);
2557 break;
2558 case KVM_IRQCHIP_IOAPIC:
2559 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2560 break;
2561 default:
2562 r = -EINVAL;
2563 break;
2565 kvm_pic_update_irq(pic_irqchip(kvm));
2566 return r;
2569 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2571 int r = 0;
2573 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2574 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2575 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2576 return r;
2579 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2581 int r = 0;
2583 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2584 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2585 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2586 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2587 return r;
2590 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2592 int r = 0;
2594 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2595 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2596 sizeof(ps->channels));
2597 ps->flags = kvm->arch.vpit->pit_state.flags;
2598 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2599 return r;
2602 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2604 int r = 0, start = 0;
2605 u32 prev_legacy, cur_legacy;
2606 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2607 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2608 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2609 if (!prev_legacy && cur_legacy)
2610 start = 1;
2611 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2612 sizeof(kvm->arch.vpit->pit_state.channels));
2613 kvm->arch.vpit->pit_state.flags = ps->flags;
2614 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2615 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2616 return r;
2619 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2620 struct kvm_reinject_control *control)
2622 if (!kvm->arch.vpit)
2623 return -ENXIO;
2624 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2625 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2626 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2627 return 0;
2631 * Get (and clear) the dirty memory log for a memory slot.
2633 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2634 struct kvm_dirty_log *log)
2636 int r, n, i;
2637 struct kvm_memory_slot *memslot;
2638 unsigned long is_dirty = 0;
2639 unsigned long *dirty_bitmap = NULL;
2641 mutex_lock(&kvm->slots_lock);
2643 r = -EINVAL;
2644 if (log->slot >= KVM_MEMORY_SLOTS)
2645 goto out;
2647 memslot = &kvm->memslots->memslots[log->slot];
2648 r = -ENOENT;
2649 if (!memslot->dirty_bitmap)
2650 goto out;
2652 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2654 r = -ENOMEM;
2655 dirty_bitmap = vmalloc(n);
2656 if (!dirty_bitmap)
2657 goto out;
2658 memset(dirty_bitmap, 0, n);
2660 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2661 is_dirty = memslot->dirty_bitmap[i];
2663 /* If nothing is dirty, don't bother messing with page tables. */
2664 if (is_dirty) {
2665 struct kvm_memslots *slots, *old_slots;
2667 spin_lock(&kvm->mmu_lock);
2668 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2669 spin_unlock(&kvm->mmu_lock);
2671 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2672 if (!slots)
2673 goto out_free;
2675 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2676 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2678 old_slots = kvm->memslots;
2679 rcu_assign_pointer(kvm->memslots, slots);
2680 synchronize_srcu_expedited(&kvm->srcu);
2681 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2682 kfree(old_slots);
2685 r = 0;
2686 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2687 r = -EFAULT;
2688 out_free:
2689 vfree(dirty_bitmap);
2690 out:
2691 mutex_unlock(&kvm->slots_lock);
2692 return r;
2695 long kvm_arch_vm_ioctl(struct file *filp,
2696 unsigned int ioctl, unsigned long arg)
2698 struct kvm *kvm = filp->private_data;
2699 void __user *argp = (void __user *)arg;
2700 int r = -ENOTTY;
2702 * This union makes it completely explicit to gcc-3.x
2703 * that these two variables' stack usage should be
2704 * combined, not added together.
2706 union {
2707 struct kvm_pit_state ps;
2708 struct kvm_pit_state2 ps2;
2709 struct kvm_memory_alias alias;
2710 struct kvm_pit_config pit_config;
2711 } u;
2713 switch (ioctl) {
2714 case KVM_SET_TSS_ADDR:
2715 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2716 if (r < 0)
2717 goto out;
2718 break;
2719 case KVM_SET_IDENTITY_MAP_ADDR: {
2720 u64 ident_addr;
2722 r = -EFAULT;
2723 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2724 goto out;
2725 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2726 if (r < 0)
2727 goto out;
2728 break;
2730 case KVM_SET_MEMORY_REGION: {
2731 struct kvm_memory_region kvm_mem;
2732 struct kvm_userspace_memory_region kvm_userspace_mem;
2734 r = -EFAULT;
2735 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2736 goto out;
2737 kvm_userspace_mem.slot = kvm_mem.slot;
2738 kvm_userspace_mem.flags = kvm_mem.flags;
2739 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2740 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2741 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2742 if (r)
2743 goto out;
2744 break;
2746 case KVM_SET_NR_MMU_PAGES:
2747 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2748 if (r)
2749 goto out;
2750 break;
2751 case KVM_GET_NR_MMU_PAGES:
2752 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2753 break;
2754 case KVM_SET_MEMORY_ALIAS:
2755 r = -EFAULT;
2756 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2757 goto out;
2758 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2759 if (r)
2760 goto out;
2761 break;
2762 case KVM_CREATE_IRQCHIP: {
2763 struct kvm_pic *vpic;
2765 mutex_lock(&kvm->lock);
2766 r = -EEXIST;
2767 if (kvm->arch.vpic)
2768 goto create_irqchip_unlock;
2769 r = -ENOMEM;
2770 vpic = kvm_create_pic(kvm);
2771 if (vpic) {
2772 r = kvm_ioapic_init(kvm);
2773 if (r) {
2774 kfree(vpic);
2775 goto create_irqchip_unlock;
2777 } else
2778 goto create_irqchip_unlock;
2779 smp_wmb();
2780 kvm->arch.vpic = vpic;
2781 smp_wmb();
2782 r = kvm_setup_default_irq_routing(kvm);
2783 if (r) {
2784 mutex_lock(&kvm->irq_lock);
2785 kfree(kvm->arch.vpic);
2786 kfree(kvm->arch.vioapic);
2787 kvm->arch.vpic = NULL;
2788 kvm->arch.vioapic = NULL;
2789 mutex_unlock(&kvm->irq_lock);
2791 create_irqchip_unlock:
2792 mutex_unlock(&kvm->lock);
2793 break;
2795 case KVM_CREATE_PIT:
2796 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2797 goto create_pit;
2798 case KVM_CREATE_PIT2:
2799 r = -EFAULT;
2800 if (copy_from_user(&u.pit_config, argp,
2801 sizeof(struct kvm_pit_config)))
2802 goto out;
2803 create_pit:
2804 mutex_lock(&kvm->slots_lock);
2805 r = -EEXIST;
2806 if (kvm->arch.vpit)
2807 goto create_pit_unlock;
2808 r = -ENOMEM;
2809 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2810 if (kvm->arch.vpit)
2811 r = 0;
2812 create_pit_unlock:
2813 mutex_unlock(&kvm->slots_lock);
2814 break;
2815 case KVM_IRQ_LINE_STATUS:
2816 case KVM_IRQ_LINE: {
2817 struct kvm_irq_level irq_event;
2819 r = -EFAULT;
2820 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2821 goto out;
2822 if (irqchip_in_kernel(kvm)) {
2823 __s32 status;
2824 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2825 irq_event.irq, irq_event.level);
2826 if (ioctl == KVM_IRQ_LINE_STATUS) {
2827 irq_event.status = status;
2828 if (copy_to_user(argp, &irq_event,
2829 sizeof irq_event))
2830 goto out;
2832 r = 0;
2834 break;
2836 case KVM_GET_IRQCHIP: {
2837 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2838 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2840 r = -ENOMEM;
2841 if (!chip)
2842 goto out;
2843 r = -EFAULT;
2844 if (copy_from_user(chip, argp, sizeof *chip))
2845 goto get_irqchip_out;
2846 r = -ENXIO;
2847 if (!irqchip_in_kernel(kvm))
2848 goto get_irqchip_out;
2849 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2850 if (r)
2851 goto get_irqchip_out;
2852 r = -EFAULT;
2853 if (copy_to_user(argp, chip, sizeof *chip))
2854 goto get_irqchip_out;
2855 r = 0;
2856 get_irqchip_out:
2857 kfree(chip);
2858 if (r)
2859 goto out;
2860 break;
2862 case KVM_SET_IRQCHIP: {
2863 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2864 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2866 r = -ENOMEM;
2867 if (!chip)
2868 goto out;
2869 r = -EFAULT;
2870 if (copy_from_user(chip, argp, sizeof *chip))
2871 goto set_irqchip_out;
2872 r = -ENXIO;
2873 if (!irqchip_in_kernel(kvm))
2874 goto set_irqchip_out;
2875 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2876 if (r)
2877 goto set_irqchip_out;
2878 r = 0;
2879 set_irqchip_out:
2880 kfree(chip);
2881 if (r)
2882 goto out;
2883 break;
2885 case KVM_GET_PIT: {
2886 r = -EFAULT;
2887 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2888 goto out;
2889 r = -ENXIO;
2890 if (!kvm->arch.vpit)
2891 goto out;
2892 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2893 if (r)
2894 goto out;
2895 r = -EFAULT;
2896 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2897 goto out;
2898 r = 0;
2899 break;
2901 case KVM_SET_PIT: {
2902 r = -EFAULT;
2903 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2904 goto out;
2905 r = -ENXIO;
2906 if (!kvm->arch.vpit)
2907 goto out;
2908 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2909 if (r)
2910 goto out;
2911 r = 0;
2912 break;
2914 case KVM_GET_PIT2: {
2915 r = -ENXIO;
2916 if (!kvm->arch.vpit)
2917 goto out;
2918 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2919 if (r)
2920 goto out;
2921 r = -EFAULT;
2922 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2923 goto out;
2924 r = 0;
2925 break;
2927 case KVM_SET_PIT2: {
2928 r = -EFAULT;
2929 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2930 goto out;
2931 r = -ENXIO;
2932 if (!kvm->arch.vpit)
2933 goto out;
2934 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2935 if (r)
2936 goto out;
2937 r = 0;
2938 break;
2940 case KVM_REINJECT_CONTROL: {
2941 struct kvm_reinject_control control;
2942 r = -EFAULT;
2943 if (copy_from_user(&control, argp, sizeof(control)))
2944 goto out;
2945 r = kvm_vm_ioctl_reinject(kvm, &control);
2946 if (r)
2947 goto out;
2948 r = 0;
2949 break;
2951 case KVM_XEN_HVM_CONFIG: {
2952 r = -EFAULT;
2953 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2954 sizeof(struct kvm_xen_hvm_config)))
2955 goto out;
2956 r = -EINVAL;
2957 if (kvm->arch.xen_hvm_config.flags)
2958 goto out;
2959 r = 0;
2960 break;
2962 case KVM_SET_CLOCK: {
2963 struct timespec now;
2964 struct kvm_clock_data user_ns;
2965 u64 now_ns;
2966 s64 delta;
2968 r = -EFAULT;
2969 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2970 goto out;
2972 r = -EINVAL;
2973 if (user_ns.flags)
2974 goto out;
2976 r = 0;
2977 ktime_get_ts(&now);
2978 now_ns = timespec_to_ns(&now);
2979 delta = user_ns.clock - now_ns;
2980 kvm->arch.kvmclock_offset = delta;
2981 break;
2983 case KVM_GET_CLOCK: {
2984 struct timespec now;
2985 struct kvm_clock_data user_ns;
2986 u64 now_ns;
2988 ktime_get_ts(&now);
2989 now_ns = timespec_to_ns(&now);
2990 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2991 user_ns.flags = 0;
2993 r = -EFAULT;
2994 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2995 goto out;
2996 r = 0;
2997 break;
3000 default:
3003 out:
3004 return r;
3007 static void kvm_init_msr_list(void)
3009 u32 dummy[2];
3010 unsigned i, j;
3012 /* skip the first msrs in the list. KVM-specific */
3013 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3014 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3015 continue;
3016 if (j < i)
3017 msrs_to_save[j] = msrs_to_save[i];
3018 j++;
3020 num_msrs_to_save = j;
3023 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3024 const void *v)
3026 if (vcpu->arch.apic &&
3027 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3028 return 0;
3030 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3033 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3035 if (vcpu->arch.apic &&
3036 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3037 return 0;
3039 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3042 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3043 struct kvm_vcpu *vcpu)
3045 void *data = val;
3046 int r = X86EMUL_CONTINUE;
3048 while (bytes) {
3049 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3050 unsigned offset = addr & (PAGE_SIZE-1);
3051 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3052 int ret;
3054 if (gpa == UNMAPPED_GVA) {
3055 r = X86EMUL_PROPAGATE_FAULT;
3056 goto out;
3058 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3059 if (ret < 0) {
3060 r = X86EMUL_UNHANDLEABLE;
3061 goto out;
3064 bytes -= toread;
3065 data += toread;
3066 addr += toread;
3068 out:
3069 return r;
3072 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3073 struct kvm_vcpu *vcpu)
3075 void *data = val;
3076 int r = X86EMUL_CONTINUE;
3078 while (bytes) {
3079 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3080 unsigned offset = addr & (PAGE_SIZE-1);
3081 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3082 int ret;
3084 if (gpa == UNMAPPED_GVA) {
3085 r = X86EMUL_PROPAGATE_FAULT;
3086 goto out;
3088 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3089 if (ret < 0) {
3090 r = X86EMUL_UNHANDLEABLE;
3091 goto out;
3094 bytes -= towrite;
3095 data += towrite;
3096 addr += towrite;
3098 out:
3099 return r;
3103 static int emulator_read_emulated(unsigned long addr,
3104 void *val,
3105 unsigned int bytes,
3106 struct kvm_vcpu *vcpu)
3108 gpa_t gpa;
3110 if (vcpu->mmio_read_completed) {
3111 memcpy(val, vcpu->mmio_data, bytes);
3112 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3113 vcpu->mmio_phys_addr, *(u64 *)val);
3114 vcpu->mmio_read_completed = 0;
3115 return X86EMUL_CONTINUE;
3118 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3120 /* For APIC access vmexit */
3121 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3122 goto mmio;
3124 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
3125 == X86EMUL_CONTINUE)
3126 return X86EMUL_CONTINUE;
3127 if (gpa == UNMAPPED_GVA)
3128 return X86EMUL_PROPAGATE_FAULT;
3130 mmio:
3132 * Is this MMIO handled locally?
3134 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3135 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3136 return X86EMUL_CONTINUE;
3139 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3141 vcpu->mmio_needed = 1;
3142 vcpu->mmio_phys_addr = gpa;
3143 vcpu->mmio_size = bytes;
3144 vcpu->mmio_is_write = 0;
3146 return X86EMUL_UNHANDLEABLE;
3149 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3150 const void *val, int bytes)
3152 int ret;
3154 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3155 if (ret < 0)
3156 return 0;
3157 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3158 return 1;
3161 static int emulator_write_emulated_onepage(unsigned long addr,
3162 const void *val,
3163 unsigned int bytes,
3164 struct kvm_vcpu *vcpu)
3166 gpa_t gpa;
3168 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3170 if (gpa == UNMAPPED_GVA) {
3171 kvm_inject_page_fault(vcpu, addr, 2);
3172 return X86EMUL_PROPAGATE_FAULT;
3175 /* For APIC access vmexit */
3176 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3177 goto mmio;
3179 if (emulator_write_phys(vcpu, gpa, val, bytes))
3180 return X86EMUL_CONTINUE;
3182 mmio:
3183 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3185 * Is this MMIO handled locally?
3187 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3188 return X86EMUL_CONTINUE;
3190 vcpu->mmio_needed = 1;
3191 vcpu->mmio_phys_addr = gpa;
3192 vcpu->mmio_size = bytes;
3193 vcpu->mmio_is_write = 1;
3194 memcpy(vcpu->mmio_data, val, bytes);
3196 return X86EMUL_CONTINUE;
3199 int emulator_write_emulated(unsigned long addr,
3200 const void *val,
3201 unsigned int bytes,
3202 struct kvm_vcpu *vcpu)
3204 /* Crossing a page boundary? */
3205 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3206 int rc, now;
3208 now = -addr & ~PAGE_MASK;
3209 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3210 if (rc != X86EMUL_CONTINUE)
3211 return rc;
3212 addr += now;
3213 val += now;
3214 bytes -= now;
3216 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3218 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3220 static int emulator_cmpxchg_emulated(unsigned long addr,
3221 const void *old,
3222 const void *new,
3223 unsigned int bytes,
3224 struct kvm_vcpu *vcpu)
3226 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3227 #ifndef CONFIG_X86_64
3228 /* guests cmpxchg8b have to be emulated atomically */
3229 if (bytes == 8) {
3230 gpa_t gpa;
3231 struct page *page;
3232 char *kaddr;
3233 u64 val;
3235 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3237 if (gpa == UNMAPPED_GVA ||
3238 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3239 goto emul_write;
3241 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3242 goto emul_write;
3244 val = *(u64 *)new;
3246 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3248 kaddr = kmap_atomic(page, KM_USER0);
3249 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3250 kunmap_atomic(kaddr, KM_USER0);
3251 kvm_release_page_dirty(page);
3253 emul_write:
3254 #endif
3256 return emulator_write_emulated(addr, new, bytes, vcpu);
3259 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3261 return kvm_x86_ops->get_segment_base(vcpu, seg);
3264 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3266 kvm_mmu_invlpg(vcpu, address);
3267 return X86EMUL_CONTINUE;
3270 int emulate_clts(struct kvm_vcpu *vcpu)
3272 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3273 kvm_x86_ops->fpu_activate(vcpu);
3274 return X86EMUL_CONTINUE;
3277 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3279 return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3282 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3284 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3286 return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3289 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3291 u8 opcodes[4];
3292 unsigned long rip = kvm_rip_read(vcpu);
3293 unsigned long rip_linear;
3295 if (!printk_ratelimit())
3296 return;
3298 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3300 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3302 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3303 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3305 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3307 static struct x86_emulate_ops emulate_ops = {
3308 .read_std = kvm_read_guest_virt,
3309 .read_emulated = emulator_read_emulated,
3310 .write_emulated = emulator_write_emulated,
3311 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3314 static void cache_all_regs(struct kvm_vcpu *vcpu)
3316 kvm_register_read(vcpu, VCPU_REGS_RAX);
3317 kvm_register_read(vcpu, VCPU_REGS_RSP);
3318 kvm_register_read(vcpu, VCPU_REGS_RIP);
3319 vcpu->arch.regs_dirty = ~0;
3322 int emulate_instruction(struct kvm_vcpu *vcpu,
3323 unsigned long cr2,
3324 u16 error_code,
3325 int emulation_type)
3327 int r, shadow_mask;
3328 struct decode_cache *c;
3329 struct kvm_run *run = vcpu->run;
3331 kvm_clear_exception_queue(vcpu);
3332 vcpu->arch.mmio_fault_cr2 = cr2;
3334 * TODO: fix emulate.c to use guest_read/write_register
3335 * instead of direct ->regs accesses, can save hundred cycles
3336 * on Intel for instructions that don't read/change RSP, for
3337 * for example.
3339 cache_all_regs(vcpu);
3341 vcpu->mmio_is_write = 0;
3342 vcpu->arch.pio.string = 0;
3344 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3345 int cs_db, cs_l;
3346 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3348 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3349 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3350 vcpu->arch.emulate_ctxt.mode =
3351 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3352 ? X86EMUL_MODE_REAL : cs_l
3353 ? X86EMUL_MODE_PROT64 : cs_db
3354 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3356 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3358 /* Only allow emulation of specific instructions on #UD
3359 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3360 c = &vcpu->arch.emulate_ctxt.decode;
3361 if (emulation_type & EMULTYPE_TRAP_UD) {
3362 if (!c->twobyte)
3363 return EMULATE_FAIL;
3364 switch (c->b) {
3365 case 0x01: /* VMMCALL */
3366 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3367 return EMULATE_FAIL;
3368 break;
3369 case 0x34: /* sysenter */
3370 case 0x35: /* sysexit */
3371 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3372 return EMULATE_FAIL;
3373 break;
3374 case 0x05: /* syscall */
3375 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3376 return EMULATE_FAIL;
3377 break;
3378 default:
3379 return EMULATE_FAIL;
3382 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3383 return EMULATE_FAIL;
3386 ++vcpu->stat.insn_emulation;
3387 if (r) {
3388 ++vcpu->stat.insn_emulation_fail;
3389 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3390 return EMULATE_DONE;
3391 return EMULATE_FAIL;
3395 if (emulation_type & EMULTYPE_SKIP) {
3396 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3397 return EMULATE_DONE;
3400 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3401 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3403 if (r == 0)
3404 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3406 if (vcpu->arch.pio.string)
3407 return EMULATE_DO_MMIO;
3409 if ((r || vcpu->mmio_is_write) && run) {
3410 run->exit_reason = KVM_EXIT_MMIO;
3411 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3412 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3413 run->mmio.len = vcpu->mmio_size;
3414 run->mmio.is_write = vcpu->mmio_is_write;
3417 if (r) {
3418 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3419 return EMULATE_DONE;
3420 if (!vcpu->mmio_needed) {
3421 kvm_report_emulation_failure(vcpu, "mmio");
3422 return EMULATE_FAIL;
3424 return EMULATE_DO_MMIO;
3427 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3429 if (vcpu->mmio_is_write) {
3430 vcpu->mmio_needed = 0;
3431 return EMULATE_DO_MMIO;
3434 return EMULATE_DONE;
3436 EXPORT_SYMBOL_GPL(emulate_instruction);
3438 static int pio_copy_data(struct kvm_vcpu *vcpu)
3440 void *p = vcpu->arch.pio_data;
3441 gva_t q = vcpu->arch.pio.guest_gva;
3442 unsigned bytes;
3443 int ret;
3445 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3446 if (vcpu->arch.pio.in)
3447 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3448 else
3449 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3450 return ret;
3453 int complete_pio(struct kvm_vcpu *vcpu)
3455 struct kvm_pio_request *io = &vcpu->arch.pio;
3456 long delta;
3457 int r;
3458 unsigned long val;
3460 if (!io->string) {
3461 if (io->in) {
3462 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3463 memcpy(&val, vcpu->arch.pio_data, io->size);
3464 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3466 } else {
3467 if (io->in) {
3468 r = pio_copy_data(vcpu);
3469 if (r)
3470 return r;
3473 delta = 1;
3474 if (io->rep) {
3475 delta *= io->cur_count;
3477 * The size of the register should really depend on
3478 * current address size.
3480 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3481 val -= delta;
3482 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3484 if (io->down)
3485 delta = -delta;
3486 delta *= io->size;
3487 if (io->in) {
3488 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3489 val += delta;
3490 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3491 } else {
3492 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3493 val += delta;
3494 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3498 io->count -= io->cur_count;
3499 io->cur_count = 0;
3501 return 0;
3504 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3506 /* TODO: String I/O for in kernel device */
3507 int r;
3509 if (vcpu->arch.pio.in)
3510 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3511 vcpu->arch.pio.size, pd);
3512 else
3513 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3514 vcpu->arch.pio.port, vcpu->arch.pio.size,
3515 pd);
3516 return r;
3519 static int pio_string_write(struct kvm_vcpu *vcpu)
3521 struct kvm_pio_request *io = &vcpu->arch.pio;
3522 void *pd = vcpu->arch.pio_data;
3523 int i, r = 0;
3525 for (i = 0; i < io->cur_count; i++) {
3526 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3527 io->port, io->size, pd)) {
3528 r = -EOPNOTSUPP;
3529 break;
3531 pd += io->size;
3533 return r;
3536 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3538 unsigned long val;
3540 vcpu->run->exit_reason = KVM_EXIT_IO;
3541 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3542 vcpu->run->io.size = vcpu->arch.pio.size = size;
3543 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3544 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3545 vcpu->run->io.port = vcpu->arch.pio.port = port;
3546 vcpu->arch.pio.in = in;
3547 vcpu->arch.pio.string = 0;
3548 vcpu->arch.pio.down = 0;
3549 vcpu->arch.pio.rep = 0;
3551 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3552 size, 1);
3554 if (!vcpu->arch.pio.in) {
3555 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3556 memcpy(vcpu->arch.pio_data, &val, 4);
3559 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3560 complete_pio(vcpu);
3561 return 1;
3563 return 0;
3565 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3567 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3568 int size, unsigned long count, int down,
3569 gva_t address, int rep, unsigned port)
3571 unsigned now, in_page;
3572 int ret = 0;
3574 vcpu->run->exit_reason = KVM_EXIT_IO;
3575 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3576 vcpu->run->io.size = vcpu->arch.pio.size = size;
3577 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3578 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3579 vcpu->run->io.port = vcpu->arch.pio.port = port;
3580 vcpu->arch.pio.in = in;
3581 vcpu->arch.pio.string = 1;
3582 vcpu->arch.pio.down = down;
3583 vcpu->arch.pio.rep = rep;
3585 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3586 size, count);
3588 if (!count) {
3589 kvm_x86_ops->skip_emulated_instruction(vcpu);
3590 return 1;
3593 if (!down)
3594 in_page = PAGE_SIZE - offset_in_page(address);
3595 else
3596 in_page = offset_in_page(address) + size;
3597 now = min(count, (unsigned long)in_page / size);
3598 if (!now)
3599 now = 1;
3600 if (down) {
3602 * String I/O in reverse. Yuck. Kill the guest, fix later.
3604 pr_unimpl(vcpu, "guest string pio down\n");
3605 kvm_inject_gp(vcpu, 0);
3606 return 1;
3608 vcpu->run->io.count = now;
3609 vcpu->arch.pio.cur_count = now;
3611 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3612 kvm_x86_ops->skip_emulated_instruction(vcpu);
3614 vcpu->arch.pio.guest_gva = address;
3616 if (!vcpu->arch.pio.in) {
3617 /* string PIO write */
3618 ret = pio_copy_data(vcpu);
3619 if (ret == X86EMUL_PROPAGATE_FAULT) {
3620 kvm_inject_gp(vcpu, 0);
3621 return 1;
3623 if (ret == 0 && !pio_string_write(vcpu)) {
3624 complete_pio(vcpu);
3625 if (vcpu->arch.pio.count == 0)
3626 ret = 1;
3629 /* no string PIO read support yet */
3631 return ret;
3633 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3635 static void bounce_off(void *info)
3637 /* nothing */
3640 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3641 void *data)
3643 struct cpufreq_freqs *freq = data;
3644 struct kvm *kvm;
3645 struct kvm_vcpu *vcpu;
3646 int i, send_ipi = 0;
3648 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3649 return 0;
3650 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3651 return 0;
3652 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3654 spin_lock(&kvm_lock);
3655 list_for_each_entry(kvm, &vm_list, vm_list) {
3656 kvm_for_each_vcpu(i, vcpu, kvm) {
3657 if (vcpu->cpu != freq->cpu)
3658 continue;
3659 if (!kvm_request_guest_time_update(vcpu))
3660 continue;
3661 if (vcpu->cpu != smp_processor_id())
3662 send_ipi++;
3665 spin_unlock(&kvm_lock);
3667 if (freq->old < freq->new && send_ipi) {
3669 * We upscale the frequency. Must make the guest
3670 * doesn't see old kvmclock values while running with
3671 * the new frequency, otherwise we risk the guest sees
3672 * time go backwards.
3674 * In case we update the frequency for another cpu
3675 * (which might be in guest context) send an interrupt
3676 * to kick the cpu out of guest context. Next time
3677 * guest context is entered kvmclock will be updated,
3678 * so the guest will not see stale values.
3680 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3682 return 0;
3685 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3686 .notifier_call = kvmclock_cpufreq_notifier
3689 static void kvm_timer_init(void)
3691 int cpu;
3693 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3694 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3695 CPUFREQ_TRANSITION_NOTIFIER);
3696 for_each_online_cpu(cpu) {
3697 unsigned long khz = cpufreq_get(cpu);
3698 if (!khz)
3699 khz = tsc_khz;
3700 per_cpu(cpu_tsc_khz, cpu) = khz;
3702 } else {
3703 for_each_possible_cpu(cpu)
3704 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3708 int kvm_arch_init(void *opaque)
3710 int r;
3711 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3713 if (kvm_x86_ops) {
3714 printk(KERN_ERR "kvm: already loaded the other module\n");
3715 r = -EEXIST;
3716 goto out;
3719 if (!ops->cpu_has_kvm_support()) {
3720 printk(KERN_ERR "kvm: no hardware support\n");
3721 r = -EOPNOTSUPP;
3722 goto out;
3724 if (ops->disabled_by_bios()) {
3725 printk(KERN_ERR "kvm: disabled by bios\n");
3726 r = -EOPNOTSUPP;
3727 goto out;
3730 r = kvm_mmu_module_init();
3731 if (r)
3732 goto out;
3734 kvm_init_msr_list();
3736 kvm_x86_ops = ops;
3737 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3738 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3739 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3740 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3742 kvm_timer_init();
3744 return 0;
3746 out:
3747 return r;
3750 void kvm_arch_exit(void)
3752 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3753 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3754 CPUFREQ_TRANSITION_NOTIFIER);
3755 kvm_x86_ops = NULL;
3756 kvm_mmu_module_exit();
3759 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3761 ++vcpu->stat.halt_exits;
3762 if (irqchip_in_kernel(vcpu->kvm)) {
3763 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3764 return 1;
3765 } else {
3766 vcpu->run->exit_reason = KVM_EXIT_HLT;
3767 return 0;
3770 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3772 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3773 unsigned long a1)
3775 if (is_long_mode(vcpu))
3776 return a0;
3777 else
3778 return a0 | ((gpa_t)a1 << 32);
3781 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3783 u64 param, ingpa, outgpa, ret;
3784 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3785 bool fast, longmode;
3786 int cs_db, cs_l;
3789 * hypercall generates UD from non zero cpl and real mode
3790 * per HYPER-V spec
3792 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3793 kvm_queue_exception(vcpu, UD_VECTOR);
3794 return 0;
3797 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3798 longmode = is_long_mode(vcpu) && cs_l == 1;
3800 if (!longmode) {
3801 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3802 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3803 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3804 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3805 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3806 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3808 #ifdef CONFIG_X86_64
3809 else {
3810 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3811 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3812 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3814 #endif
3816 code = param & 0xffff;
3817 fast = (param >> 16) & 0x1;
3818 rep_cnt = (param >> 32) & 0xfff;
3819 rep_idx = (param >> 48) & 0xfff;
3821 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3823 switch (code) {
3824 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3825 kvm_vcpu_on_spin(vcpu);
3826 break;
3827 default:
3828 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3829 break;
3832 ret = res | (((u64)rep_done & 0xfff) << 32);
3833 if (longmode) {
3834 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3835 } else {
3836 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3837 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3840 return 1;
3843 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3845 unsigned long nr, a0, a1, a2, a3, ret;
3846 int r = 1;
3848 if (kvm_hv_hypercall_enabled(vcpu->kvm))
3849 return kvm_hv_hypercall(vcpu);
3851 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3852 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3853 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3854 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3855 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3857 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3859 if (!is_long_mode(vcpu)) {
3860 nr &= 0xFFFFFFFF;
3861 a0 &= 0xFFFFFFFF;
3862 a1 &= 0xFFFFFFFF;
3863 a2 &= 0xFFFFFFFF;
3864 a3 &= 0xFFFFFFFF;
3867 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3868 ret = -KVM_EPERM;
3869 goto out;
3872 switch (nr) {
3873 case KVM_HC_VAPIC_POLL_IRQ:
3874 ret = 0;
3875 break;
3876 case KVM_HC_MMU_OP:
3877 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3878 break;
3879 default:
3880 ret = -KVM_ENOSYS;
3881 break;
3883 out:
3884 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3885 ++vcpu->stat.hypercalls;
3886 return r;
3888 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3890 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3892 char instruction[3];
3893 unsigned long rip = kvm_rip_read(vcpu);
3896 * Blow out the MMU to ensure that no other VCPU has an active mapping
3897 * to ensure that the updated hypercall appears atomically across all
3898 * VCPUs.
3900 kvm_mmu_zap_all(vcpu->kvm);
3902 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3904 return emulator_write_emulated(rip, instruction, 3, vcpu);
3907 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3909 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3912 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3914 struct descriptor_table dt = { limit, base };
3916 kvm_x86_ops->set_gdt(vcpu, &dt);
3919 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3921 struct descriptor_table dt = { limit, base };
3923 kvm_x86_ops->set_idt(vcpu, &dt);
3926 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3927 unsigned long *rflags)
3929 kvm_lmsw(vcpu, msw);
3930 *rflags = kvm_get_rflags(vcpu);
3933 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3935 unsigned long value;
3937 switch (cr) {
3938 case 0:
3939 value = kvm_read_cr0(vcpu);
3940 break;
3941 case 2:
3942 value = vcpu->arch.cr2;
3943 break;
3944 case 3:
3945 value = vcpu->arch.cr3;
3946 break;
3947 case 4:
3948 value = kvm_read_cr4(vcpu);
3949 break;
3950 case 8:
3951 value = kvm_get_cr8(vcpu);
3952 break;
3953 default:
3954 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3955 return 0;
3958 return value;
3961 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3962 unsigned long *rflags)
3964 switch (cr) {
3965 case 0:
3966 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3967 *rflags = kvm_get_rflags(vcpu);
3968 break;
3969 case 2:
3970 vcpu->arch.cr2 = val;
3971 break;
3972 case 3:
3973 kvm_set_cr3(vcpu, val);
3974 break;
3975 case 4:
3976 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3977 break;
3978 case 8:
3979 kvm_set_cr8(vcpu, val & 0xfUL);
3980 break;
3981 default:
3982 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3986 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3988 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3989 int j, nent = vcpu->arch.cpuid_nent;
3991 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3992 /* when no next entry is found, the current entry[i] is reselected */
3993 for (j = i + 1; ; j = (j + 1) % nent) {
3994 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3995 if (ej->function == e->function) {
3996 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3997 return j;
4000 return 0; /* silence gcc, even though control never reaches here */
4003 /* find an entry with matching function, matching index (if needed), and that
4004 * should be read next (if it's stateful) */
4005 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4006 u32 function, u32 index)
4008 if (e->function != function)
4009 return 0;
4010 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4011 return 0;
4012 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4013 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4014 return 0;
4015 return 1;
4018 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4019 u32 function, u32 index)
4021 int i;
4022 struct kvm_cpuid_entry2 *best = NULL;
4024 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4025 struct kvm_cpuid_entry2 *e;
4027 e = &vcpu->arch.cpuid_entries[i];
4028 if (is_matching_cpuid_entry(e, function, index)) {
4029 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4030 move_to_next_stateful_cpuid_entry(vcpu, i);
4031 best = e;
4032 break;
4035 * Both basic or both extended?
4037 if (((e->function ^ function) & 0x80000000) == 0)
4038 if (!best || e->function > best->function)
4039 best = e;
4041 return best;
4043 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4045 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4047 struct kvm_cpuid_entry2 *best;
4049 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4050 if (best)
4051 return best->eax & 0xff;
4052 return 36;
4055 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4057 u32 function, index;
4058 struct kvm_cpuid_entry2 *best;
4060 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4061 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4062 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4063 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4064 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4065 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4066 best = kvm_find_cpuid_entry(vcpu, function, index);
4067 if (best) {
4068 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4069 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4070 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4071 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4073 kvm_x86_ops->skip_emulated_instruction(vcpu);
4074 trace_kvm_cpuid(function,
4075 kvm_register_read(vcpu, VCPU_REGS_RAX),
4076 kvm_register_read(vcpu, VCPU_REGS_RBX),
4077 kvm_register_read(vcpu, VCPU_REGS_RCX),
4078 kvm_register_read(vcpu, VCPU_REGS_RDX));
4080 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4083 * Check if userspace requested an interrupt window, and that the
4084 * interrupt window is open.
4086 * No need to exit to userspace if we already have an interrupt queued.
4088 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4090 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4091 vcpu->run->request_interrupt_window &&
4092 kvm_arch_interrupt_allowed(vcpu));
4095 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4097 struct kvm_run *kvm_run = vcpu->run;
4099 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4100 kvm_run->cr8 = kvm_get_cr8(vcpu);
4101 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4102 if (irqchip_in_kernel(vcpu->kvm))
4103 kvm_run->ready_for_interrupt_injection = 1;
4104 else
4105 kvm_run->ready_for_interrupt_injection =
4106 kvm_arch_interrupt_allowed(vcpu) &&
4107 !kvm_cpu_has_interrupt(vcpu) &&
4108 !kvm_event_needs_reinjection(vcpu);
4111 static void vapic_enter(struct kvm_vcpu *vcpu)
4113 struct kvm_lapic *apic = vcpu->arch.apic;
4114 struct page *page;
4116 if (!apic || !apic->vapic_addr)
4117 return;
4119 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4121 vcpu->arch.apic->vapic_page = page;
4124 static void vapic_exit(struct kvm_vcpu *vcpu)
4126 struct kvm_lapic *apic = vcpu->arch.apic;
4127 int idx;
4129 if (!apic || !apic->vapic_addr)
4130 return;
4132 idx = srcu_read_lock(&vcpu->kvm->srcu);
4133 kvm_release_page_dirty(apic->vapic_page);
4134 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4135 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4138 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4140 int max_irr, tpr;
4142 if (!kvm_x86_ops->update_cr8_intercept)
4143 return;
4145 if (!vcpu->arch.apic)
4146 return;
4148 if (!vcpu->arch.apic->vapic_addr)
4149 max_irr = kvm_lapic_find_highest_irr(vcpu);
4150 else
4151 max_irr = -1;
4153 if (max_irr != -1)
4154 max_irr >>= 4;
4156 tpr = kvm_lapic_get_cr8(vcpu);
4158 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4161 static void inject_pending_event(struct kvm_vcpu *vcpu)
4163 /* try to reinject previous events if any */
4164 if (vcpu->arch.exception.pending) {
4165 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4166 vcpu->arch.exception.has_error_code,
4167 vcpu->arch.exception.error_code);
4168 return;
4171 if (vcpu->arch.nmi_injected) {
4172 kvm_x86_ops->set_nmi(vcpu);
4173 return;
4176 if (vcpu->arch.interrupt.pending) {
4177 kvm_x86_ops->set_irq(vcpu);
4178 return;
4181 /* try to inject new event if pending */
4182 if (vcpu->arch.nmi_pending) {
4183 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4184 vcpu->arch.nmi_pending = false;
4185 vcpu->arch.nmi_injected = true;
4186 kvm_x86_ops->set_nmi(vcpu);
4188 } else if (kvm_cpu_has_interrupt(vcpu)) {
4189 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4190 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4191 false);
4192 kvm_x86_ops->set_irq(vcpu);
4197 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4199 int r;
4200 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4201 vcpu->run->request_interrupt_window;
4203 if (vcpu->requests)
4204 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4205 kvm_mmu_unload(vcpu);
4207 r = kvm_mmu_reload(vcpu);
4208 if (unlikely(r))
4209 goto out;
4211 if (vcpu->requests) {
4212 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4213 __kvm_migrate_timers(vcpu);
4214 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4215 kvm_write_guest_time(vcpu);
4216 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4217 kvm_mmu_sync_roots(vcpu);
4218 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4219 kvm_x86_ops->tlb_flush(vcpu);
4220 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4221 &vcpu->requests)) {
4222 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4223 r = 0;
4224 goto out;
4226 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4227 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4228 r = 0;
4229 goto out;
4231 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4232 vcpu->fpu_active = 0;
4233 kvm_x86_ops->fpu_deactivate(vcpu);
4237 preempt_disable();
4239 kvm_x86_ops->prepare_guest_switch(vcpu);
4240 if (vcpu->fpu_active)
4241 kvm_load_guest_fpu(vcpu);
4243 local_irq_disable();
4245 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4246 smp_mb__after_clear_bit();
4248 if (vcpu->requests || need_resched() || signal_pending(current)) {
4249 set_bit(KVM_REQ_KICK, &vcpu->requests);
4250 local_irq_enable();
4251 preempt_enable();
4252 r = 1;
4253 goto out;
4256 inject_pending_event(vcpu);
4258 /* enable NMI/IRQ window open exits if needed */
4259 if (vcpu->arch.nmi_pending)
4260 kvm_x86_ops->enable_nmi_window(vcpu);
4261 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4262 kvm_x86_ops->enable_irq_window(vcpu);
4264 if (kvm_lapic_enabled(vcpu)) {
4265 update_cr8_intercept(vcpu);
4266 kvm_lapic_sync_to_vapic(vcpu);
4269 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4271 kvm_guest_enter();
4273 if (unlikely(vcpu->arch.switch_db_regs)) {
4274 set_debugreg(0, 7);
4275 set_debugreg(vcpu->arch.eff_db[0], 0);
4276 set_debugreg(vcpu->arch.eff_db[1], 1);
4277 set_debugreg(vcpu->arch.eff_db[2], 2);
4278 set_debugreg(vcpu->arch.eff_db[3], 3);
4281 trace_kvm_entry(vcpu->vcpu_id);
4282 kvm_x86_ops->run(vcpu);
4285 * If the guest has used debug registers, at least dr7
4286 * will be disabled while returning to the host.
4287 * If we don't have active breakpoints in the host, we don't
4288 * care about the messed up debug address registers. But if
4289 * we have some of them active, restore the old state.
4291 if (hw_breakpoint_active())
4292 hw_breakpoint_restore();
4294 set_bit(KVM_REQ_KICK, &vcpu->requests);
4295 local_irq_enable();
4297 ++vcpu->stat.exits;
4300 * We must have an instruction between local_irq_enable() and
4301 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4302 * the interrupt shadow. The stat.exits increment will do nicely.
4303 * But we need to prevent reordering, hence this barrier():
4305 barrier();
4307 kvm_guest_exit();
4309 preempt_enable();
4311 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4314 * Profile KVM exit RIPs:
4316 if (unlikely(prof_on == KVM_PROFILING)) {
4317 unsigned long rip = kvm_rip_read(vcpu);
4318 profile_hit(KVM_PROFILING, (void *)rip);
4322 kvm_lapic_sync_from_vapic(vcpu);
4324 r = kvm_x86_ops->handle_exit(vcpu);
4325 out:
4326 return r;
4330 static int __vcpu_run(struct kvm_vcpu *vcpu)
4332 int r;
4333 struct kvm *kvm = vcpu->kvm;
4335 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4336 pr_debug("vcpu %d received sipi with vector # %x\n",
4337 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4338 kvm_lapic_reset(vcpu);
4339 r = kvm_arch_vcpu_reset(vcpu);
4340 if (r)
4341 return r;
4342 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4345 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4346 vapic_enter(vcpu);
4348 r = 1;
4349 while (r > 0) {
4350 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4351 r = vcpu_enter_guest(vcpu);
4352 else {
4353 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4354 kvm_vcpu_block(vcpu);
4355 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4356 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4358 switch(vcpu->arch.mp_state) {
4359 case KVM_MP_STATE_HALTED:
4360 vcpu->arch.mp_state =
4361 KVM_MP_STATE_RUNNABLE;
4362 case KVM_MP_STATE_RUNNABLE:
4363 break;
4364 case KVM_MP_STATE_SIPI_RECEIVED:
4365 default:
4366 r = -EINTR;
4367 break;
4372 if (r <= 0)
4373 break;
4375 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4376 if (kvm_cpu_has_pending_timer(vcpu))
4377 kvm_inject_pending_timer_irqs(vcpu);
4379 if (dm_request_for_irq_injection(vcpu)) {
4380 r = -EINTR;
4381 vcpu->run->exit_reason = KVM_EXIT_INTR;
4382 ++vcpu->stat.request_irq_exits;
4384 if (signal_pending(current)) {
4385 r = -EINTR;
4386 vcpu->run->exit_reason = KVM_EXIT_INTR;
4387 ++vcpu->stat.signal_exits;
4389 if (need_resched()) {
4390 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4391 kvm_resched(vcpu);
4392 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4396 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4397 post_kvm_run_save(vcpu);
4399 vapic_exit(vcpu);
4401 return r;
4404 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4406 int r;
4407 sigset_t sigsaved;
4409 vcpu_load(vcpu);
4411 if (vcpu->sigset_active)
4412 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4414 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4415 kvm_vcpu_block(vcpu);
4416 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4417 r = -EAGAIN;
4418 goto out;
4421 /* re-sync apic's tpr */
4422 if (!irqchip_in_kernel(vcpu->kvm))
4423 kvm_set_cr8(vcpu, kvm_run->cr8);
4425 if (vcpu->arch.pio.cur_count) {
4426 r = complete_pio(vcpu);
4427 if (r)
4428 goto out;
4430 if (vcpu->mmio_needed) {
4431 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4432 vcpu->mmio_read_completed = 1;
4433 vcpu->mmio_needed = 0;
4435 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4436 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4437 EMULTYPE_NO_DECODE);
4438 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4439 if (r == EMULATE_DO_MMIO) {
4441 * Read-modify-write. Back to userspace.
4443 r = 0;
4444 goto out;
4447 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4448 kvm_register_write(vcpu, VCPU_REGS_RAX,
4449 kvm_run->hypercall.ret);
4451 r = __vcpu_run(vcpu);
4453 out:
4454 if (vcpu->sigset_active)
4455 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4457 vcpu_put(vcpu);
4458 return r;
4461 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4463 vcpu_load(vcpu);
4465 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4466 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4467 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4468 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4469 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4470 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4471 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4472 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4473 #ifdef CONFIG_X86_64
4474 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4475 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4476 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4477 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4478 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4479 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4480 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4481 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4482 #endif
4484 regs->rip = kvm_rip_read(vcpu);
4485 regs->rflags = kvm_get_rflags(vcpu);
4487 vcpu_put(vcpu);
4489 return 0;
4492 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4494 vcpu_load(vcpu);
4496 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4497 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4498 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4499 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4500 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4501 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4502 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4503 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4504 #ifdef CONFIG_X86_64
4505 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4506 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4507 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4508 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4509 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4510 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4511 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4512 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4513 #endif
4515 kvm_rip_write(vcpu, regs->rip);
4516 kvm_set_rflags(vcpu, regs->rflags);
4518 vcpu->arch.exception.pending = false;
4520 vcpu_put(vcpu);
4522 return 0;
4525 void kvm_get_segment(struct kvm_vcpu *vcpu,
4526 struct kvm_segment *var, int seg)
4528 kvm_x86_ops->get_segment(vcpu, var, seg);
4531 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4533 struct kvm_segment cs;
4535 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4536 *db = cs.db;
4537 *l = cs.l;
4539 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4541 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4542 struct kvm_sregs *sregs)
4544 struct descriptor_table dt;
4546 vcpu_load(vcpu);
4548 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4549 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4550 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4551 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4552 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4553 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4555 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4556 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4558 kvm_x86_ops->get_idt(vcpu, &dt);
4559 sregs->idt.limit = dt.limit;
4560 sregs->idt.base = dt.base;
4561 kvm_x86_ops->get_gdt(vcpu, &dt);
4562 sregs->gdt.limit = dt.limit;
4563 sregs->gdt.base = dt.base;
4565 sregs->cr0 = kvm_read_cr0(vcpu);
4566 sregs->cr2 = vcpu->arch.cr2;
4567 sregs->cr3 = vcpu->arch.cr3;
4568 sregs->cr4 = kvm_read_cr4(vcpu);
4569 sregs->cr8 = kvm_get_cr8(vcpu);
4570 sregs->efer = vcpu->arch.efer;
4571 sregs->apic_base = kvm_get_apic_base(vcpu);
4573 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4575 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4576 set_bit(vcpu->arch.interrupt.nr,
4577 (unsigned long *)sregs->interrupt_bitmap);
4579 vcpu_put(vcpu);
4581 return 0;
4584 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4585 struct kvm_mp_state *mp_state)
4587 vcpu_load(vcpu);
4588 mp_state->mp_state = vcpu->arch.mp_state;
4589 vcpu_put(vcpu);
4590 return 0;
4593 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4594 struct kvm_mp_state *mp_state)
4596 vcpu_load(vcpu);
4597 vcpu->arch.mp_state = mp_state->mp_state;
4598 vcpu_put(vcpu);
4599 return 0;
4602 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4603 struct kvm_segment *var, int seg)
4605 kvm_x86_ops->set_segment(vcpu, var, seg);
4608 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4609 struct kvm_segment *kvm_desct)
4611 kvm_desct->base = get_desc_base(seg_desc);
4612 kvm_desct->limit = get_desc_limit(seg_desc);
4613 if (seg_desc->g) {
4614 kvm_desct->limit <<= 12;
4615 kvm_desct->limit |= 0xfff;
4617 kvm_desct->selector = selector;
4618 kvm_desct->type = seg_desc->type;
4619 kvm_desct->present = seg_desc->p;
4620 kvm_desct->dpl = seg_desc->dpl;
4621 kvm_desct->db = seg_desc->d;
4622 kvm_desct->s = seg_desc->s;
4623 kvm_desct->l = seg_desc->l;
4624 kvm_desct->g = seg_desc->g;
4625 kvm_desct->avl = seg_desc->avl;
4626 if (!selector)
4627 kvm_desct->unusable = 1;
4628 else
4629 kvm_desct->unusable = 0;
4630 kvm_desct->padding = 0;
4633 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4634 u16 selector,
4635 struct descriptor_table *dtable)
4637 if (selector & 1 << 2) {
4638 struct kvm_segment kvm_seg;
4640 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4642 if (kvm_seg.unusable)
4643 dtable->limit = 0;
4644 else
4645 dtable->limit = kvm_seg.limit;
4646 dtable->base = kvm_seg.base;
4648 else
4649 kvm_x86_ops->get_gdt(vcpu, dtable);
4652 /* allowed just for 8 bytes segments */
4653 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4654 struct desc_struct *seg_desc)
4656 struct descriptor_table dtable;
4657 u16 index = selector >> 3;
4659 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4661 if (dtable.limit < index * 8 + 7) {
4662 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4663 return X86EMUL_PROPAGATE_FAULT;
4665 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4668 /* allowed just for 8 bytes segments */
4669 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4670 struct desc_struct *seg_desc)
4672 struct descriptor_table dtable;
4673 u16 index = selector >> 3;
4675 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4677 if (dtable.limit < index * 8 + 7)
4678 return 1;
4679 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4682 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4683 struct desc_struct *seg_desc)
4685 u32 base_addr = get_desc_base(seg_desc);
4687 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4690 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4692 struct kvm_segment kvm_seg;
4694 kvm_get_segment(vcpu, &kvm_seg, seg);
4695 return kvm_seg.selector;
4698 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4700 struct kvm_segment segvar = {
4701 .base = selector << 4,
4702 .limit = 0xffff,
4703 .selector = selector,
4704 .type = 3,
4705 .present = 1,
4706 .dpl = 3,
4707 .db = 0,
4708 .s = 1,
4709 .l = 0,
4710 .g = 0,
4711 .avl = 0,
4712 .unusable = 0,
4714 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4715 return 0;
4718 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4720 return (seg != VCPU_SREG_LDTR) &&
4721 (seg != VCPU_SREG_TR) &&
4722 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4725 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4726 u16 selector)
4728 /* NULL selector is not valid for CS and SS */
4729 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4730 if (!selector)
4731 kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4734 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4735 int type_bits, int seg)
4737 struct kvm_segment kvm_seg;
4738 struct desc_struct seg_desc;
4740 if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4741 return kvm_load_realmode_segment(vcpu, selector, seg);
4743 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4744 return 1;
4745 seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4747 kvm_check_segment_descriptor(vcpu, seg, selector);
4748 kvm_seg.type |= type_bits;
4750 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4751 seg != VCPU_SREG_LDTR)
4752 if (!kvm_seg.s)
4753 kvm_seg.unusable = 1;
4755 kvm_set_segment(vcpu, &kvm_seg, seg);
4756 if (selector && !kvm_seg.unusable && kvm_seg.s) {
4757 /* mark segment as accessed */
4758 seg_desc.type |= 1;
4759 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4761 return 0;
4764 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4765 struct tss_segment_32 *tss)
4767 tss->cr3 = vcpu->arch.cr3;
4768 tss->eip = kvm_rip_read(vcpu);
4769 tss->eflags = kvm_get_rflags(vcpu);
4770 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4771 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4772 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4773 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4774 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4775 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4776 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4777 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4778 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4779 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4780 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4781 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4782 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4783 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4784 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4787 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4788 struct tss_segment_32 *tss)
4790 kvm_set_cr3(vcpu, tss->cr3);
4792 kvm_rip_write(vcpu, tss->eip);
4793 kvm_set_rflags(vcpu, tss->eflags | 2);
4795 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4796 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4797 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4798 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4799 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4800 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4801 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4802 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4804 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4805 return 1;
4807 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4808 return 1;
4810 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4811 return 1;
4813 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4814 return 1;
4816 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4817 return 1;
4819 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4820 return 1;
4822 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4823 return 1;
4824 return 0;
4827 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4828 struct tss_segment_16 *tss)
4830 tss->ip = kvm_rip_read(vcpu);
4831 tss->flag = kvm_get_rflags(vcpu);
4832 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4833 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4834 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4835 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4836 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4837 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4838 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4839 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4841 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4842 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4843 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4844 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4845 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4848 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4849 struct tss_segment_16 *tss)
4851 kvm_rip_write(vcpu, tss->ip);
4852 kvm_set_rflags(vcpu, tss->flag | 2);
4853 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4854 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4855 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4856 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4857 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4858 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4859 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4860 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4862 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4863 return 1;
4865 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4866 return 1;
4868 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4869 return 1;
4871 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4872 return 1;
4874 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4875 return 1;
4876 return 0;
4879 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4880 u16 old_tss_sel, u32 old_tss_base,
4881 struct desc_struct *nseg_desc)
4883 struct tss_segment_16 tss_segment_16;
4884 int ret = 0;
4886 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4887 sizeof tss_segment_16))
4888 goto out;
4890 save_state_to_tss16(vcpu, &tss_segment_16);
4892 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4893 sizeof tss_segment_16))
4894 goto out;
4896 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4897 &tss_segment_16, sizeof tss_segment_16))
4898 goto out;
4900 if (old_tss_sel != 0xffff) {
4901 tss_segment_16.prev_task_link = old_tss_sel;
4903 if (kvm_write_guest(vcpu->kvm,
4904 get_tss_base_addr(vcpu, nseg_desc),
4905 &tss_segment_16.prev_task_link,
4906 sizeof tss_segment_16.prev_task_link))
4907 goto out;
4910 if (load_state_from_tss16(vcpu, &tss_segment_16))
4911 goto out;
4913 ret = 1;
4914 out:
4915 return ret;
4918 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4919 u16 old_tss_sel, u32 old_tss_base,
4920 struct desc_struct *nseg_desc)
4922 struct tss_segment_32 tss_segment_32;
4923 int ret = 0;
4925 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4926 sizeof tss_segment_32))
4927 goto out;
4929 save_state_to_tss32(vcpu, &tss_segment_32);
4931 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4932 sizeof tss_segment_32))
4933 goto out;
4935 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4936 &tss_segment_32, sizeof tss_segment_32))
4937 goto out;
4939 if (old_tss_sel != 0xffff) {
4940 tss_segment_32.prev_task_link = old_tss_sel;
4942 if (kvm_write_guest(vcpu->kvm,
4943 get_tss_base_addr(vcpu, nseg_desc),
4944 &tss_segment_32.prev_task_link,
4945 sizeof tss_segment_32.prev_task_link))
4946 goto out;
4949 if (load_state_from_tss32(vcpu, &tss_segment_32))
4950 goto out;
4952 ret = 1;
4953 out:
4954 return ret;
4957 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4959 struct kvm_segment tr_seg;
4960 struct desc_struct cseg_desc;
4961 struct desc_struct nseg_desc;
4962 int ret = 0;
4963 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4964 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4966 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4968 /* FIXME: Handle errors. Failure to read either TSS or their
4969 * descriptors should generate a pagefault.
4971 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4972 goto out;
4974 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4975 goto out;
4977 if (reason != TASK_SWITCH_IRET) {
4978 int cpl;
4980 cpl = kvm_x86_ops->get_cpl(vcpu);
4981 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4982 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4983 return 1;
4987 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4988 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4989 return 1;
4992 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4993 cseg_desc.type &= ~(1 << 1); //clear the B flag
4994 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4997 if (reason == TASK_SWITCH_IRET) {
4998 u32 eflags = kvm_get_rflags(vcpu);
4999 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5002 /* set back link to prev task only if NT bit is set in eflags
5003 note that old_tss_sel is not used afetr this point */
5004 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5005 old_tss_sel = 0xffff;
5007 if (nseg_desc.type & 8)
5008 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5009 old_tss_base, &nseg_desc);
5010 else
5011 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5012 old_tss_base, &nseg_desc);
5014 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5015 u32 eflags = kvm_get_rflags(vcpu);
5016 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5019 if (reason != TASK_SWITCH_IRET) {
5020 nseg_desc.type |= (1 << 1);
5021 save_guest_segment_descriptor(vcpu, tss_selector,
5022 &nseg_desc);
5025 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5026 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5027 tr_seg.type = 11;
5028 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5029 out:
5030 return ret;
5032 EXPORT_SYMBOL_GPL(kvm_task_switch);
5034 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5035 struct kvm_sregs *sregs)
5037 int mmu_reset_needed = 0;
5038 int pending_vec, max_bits;
5039 struct descriptor_table dt;
5041 vcpu_load(vcpu);
5043 dt.limit = sregs->idt.limit;
5044 dt.base = sregs->idt.base;
5045 kvm_x86_ops->set_idt(vcpu, &dt);
5046 dt.limit = sregs->gdt.limit;
5047 dt.base = sregs->gdt.base;
5048 kvm_x86_ops->set_gdt(vcpu, &dt);
5050 vcpu->arch.cr2 = sregs->cr2;
5051 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5052 vcpu->arch.cr3 = sregs->cr3;
5054 kvm_set_cr8(vcpu, sregs->cr8);
5056 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5057 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5058 kvm_set_apic_base(vcpu, sregs->apic_base);
5060 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5061 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5062 vcpu->arch.cr0 = sregs->cr0;
5064 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5065 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5066 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5067 load_pdptrs(vcpu, vcpu->arch.cr3);
5068 mmu_reset_needed = 1;
5071 if (mmu_reset_needed)
5072 kvm_mmu_reset_context(vcpu);
5074 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5075 pending_vec = find_first_bit(
5076 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5077 if (pending_vec < max_bits) {
5078 kvm_queue_interrupt(vcpu, pending_vec, false);
5079 pr_debug("Set back pending irq %d\n", pending_vec);
5080 if (irqchip_in_kernel(vcpu->kvm))
5081 kvm_pic_clear_isr_ack(vcpu->kvm);
5084 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5085 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5086 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5087 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5088 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5089 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5091 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5092 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5094 update_cr8_intercept(vcpu);
5096 /* Older userspace won't unhalt the vcpu on reset. */
5097 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5098 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5099 !is_protmode(vcpu))
5100 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5102 vcpu_put(vcpu);
5104 return 0;
5107 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5108 struct kvm_guest_debug *dbg)
5110 unsigned long rflags;
5111 int i, r;
5113 vcpu_load(vcpu);
5115 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5116 r = -EBUSY;
5117 if (vcpu->arch.exception.pending)
5118 goto unlock_out;
5119 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5120 kvm_queue_exception(vcpu, DB_VECTOR);
5121 else
5122 kvm_queue_exception(vcpu, BP_VECTOR);
5126 * Read rflags as long as potentially injected trace flags are still
5127 * filtered out.
5129 rflags = kvm_get_rflags(vcpu);
5131 vcpu->guest_debug = dbg->control;
5132 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5133 vcpu->guest_debug = 0;
5135 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5136 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5137 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5138 vcpu->arch.switch_db_regs =
5139 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5140 } else {
5141 for (i = 0; i < KVM_NR_DB_REGS; i++)
5142 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5143 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5146 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5147 vcpu->arch.singlestep_cs =
5148 get_segment_selector(vcpu, VCPU_SREG_CS);
5149 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5153 * Trigger an rflags update that will inject or remove the trace
5154 * flags.
5156 kvm_set_rflags(vcpu, rflags);
5158 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5160 r = 0;
5162 unlock_out:
5163 vcpu_put(vcpu);
5165 return r;
5169 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
5170 * we have asm/x86/processor.h
5172 struct fxsave {
5173 u16 cwd;
5174 u16 swd;
5175 u16 twd;
5176 u16 fop;
5177 u64 rip;
5178 u64 rdp;
5179 u32 mxcsr;
5180 u32 mxcsr_mask;
5181 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5182 #ifdef CONFIG_X86_64
5183 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5184 #else
5185 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5186 #endif
5190 * Translate a guest virtual address to a guest physical address.
5192 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5193 struct kvm_translation *tr)
5195 unsigned long vaddr = tr->linear_address;
5196 gpa_t gpa;
5197 int idx;
5199 vcpu_load(vcpu);
5200 idx = srcu_read_lock(&vcpu->kvm->srcu);
5201 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
5202 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5203 tr->physical_address = gpa;
5204 tr->valid = gpa != UNMAPPED_GVA;
5205 tr->writeable = 1;
5206 tr->usermode = 0;
5207 vcpu_put(vcpu);
5209 return 0;
5212 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5214 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5216 vcpu_load(vcpu);
5218 memcpy(fpu->fpr, fxsave->st_space, 128);
5219 fpu->fcw = fxsave->cwd;
5220 fpu->fsw = fxsave->swd;
5221 fpu->ftwx = fxsave->twd;
5222 fpu->last_opcode = fxsave->fop;
5223 fpu->last_ip = fxsave->rip;
5224 fpu->last_dp = fxsave->rdp;
5225 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5227 vcpu_put(vcpu);
5229 return 0;
5232 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5234 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5236 vcpu_load(vcpu);
5238 memcpy(fxsave->st_space, fpu->fpr, 128);
5239 fxsave->cwd = fpu->fcw;
5240 fxsave->swd = fpu->fsw;
5241 fxsave->twd = fpu->ftwx;
5242 fxsave->fop = fpu->last_opcode;
5243 fxsave->rip = fpu->last_ip;
5244 fxsave->rdp = fpu->last_dp;
5245 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5247 vcpu_put(vcpu);
5249 return 0;
5252 void fx_init(struct kvm_vcpu *vcpu)
5254 unsigned after_mxcsr_mask;
5257 * Touch the fpu the first time in non atomic context as if
5258 * this is the first fpu instruction the exception handler
5259 * will fire before the instruction returns and it'll have to
5260 * allocate ram with GFP_KERNEL.
5262 if (!used_math())
5263 kvm_fx_save(&vcpu->arch.host_fx_image);
5265 /* Initialize guest FPU by resetting ours and saving into guest's */
5266 preempt_disable();
5267 kvm_fx_save(&vcpu->arch.host_fx_image);
5268 kvm_fx_finit();
5269 kvm_fx_save(&vcpu->arch.guest_fx_image);
5270 kvm_fx_restore(&vcpu->arch.host_fx_image);
5271 preempt_enable();
5273 vcpu->arch.cr0 |= X86_CR0_ET;
5274 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5275 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5276 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5277 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5279 EXPORT_SYMBOL_GPL(fx_init);
5281 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5283 if (vcpu->guest_fpu_loaded)
5284 return;
5286 vcpu->guest_fpu_loaded = 1;
5287 kvm_fx_save(&vcpu->arch.host_fx_image);
5288 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5289 trace_kvm_fpu(1);
5292 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5294 if (!vcpu->guest_fpu_loaded)
5295 return;
5297 vcpu->guest_fpu_loaded = 0;
5298 kvm_fx_save(&vcpu->arch.guest_fx_image);
5299 kvm_fx_restore(&vcpu->arch.host_fx_image);
5300 ++vcpu->stat.fpu_reload;
5301 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5302 trace_kvm_fpu(0);
5305 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5307 if (vcpu->arch.time_page) {
5308 kvm_release_page_dirty(vcpu->arch.time_page);
5309 vcpu->arch.time_page = NULL;
5312 kvm_x86_ops->vcpu_free(vcpu);
5315 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5316 unsigned int id)
5318 return kvm_x86_ops->vcpu_create(kvm, id);
5321 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5323 int r;
5325 /* We do fxsave: this must be aligned. */
5326 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5328 vcpu->arch.mtrr_state.have_fixed = 1;
5329 vcpu_load(vcpu);
5330 r = kvm_arch_vcpu_reset(vcpu);
5331 if (r == 0)
5332 r = kvm_mmu_setup(vcpu);
5333 vcpu_put(vcpu);
5334 if (r < 0)
5335 goto free_vcpu;
5337 return 0;
5338 free_vcpu:
5339 kvm_x86_ops->vcpu_free(vcpu);
5340 return r;
5343 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5345 vcpu_load(vcpu);
5346 kvm_mmu_unload(vcpu);
5347 vcpu_put(vcpu);
5349 kvm_x86_ops->vcpu_free(vcpu);
5352 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5354 vcpu->arch.nmi_pending = false;
5355 vcpu->arch.nmi_injected = false;
5357 vcpu->arch.switch_db_regs = 0;
5358 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5359 vcpu->arch.dr6 = DR6_FIXED_1;
5360 vcpu->arch.dr7 = DR7_FIXED_1;
5362 return kvm_x86_ops->vcpu_reset(vcpu);
5365 int kvm_arch_hardware_enable(void *garbage)
5368 * Since this may be called from a hotplug notifcation,
5369 * we can't get the CPU frequency directly.
5371 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5372 int cpu = raw_smp_processor_id();
5373 per_cpu(cpu_tsc_khz, cpu) = 0;
5376 kvm_shared_msr_cpu_online();
5378 return kvm_x86_ops->hardware_enable(garbage);
5381 void kvm_arch_hardware_disable(void *garbage)
5383 kvm_x86_ops->hardware_disable(garbage);
5384 drop_user_return_notifiers(garbage);
5387 int kvm_arch_hardware_setup(void)
5389 return kvm_x86_ops->hardware_setup();
5392 void kvm_arch_hardware_unsetup(void)
5394 kvm_x86_ops->hardware_unsetup();
5397 void kvm_arch_check_processor_compat(void *rtn)
5399 kvm_x86_ops->check_processor_compatibility(rtn);
5402 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5404 struct page *page;
5405 struct kvm *kvm;
5406 int r;
5408 BUG_ON(vcpu->kvm == NULL);
5409 kvm = vcpu->kvm;
5411 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5412 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5413 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5414 else
5415 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5417 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5418 if (!page) {
5419 r = -ENOMEM;
5420 goto fail;
5422 vcpu->arch.pio_data = page_address(page);
5424 r = kvm_mmu_create(vcpu);
5425 if (r < 0)
5426 goto fail_free_pio_data;
5428 if (irqchip_in_kernel(kvm)) {
5429 r = kvm_create_lapic(vcpu);
5430 if (r < 0)
5431 goto fail_mmu_destroy;
5434 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5435 GFP_KERNEL);
5436 if (!vcpu->arch.mce_banks) {
5437 r = -ENOMEM;
5438 goto fail_free_lapic;
5440 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5442 return 0;
5443 fail_free_lapic:
5444 kvm_free_lapic(vcpu);
5445 fail_mmu_destroy:
5446 kvm_mmu_destroy(vcpu);
5447 fail_free_pio_data:
5448 free_page((unsigned long)vcpu->arch.pio_data);
5449 fail:
5450 return r;
5453 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5455 int idx;
5457 kfree(vcpu->arch.mce_banks);
5458 kvm_free_lapic(vcpu);
5459 idx = srcu_read_lock(&vcpu->kvm->srcu);
5460 kvm_mmu_destroy(vcpu);
5461 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5462 free_page((unsigned long)vcpu->arch.pio_data);
5465 struct kvm *kvm_arch_create_vm(void)
5467 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5469 if (!kvm)
5470 return ERR_PTR(-ENOMEM);
5472 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5473 if (!kvm->arch.aliases) {
5474 kfree(kvm);
5475 return ERR_PTR(-ENOMEM);
5478 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5479 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5481 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5482 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5484 rdtscll(kvm->arch.vm_init_tsc);
5486 return kvm;
5489 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5491 vcpu_load(vcpu);
5492 kvm_mmu_unload(vcpu);
5493 vcpu_put(vcpu);
5496 static void kvm_free_vcpus(struct kvm *kvm)
5498 unsigned int i;
5499 struct kvm_vcpu *vcpu;
5502 * Unpin any mmu pages first.
5504 kvm_for_each_vcpu(i, vcpu, kvm)
5505 kvm_unload_vcpu_mmu(vcpu);
5506 kvm_for_each_vcpu(i, vcpu, kvm)
5507 kvm_arch_vcpu_free(vcpu);
5509 mutex_lock(&kvm->lock);
5510 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5511 kvm->vcpus[i] = NULL;
5513 atomic_set(&kvm->online_vcpus, 0);
5514 mutex_unlock(&kvm->lock);
5517 void kvm_arch_sync_events(struct kvm *kvm)
5519 kvm_free_all_assigned_devices(kvm);
5522 void kvm_arch_destroy_vm(struct kvm *kvm)
5524 kvm_iommu_unmap_guest(kvm);
5525 kvm_free_pit(kvm);
5526 kfree(kvm->arch.vpic);
5527 kfree(kvm->arch.vioapic);
5528 kvm_free_vcpus(kvm);
5529 kvm_free_physmem(kvm);
5530 if (kvm->arch.apic_access_page)
5531 put_page(kvm->arch.apic_access_page);
5532 if (kvm->arch.ept_identity_pagetable)
5533 put_page(kvm->arch.ept_identity_pagetable);
5534 cleanup_srcu_struct(&kvm->srcu);
5535 kfree(kvm->arch.aliases);
5536 kfree(kvm);
5539 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5540 struct kvm_memory_slot *memslot,
5541 struct kvm_memory_slot old,
5542 struct kvm_userspace_memory_region *mem,
5543 int user_alloc)
5545 int npages = memslot->npages;
5547 /*To keep backward compatibility with older userspace,
5548 *x86 needs to hanlde !user_alloc case.
5550 if (!user_alloc) {
5551 if (npages && !old.rmap) {
5552 unsigned long userspace_addr;
5554 down_write(&current->mm->mmap_sem);
5555 userspace_addr = do_mmap(NULL, 0,
5556 npages * PAGE_SIZE,
5557 PROT_READ | PROT_WRITE,
5558 MAP_PRIVATE | MAP_ANONYMOUS,
5560 up_write(&current->mm->mmap_sem);
5562 if (IS_ERR((void *)userspace_addr))
5563 return PTR_ERR((void *)userspace_addr);
5565 memslot->userspace_addr = userspace_addr;
5570 return 0;
5573 void kvm_arch_commit_memory_region(struct kvm *kvm,
5574 struct kvm_userspace_memory_region *mem,
5575 struct kvm_memory_slot old,
5576 int user_alloc)
5579 int npages = mem->memory_size >> PAGE_SHIFT;
5581 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5582 int ret;
5584 down_write(&current->mm->mmap_sem);
5585 ret = do_munmap(current->mm, old.userspace_addr,
5586 old.npages * PAGE_SIZE);
5587 up_write(&current->mm->mmap_sem);
5588 if (ret < 0)
5589 printk(KERN_WARNING
5590 "kvm_vm_ioctl_set_memory_region: "
5591 "failed to munmap memory\n");
5594 spin_lock(&kvm->mmu_lock);
5595 if (!kvm->arch.n_requested_mmu_pages) {
5596 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5597 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5600 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5601 spin_unlock(&kvm->mmu_lock);
5604 void kvm_arch_flush_shadow(struct kvm *kvm)
5606 kvm_mmu_zap_all(kvm);
5607 kvm_reload_remote_mmus(kvm);
5610 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5612 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5613 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5614 || vcpu->arch.nmi_pending ||
5615 (kvm_arch_interrupt_allowed(vcpu) &&
5616 kvm_cpu_has_interrupt(vcpu));
5619 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5621 int me;
5622 int cpu = vcpu->cpu;
5624 if (waitqueue_active(&vcpu->wq)) {
5625 wake_up_interruptible(&vcpu->wq);
5626 ++vcpu->stat.halt_wakeup;
5629 me = get_cpu();
5630 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5631 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5632 smp_send_reschedule(cpu);
5633 put_cpu();
5636 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5638 return kvm_x86_ops->interrupt_allowed(vcpu);
5641 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5643 unsigned long rflags;
5645 rflags = kvm_x86_ops->get_rflags(vcpu);
5646 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5647 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5648 return rflags;
5650 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5652 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5654 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5655 vcpu->arch.singlestep_cs ==
5656 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5657 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5658 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5659 kvm_x86_ops->set_rflags(vcpu, rflags);
5661 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);