2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool
{
41 struct kmem_cache
*slab
;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS
)
68 struct kmem_cache
*scsi_sdb_cache
;
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
75 #define SCSI_QUEUE_DELAY 3
77 static void scsi_run_queue(struct request_queue
*q
);
80 * Function: scsi_unprep_request()
82 * Purpose: Remove all preparation done for a request, including its
83 * associated scsi_cmnd, so that it can be requeued.
85 * Arguments: req - request to unprepare
87 * Lock status: Assumed that no locks are held upon entry.
91 static void scsi_unprep_request(struct request
*req
)
93 struct scsi_cmnd
*cmd
= req
->special
;
95 blk_unprep_request(req
);
98 scsi_put_command(cmd
);
102 * __scsi_queue_insert - private queue insertion
103 * @cmd: The SCSI command being requeued
104 * @reason: The reason for the requeue
105 * @unbusy: Whether the queue should be unbusied
107 * This is a private queue insertion. The public interface
108 * scsi_queue_insert() always assumes the queue should be unbusied
109 * because it's always called before the completion. This function is
110 * for a requeue after completion, which should only occur in this
113 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
115 struct Scsi_Host
*host
= cmd
->device
->host
;
116 struct scsi_device
*device
= cmd
->device
;
117 struct scsi_target
*starget
= scsi_target(device
);
118 struct request_queue
*q
= device
->request_queue
;
122 printk("Inserting command %p into mlqueue\n", cmd
));
125 * Set the appropriate busy bit for the device/host.
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
138 case SCSI_MLQUEUE_HOST_BUSY
:
139 host
->host_blocked
= host
->max_host_blocked
;
141 case SCSI_MLQUEUE_DEVICE_BUSY
:
142 device
->device_blocked
= device
->max_device_blocked
;
144 case SCSI_MLQUEUE_TARGET_BUSY
:
145 starget
->target_blocked
= starget
->max_target_blocked
;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
154 scsi_device_unbusy(device
);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
160 spin_lock_irqsave(q
->queue_lock
, flags
);
161 blk_requeue_request(q
, cmd
->request
);
162 spin_unlock_irqrestore(q
->queue_lock
, flags
);
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
190 return __scsi_queue_insert(cmd
, reason
, 1);
193 * scsi_execute - insert request and wait for the result
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
208 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
209 int data_direction
, void *buffer
, unsigned bufflen
,
210 unsigned char *sense
, int timeout
, int retries
, int flags
,
214 int write
= (data_direction
== DMA_TO_DEVICE
);
215 int ret
= DRIVER_ERROR
<< 24;
217 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
219 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
220 buffer
, bufflen
, __GFP_WAIT
))
223 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
224 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
227 req
->retries
= retries
;
228 req
->timeout
= timeout
;
229 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
230 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req
->q
, NULL
, req
, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
244 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
247 *resid
= req
->resid_len
;
250 blk_put_request(req
);
254 EXPORT_SYMBOL(scsi_execute
);
257 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
258 int data_direction
, void *buffer
, unsigned bufflen
,
259 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
266 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
268 return DRIVER_ERROR
<< 24;
270 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
271 sense
, timeout
, retries
, 0, resid
);
273 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
278 EXPORT_SYMBOL(scsi_execute_req
);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
293 cmd
->serial_number
= 0;
294 scsi_set_resid(cmd
, 0);
295 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
296 if (cmd
->cmd_len
== 0)
297 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
300 void scsi_device_unbusy(struct scsi_device
*sdev
)
302 struct Scsi_Host
*shost
= sdev
->host
;
303 struct scsi_target
*starget
= scsi_target(sdev
);
306 spin_lock_irqsave(shost
->host_lock
, flags
);
308 starget
->target_busy
--;
309 if (unlikely(scsi_host_in_recovery(shost
) &&
310 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
311 scsi_eh_wakeup(shost
);
312 spin_unlock(shost
->host_lock
);
313 spin_lock(sdev
->request_queue
->queue_lock
);
315 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
327 struct Scsi_Host
*shost
= current_sdev
->host
;
328 struct scsi_device
*sdev
, *tmp
;
329 struct scsi_target
*starget
= scsi_target(current_sdev
);
332 spin_lock_irqsave(shost
->host_lock
, flags
);
333 starget
->starget_sdev_user
= NULL
;
334 spin_unlock_irqrestore(shost
->host_lock
, flags
);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev
->request_queue
);
344 spin_lock_irqsave(shost
->host_lock
, flags
);
345 if (starget
->starget_sdev_user
)
347 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
348 same_target_siblings
) {
349 if (sdev
== current_sdev
)
351 if (scsi_device_get(sdev
))
354 spin_unlock_irqrestore(shost
->host_lock
, flags
);
355 blk_run_queue(sdev
->request_queue
);
356 spin_lock_irqsave(shost
->host_lock
, flags
);
358 scsi_device_put(sdev
);
361 spin_unlock_irqrestore(shost
->host_lock
, flags
);
364 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
366 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
372 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
374 return ((starget
->can_queue
> 0 &&
375 starget
->target_busy
>= starget
->can_queue
) ||
376 starget
->target_blocked
);
379 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
381 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
382 shost
->host_blocked
|| shost
->host_self_blocked
)
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue
*q
)
402 struct scsi_device
*sdev
= q
->queuedata
;
403 struct Scsi_Host
*shost
= sdev
->host
;
404 LIST_HEAD(starved_list
);
407 if (scsi_target(sdev
)->single_lun
)
408 scsi_single_lun_run(sdev
);
410 spin_lock_irqsave(shost
->host_lock
, flags
);
411 list_splice_init(&shost
->starved_list
, &starved_list
);
413 while (!list_empty(&starved_list
)) {
417 * As long as shost is accepting commands and we have
418 * starved queues, call blk_run_queue. scsi_request_fn
419 * drops the queue_lock and can add us back to the
422 * host_lock protects the starved_list and starved_entry.
423 * scsi_request_fn must get the host_lock before checking
424 * or modifying starved_list or starved_entry.
426 if (scsi_host_is_busy(shost
))
429 sdev
= list_entry(starved_list
.next
,
430 struct scsi_device
, starved_entry
);
431 list_del_init(&sdev
->starved_entry
);
432 if (scsi_target_is_busy(scsi_target(sdev
))) {
433 list_move_tail(&sdev
->starved_entry
,
434 &shost
->starved_list
);
438 spin_unlock(shost
->host_lock
);
440 spin_lock(sdev
->request_queue
->queue_lock
);
441 flagset
= test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
) &&
442 !test_bit(QUEUE_FLAG_REENTER
,
443 &sdev
->request_queue
->queue_flags
);
445 queue_flag_set(QUEUE_FLAG_REENTER
, sdev
->request_queue
);
446 __blk_run_queue(sdev
->request_queue
, false);
448 queue_flag_clear(QUEUE_FLAG_REENTER
, sdev
->request_queue
);
449 spin_unlock(sdev
->request_queue
->queue_lock
);
451 spin_lock(shost
->host_lock
);
453 /* put any unprocessed entries back */
454 list_splice(&starved_list
, &shost
->starved_list
);
455 spin_unlock_irqrestore(shost
->host_lock
, flags
);
461 * Function: scsi_requeue_command()
463 * Purpose: Handle post-processing of completed commands.
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
476 * Notes: Upon return, cmd is a stale pointer.
478 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
480 struct request
*req
= cmd
->request
;
483 spin_lock_irqsave(q
->queue_lock
, flags
);
484 scsi_unprep_request(req
);
485 blk_requeue_request(q
, req
);
486 spin_unlock_irqrestore(q
->queue_lock
, flags
);
491 void scsi_next_command(struct scsi_cmnd
*cmd
)
493 struct scsi_device
*sdev
= cmd
->device
;
494 struct request_queue
*q
= sdev
->request_queue
;
496 /* need to hold a reference on the device before we let go of the cmd */
497 get_device(&sdev
->sdev_gendev
);
499 scsi_put_command(cmd
);
502 /* ok to remove device now */
503 put_device(&sdev
->sdev_gendev
);
506 void scsi_run_host_queues(struct Scsi_Host
*shost
)
508 struct scsi_device
*sdev
;
510 shost_for_each_device(sdev
, shost
)
511 scsi_run_queue(sdev
->request_queue
);
514 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
517 * Function: scsi_end_request()
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
527 * Lock status: Assumed that lock is not held upon entry.
529 * Returns: cmd if requeue required, NULL otherwise.
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
538 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
539 int bytes
, int requeue
)
541 struct request_queue
*q
= cmd
->device
->request_queue
;
542 struct request
*req
= cmd
->request
;
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
548 if (blk_end_request(req
, error
, bytes
)) {
549 /* kill remainder if no retrys */
550 if (error
&& scsi_noretry_cmd(cmd
))
551 blk_end_request_all(req
, error
);
555 * Bleah. Leftovers again. Stick the
556 * leftovers in the front of the
557 * queue, and goose the queue again.
559 scsi_release_buffers(cmd
);
560 scsi_requeue_command(q
, cmd
);
568 * This will goose the queue request function at the end, so we don't
569 * need to worry about launching another command.
571 __scsi_release_buffers(cmd
, 0);
572 scsi_next_command(cmd
);
576 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
580 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
585 index
= get_count_order(nents
) - 3;
590 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
592 struct scsi_host_sg_pool
*sgp
;
594 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
595 mempool_free(sgl
, sgp
->pool
);
598 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
600 struct scsi_host_sg_pool
*sgp
;
602 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
603 return mempool_alloc(sgp
->pool
, gfp_mask
);
606 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
613 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
614 gfp_mask
, scsi_sg_alloc
);
616 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
622 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
624 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
627 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
630 if (cmd
->sdb
.table
.nents
)
631 scsi_free_sgtable(&cmd
->sdb
);
633 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
635 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
636 struct scsi_data_buffer
*bidi_sdb
=
637 cmd
->request
->next_rq
->special
;
638 scsi_free_sgtable(bidi_sdb
);
639 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
640 cmd
->request
->next_rq
->special
= NULL
;
643 if (scsi_prot_sg_count(cmd
))
644 scsi_free_sgtable(cmd
->prot_sdb
);
648 * Function: scsi_release_buffers()
650 * Purpose: Completion processing for block device I/O requests.
652 * Arguments: cmd - command that we are bailing.
654 * Lock status: Assumed that no lock is held upon entry.
658 * Notes: In the event that an upper level driver rejects a
659 * command, we must release resources allocated during
660 * the __init_io() function. Primarily this would involve
661 * the scatter-gather table, and potentially any bounce
664 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
666 __scsi_release_buffers(cmd
, 1);
668 EXPORT_SYMBOL(scsi_release_buffers
);
670 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
674 switch(host_byte(result
)) {
675 case DID_TRANSPORT_FAILFAST
:
678 case DID_TARGET_FAILURE
:
679 cmd
->result
|= (DID_OK
<< 16);
682 case DID_NEXUS_FAILURE
:
683 cmd
->result
|= (DID_OK
<< 16);
695 * Function: scsi_io_completion()
697 * Purpose: Completion processing for block device I/O requests.
699 * Arguments: cmd - command that is finished.
701 * Lock status: Assumed that no lock is held upon entry.
705 * Notes: This function is matched in terms of capabilities to
706 * the function that created the scatter-gather list.
707 * In other words, if there are no bounce buffers
708 * (the normal case for most drivers), we don't need
709 * the logic to deal with cleaning up afterwards.
711 * We must call scsi_end_request(). This will finish off
712 * the specified number of sectors. If we are done, the
713 * command block will be released and the queue function
714 * will be goosed. If we are not done then we have to
715 * figure out what to do next:
717 * a) We can call scsi_requeue_command(). The request
718 * will be unprepared and put back on the queue. Then
719 * a new command will be created for it. This should
720 * be used if we made forward progress, or if we want
721 * to switch from READ(10) to READ(6) for example.
723 * b) We can call scsi_queue_insert(). The request will
724 * be put back on the queue and retried using the same
725 * command as before, possibly after a delay.
727 * c) We can call blk_end_request() with -EIO to fail
728 * the remainder of the request.
730 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
732 int result
= cmd
->result
;
733 struct request_queue
*q
= cmd
->device
->request_queue
;
734 struct request
*req
= cmd
->request
;
736 struct scsi_sense_hdr sshdr
;
738 int sense_deferred
= 0;
739 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
740 ACTION_DELAYED_RETRY
} action
;
741 char *description
= NULL
;
744 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
746 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
749 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
750 req
->errors
= result
;
752 if (sense_valid
&& req
->sense
) {
754 * SG_IO wants current and deferred errors
756 int len
= 8 + cmd
->sense_buffer
[7];
758 if (len
> SCSI_SENSE_BUFFERSIZE
)
759 len
= SCSI_SENSE_BUFFERSIZE
;
760 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
761 req
->sense_len
= len
;
764 error
= __scsi_error_from_host_byte(cmd
, result
);
767 req
->resid_len
= scsi_get_resid(cmd
);
769 if (scsi_bidi_cmnd(cmd
)) {
771 * Bidi commands Must be complete as a whole,
772 * both sides at once.
774 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
776 scsi_release_buffers(cmd
);
777 blk_end_request_all(req
, 0);
779 scsi_next_command(cmd
);
784 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
785 BUG_ON(blk_bidi_rq(req
));
788 * Next deal with any sectors which we were able to correctly
791 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
793 blk_rq_sectors(req
), good_bytes
));
796 * Recovered errors need reporting, but they're always treated
797 * as success, so fiddle the result code here. For BLOCK_PC
798 * we already took a copy of the original into rq->errors which
799 * is what gets returned to the user
801 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
802 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
803 * print since caller wants ATA registers. Only occurs on
804 * SCSI ATA PASS_THROUGH commands when CK_COND=1
806 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
808 else if (!(req
->cmd_flags
& REQ_QUIET
))
809 scsi_print_sense("", cmd
);
811 /* BLOCK_PC may have set error */
816 * A number of bytes were successfully read. If there
817 * are leftovers and there is some kind of error
818 * (result != 0), retry the rest.
820 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
823 error
= __scsi_error_from_host_byte(cmd
, result
);
825 if (host_byte(result
) == DID_RESET
) {
826 /* Third party bus reset or reset for error recovery
827 * reasons. Just retry the command and see what
830 action
= ACTION_RETRY
;
831 } else if (sense_valid
&& !sense_deferred
) {
832 switch (sshdr
.sense_key
) {
834 if (cmd
->device
->removable
) {
835 /* Detected disc change. Set a bit
836 * and quietly refuse further access.
838 cmd
->device
->changed
= 1;
839 description
= "Media Changed";
840 action
= ACTION_FAIL
;
842 /* Must have been a power glitch, or a
843 * bus reset. Could not have been a
844 * media change, so we just retry the
845 * command and see what happens.
847 action
= ACTION_RETRY
;
850 case ILLEGAL_REQUEST
:
851 /* If we had an ILLEGAL REQUEST returned, then
852 * we may have performed an unsupported
853 * command. The only thing this should be
854 * would be a ten byte read where only a six
855 * byte read was supported. Also, on a system
856 * where READ CAPACITY failed, we may have
857 * read past the end of the disk.
859 if ((cmd
->device
->use_10_for_rw
&&
860 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
861 (cmd
->cmnd
[0] == READ_10
||
862 cmd
->cmnd
[0] == WRITE_10
)) {
863 /* This will issue a new 6-byte command. */
864 cmd
->device
->use_10_for_rw
= 0;
865 action
= ACTION_REPREP
;
866 } else if (sshdr
.asc
== 0x10) /* DIX */ {
867 description
= "Host Data Integrity Failure";
868 action
= ACTION_FAIL
;
870 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
871 } else if ((sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) &&
872 (cmd
->cmnd
[0] == UNMAP
||
873 cmd
->cmnd
[0] == WRITE_SAME_16
||
874 cmd
->cmnd
[0] == WRITE_SAME
)) {
875 description
= "Discard failure";
876 action
= ACTION_FAIL
;
878 action
= ACTION_FAIL
;
880 case ABORTED_COMMAND
:
881 action
= ACTION_FAIL
;
882 if (sshdr
.asc
== 0x10) { /* DIF */
883 description
= "Target Data Integrity Failure";
888 /* If the device is in the process of becoming
889 * ready, or has a temporary blockage, retry.
891 if (sshdr
.asc
== 0x04) {
892 switch (sshdr
.ascq
) {
893 case 0x01: /* becoming ready */
894 case 0x04: /* format in progress */
895 case 0x05: /* rebuild in progress */
896 case 0x06: /* recalculation in progress */
897 case 0x07: /* operation in progress */
898 case 0x08: /* Long write in progress */
899 case 0x09: /* self test in progress */
900 case 0x14: /* space allocation in progress */
901 action
= ACTION_DELAYED_RETRY
;
904 description
= "Device not ready";
905 action
= ACTION_FAIL
;
909 description
= "Device not ready";
910 action
= ACTION_FAIL
;
913 case VOLUME_OVERFLOW
:
914 /* See SSC3rXX or current. */
915 action
= ACTION_FAIL
;
918 description
= "Unhandled sense code";
919 action
= ACTION_FAIL
;
923 description
= "Unhandled error code";
924 action
= ACTION_FAIL
;
929 /* Give up and fail the remainder of the request */
930 scsi_release_buffers(cmd
);
931 if (!(req
->cmd_flags
& REQ_QUIET
)) {
933 scmd_printk(KERN_INFO
, cmd
, "%s\n",
935 scsi_print_result(cmd
);
936 if (driver_byte(result
) & DRIVER_SENSE
)
937 scsi_print_sense("", cmd
);
938 scsi_print_command(cmd
);
940 if (blk_end_request_err(req
, error
))
941 scsi_requeue_command(q
, cmd
);
943 scsi_next_command(cmd
);
946 /* Unprep the request and put it back at the head of the queue.
947 * A new command will be prepared and issued.
949 scsi_release_buffers(cmd
);
950 scsi_requeue_command(q
, cmd
);
953 /* Retry the same command immediately */
954 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
956 case ACTION_DELAYED_RETRY
:
957 /* Retry the same command after a delay */
958 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
963 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
969 * If sg table allocation fails, requeue request later.
971 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
973 return BLKPREP_DEFER
;
979 * Next, walk the list, and fill in the addresses and sizes of
982 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
983 BUG_ON(count
> sdb
->table
.nents
);
984 sdb
->table
.nents
= count
;
985 sdb
->length
= blk_rq_bytes(req
);
990 * Function: scsi_init_io()
992 * Purpose: SCSI I/O initialize function.
994 * Arguments: cmd - Command descriptor we wish to initialize
996 * Returns: 0 on success
997 * BLKPREP_DEFER if the failure is retryable
998 * BLKPREP_KILL if the failure is fatal
1000 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1002 struct request
*rq
= cmd
->request
;
1004 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1008 if (blk_bidi_rq(rq
)) {
1009 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1010 scsi_sdb_cache
, GFP_ATOMIC
);
1012 error
= BLKPREP_DEFER
;
1016 rq
->next_rq
->special
= bidi_sdb
;
1017 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1022 if (blk_integrity_rq(rq
)) {
1023 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1026 BUG_ON(prot_sdb
== NULL
);
1027 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1029 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1030 error
= BLKPREP_DEFER
;
1034 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1035 prot_sdb
->table
.sgl
);
1036 BUG_ON(unlikely(count
> ivecs
));
1037 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1039 cmd
->prot_sdb
= prot_sdb
;
1040 cmd
->prot_sdb
->table
.nents
= count
;
1046 scsi_release_buffers(cmd
);
1047 cmd
->request
->special
= NULL
;
1048 scsi_put_command(cmd
);
1051 EXPORT_SYMBOL(scsi_init_io
);
1053 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1054 struct request
*req
)
1056 struct scsi_cmnd
*cmd
;
1058 if (!req
->special
) {
1059 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1067 /* pull a tag out of the request if we have one */
1068 cmd
->tag
= req
->tag
;
1071 cmd
->cmnd
= req
->cmd
;
1072 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1077 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1079 struct scsi_cmnd
*cmd
;
1080 int ret
= scsi_prep_state_check(sdev
, req
);
1082 if (ret
!= BLKPREP_OK
)
1085 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1087 return BLKPREP_DEFER
;
1090 * BLOCK_PC requests may transfer data, in which case they must
1091 * a bio attached to them. Or they might contain a SCSI command
1092 * that does not transfer data, in which case they may optionally
1093 * submit a request without an attached bio.
1098 BUG_ON(!req
->nr_phys_segments
);
1100 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1104 BUG_ON(blk_rq_bytes(req
));
1106 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1110 cmd
->cmd_len
= req
->cmd_len
;
1111 if (!blk_rq_bytes(req
))
1112 cmd
->sc_data_direction
= DMA_NONE
;
1113 else if (rq_data_dir(req
) == WRITE
)
1114 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1116 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1118 cmd
->transfersize
= blk_rq_bytes(req
);
1119 cmd
->allowed
= req
->retries
;
1122 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1125 * Setup a REQ_TYPE_FS command. These are simple read/write request
1126 * from filesystems that still need to be translated to SCSI CDBs from
1129 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1131 struct scsi_cmnd
*cmd
;
1132 int ret
= scsi_prep_state_check(sdev
, req
);
1134 if (ret
!= BLKPREP_OK
)
1137 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1138 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1139 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1140 if (ret
!= BLKPREP_OK
)
1145 * Filesystem requests must transfer data.
1147 BUG_ON(!req
->nr_phys_segments
);
1149 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1151 return BLKPREP_DEFER
;
1153 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1154 return scsi_init_io(cmd
, GFP_ATOMIC
);
1156 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1158 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1160 int ret
= BLKPREP_OK
;
1163 * If the device is not in running state we will reject some
1166 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1167 switch (sdev
->sdev_state
) {
1170 * If the device is offline we refuse to process any
1171 * commands. The device must be brought online
1172 * before trying any recovery commands.
1174 sdev_printk(KERN_ERR
, sdev
,
1175 "rejecting I/O to offline device\n");
1180 * If the device is fully deleted, we refuse to
1181 * process any commands as well.
1183 sdev_printk(KERN_ERR
, sdev
,
1184 "rejecting I/O to dead device\n");
1189 case SDEV_CREATED_BLOCK
:
1191 * If the devices is blocked we defer normal commands.
1193 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1194 ret
= BLKPREP_DEFER
;
1198 * For any other not fully online state we only allow
1199 * special commands. In particular any user initiated
1200 * command is not allowed.
1202 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1209 EXPORT_SYMBOL(scsi_prep_state_check
);
1211 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1213 struct scsi_device
*sdev
= q
->queuedata
;
1217 req
->errors
= DID_NO_CONNECT
<< 16;
1218 /* release the command and kill it */
1220 struct scsi_cmnd
*cmd
= req
->special
;
1221 scsi_release_buffers(cmd
);
1222 scsi_put_command(cmd
);
1223 req
->special
= NULL
;
1228 * If we defer, the blk_peek_request() returns NULL, but the
1229 * queue must be restarted, so we schedule a callback to happen
1232 if (sdev
->device_busy
== 0)
1233 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1236 req
->cmd_flags
|= REQ_DONTPREP
;
1241 EXPORT_SYMBOL(scsi_prep_return
);
1243 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1245 struct scsi_device
*sdev
= q
->queuedata
;
1246 int ret
= BLKPREP_KILL
;
1248 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1249 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1250 return scsi_prep_return(q
, req
, ret
);
1252 EXPORT_SYMBOL(scsi_prep_fn
);
1255 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1258 * Called with the queue_lock held.
1260 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1261 struct scsi_device
*sdev
)
1263 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1265 * unblock after device_blocked iterates to zero
1267 if (--sdev
->device_blocked
== 0) {
1269 sdev_printk(KERN_INFO
, sdev
,
1270 "unblocking device at zero depth\n"));
1272 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1276 if (scsi_device_is_busy(sdev
))
1284 * scsi_target_queue_ready: checks if there we can send commands to target
1285 * @sdev: scsi device on starget to check.
1287 * Called with the host lock held.
1289 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1290 struct scsi_device
*sdev
)
1292 struct scsi_target
*starget
= scsi_target(sdev
);
1294 if (starget
->single_lun
) {
1295 if (starget
->starget_sdev_user
&&
1296 starget
->starget_sdev_user
!= sdev
)
1298 starget
->starget_sdev_user
= sdev
;
1301 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1303 * unblock after target_blocked iterates to zero
1305 if (--starget
->target_blocked
== 0) {
1306 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1307 "unblocking target at zero depth\n"));
1312 if (scsi_target_is_busy(starget
)) {
1313 if (list_empty(&sdev
->starved_entry
))
1314 list_add_tail(&sdev
->starved_entry
,
1315 &shost
->starved_list
);
1319 /* We're OK to process the command, so we can't be starved */
1320 if (!list_empty(&sdev
->starved_entry
))
1321 list_del_init(&sdev
->starved_entry
);
1326 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1327 * return 0. We must end up running the queue again whenever 0 is
1328 * returned, else IO can hang.
1330 * Called with host_lock held.
1332 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1333 struct Scsi_Host
*shost
,
1334 struct scsi_device
*sdev
)
1336 if (scsi_host_in_recovery(shost
))
1338 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1340 * unblock after host_blocked iterates to zero
1342 if (--shost
->host_blocked
== 0) {
1344 printk("scsi%d unblocking host at zero depth\n",
1350 if (scsi_host_is_busy(shost
)) {
1351 if (list_empty(&sdev
->starved_entry
))
1352 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1356 /* We're OK to process the command, so we can't be starved */
1357 if (!list_empty(&sdev
->starved_entry
))
1358 list_del_init(&sdev
->starved_entry
);
1364 * Busy state exporting function for request stacking drivers.
1366 * For efficiency, no lock is taken to check the busy state of
1367 * shost/starget/sdev, since the returned value is not guaranteed and
1368 * may be changed after request stacking drivers call the function,
1369 * regardless of taking lock or not.
1371 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1372 * (e.g. !sdev), scsi needs to return 'not busy'.
1373 * Otherwise, request stacking drivers may hold requests forever.
1375 static int scsi_lld_busy(struct request_queue
*q
)
1377 struct scsi_device
*sdev
= q
->queuedata
;
1378 struct Scsi_Host
*shost
;
1379 struct scsi_target
*starget
;
1385 starget
= scsi_target(sdev
);
1387 if (scsi_host_in_recovery(shost
) || scsi_host_is_busy(shost
) ||
1388 scsi_target_is_busy(starget
) || scsi_device_is_busy(sdev
))
1395 * Kill a request for a dead device
1397 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1399 struct scsi_cmnd
*cmd
= req
->special
;
1400 struct scsi_device
*sdev
;
1401 struct scsi_target
*starget
;
1402 struct Scsi_Host
*shost
;
1404 blk_start_request(req
);
1407 starget
= scsi_target(sdev
);
1409 scsi_init_cmd_errh(cmd
);
1410 cmd
->result
= DID_NO_CONNECT
<< 16;
1411 atomic_inc(&cmd
->device
->iorequest_cnt
);
1414 * SCSI request completion path will do scsi_device_unbusy(),
1415 * bump busy counts. To bump the counters, we need to dance
1416 * with the locks as normal issue path does.
1418 sdev
->device_busy
++;
1419 spin_unlock(sdev
->request_queue
->queue_lock
);
1420 spin_lock(shost
->host_lock
);
1422 starget
->target_busy
++;
1423 spin_unlock(shost
->host_lock
);
1424 spin_lock(sdev
->request_queue
->queue_lock
);
1426 blk_complete_request(req
);
1429 static void scsi_softirq_done(struct request
*rq
)
1431 struct scsi_cmnd
*cmd
= rq
->special
;
1432 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1435 INIT_LIST_HEAD(&cmd
->eh_entry
);
1437 atomic_inc(&cmd
->device
->iodone_cnt
);
1439 atomic_inc(&cmd
->device
->ioerr_cnt
);
1441 disposition
= scsi_decide_disposition(cmd
);
1442 if (disposition
!= SUCCESS
&&
1443 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1444 sdev_printk(KERN_ERR
, cmd
->device
,
1445 "timing out command, waited %lus\n",
1447 disposition
= SUCCESS
;
1450 scsi_log_completion(cmd
, disposition
);
1452 switch (disposition
) {
1454 scsi_finish_command(cmd
);
1457 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1459 case ADD_TO_MLQUEUE
:
1460 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1463 if (!scsi_eh_scmd_add(cmd
, 0))
1464 scsi_finish_command(cmd
);
1469 * Function: scsi_request_fn()
1471 * Purpose: Main strategy routine for SCSI.
1473 * Arguments: q - Pointer to actual queue.
1477 * Lock status: IO request lock assumed to be held when called.
1479 static void scsi_request_fn(struct request_queue
*q
)
1481 struct scsi_device
*sdev
= q
->queuedata
;
1482 struct Scsi_Host
*shost
;
1483 struct scsi_cmnd
*cmd
;
1484 struct request
*req
;
1487 printk("scsi: killing requests for dead queue\n");
1488 while ((req
= blk_peek_request(q
)) != NULL
)
1489 scsi_kill_request(req
, q
);
1493 if(!get_device(&sdev
->sdev_gendev
))
1494 /* We must be tearing the block queue down already */
1498 * To start with, we keep looping until the queue is empty, or until
1499 * the host is no longer able to accept any more requests.
1505 * get next queueable request. We do this early to make sure
1506 * that the request is fully prepared even if we cannot
1509 req
= blk_peek_request(q
);
1510 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1513 if (unlikely(!scsi_device_online(sdev
))) {
1514 sdev_printk(KERN_ERR
, sdev
,
1515 "rejecting I/O to offline device\n");
1516 scsi_kill_request(req
, q
);
1522 * Remove the request from the request list.
1524 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1525 blk_start_request(req
);
1526 sdev
->device_busy
++;
1528 spin_unlock(q
->queue_lock
);
1530 if (unlikely(cmd
== NULL
)) {
1531 printk(KERN_CRIT
"impossible request in %s.\n"
1532 "please mail a stack trace to "
1533 "linux-scsi@vger.kernel.org\n",
1535 blk_dump_rq_flags(req
, "foo");
1538 spin_lock(shost
->host_lock
);
1541 * We hit this when the driver is using a host wide
1542 * tag map. For device level tag maps the queue_depth check
1543 * in the device ready fn would prevent us from trying
1544 * to allocate a tag. Since the map is a shared host resource
1545 * we add the dev to the starved list so it eventually gets
1546 * a run when a tag is freed.
1548 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1549 if (list_empty(&sdev
->starved_entry
))
1550 list_add_tail(&sdev
->starved_entry
,
1551 &shost
->starved_list
);
1555 if (!scsi_target_queue_ready(shost
, sdev
))
1558 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1561 scsi_target(sdev
)->target_busy
++;
1565 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1566 * take the lock again.
1568 spin_unlock_irq(shost
->host_lock
);
1571 * Finally, initialize any error handling parameters, and set up
1572 * the timers for timeouts.
1574 scsi_init_cmd_errh(cmd
);
1577 * Dispatch the command to the low-level driver.
1579 rtn
= scsi_dispatch_cmd(cmd
);
1580 spin_lock_irq(q
->queue_lock
);
1588 spin_unlock_irq(shost
->host_lock
);
1591 * lock q, handle tag, requeue req, and decrement device_busy. We
1592 * must return with queue_lock held.
1594 * Decrementing device_busy without checking it is OK, as all such
1595 * cases (host limits or settings) should run the queue at some
1598 spin_lock_irq(q
->queue_lock
);
1599 blk_requeue_request(q
, req
);
1600 sdev
->device_busy
--;
1602 if (sdev
->device_busy
== 0)
1603 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1605 /* must be careful here...if we trigger the ->remove() function
1606 * we cannot be holding the q lock */
1607 spin_unlock_irq(q
->queue_lock
);
1608 put_device(&sdev
->sdev_gendev
);
1609 spin_lock_irq(q
->queue_lock
);
1612 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1614 struct device
*host_dev
;
1615 u64 bounce_limit
= 0xffffffff;
1617 if (shost
->unchecked_isa_dma
)
1618 return BLK_BOUNCE_ISA
;
1620 * Platforms with virtual-DMA translation
1621 * hardware have no practical limit.
1623 if (!PCI_DMA_BUS_IS_PHYS
)
1624 return BLK_BOUNCE_ANY
;
1626 host_dev
= scsi_get_device(shost
);
1627 if (host_dev
&& host_dev
->dma_mask
)
1628 bounce_limit
= *host_dev
->dma_mask
;
1630 return bounce_limit
;
1632 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1634 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1635 request_fn_proc
*request_fn
)
1637 struct request_queue
*q
;
1638 struct device
*dev
= shost
->shost_gendev
.parent
;
1640 q
= blk_init_queue(request_fn
, NULL
);
1645 * this limit is imposed by hardware restrictions
1647 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1648 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1650 if (scsi_host_prot_dma(shost
)) {
1651 shost
->sg_prot_tablesize
=
1652 min_not_zero(shost
->sg_prot_tablesize
,
1653 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1654 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1655 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1658 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1659 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1660 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1661 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1663 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1665 if (!shost
->use_clustering
)
1666 q
->limits
.cluster
= 0;
1669 * set a reasonable default alignment on word boundaries: the
1670 * host and device may alter it using
1671 * blk_queue_update_dma_alignment() later.
1673 blk_queue_dma_alignment(q
, 0x03);
1677 EXPORT_SYMBOL(__scsi_alloc_queue
);
1679 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1681 struct request_queue
*q
;
1683 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1687 blk_queue_prep_rq(q
, scsi_prep_fn
);
1688 blk_queue_softirq_done(q
, scsi_softirq_done
);
1689 blk_queue_rq_timed_out(q
, scsi_times_out
);
1690 blk_queue_lld_busy(q
, scsi_lld_busy
);
1694 void scsi_free_queue(struct request_queue
*q
)
1696 blk_cleanup_queue(q
);
1700 * Function: scsi_block_requests()
1702 * Purpose: Utility function used by low-level drivers to prevent further
1703 * commands from being queued to the device.
1705 * Arguments: shost - Host in question
1709 * Lock status: No locks are assumed held.
1711 * Notes: There is no timer nor any other means by which the requests
1712 * get unblocked other than the low-level driver calling
1713 * scsi_unblock_requests().
1715 void scsi_block_requests(struct Scsi_Host
*shost
)
1717 shost
->host_self_blocked
= 1;
1719 EXPORT_SYMBOL(scsi_block_requests
);
1722 * Function: scsi_unblock_requests()
1724 * Purpose: Utility function used by low-level drivers to allow further
1725 * commands from being queued to the device.
1727 * Arguments: shost - Host in question
1731 * Lock status: No locks are assumed held.
1733 * Notes: There is no timer nor any other means by which the requests
1734 * get unblocked other than the low-level driver calling
1735 * scsi_unblock_requests().
1737 * This is done as an API function so that changes to the
1738 * internals of the scsi mid-layer won't require wholesale
1739 * changes to drivers that use this feature.
1741 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1743 shost
->host_self_blocked
= 0;
1744 scsi_run_host_queues(shost
);
1746 EXPORT_SYMBOL(scsi_unblock_requests
);
1748 int __init
scsi_init_queue(void)
1752 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1753 sizeof(struct scsi_data_buffer
),
1755 if (!scsi_sdb_cache
) {
1756 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1760 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1761 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1762 int size
= sgp
->size
* sizeof(struct scatterlist
);
1764 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1765 SLAB_HWCACHE_ALIGN
, NULL
);
1767 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1772 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1775 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1784 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1785 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1787 mempool_destroy(sgp
->pool
);
1789 kmem_cache_destroy(sgp
->slab
);
1791 kmem_cache_destroy(scsi_sdb_cache
);
1796 void scsi_exit_queue(void)
1800 kmem_cache_destroy(scsi_sdb_cache
);
1802 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1803 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1804 mempool_destroy(sgp
->pool
);
1805 kmem_cache_destroy(sgp
->slab
);
1810 * scsi_mode_select - issue a mode select
1811 * @sdev: SCSI device to be queried
1812 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1813 * @sp: Save page bit (0 == don't save, 1 == save)
1814 * @modepage: mode page being requested
1815 * @buffer: request buffer (may not be smaller than eight bytes)
1816 * @len: length of request buffer.
1817 * @timeout: command timeout
1818 * @retries: number of retries before failing
1819 * @data: returns a structure abstracting the mode header data
1820 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1821 * must be SCSI_SENSE_BUFFERSIZE big.
1823 * Returns zero if successful; negative error number or scsi
1828 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1829 unsigned char *buffer
, int len
, int timeout
, int retries
,
1830 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1832 unsigned char cmd
[10];
1833 unsigned char *real_buffer
;
1836 memset(cmd
, 0, sizeof(cmd
));
1837 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1839 if (sdev
->use_10_for_ms
) {
1842 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1845 memcpy(real_buffer
+ 8, buffer
, len
);
1849 real_buffer
[2] = data
->medium_type
;
1850 real_buffer
[3] = data
->device_specific
;
1851 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1853 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1854 real_buffer
[7] = data
->block_descriptor_length
;
1856 cmd
[0] = MODE_SELECT_10
;
1860 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1864 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1867 memcpy(real_buffer
+ 4, buffer
, len
);
1870 real_buffer
[1] = data
->medium_type
;
1871 real_buffer
[2] = data
->device_specific
;
1872 real_buffer
[3] = data
->block_descriptor_length
;
1875 cmd
[0] = MODE_SELECT
;
1879 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1880 sshdr
, timeout
, retries
, NULL
);
1884 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1887 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1888 * @sdev: SCSI device to be queried
1889 * @dbd: set if mode sense will allow block descriptors to be returned
1890 * @modepage: mode page being requested
1891 * @buffer: request buffer (may not be smaller than eight bytes)
1892 * @len: length of request buffer.
1893 * @timeout: command timeout
1894 * @retries: number of retries before failing
1895 * @data: returns a structure abstracting the mode header data
1896 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1897 * must be SCSI_SENSE_BUFFERSIZE big.
1899 * Returns zero if unsuccessful, or the header offset (either 4
1900 * or 8 depending on whether a six or ten byte command was
1901 * issued) if successful.
1904 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1905 unsigned char *buffer
, int len
, int timeout
, int retries
,
1906 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1908 unsigned char cmd
[12];
1912 struct scsi_sense_hdr my_sshdr
;
1914 memset(data
, 0, sizeof(*data
));
1915 memset(&cmd
[0], 0, 12);
1916 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1919 /* caller might not be interested in sense, but we need it */
1924 use_10_for_ms
= sdev
->use_10_for_ms
;
1926 if (use_10_for_ms
) {
1930 cmd
[0] = MODE_SENSE_10
;
1937 cmd
[0] = MODE_SENSE
;
1942 memset(buffer
, 0, len
);
1944 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1945 sshdr
, timeout
, retries
, NULL
);
1947 /* This code looks awful: what it's doing is making sure an
1948 * ILLEGAL REQUEST sense return identifies the actual command
1949 * byte as the problem. MODE_SENSE commands can return
1950 * ILLEGAL REQUEST if the code page isn't supported */
1952 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1953 (driver_byte(result
) & DRIVER_SENSE
)) {
1954 if (scsi_sense_valid(sshdr
)) {
1955 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1956 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1958 * Invalid command operation code
1960 sdev
->use_10_for_ms
= 0;
1966 if(scsi_status_is_good(result
)) {
1967 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1968 (modepage
== 6 || modepage
== 8))) {
1969 /* Initio breakage? */
1972 data
->medium_type
= 0;
1973 data
->device_specific
= 0;
1975 data
->block_descriptor_length
= 0;
1976 } else if(use_10_for_ms
) {
1977 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1978 data
->medium_type
= buffer
[2];
1979 data
->device_specific
= buffer
[3];
1980 data
->longlba
= buffer
[4] & 0x01;
1981 data
->block_descriptor_length
= buffer
[6]*256
1984 data
->length
= buffer
[0] + 1;
1985 data
->medium_type
= buffer
[1];
1986 data
->device_specific
= buffer
[2];
1987 data
->block_descriptor_length
= buffer
[3];
1989 data
->header_length
= header_length
;
1994 EXPORT_SYMBOL(scsi_mode_sense
);
1997 * scsi_test_unit_ready - test if unit is ready
1998 * @sdev: scsi device to change the state of.
1999 * @timeout: command timeout
2000 * @retries: number of retries before failing
2001 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2002 * returning sense. Make sure that this is cleared before passing
2005 * Returns zero if unsuccessful or an error if TUR failed. For
2006 * removable media, UNIT_ATTENTION sets ->changed flag.
2009 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2010 struct scsi_sense_hdr
*sshdr_external
)
2013 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2015 struct scsi_sense_hdr
*sshdr
;
2018 if (!sshdr_external
)
2019 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2021 sshdr
= sshdr_external
;
2023 /* try to eat the UNIT_ATTENTION if there are enough retries */
2025 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2026 timeout
, retries
, NULL
);
2027 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2028 sshdr
->sense_key
== UNIT_ATTENTION
)
2030 } while (scsi_sense_valid(sshdr
) &&
2031 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2033 if (!sshdr_external
)
2037 EXPORT_SYMBOL(scsi_test_unit_ready
);
2040 * scsi_device_set_state - Take the given device through the device state model.
2041 * @sdev: scsi device to change the state of.
2042 * @state: state to change to.
2044 * Returns zero if unsuccessful or an error if the requested
2045 * transition is illegal.
2048 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2050 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2052 if (state
== oldstate
)
2058 case SDEV_CREATED_BLOCK
:
2102 case SDEV_CREATED_BLOCK
:
2109 case SDEV_CREATED_BLOCK
:
2144 sdev
->sdev_state
= state
;
2148 SCSI_LOG_ERROR_RECOVERY(1,
2149 sdev_printk(KERN_ERR
, sdev
,
2150 "Illegal state transition %s->%s\n",
2151 scsi_device_state_name(oldstate
),
2152 scsi_device_state_name(state
))
2156 EXPORT_SYMBOL(scsi_device_set_state
);
2159 * sdev_evt_emit - emit a single SCSI device uevent
2160 * @sdev: associated SCSI device
2161 * @evt: event to emit
2163 * Send a single uevent (scsi_event) to the associated scsi_device.
2165 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2170 switch (evt
->evt_type
) {
2171 case SDEV_EVT_MEDIA_CHANGE
:
2172 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2182 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2186 * sdev_evt_thread - send a uevent for each scsi event
2187 * @work: work struct for scsi_device
2189 * Dispatch queued events to their associated scsi_device kobjects
2192 void scsi_evt_thread(struct work_struct
*work
)
2194 struct scsi_device
*sdev
;
2195 LIST_HEAD(event_list
);
2197 sdev
= container_of(work
, struct scsi_device
, event_work
);
2200 struct scsi_event
*evt
;
2201 struct list_head
*this, *tmp
;
2202 unsigned long flags
;
2204 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2205 list_splice_init(&sdev
->event_list
, &event_list
);
2206 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2208 if (list_empty(&event_list
))
2211 list_for_each_safe(this, tmp
, &event_list
) {
2212 evt
= list_entry(this, struct scsi_event
, node
);
2213 list_del(&evt
->node
);
2214 scsi_evt_emit(sdev
, evt
);
2221 * sdev_evt_send - send asserted event to uevent thread
2222 * @sdev: scsi_device event occurred on
2223 * @evt: event to send
2225 * Assert scsi device event asynchronously.
2227 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2229 unsigned long flags
;
2232 /* FIXME: currently this check eliminates all media change events
2233 * for polled devices. Need to update to discriminate between AN
2234 * and polled events */
2235 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2241 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2242 list_add_tail(&evt
->node
, &sdev
->event_list
);
2243 schedule_work(&sdev
->event_work
);
2244 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2246 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2249 * sdev_evt_alloc - allocate a new scsi event
2250 * @evt_type: type of event to allocate
2251 * @gfpflags: GFP flags for allocation
2253 * Allocates and returns a new scsi_event.
2255 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2258 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2262 evt
->evt_type
= evt_type
;
2263 INIT_LIST_HEAD(&evt
->node
);
2265 /* evt_type-specific initialization, if any */
2267 case SDEV_EVT_MEDIA_CHANGE
:
2275 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2278 * sdev_evt_send_simple - send asserted event to uevent thread
2279 * @sdev: scsi_device event occurred on
2280 * @evt_type: type of event to send
2281 * @gfpflags: GFP flags for allocation
2283 * Assert scsi device event asynchronously, given an event type.
2285 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2286 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2288 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2290 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2295 sdev_evt_send(sdev
, evt
);
2297 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2300 * scsi_device_quiesce - Block user issued commands.
2301 * @sdev: scsi device to quiesce.
2303 * This works by trying to transition to the SDEV_QUIESCE state
2304 * (which must be a legal transition). When the device is in this
2305 * state, only special requests will be accepted, all others will
2306 * be deferred. Since special requests may also be requeued requests,
2307 * a successful return doesn't guarantee the device will be
2308 * totally quiescent.
2310 * Must be called with user context, may sleep.
2312 * Returns zero if unsuccessful or an error if not.
2315 scsi_device_quiesce(struct scsi_device
*sdev
)
2317 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2321 scsi_run_queue(sdev
->request_queue
);
2322 while (sdev
->device_busy
) {
2323 msleep_interruptible(200);
2324 scsi_run_queue(sdev
->request_queue
);
2328 EXPORT_SYMBOL(scsi_device_quiesce
);
2331 * scsi_device_resume - Restart user issued commands to a quiesced device.
2332 * @sdev: scsi device to resume.
2334 * Moves the device from quiesced back to running and restarts the
2337 * Must be called with user context, may sleep.
2340 scsi_device_resume(struct scsi_device
*sdev
)
2342 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2344 scsi_run_queue(sdev
->request_queue
);
2346 EXPORT_SYMBOL(scsi_device_resume
);
2349 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2351 scsi_device_quiesce(sdev
);
2355 scsi_target_quiesce(struct scsi_target
*starget
)
2357 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2359 EXPORT_SYMBOL(scsi_target_quiesce
);
2362 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2364 scsi_device_resume(sdev
);
2368 scsi_target_resume(struct scsi_target
*starget
)
2370 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2372 EXPORT_SYMBOL(scsi_target_resume
);
2375 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2376 * @sdev: device to block
2378 * Block request made by scsi lld's to temporarily stop all
2379 * scsi commands on the specified device. Called from interrupt
2380 * or normal process context.
2382 * Returns zero if successful or error if not
2385 * This routine transitions the device to the SDEV_BLOCK state
2386 * (which must be a legal transition). When the device is in this
2387 * state, all commands are deferred until the scsi lld reenables
2388 * the device with scsi_device_unblock or device_block_tmo fires.
2389 * This routine assumes the host_lock is held on entry.
2392 scsi_internal_device_block(struct scsi_device
*sdev
)
2394 struct request_queue
*q
= sdev
->request_queue
;
2395 unsigned long flags
;
2398 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2400 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2407 * The device has transitioned to SDEV_BLOCK. Stop the
2408 * block layer from calling the midlayer with this device's
2411 spin_lock_irqsave(q
->queue_lock
, flags
);
2413 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2417 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2420 * scsi_internal_device_unblock - resume a device after a block request
2421 * @sdev: device to resume
2423 * Called by scsi lld's or the midlayer to restart the device queue
2424 * for the previously suspended scsi device. Called from interrupt or
2425 * normal process context.
2427 * Returns zero if successful or error if not.
2430 * This routine transitions the device to the SDEV_RUNNING state
2431 * (which must be a legal transition) allowing the midlayer to
2432 * goose the queue for this device. This routine assumes the
2433 * host_lock is held upon entry.
2436 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2438 struct request_queue
*q
= sdev
->request_queue
;
2439 unsigned long flags
;
2442 * Try to transition the scsi device to SDEV_RUNNING
2443 * and goose the device queue if successful.
2445 if (sdev
->sdev_state
== SDEV_BLOCK
)
2446 sdev
->sdev_state
= SDEV_RUNNING
;
2447 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
)
2448 sdev
->sdev_state
= SDEV_CREATED
;
2449 else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2450 sdev
->sdev_state
!= SDEV_OFFLINE
)
2453 spin_lock_irqsave(q
->queue_lock
, flags
);
2455 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2459 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2462 device_block(struct scsi_device
*sdev
, void *data
)
2464 scsi_internal_device_block(sdev
);
2468 target_block(struct device
*dev
, void *data
)
2470 if (scsi_is_target_device(dev
))
2471 starget_for_each_device(to_scsi_target(dev
), NULL
,
2477 scsi_target_block(struct device
*dev
)
2479 if (scsi_is_target_device(dev
))
2480 starget_for_each_device(to_scsi_target(dev
), NULL
,
2483 device_for_each_child(dev
, NULL
, target_block
);
2485 EXPORT_SYMBOL_GPL(scsi_target_block
);
2488 device_unblock(struct scsi_device
*sdev
, void *data
)
2490 scsi_internal_device_unblock(sdev
);
2494 target_unblock(struct device
*dev
, void *data
)
2496 if (scsi_is_target_device(dev
))
2497 starget_for_each_device(to_scsi_target(dev
), NULL
,
2503 scsi_target_unblock(struct device
*dev
)
2505 if (scsi_is_target_device(dev
))
2506 starget_for_each_device(to_scsi_target(dev
), NULL
,
2509 device_for_each_child(dev
, NULL
, target_unblock
);
2511 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2514 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2515 * @sgl: scatter-gather list
2516 * @sg_count: number of segments in sg
2517 * @offset: offset in bytes into sg, on return offset into the mapped area
2518 * @len: bytes to map, on return number of bytes mapped
2520 * Returns virtual address of the start of the mapped page
2522 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2523 size_t *offset
, size_t *len
)
2526 size_t sg_len
= 0, len_complete
= 0;
2527 struct scatterlist
*sg
;
2530 WARN_ON(!irqs_disabled());
2532 for_each_sg(sgl
, sg
, sg_count
, i
) {
2533 len_complete
= sg_len
; /* Complete sg-entries */
2534 sg_len
+= sg
->length
;
2535 if (sg_len
> *offset
)
2539 if (unlikely(i
== sg_count
)) {
2540 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2542 __func__
, sg_len
, *offset
, sg_count
);
2547 /* Offset starting from the beginning of first page in this sg-entry */
2548 *offset
= *offset
- len_complete
+ sg
->offset
;
2550 /* Assumption: contiguous pages can be accessed as "page + i" */
2551 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2552 *offset
&= ~PAGE_MASK
;
2554 /* Bytes in this sg-entry from *offset to the end of the page */
2555 sg_len
= PAGE_SIZE
- *offset
;
2559 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2561 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2564 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2565 * @virt: virtual address to be unmapped
2567 void scsi_kunmap_atomic_sg(void *virt
)
2569 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2571 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);