1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This abstraction carries sctp events to the ULP (sockets).
11 * This SCTP implementation is free software;
12 * you can redistribute it and/or modify it under the terms of
13 * the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This SCTP implementation is distributed in the hope that it
18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19 * ************************
20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21 * See the GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with GNU CC; see the file COPYING. If not, write to
25 * the Free Software Foundation, 59 Temple Place - Suite 330,
26 * Boston, MA 02111-1307, USA.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 * Or submit a bug report through the following website:
33 * http://www.sf.net/projects/lksctp
35 * Written or modified by:
36 * Jon Grimm <jgrimm@us.ibm.com>
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Sridhar Samudrala <sri@us.ibm.com>
40 * Any bugs reported given to us we will try to fix... any fixes shared will
41 * be incorporated into the next SCTP release.
44 #include <linux/types.h>
45 #include <linux/skbuff.h>
47 #include <net/sctp/structs.h>
48 #include <net/sctp/sctp.h>
49 #include <net/sctp/sm.h>
51 /* Forward declarations for internal helpers. */
52 static struct sctp_ulpevent
* sctp_ulpq_reasm(struct sctp_ulpq
*ulpq
,
53 struct sctp_ulpevent
*);
54 static struct sctp_ulpevent
* sctp_ulpq_order(struct sctp_ulpq
*,
55 struct sctp_ulpevent
*);
56 static void sctp_ulpq_reasm_drain(struct sctp_ulpq
*ulpq
);
58 /* 1st Level Abstractions */
60 /* Initialize a ULP queue from a block of memory. */
61 struct sctp_ulpq
*sctp_ulpq_init(struct sctp_ulpq
*ulpq
,
62 struct sctp_association
*asoc
)
64 memset(ulpq
, 0, sizeof(struct sctp_ulpq
));
67 skb_queue_head_init(&ulpq
->reasm
);
68 skb_queue_head_init(&ulpq
->lobby
);
76 /* Flush the reassembly and ordering queues. */
77 void sctp_ulpq_flush(struct sctp_ulpq
*ulpq
)
80 struct sctp_ulpevent
*event
;
82 while ((skb
= __skb_dequeue(&ulpq
->lobby
)) != NULL
) {
83 event
= sctp_skb2event(skb
);
84 sctp_ulpevent_free(event
);
87 while ((skb
= __skb_dequeue(&ulpq
->reasm
)) != NULL
) {
88 event
= sctp_skb2event(skb
);
89 sctp_ulpevent_free(event
);
94 /* Dispose of a ulpqueue. */
95 void sctp_ulpq_free(struct sctp_ulpq
*ulpq
)
97 sctp_ulpq_flush(ulpq
);
102 /* Process an incoming DATA chunk. */
103 int sctp_ulpq_tail_data(struct sctp_ulpq
*ulpq
, struct sctp_chunk
*chunk
,
106 struct sk_buff_head temp
;
107 sctp_data_chunk_t
*hdr
;
108 struct sctp_ulpevent
*event
;
110 hdr
= (sctp_data_chunk_t
*) chunk
->chunk_hdr
;
112 /* Create an event from the incoming chunk. */
113 event
= sctp_ulpevent_make_rcvmsg(chunk
->asoc
, chunk
, gfp
);
117 /* Do reassembly if needed. */
118 event
= sctp_ulpq_reasm(ulpq
, event
);
120 /* Do ordering if needed. */
121 if ((event
) && (event
->msg_flags
& MSG_EOR
)){
122 /* Create a temporary list to collect chunks on. */
123 skb_queue_head_init(&temp
);
124 __skb_queue_tail(&temp
, sctp_event2skb(event
));
126 event
= sctp_ulpq_order(ulpq
, event
);
129 /* Send event to the ULP. 'event' is the sctp_ulpevent for
130 * very first SKB on the 'temp' list.
133 sctp_ulpq_tail_event(ulpq
, event
);
138 /* Add a new event for propagation to the ULP. */
139 /* Clear the partial delivery mode for this socket. Note: This
140 * assumes that no association is currently in partial delivery mode.
142 int sctp_clear_pd(struct sock
*sk
, struct sctp_association
*asoc
)
144 struct sctp_sock
*sp
= sctp_sk(sk
);
146 if (atomic_dec_and_test(&sp
->pd_mode
)) {
147 /* This means there are no other associations in PD, so
148 * we can go ahead and clear out the lobby in one shot
150 if (!skb_queue_empty(&sp
->pd_lobby
)) {
151 struct list_head
*list
;
152 sctp_skb_list_tail(&sp
->pd_lobby
, &sk
->sk_receive_queue
);
153 list
= (struct list_head
*)&sctp_sk(sk
)->pd_lobby
;
154 INIT_LIST_HEAD(list
);
158 /* There are other associations in PD, so we only need to
159 * pull stuff out of the lobby that belongs to the
160 * associations that is exiting PD (all of its notifications
163 if (!skb_queue_empty(&sp
->pd_lobby
) && asoc
) {
164 struct sk_buff
*skb
, *tmp
;
165 struct sctp_ulpevent
*event
;
167 sctp_skb_for_each(skb
, &sp
->pd_lobby
, tmp
) {
168 event
= sctp_skb2event(skb
);
169 if (event
->asoc
== asoc
) {
170 __skb_unlink(skb
, &sp
->pd_lobby
);
171 __skb_queue_tail(&sk
->sk_receive_queue
,
181 /* Set the pd_mode on the socket and ulpq */
182 static void sctp_ulpq_set_pd(struct sctp_ulpq
*ulpq
)
184 struct sctp_sock
*sp
= sctp_sk(ulpq
->asoc
->base
.sk
);
186 atomic_inc(&sp
->pd_mode
);
190 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
191 static int sctp_ulpq_clear_pd(struct sctp_ulpq
*ulpq
)
194 sctp_ulpq_reasm_drain(ulpq
);
195 return sctp_clear_pd(ulpq
->asoc
->base
.sk
, ulpq
->asoc
);
198 /* If the SKB of 'event' is on a list, it is the first such member
201 int sctp_ulpq_tail_event(struct sctp_ulpq
*ulpq
, struct sctp_ulpevent
*event
)
203 struct sock
*sk
= ulpq
->asoc
->base
.sk
;
204 struct sk_buff_head
*queue
, *skb_list
;
205 struct sk_buff
*skb
= sctp_event2skb(event
);
208 skb_list
= (struct sk_buff_head
*) skb
->prev
;
210 /* If the socket is just going to throw this away, do not
211 * even try to deliver it.
213 if (sock_flag(sk
, SOCK_DEAD
) || (sk
->sk_shutdown
& RCV_SHUTDOWN
))
216 /* Check if the user wishes to receive this event. */
217 if (!sctp_ulpevent_is_enabled(event
, &sctp_sk(sk
)->subscribe
))
220 /* If we are in partial delivery mode, post to the lobby until
221 * partial delivery is cleared, unless, of course _this_ is
222 * the association the cause of the partial delivery.
225 if (atomic_read(&sctp_sk(sk
)->pd_mode
) == 0) {
226 queue
= &sk
->sk_receive_queue
;
229 /* If the association is in partial delivery, we
230 * need to finish delivering the partially processed
231 * packet before passing any other data. This is
232 * because we don't truly support stream interleaving.
234 if ((event
->msg_flags
& MSG_NOTIFICATION
) ||
235 (SCTP_DATA_NOT_FRAG
==
236 (event
->msg_flags
& SCTP_DATA_FRAG_MASK
)))
237 queue
= &sctp_sk(sk
)->pd_lobby
;
239 clear_pd
= event
->msg_flags
& MSG_EOR
;
240 queue
= &sk
->sk_receive_queue
;
244 * If fragment interleave is enabled, we
245 * can queue this to the recieve queue instead
248 if (sctp_sk(sk
)->frag_interleave
)
249 queue
= &sk
->sk_receive_queue
;
251 queue
= &sctp_sk(sk
)->pd_lobby
;
255 /* If we are harvesting multiple skbs they will be
256 * collected on a list.
259 sctp_skb_list_tail(skb_list
, queue
);
261 __skb_queue_tail(queue
, skb
);
263 /* Did we just complete partial delivery and need to get
264 * rolling again? Move pending data to the receive
268 sctp_ulpq_clear_pd(ulpq
);
270 if (queue
== &sk
->sk_receive_queue
)
271 sk
->sk_data_ready(sk
, 0);
276 sctp_queue_purge_ulpevents(skb_list
);
278 sctp_ulpevent_free(event
);
283 /* 2nd Level Abstractions */
285 /* Helper function to store chunks that need to be reassembled. */
286 static void sctp_ulpq_store_reasm(struct sctp_ulpq
*ulpq
,
287 struct sctp_ulpevent
*event
)
290 struct sctp_ulpevent
*cevent
;
295 /* See if it belongs at the end. */
296 pos
= skb_peek_tail(&ulpq
->reasm
);
298 __skb_queue_tail(&ulpq
->reasm
, sctp_event2skb(event
));
302 /* Short circuit just dropping it at the end. */
303 cevent
= sctp_skb2event(pos
);
305 if (TSN_lt(ctsn
, tsn
)) {
306 __skb_queue_tail(&ulpq
->reasm
, sctp_event2skb(event
));
310 /* Find the right place in this list. We store them by TSN. */
311 skb_queue_walk(&ulpq
->reasm
, pos
) {
312 cevent
= sctp_skb2event(pos
);
315 if (TSN_lt(tsn
, ctsn
))
319 /* Insert before pos. */
320 __skb_insert(sctp_event2skb(event
), pos
->prev
, pos
, &ulpq
->reasm
);
324 /* Helper function to return an event corresponding to the reassembled
326 * This routine creates a re-assembled skb given the first and last skb's
327 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
328 * payload was fragmented on the way and ip had to reassemble them.
329 * We add the rest of skb's to the first skb's fraglist.
331 static struct sctp_ulpevent
*sctp_make_reassembled_event(struct sk_buff_head
*queue
, struct sk_buff
*f_frag
, struct sk_buff
*l_frag
)
334 struct sk_buff
*new = NULL
;
335 struct sctp_ulpevent
*event
;
336 struct sk_buff
*pnext
, *last
;
337 struct sk_buff
*list
= skb_shinfo(f_frag
)->frag_list
;
339 /* Store the pointer to the 2nd skb */
340 if (f_frag
== l_frag
)
345 /* Get the last skb in the f_frag's frag_list if present. */
346 for (last
= list
; list
; last
= list
, list
= list
->next
);
348 /* Add the list of remaining fragments to the first fragments
354 if (skb_cloned(f_frag
)) {
355 /* This is a cloned skb, we can't just modify
356 * the frag_list. We need a new skb to do that.
357 * Instead of calling skb_unshare(), we'll do it
358 * ourselves since we need to delay the free.
360 new = skb_copy(f_frag
, GFP_ATOMIC
);
362 return NULL
; /* try again later */
364 sctp_skb_set_owner_r(new, f_frag
->sk
);
366 skb_shinfo(new)->frag_list
= pos
;
368 skb_shinfo(f_frag
)->frag_list
= pos
;
371 /* Remove the first fragment from the reassembly queue. */
372 __skb_unlink(f_frag
, queue
);
374 /* if we did unshare, then free the old skb and re-assign */
384 /* Update the len and data_len fields of the first fragment. */
385 f_frag
->len
+= pos
->len
;
386 f_frag
->data_len
+= pos
->len
;
388 /* Remove the fragment from the reassembly queue. */
389 __skb_unlink(pos
, queue
);
391 /* Break if we have reached the last fragment. */
398 event
= sctp_skb2event(f_frag
);
399 SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS
);
405 /* Helper function to check if an incoming chunk has filled up the last
406 * missing fragment in a SCTP datagram and return the corresponding event.
408 static struct sctp_ulpevent
*sctp_ulpq_retrieve_reassembled(struct sctp_ulpq
*ulpq
)
411 struct sctp_ulpevent
*cevent
;
412 struct sk_buff
*first_frag
= NULL
;
413 __u32 ctsn
, next_tsn
;
414 struct sctp_ulpevent
*retval
= NULL
;
415 struct sk_buff
*pd_first
= NULL
;
416 struct sk_buff
*pd_last
= NULL
;
418 struct sctp_association
*asoc
;
421 /* Initialized to 0 just to avoid compiler warning message. Will
422 * never be used with this value. It is referenced only after it
423 * is set when we find the first fragment of a message.
427 /* The chunks are held in the reasm queue sorted by TSN.
428 * Walk through the queue sequentially and look for a sequence of
429 * fragmented chunks that complete a datagram.
430 * 'first_frag' and next_tsn are reset when we find a chunk which
431 * is the first fragment of a datagram. Once these 2 fields are set
432 * we expect to find the remaining middle fragments and the last
433 * fragment in order. If not, first_frag is reset to NULL and we
434 * start the next pass when we find another first fragment.
436 * There is a potential to do partial delivery if user sets
437 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
438 * to see if can do PD.
440 skb_queue_walk(&ulpq
->reasm
, pos
) {
441 cevent
= sctp_skb2event(pos
);
444 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
445 case SCTP_DATA_FIRST_FRAG
:
446 /* If this "FIRST_FRAG" is the first
447 * element in the queue, then count it towards
450 if (pos
== ulpq
->reasm
.next
) {
464 case SCTP_DATA_MIDDLE_FRAG
:
465 if ((first_frag
) && (ctsn
== next_tsn
)) {
475 case SCTP_DATA_LAST_FRAG
:
476 if (first_frag
&& (ctsn
== next_tsn
))
486 /* Make sure we can enter partial deliver.
487 * We can trigger partial delivery only if framgent
488 * interleave is set, or the socket is not already
489 * in partial delivery.
491 if (!sctp_sk(asoc
->base
.sk
)->frag_interleave
&&
492 atomic_read(&sctp_sk(asoc
->base
.sk
)->pd_mode
))
495 cevent
= sctp_skb2event(pd_first
);
496 pd_point
= sctp_sk(asoc
->base
.sk
)->pd_point
;
497 if (pd_point
&& pd_point
<= pd_len
) {
498 retval
= sctp_make_reassembled_event(&ulpq
->reasm
,
502 sctp_ulpq_set_pd(ulpq
);
508 retval
= sctp_make_reassembled_event(&ulpq
->reasm
, first_frag
, pos
);
510 retval
->msg_flags
|= MSG_EOR
;
514 /* Retrieve the next set of fragments of a partial message. */
515 static struct sctp_ulpevent
*sctp_ulpq_retrieve_partial(struct sctp_ulpq
*ulpq
)
517 struct sk_buff
*pos
, *last_frag
, *first_frag
;
518 struct sctp_ulpevent
*cevent
;
519 __u32 ctsn
, next_tsn
;
521 struct sctp_ulpevent
*retval
;
523 /* The chunks are held in the reasm queue sorted by TSN.
524 * Walk through the queue sequentially and look for the first
525 * sequence of fragmented chunks.
528 if (skb_queue_empty(&ulpq
->reasm
))
531 last_frag
= first_frag
= NULL
;
536 skb_queue_walk(&ulpq
->reasm
, pos
) {
537 cevent
= sctp_skb2event(pos
);
540 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
541 case SCTP_DATA_MIDDLE_FRAG
:
546 } else if (next_tsn
== ctsn
)
551 case SCTP_DATA_LAST_FRAG
:
554 else if (ctsn
!= next_tsn
)
564 /* We have the reassembled event. There is no need to look
568 retval
= sctp_make_reassembled_event(&ulpq
->reasm
, first_frag
, last_frag
);
569 if (retval
&& is_last
)
570 retval
->msg_flags
|= MSG_EOR
;
576 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that
579 static struct sctp_ulpevent
*sctp_ulpq_reasm(struct sctp_ulpq
*ulpq
,
580 struct sctp_ulpevent
*event
)
582 struct sctp_ulpevent
*retval
= NULL
;
584 /* Check if this is part of a fragmented message. */
585 if (SCTP_DATA_NOT_FRAG
== (event
->msg_flags
& SCTP_DATA_FRAG_MASK
)) {
586 event
->msg_flags
|= MSG_EOR
;
590 sctp_ulpq_store_reasm(ulpq
, event
);
592 retval
= sctp_ulpq_retrieve_reassembled(ulpq
);
596 /* Do not even bother unless this is the next tsn to
600 ctsnap
= sctp_tsnmap_get_ctsn(&ulpq
->asoc
->peer
.tsn_map
);
601 if (TSN_lte(ctsn
, ctsnap
))
602 retval
= sctp_ulpq_retrieve_partial(ulpq
);
608 /* Retrieve the first part (sequential fragments) for partial delivery. */
609 static struct sctp_ulpevent
*sctp_ulpq_retrieve_first(struct sctp_ulpq
*ulpq
)
611 struct sk_buff
*pos
, *last_frag
, *first_frag
;
612 struct sctp_ulpevent
*cevent
;
613 __u32 ctsn
, next_tsn
;
614 struct sctp_ulpevent
*retval
;
616 /* The chunks are held in the reasm queue sorted by TSN.
617 * Walk through the queue sequentially and look for a sequence of
618 * fragmented chunks that start a datagram.
621 if (skb_queue_empty(&ulpq
->reasm
))
624 last_frag
= first_frag
= NULL
;
628 skb_queue_walk(&ulpq
->reasm
, pos
) {
629 cevent
= sctp_skb2event(pos
);
632 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
633 case SCTP_DATA_FIRST_FRAG
:
642 case SCTP_DATA_MIDDLE_FRAG
:
645 if (ctsn
== next_tsn
) {
656 /* We have the reassembled event. There is no need to look
660 retval
= sctp_make_reassembled_event(&ulpq
->reasm
, first_frag
, last_frag
);
665 * Flush out stale fragments from the reassembly queue when processing
668 * RFC 3758, Section 3.6
670 * After receiving and processing a FORWARD TSN, the data receiver MUST
671 * take cautions in updating its re-assembly queue. The receiver MUST
672 * remove any partially reassembled message, which is still missing one
673 * or more TSNs earlier than or equal to the new cumulative TSN point.
674 * In the event that the receiver has invoked the partial delivery API,
675 * a notification SHOULD also be generated to inform the upper layer API
676 * that the message being partially delivered will NOT be completed.
678 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq
*ulpq
, __u32 fwd_tsn
)
680 struct sk_buff
*pos
, *tmp
;
681 struct sctp_ulpevent
*event
;
684 if (skb_queue_empty(&ulpq
->reasm
))
687 skb_queue_walk_safe(&ulpq
->reasm
, pos
, tmp
) {
688 event
= sctp_skb2event(pos
);
691 /* Since the entire message must be abandoned by the
692 * sender (item A3 in Section 3.5, RFC 3758), we can
693 * free all fragments on the list that are less then
694 * or equal to ctsn_point
696 if (TSN_lte(tsn
, fwd_tsn
)) {
697 __skb_unlink(pos
, &ulpq
->reasm
);
698 sctp_ulpevent_free(event
);
705 * Drain the reassembly queue. If we just cleared parted delivery, it
706 * is possible that the reassembly queue will contain already reassembled
707 * messages. Retrieve any such messages and give them to the user.
709 static void sctp_ulpq_reasm_drain(struct sctp_ulpq
*ulpq
)
711 struct sctp_ulpevent
*event
= NULL
;
712 struct sk_buff_head temp
;
714 if (skb_queue_empty(&ulpq
->reasm
))
717 while ((event
= sctp_ulpq_retrieve_reassembled(ulpq
)) != NULL
) {
718 /* Do ordering if needed. */
719 if ((event
) && (event
->msg_flags
& MSG_EOR
)){
720 skb_queue_head_init(&temp
);
721 __skb_queue_tail(&temp
, sctp_event2skb(event
));
723 event
= sctp_ulpq_order(ulpq
, event
);
726 /* Send event to the ULP. 'event' is the
727 * sctp_ulpevent for very first SKB on the temp' list.
730 sctp_ulpq_tail_event(ulpq
, event
);
735 /* Helper function to gather skbs that have possibly become
736 * ordered by an an incoming chunk.
738 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq
*ulpq
,
739 struct sctp_ulpevent
*event
)
741 struct sk_buff_head
*event_list
;
742 struct sk_buff
*pos
, *tmp
;
743 struct sctp_ulpevent
*cevent
;
744 struct sctp_stream
*in
;
750 in
= &ulpq
->asoc
->ssnmap
->in
;
752 event_list
= (struct sk_buff_head
*) sctp_event2skb(event
)->prev
;
754 /* We are holding the chunks by stream, by SSN. */
755 sctp_skb_for_each(pos
, &ulpq
->lobby
, tmp
) {
756 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
757 csid
= cevent
->stream
;
760 /* Have we gone too far? */
764 /* Have we not gone far enough? */
768 if (cssn
!= sctp_ssn_peek(in
, sid
))
771 /* Found it, so mark in the ssnmap. */
772 sctp_ssn_next(in
, sid
);
774 __skb_unlink(pos
, &ulpq
->lobby
);
776 /* Attach all gathered skbs to the event. */
777 __skb_queue_tail(event_list
, pos
);
781 /* Helper function to store chunks needing ordering. */
782 static void sctp_ulpq_store_ordered(struct sctp_ulpq
*ulpq
,
783 struct sctp_ulpevent
*event
)
786 struct sctp_ulpevent
*cevent
;
790 pos
= skb_peek_tail(&ulpq
->lobby
);
792 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
799 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
800 csid
= cevent
->stream
;
803 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
807 if ((sid
== csid
) && SSN_lt(cssn
, ssn
)) {
808 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
812 /* Find the right place in this list. We store them by
813 * stream ID and then by SSN.
815 skb_queue_walk(&ulpq
->lobby
, pos
) {
816 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
817 csid
= cevent
->stream
;
822 if (csid
== sid
&& SSN_lt(ssn
, cssn
))
827 /* Insert before pos. */
828 __skb_insert(sctp_event2skb(event
), pos
->prev
, pos
, &ulpq
->lobby
);
832 static struct sctp_ulpevent
*sctp_ulpq_order(struct sctp_ulpq
*ulpq
,
833 struct sctp_ulpevent
*event
)
836 struct sctp_stream
*in
;
838 /* Check if this message needs ordering. */
839 if (SCTP_DATA_UNORDERED
& event
->msg_flags
)
842 /* Note: The stream ID must be verified before this routine. */
845 in
= &ulpq
->asoc
->ssnmap
->in
;
847 /* Is this the expected SSN for this stream ID? */
848 if (ssn
!= sctp_ssn_peek(in
, sid
)) {
849 /* We've received something out of order, so find where it
850 * needs to be placed. We order by stream and then by SSN.
852 sctp_ulpq_store_ordered(ulpq
, event
);
856 /* Mark that the next chunk has been found. */
857 sctp_ssn_next(in
, sid
);
859 /* Go find any other chunks that were waiting for
862 sctp_ulpq_retrieve_ordered(ulpq
, event
);
867 /* Helper function to gather skbs that have possibly become
868 * ordered by forward tsn skipping their dependencies.
870 static void sctp_ulpq_reap_ordered(struct sctp_ulpq
*ulpq
, __u16 sid
)
872 struct sk_buff
*pos
, *tmp
;
873 struct sctp_ulpevent
*cevent
;
874 struct sctp_ulpevent
*event
;
875 struct sctp_stream
*in
;
876 struct sk_buff_head temp
;
877 struct sk_buff_head
*lobby
= &ulpq
->lobby
;
880 in
= &ulpq
->asoc
->ssnmap
->in
;
882 /* We are holding the chunks by stream, by SSN. */
883 skb_queue_head_init(&temp
);
885 sctp_skb_for_each(pos
, lobby
, tmp
) {
886 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
887 csid
= cevent
->stream
;
890 /* Have we gone too far? */
894 /* Have we not gone far enough? */
898 /* see if this ssn has been marked by skipping */
899 if (!SSN_lt(cssn
, sctp_ssn_peek(in
, csid
)))
902 __skb_unlink(pos
, lobby
);
904 /* Create a temporary list to collect chunks on. */
905 event
= sctp_skb2event(pos
);
907 /* Attach all gathered skbs to the event. */
908 __skb_queue_tail(&temp
, pos
);
911 /* If we didn't reap any data, see if the next expected SSN
912 * is next on the queue and if so, use that.
914 if (event
== NULL
&& pos
!= (struct sk_buff
*)lobby
) {
915 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
916 csid
= cevent
->stream
;
919 if (csid
== sid
&& cssn
== sctp_ssn_peek(in
, csid
)) {
920 sctp_ssn_next(in
, csid
);
921 __skb_unlink(pos
, lobby
);
922 __skb_queue_tail(&temp
, pos
);
923 event
= sctp_skb2event(pos
);
927 /* Send event to the ULP. 'event' is the sctp_ulpevent for
928 * very first SKB on the 'temp' list.
931 /* see if we have more ordered that we can deliver */
932 sctp_ulpq_retrieve_ordered(ulpq
, event
);
933 sctp_ulpq_tail_event(ulpq
, event
);
937 /* Skip over an SSN. This is used during the processing of
938 * Forwared TSN chunk to skip over the abandoned ordered data
940 void sctp_ulpq_skip(struct sctp_ulpq
*ulpq
, __u16 sid
, __u16 ssn
)
942 struct sctp_stream
*in
;
944 /* Note: The stream ID must be verified before this routine. */
945 in
= &ulpq
->asoc
->ssnmap
->in
;
947 /* Is this an old SSN? If so ignore. */
948 if (SSN_lt(ssn
, sctp_ssn_peek(in
, sid
)))
951 /* Mark that we are no longer expecting this SSN or lower. */
952 sctp_ssn_skip(in
, sid
, ssn
);
954 /* Go find any other chunks that were waiting for
955 * ordering and deliver them if needed.
957 sctp_ulpq_reap_ordered(ulpq
, sid
);
961 static __u16
sctp_ulpq_renege_list(struct sctp_ulpq
*ulpq
,
962 struct sk_buff_head
*list
, __u16 needed
)
967 struct sctp_ulpevent
*event
;
968 struct sctp_tsnmap
*tsnmap
;
970 tsnmap
= &ulpq
->asoc
->peer
.tsn_map
;
972 while ((skb
= __skb_dequeue_tail(list
)) != NULL
) {
973 freed
+= skb_headlen(skb
);
974 event
= sctp_skb2event(skb
);
977 sctp_ulpevent_free(event
);
978 sctp_tsnmap_renege(tsnmap
, tsn
);
986 /* Renege 'needed' bytes from the ordering queue. */
987 static __u16
sctp_ulpq_renege_order(struct sctp_ulpq
*ulpq
, __u16 needed
)
989 return sctp_ulpq_renege_list(ulpq
, &ulpq
->lobby
, needed
);
992 /* Renege 'needed' bytes from the reassembly queue. */
993 static __u16
sctp_ulpq_renege_frags(struct sctp_ulpq
*ulpq
, __u16 needed
)
995 return sctp_ulpq_renege_list(ulpq
, &ulpq
->reasm
, needed
);
998 /* Partial deliver the first message as there is pressure on rwnd. */
999 void sctp_ulpq_partial_delivery(struct sctp_ulpq
*ulpq
,
1000 struct sctp_chunk
*chunk
,
1003 struct sctp_ulpevent
*event
;
1004 struct sctp_association
*asoc
;
1005 struct sctp_sock
*sp
;
1008 sp
= sctp_sk(asoc
->base
.sk
);
1010 /* If the association is already in Partial Delivery mode
1011 * we have noting to do.
1016 /* If the user enabled fragment interleave socket option,
1017 * multiple associations can enter partial delivery.
1018 * Otherwise, we can only enter partial delivery if the
1019 * socket is not in partial deliver mode.
1021 if (sp
->frag_interleave
|| atomic_read(&sp
->pd_mode
) == 0) {
1022 /* Is partial delivery possible? */
1023 event
= sctp_ulpq_retrieve_first(ulpq
);
1024 /* Send event to the ULP. */
1026 sctp_ulpq_tail_event(ulpq
, event
);
1027 sctp_ulpq_set_pd(ulpq
);
1033 /* Renege some packets to make room for an incoming chunk. */
1034 void sctp_ulpq_renege(struct sctp_ulpq
*ulpq
, struct sctp_chunk
*chunk
,
1037 struct sctp_association
*asoc
;
1038 __u16 needed
, freed
;
1043 needed
= ntohs(chunk
->chunk_hdr
->length
);
1044 needed
-= sizeof(sctp_data_chunk_t
);
1046 needed
= SCTP_DEFAULT_MAXWINDOW
;
1050 if (skb_queue_empty(&asoc
->base
.sk
->sk_receive_queue
)) {
1051 freed
= sctp_ulpq_renege_order(ulpq
, needed
);
1052 if (freed
< needed
) {
1053 freed
+= sctp_ulpq_renege_frags(ulpq
, needed
- freed
);
1056 /* If able to free enough room, accept this chunk. */
1057 if (chunk
&& (freed
>= needed
)) {
1059 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1060 sctp_tsnmap_mark(&asoc
->peer
.tsn_map
, tsn
);
1061 sctp_ulpq_tail_data(ulpq
, chunk
, gfp
);
1063 sctp_ulpq_partial_delivery(ulpq
, chunk
, gfp
);
1066 sk_mem_reclaim(asoc
->base
.sk
);
1072 /* Notify the application if an association is aborted and in
1073 * partial delivery mode. Send up any pending received messages.
1075 void sctp_ulpq_abort_pd(struct sctp_ulpq
*ulpq
, gfp_t gfp
)
1077 struct sctp_ulpevent
*ev
= NULL
;
1083 sk
= ulpq
->asoc
->base
.sk
;
1084 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT
,
1085 &sctp_sk(sk
)->subscribe
))
1086 ev
= sctp_ulpevent_make_pdapi(ulpq
->asoc
,
1087 SCTP_PARTIAL_DELIVERY_ABORTED
,
1090 __skb_queue_tail(&sk
->sk_receive_queue
, sctp_event2skb(ev
));
1092 /* If there is data waiting, send it up the socket now. */
1093 if (sctp_ulpq_clear_pd(ulpq
) || ev
)
1094 sk
->sk_data_ready(sk
, 0);