USB: fix usbfs regression
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / wusbcore / crypto.c
blob9ec7fd5da489e3a697956392ba64b1fcabe3c4d5
1 /*
2 * Ultra Wide Band
3 * AES-128 CCM Encryption
5 * Copyright (C) 2007 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
23 * We don't do any encryption here; we use the Linux Kernel's AES-128
24 * crypto modules to construct keys and payload blocks in a way
25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26 * there.
28 * Thanks a zillion to John Keys for his help and clarifications over
29 * the designed-by-a-committee text.
31 * So the idea is that there is this basic Pseudo-Random-Function
32 * defined in WUSB1.0[6.5] which is the core of everything. It works
33 * by tweaking some blocks, AES crypting them and then xoring
34 * something else with them (this seems to be called CBC(AES) -- can
35 * you tell I know jack about crypto?). So we just funnel it into the
36 * Linux Crypto API.
38 * We leave a crypto test module so we can verify that vectors match,
39 * every now and then.
41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42 * am learning a lot...
44 * Conveniently, some data structures that need to be
45 * funneled through AES are...16 bytes in size!
48 #include <linux/crypto.h>
49 #include <linux/module.h>
50 #include <linux/err.h>
51 #include <linux/uwb.h>
52 #include <linux/usb/wusb.h>
53 #include <linux/scatterlist.h>
55 static int debug_crypto_verify = 0;
57 module_param(debug_crypto_verify, int, 0);
58 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
60 static void wusb_key_dump(const void *buf, size_t len)
62 print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
63 buf, len, 0);
67 * Block of data, as understood by AES-CCM
69 * The code assumes this structure is nothing but a 16 byte array
70 * (packed in a struct to avoid common mess ups that I usually do with
71 * arrays and enforcing type checking).
73 struct aes_ccm_block {
74 u8 data[16];
75 } __attribute__((packed));
78 * Counter-mode Blocks (WUSB1.0[6.4])
80 * According to CCM (or so it seems), for the purpose of calculating
81 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
82 * ... BN.
84 * B0 contains flags, the CCM nonce and l(m).
86 * B1 contains l(a), the MAC header, the encryption offset and padding.
88 * If EO is nonzero, additional blocks are built from payload bytes
89 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
90 * padding is not xmitted.
93 /* WUSB1.0[T6.4] */
94 struct aes_ccm_b0 {
95 u8 flags; /* 0x59, per CCM spec */
96 struct aes_ccm_nonce ccm_nonce;
97 __be16 lm;
98 } __attribute__((packed));
100 /* WUSB1.0[T6.5] */
101 struct aes_ccm_b1 {
102 __be16 la;
103 u8 mac_header[10];
104 __le16 eo;
105 u8 security_reserved; /* This is always zero */
106 u8 padding; /* 0 */
107 } __attribute__((packed));
110 * Encryption Blocks (WUSB1.0[6.4.4])
112 * CCM uses Ax blocks to generate a keystream with which the MIC and
113 * the message's payload are encoded. A0 always encrypts/decrypts the
114 * MIC. Ax (x>0) are used for the sucesive payload blocks.
116 * The x is the counter, and is increased for each block.
118 struct aes_ccm_a {
119 u8 flags; /* 0x01, per CCM spec */
120 struct aes_ccm_nonce ccm_nonce;
121 __be16 counter; /* Value of x */
122 } __attribute__((packed));
124 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
125 size_t size)
127 u8 *bo = _bo;
128 const u8 *bi1 = _bi1, *bi2 = _bi2;
129 size_t itr;
130 for (itr = 0; itr < size; itr++)
131 bo[itr] = bi1[itr] ^ bi2[itr];
135 * CC-MAC function WUSB1.0[6.5]
137 * Take a data string and produce the encrypted CBC Counter-mode MIC
139 * Note the names for most function arguments are made to (more or
140 * less) match those used in the pseudo-function definition given in
141 * WUSB1.0[6.5].
143 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
145 * @tfm_aes: AES cipher handle (initialized)
147 * @mic: buffer for placing the computed MIC (Message Integrity
148 * Code). This is exactly 8 bytes, and we expect the buffer to
149 * be at least eight bytes in length.
151 * @key: 128 bit symmetric key
153 * @n: CCM nonce
155 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
156 * we use exactly 14 bytes).
158 * @b: data stream to be processed; cannot be a global or const local
159 * (will confuse the scatterlists)
161 * @blen: size of b...
163 * Still not very clear how this is done, but looks like this: we
164 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
165 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
166 * take the payload and divide it in blocks (16 bytes), xor them with
167 * the previous crypto result (16 bytes) and crypt it, repeat the next
168 * block with the output of the previous one, rinse wash (I guess this
169 * is what AES CBC mode means...but I truly have no idea). So we use
170 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
171 * Vector) is 16 bytes and is set to zero, so
173 * See rfc3610. Linux crypto has a CBC implementation, but the
174 * documentation is scarce, to say the least, and the example code is
175 * so intricated that is difficult to understand how things work. Most
176 * of this is guess work -- bite me.
178 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
179 * using the 14 bytes of @a to fill up
180 * b1.{mac_header,e0,security_reserved,padding}.
182 * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
183 * l(m) is orthogonal, they bear no relationship, so it is not
184 * in conflict with the parameter's relation that
185 * WUSB1.0[6.4.2]) defines.
187 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
188 * first errata released on 2005/07.
190 * NOTE: we need to clean IV to zero at each invocation to make sure
191 * we start with a fresh empty Initial Vector, so that the CBC
192 * works ok.
194 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
195 * what sg[4] is for. Maybe there is a smarter way to do this.
197 static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
198 struct crypto_cipher *tfm_aes, void *mic,
199 const struct aes_ccm_nonce *n,
200 const struct aes_ccm_label *a, const void *b,
201 size_t blen)
203 int result = 0;
204 struct blkcipher_desc desc;
205 struct aes_ccm_b0 b0;
206 struct aes_ccm_b1 b1;
207 struct aes_ccm_a ax;
208 struct scatterlist sg[4], sg_dst;
209 void *iv, *dst_buf;
210 size_t ivsize, dst_size;
211 const u8 bzero[16] = { 0 };
212 size_t zero_padding;
215 * These checks should be compile time optimized out
216 * ensure @a fills b1's mac_header and following fields
218 WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
219 WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
220 WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
221 WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
223 result = -ENOMEM;
224 zero_padding = sizeof(struct aes_ccm_block)
225 - blen % sizeof(struct aes_ccm_block);
226 zero_padding = blen % sizeof(struct aes_ccm_block);
227 if (zero_padding)
228 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
229 dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
230 dst_buf = kzalloc(dst_size, GFP_KERNEL);
231 if (dst_buf == NULL) {
232 printk(KERN_ERR "E: can't alloc destination buffer\n");
233 goto error_dst_buf;
236 iv = crypto_blkcipher_crt(tfm_cbc)->iv;
237 ivsize = crypto_blkcipher_ivsize(tfm_cbc);
238 memset(iv, 0, ivsize);
240 /* Setup B0 */
241 b0.flags = 0x59; /* Format B0 */
242 b0.ccm_nonce = *n;
243 b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
245 /* Setup B1
247 * The WUSB spec is anything but clear! WUSB1.0[6.5]
248 * says that to initialize B1 from A with 'l(a) = blen +
249 * 14'--after clarification, it means to use A's contents
250 * for MAC Header, EO, sec reserved and padding.
252 b1.la = cpu_to_be16(blen + 14);
253 memcpy(&b1.mac_header, a, sizeof(*a));
255 sg_init_table(sg, ARRAY_SIZE(sg));
256 sg_set_buf(&sg[0], &b0, sizeof(b0));
257 sg_set_buf(&sg[1], &b1, sizeof(b1));
258 sg_set_buf(&sg[2], b, blen);
259 /* 0 if well behaved :) */
260 sg_set_buf(&sg[3], bzero, zero_padding);
261 sg_init_one(&sg_dst, dst_buf, dst_size);
263 desc.tfm = tfm_cbc;
264 desc.flags = 0;
265 result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
266 if (result < 0) {
267 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
268 result);
269 goto error_cbc_crypt;
272 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
273 * The procedure is to AES crypt the A0 block and XOR the MIC
274 * Tag agains it; we only do the first 8 bytes and place it
275 * directly in the destination buffer.
277 * POS Crypto API: size is assumed to be AES's block size.
278 * Thanks for documenting it -- tip taken from airo.c
280 ax.flags = 0x01; /* as per WUSB 1.0 spec */
281 ax.ccm_nonce = *n;
282 ax.counter = 0;
283 crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
284 bytewise_xor(mic, &ax, iv, 8);
285 result = 8;
286 error_cbc_crypt:
287 kfree(dst_buf);
288 error_dst_buf:
289 return result;
293 * WUSB Pseudo Random Function (WUSB1.0[6.5])
295 * @b: buffer to the source data; cannot be a global or const local
296 * (will confuse the scatterlists)
298 ssize_t wusb_prf(void *out, size_t out_size,
299 const u8 key[16], const struct aes_ccm_nonce *_n,
300 const struct aes_ccm_label *a,
301 const void *b, size_t blen, size_t len)
303 ssize_t result, bytes = 0, bitr;
304 struct aes_ccm_nonce n = *_n;
305 struct crypto_blkcipher *tfm_cbc;
306 struct crypto_cipher *tfm_aes;
307 u64 sfn = 0;
308 __le64 sfn_le;
310 tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
311 if (IS_ERR(tfm_cbc)) {
312 result = PTR_ERR(tfm_cbc);
313 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
314 goto error_alloc_cbc;
316 result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
317 if (result < 0) {
318 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
319 goto error_setkey_cbc;
322 tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
323 if (IS_ERR(tfm_aes)) {
324 result = PTR_ERR(tfm_aes);
325 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
326 goto error_alloc_aes;
328 result = crypto_cipher_setkey(tfm_aes, key, 16);
329 if (result < 0) {
330 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
331 goto error_setkey_aes;
334 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
335 sfn_le = cpu_to_le64(sfn++);
336 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
337 result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
338 &n, a, b, blen);
339 if (result < 0)
340 goto error_ccm_mac;
341 bytes += result;
343 result = bytes;
344 error_ccm_mac:
345 error_setkey_aes:
346 crypto_free_cipher(tfm_aes);
347 error_alloc_aes:
348 error_setkey_cbc:
349 crypto_free_blkcipher(tfm_cbc);
350 error_alloc_cbc:
351 return result;
354 /* WUSB1.0[A.2] test vectors */
355 static const u8 stv_hsmic_key[16] = {
356 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
357 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
360 static const struct aes_ccm_nonce stv_hsmic_n = {
361 .sfn = { 0 },
362 .tkid = { 0x76, 0x98, 0x01, },
363 .dest_addr = { .data = { 0xbe, 0x00 } },
364 .src_addr = { .data = { 0x76, 0x98 } },
368 * Out-of-band MIC Generation verification code
371 static int wusb_oob_mic_verify(void)
373 int result;
374 u8 mic[8];
375 /* WUSB1.0[A.2] test vectors
377 * Need to keep it in the local stack as GCC 4.1.3something
378 * messes up and generates noise.
380 struct usb_handshake stv_hsmic_hs = {
381 .bMessageNumber = 2,
382 .bStatus = 00,
383 .tTKID = { 0x76, 0x98, 0x01 },
384 .bReserved = 00,
385 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
386 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
387 0x3c, 0x3d, 0x3e, 0x3f },
388 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
389 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
390 0x2c, 0x2d, 0x2e, 0x2f },
391 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
392 0x14, 0x7b } ,
394 size_t hs_size;
396 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
397 if (result < 0)
398 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
399 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
400 printk(KERN_ERR "E: OOB MIC test: "
401 "mismatch between MIC result and WUSB1.0[A2]\n");
402 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
403 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
404 wusb_key_dump(&stv_hsmic_hs, hs_size);
405 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
406 sizeof(stv_hsmic_n));
407 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
408 printk(KERN_ERR "E: MIC out:\n");
409 wusb_key_dump(mic, sizeof(mic));
410 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
411 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
412 result = -EINVAL;
413 } else
414 result = 0;
415 return result;
419 * Test vectors for Key derivation
421 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
422 * (errata corrected in 2005/07).
424 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
425 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
426 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
429 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
430 .sfn = { 0 },
431 .tkid = { 0x76, 0x98, 0x01, },
432 .dest_addr = { .data = { 0xbe, 0x00 } },
433 .src_addr = { .data = { 0x76, 0x98 } },
436 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
437 .kck = {
438 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
439 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
441 .ptk = {
442 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
443 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
448 * Performa a test to make sure we match the vectors defined in
449 * WUSB1.0[A.1](Errata2006/12)
451 static int wusb_key_derive_verify(void)
453 int result = 0;
454 struct wusb_keydvt_out keydvt_out;
455 /* These come from WUSB1.0[A.1] + 2006/12 errata
456 * NOTE: can't make this const or global -- somehow it seems
457 * the scatterlists for crypto get confused and we get
458 * bad data. There is no doc on this... */
459 struct wusb_keydvt_in stv_keydvt_in_a1 = {
460 .hnonce = {
461 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
462 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
464 .dnonce = {
465 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
466 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
470 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
471 &stv_keydvt_in_a1);
472 if (result < 0)
473 printk(KERN_ERR "E: WUSB key derivation test: "
474 "derivation failed: %d\n", result);
475 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
476 printk(KERN_ERR "E: WUSB key derivation test: "
477 "mismatch between key derivation result "
478 "and WUSB1.0[A1] Errata 2006/12\n");
479 printk(KERN_ERR "E: keydvt in: key\n");
480 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
481 printk(KERN_ERR "E: keydvt in: nonce\n");
482 wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
483 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
484 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
485 printk(KERN_ERR "E: keydvt out: KCK\n");
486 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
487 printk(KERN_ERR "E: keydvt out: PTK\n");
488 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
489 result = -EINVAL;
490 } else
491 result = 0;
492 return result;
496 * Initialize crypto system
498 * FIXME: we do nothing now, other than verifying. Later on we'll
499 * cache the encryption stuff, so that's why we have a separate init.
501 int wusb_crypto_init(void)
503 int result;
505 if (debug_crypto_verify) {
506 result = wusb_key_derive_verify();
507 if (result < 0)
508 return result;
509 return wusb_oob_mic_verify();
511 return 0;
514 void wusb_crypto_exit(void)
516 /* FIXME: free cached crypto transforms */