1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
152 #include <linux/module.h>
153 #include <linux/moduleparam.h>
154 #include <linux/kernel.h>
155 #include <linux/types.h>
156 #include <linux/sched.h>
157 #include <linux/slab.h>
158 #include <linux/delay.h>
159 #include <linux/init.h>
160 #include <linux/pci.h>
161 #include <linux/dma-mapping.h>
162 #include <linux/dmapool.h>
163 #include <linux/netdevice.h>
164 #include <linux/etherdevice.h>
165 #include <linux/mii.h>
166 #include <linux/if_vlan.h>
167 #include <linux/skbuff.h>
168 #include <linux/ethtool.h>
169 #include <linux/string.h>
170 #include <linux/firmware.h>
171 #include <linux/rtnetlink.h>
172 #include <asm/unaligned.h>
175 #define DRV_NAME "e100"
176 #define DRV_EXT "-NAPI"
177 #define DRV_VERSION "3.5.24-k2"DRV_EXT
178 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
179 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
181 #define E100_WATCHDOG_PERIOD (2 * HZ)
182 #define E100_NAPI_WEIGHT 16
184 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
185 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
186 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
188 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
189 MODULE_AUTHOR(DRV_COPYRIGHT
);
190 MODULE_LICENSE("GPL");
191 MODULE_VERSION(DRV_VERSION
);
192 MODULE_FIRMWARE(FIRMWARE_D101M
);
193 MODULE_FIRMWARE(FIRMWARE_D101S
);
194 MODULE_FIRMWARE(FIRMWARE_D102E
);
196 static int debug
= 3;
197 static int eeprom_bad_csum_allow
= 0;
198 static int use_io
= 0;
199 module_param(debug
, int, 0);
200 module_param(eeprom_bad_csum_allow
, int, 0);
201 module_param(use_io
, int, 0);
202 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
203 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
204 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
206 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
207 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
208 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
209 static DEFINE_PCI_DEVICE_TABLE(e100_id_table
) = {
210 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
211 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
212 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
232 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
247 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
248 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
250 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
257 mac_82557_D100_A
= 0,
258 mac_82557_D100_B
= 1,
259 mac_82557_D100_C
= 2,
260 mac_82558_D101_A4
= 4,
261 mac_82558_D101_B0
= 5,
265 mac_82550_D102_C
= 13,
273 phy_100a
= 0x000003E0,
274 phy_100c
= 0x035002A8,
275 phy_82555_tx
= 0x015002A8,
276 phy_nsc_tx
= 0x5C002000,
277 phy_82562_et
= 0x033002A8,
278 phy_82562_em
= 0x032002A8,
279 phy_82562_ek
= 0x031002A8,
280 phy_82562_eh
= 0x017002A8,
281 phy_82552_v
= 0xd061004d,
282 phy_unknown
= 0xFFFFFFFF,
285 /* CSR (Control/Status Registers) */
311 RU_UNINITIALIZED
= -1,
315 stat_ack_not_ours
= 0x00,
316 stat_ack_sw_gen
= 0x04,
318 stat_ack_cu_idle
= 0x20,
319 stat_ack_frame_rx
= 0x40,
320 stat_ack_cu_cmd_done
= 0x80,
321 stat_ack_not_present
= 0xFF,
322 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
323 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
327 irq_mask_none
= 0x00,
335 ruc_load_base
= 0x06,
338 cuc_dump_addr
= 0x40,
339 cuc_dump_stats
= 0x50,
340 cuc_load_base
= 0x60,
341 cuc_dump_reset
= 0x70,
345 cuc_dump_complete
= 0x0000A005,
346 cuc_dump_reset_complete
= 0x0000A007,
350 software_reset
= 0x0000,
352 selective_reset
= 0x0002,
355 enum eeprom_ctrl_lo
{
363 mdi_write
= 0x04000000,
364 mdi_read
= 0x08000000,
365 mdi_ready
= 0x10000000,
375 enum eeprom_offsets
{
376 eeprom_cnfg_mdix
= 0x03,
377 eeprom_phy_iface
= 0x06,
379 eeprom_config_asf
= 0x0D,
380 eeprom_smbus_addr
= 0x90,
383 enum eeprom_cnfg_mdix
{
384 eeprom_mdix_enabled
= 0x0080,
387 enum eeprom_phy_iface
{
400 eeprom_id_wol
= 0x0020,
403 enum eeprom_config_asf
{
409 cb_complete
= 0x8000,
438 struct rx
*next
, *prev
;
443 #if defined(__BIG_ENDIAN_BITFIELD)
449 /*0*/ u8
X(byte_count
:6, pad0
:2);
450 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
451 /*2*/ u8 adaptive_ifs
;
452 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
453 term_write_cache_line
:1), pad3
:4);
454 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
455 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
456 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
457 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
458 rx_discard_overruns
:1), rx_save_bad_frames
:1);
459 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
460 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
462 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
463 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
464 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
465 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
467 /*11*/ u8
X(linear_priority
:3, pad11
:5);
468 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
469 /*13*/ u8 ip_addr_lo
;
470 /*14*/ u8 ip_addr_hi
;
471 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
472 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
473 pad15_2
:1), crs_or_cdt
:1);
474 /*16*/ u8 fc_delay_lo
;
475 /*17*/ u8 fc_delay_hi
;
476 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
477 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
478 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
479 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
480 full_duplex_force
:1), full_duplex_pin
:1);
481 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
482 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
483 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
487 #define E100_MAX_MULTICAST_ADDRS 64
490 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
493 /* Important: keep total struct u32-aligned */
494 #define UCODE_SIZE 134
501 __le32 ucode
[UCODE_SIZE
];
502 struct config config
;
515 __le32 dump_buffer_addr
;
517 struct cb
*next
, *prev
;
523 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
527 __le32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
528 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
529 tx_multiple_collisions
, tx_total_collisions
;
530 __le32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
531 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
532 rx_short_frame_errors
;
533 __le32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
534 __le16 xmt_tco_frames
, rcv_tco_frames
;
554 struct param_range rfds
;
555 struct param_range cbs
;
559 /* Begin: frequently used values: keep adjacent for cache effect */
560 u32 msg_enable ____cacheline_aligned
;
561 struct net_device
*netdev
;
562 struct pci_dev
*pdev
;
563 u16 (*mdio_ctrl
)(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
);
565 struct rx
*rxs ____cacheline_aligned
;
566 struct rx
*rx_to_use
;
567 struct rx
*rx_to_clean
;
568 struct rfd blank_rfd
;
569 enum ru_state ru_running
;
571 spinlock_t cb_lock ____cacheline_aligned
;
573 struct csr __iomem
*csr
;
574 enum scb_cmd_lo cuc_cmd
;
575 unsigned int cbs_avail
;
576 struct napi_struct napi
;
578 struct cb
*cb_to_use
;
579 struct cb
*cb_to_send
;
580 struct cb
*cb_to_clean
;
582 /* End: frequently used values: keep adjacent for cache effect */
586 promiscuous
= (1 << 1),
587 multicast_all
= (1 << 2),
588 wol_magic
= (1 << 3),
589 ich_10h_workaround
= (1 << 4),
590 } flags ____cacheline_aligned
;
594 struct params params
;
595 struct timer_list watchdog
;
596 struct timer_list blink_timer
;
597 struct mii_if_info mii
;
598 struct work_struct tx_timeout_task
;
599 enum loopback loopback
;
604 struct pci_pool
*cbs_pool
;
605 dma_addr_t cbs_dma_addr
;
611 u32 tx_single_collisions
;
612 u32 tx_multiple_collisions
;
617 u32 rx_fc_unsupported
;
619 u32 rx_over_length_errors
;
624 spinlock_t mdio_lock
;
625 const struct firmware
*fw
;
628 static inline void e100_write_flush(struct nic
*nic
)
630 /* Flush previous PCI writes through intermediate bridges
631 * by doing a benign read */
632 (void)ioread8(&nic
->csr
->scb
.status
);
635 static void e100_enable_irq(struct nic
*nic
)
639 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
640 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
641 e100_write_flush(nic
);
642 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
645 static void e100_disable_irq(struct nic
*nic
)
649 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
650 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
651 e100_write_flush(nic
);
652 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
655 static void e100_hw_reset(struct nic
*nic
)
657 /* Put CU and RU into idle with a selective reset to get
658 * device off of PCI bus */
659 iowrite32(selective_reset
, &nic
->csr
->port
);
660 e100_write_flush(nic
); udelay(20);
662 /* Now fully reset device */
663 iowrite32(software_reset
, &nic
->csr
->port
);
664 e100_write_flush(nic
); udelay(20);
666 /* Mask off our interrupt line - it's unmasked after reset */
667 e100_disable_irq(nic
);
670 static int e100_self_test(struct nic
*nic
)
672 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
674 /* Passing the self-test is a pretty good indication
675 * that the device can DMA to/from host memory */
677 nic
->mem
->selftest
.signature
= 0;
678 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
680 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
681 e100_write_flush(nic
);
682 /* Wait 10 msec for self-test to complete */
685 /* Interrupts are enabled after self-test */
686 e100_disable_irq(nic
);
688 /* Check results of self-test */
689 if (nic
->mem
->selftest
.result
!= 0) {
690 netif_err(nic
, hw
, nic
->netdev
,
691 "Self-test failed: result=0x%08X\n",
692 nic
->mem
->selftest
.result
);
695 if (nic
->mem
->selftest
.signature
== 0) {
696 netif_err(nic
, hw
, nic
->netdev
, "Self-test failed: timed out\n");
703 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, __le16 data
)
705 u32 cmd_addr_data
[3];
709 /* Three cmds: write/erase enable, write data, write/erase disable */
710 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
711 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
713 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
715 /* Bit-bang cmds to write word to eeprom */
716 for (j
= 0; j
< 3; j
++) {
719 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
720 e100_write_flush(nic
); udelay(4);
722 for (i
= 31; i
>= 0; i
--) {
723 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
725 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
726 e100_write_flush(nic
); udelay(4);
728 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
729 e100_write_flush(nic
); udelay(4);
731 /* Wait 10 msec for cmd to complete */
735 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
736 e100_write_flush(nic
); udelay(4);
740 /* General technique stolen from the eepro100 driver - very clever */
741 static __le16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
748 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
751 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
752 e100_write_flush(nic
); udelay(4);
754 /* Bit-bang to read word from eeprom */
755 for (i
= 31; i
>= 0; i
--) {
756 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
757 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
758 e100_write_flush(nic
); udelay(4);
760 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
761 e100_write_flush(nic
); udelay(4);
763 /* Eeprom drives a dummy zero to EEDO after receiving
764 * complete address. Use this to adjust addr_len. */
765 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
766 if (!(ctrl
& eedo
) && i
> 16) {
767 *addr_len
-= (i
- 16);
771 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
775 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
776 e100_write_flush(nic
); udelay(4);
778 return cpu_to_le16(data
);
781 /* Load entire EEPROM image into driver cache and validate checksum */
782 static int e100_eeprom_load(struct nic
*nic
)
784 u16 addr
, addr_len
= 8, checksum
= 0;
786 /* Try reading with an 8-bit addr len to discover actual addr len */
787 e100_eeprom_read(nic
, &addr_len
, 0);
788 nic
->eeprom_wc
= 1 << addr_len
;
790 for (addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
791 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
792 if (addr
< nic
->eeprom_wc
- 1)
793 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
796 /* The checksum, stored in the last word, is calculated such that
797 * the sum of words should be 0xBABA */
798 if (cpu_to_le16(0xBABA - checksum
) != nic
->eeprom
[nic
->eeprom_wc
- 1]) {
799 netif_err(nic
, probe
, nic
->netdev
, "EEPROM corrupted\n");
800 if (!eeprom_bad_csum_allow
)
807 /* Save (portion of) driver EEPROM cache to device and update checksum */
808 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
810 u16 addr
, addr_len
= 8, checksum
= 0;
812 /* Try reading with an 8-bit addr len to discover actual addr len */
813 e100_eeprom_read(nic
, &addr_len
, 0);
814 nic
->eeprom_wc
= 1 << addr_len
;
816 if (start
+ count
>= nic
->eeprom_wc
)
819 for (addr
= start
; addr
< start
+ count
; addr
++)
820 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
822 /* The checksum, stored in the last word, is calculated such that
823 * the sum of words should be 0xBABA */
824 for (addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
825 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
826 nic
->eeprom
[nic
->eeprom_wc
- 1] = cpu_to_le16(0xBABA - checksum
);
827 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
828 nic
->eeprom
[nic
->eeprom_wc
- 1]);
833 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
834 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
835 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
841 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
843 /* Previous command is accepted when SCB clears */
844 for (i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
845 if (likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
848 if (unlikely(i
> E100_WAIT_SCB_FAST
))
851 if (unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
856 if (unlikely(cmd
!= cuc_resume
))
857 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
858 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
861 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
866 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
867 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
873 spin_lock_irqsave(&nic
->cb_lock
, flags
);
875 if (unlikely(!nic
->cbs_avail
)) {
881 nic
->cb_to_use
= cb
->next
;
885 if (unlikely(!nic
->cbs_avail
))
888 cb_prepare(nic
, cb
, skb
);
890 /* Order is important otherwise we'll be in a race with h/w:
891 * set S-bit in current first, then clear S-bit in previous. */
892 cb
->command
|= cpu_to_le16(cb_s
);
894 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
896 while (nic
->cb_to_send
!= nic
->cb_to_use
) {
897 if (unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
898 nic
->cb_to_send
->dma_addr
))) {
899 /* Ok, here's where things get sticky. It's
900 * possible that we can't schedule the command
901 * because the controller is too busy, so
902 * let's just queue the command and try again
903 * when another command is scheduled. */
904 if (err
== -ENOSPC
) {
906 schedule_work(&nic
->tx_timeout_task
);
910 nic
->cuc_cmd
= cuc_resume
;
911 nic
->cb_to_send
= nic
->cb_to_send
->next
;
916 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
921 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
923 struct nic
*nic
= netdev_priv(netdev
);
924 return nic
->mdio_ctrl(nic
, addr
, mdi_read
, reg
, 0);
927 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
929 struct nic
*nic
= netdev_priv(netdev
);
931 nic
->mdio_ctrl(nic
, addr
, mdi_write
, reg
, data
);
934 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
935 static u16
mdio_ctrl_hw(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
943 * Stratus87247: we shouldn't be writing the MDI control
944 * register until the Ready bit shows True. Also, since
945 * manipulation of the MDI control registers is a multi-step
946 * procedure it should be done under lock.
948 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
949 for (i
= 100; i
; --i
) {
950 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
955 netdev_err(nic
->netdev
, "e100.mdio_ctrl won't go Ready\n");
956 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
957 return 0; /* No way to indicate timeout error */
959 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
961 for (i
= 0; i
< 100; i
++) {
963 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
966 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
967 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
968 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
969 dir
== mdi_read
? "READ" : "WRITE",
970 addr
, reg
, data
, data_out
);
971 return (u16
)data_out
;
974 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
975 static u16
mdio_ctrl_phy_82552_v(struct nic
*nic
,
981 if ((reg
== MII_BMCR
) && (dir
== mdi_write
)) {
982 if (data
& (BMCR_ANRESTART
| BMCR_ANENABLE
)) {
983 u16 advert
= mdio_read(nic
->netdev
, nic
->mii
.phy_id
,
987 * Workaround Si issue where sometimes the part will not
988 * autoneg to 100Mbps even when advertised.
990 if (advert
& ADVERTISE_100FULL
)
991 data
|= BMCR_SPEED100
| BMCR_FULLDPLX
;
992 else if (advert
& ADVERTISE_100HALF
)
993 data
|= BMCR_SPEED100
;
996 return mdio_ctrl_hw(nic
, addr
, dir
, reg
, data
);
999 /* Fully software-emulated mdio_ctrl() function for cards without
1000 * MII-compliant PHYs.
1001 * For now, this is mainly geared towards 80c24 support; in case of further
1002 * requirements for other types (i82503, ...?) either extend this mechanism
1003 * or split it, whichever is cleaner.
1005 static u16
mdio_ctrl_phy_mii_emulated(struct nic
*nic
,
1011 /* might need to allocate a netdev_priv'ed register array eventually
1012 * to be able to record state changes, but for now
1013 * some fully hardcoded register handling ought to be ok I guess. */
1015 if (dir
== mdi_read
) {
1018 /* Auto-negotiation, right? */
1019 return BMCR_ANENABLE
|
1022 return BMSR_LSTATUS
/* for mii_link_ok() */ |
1026 /* 80c24 is a "combo card" PHY, right? */
1027 return ADVERTISE_10HALF
|
1030 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1031 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1032 dir
== mdi_read
? "READ" : "WRITE",
1039 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 dir
== mdi_read
? "READ" : "WRITE",
1047 static inline int e100_phy_supports_mii(struct nic
*nic
)
1049 /* for now, just check it by comparing whether we
1050 are using MII software emulation.
1052 return (nic
->mdio_ctrl
!= mdio_ctrl_phy_mii_emulated
);
1055 static void e100_get_defaults(struct nic
*nic
)
1057 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
1058 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
1060 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1061 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->pdev
->revision
;
1062 if (nic
->mac
== mac_unknown
)
1063 nic
->mac
= mac_82557_D100_A
;
1065 nic
->params
.rfds
= rfds
;
1066 nic
->params
.cbs
= cbs
;
1068 /* Quadwords to DMA into FIFO before starting frame transmit */
1069 nic
->tx_threshold
= 0xE0;
1071 /* no interrupt for every tx completion, delay = 256us if not 557 */
1072 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
1073 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
1075 /* Template for a freshly allocated RFD */
1076 nic
->blank_rfd
.command
= 0;
1077 nic
->blank_rfd
.rbd
= cpu_to_le32(0xFFFFFFFF);
1078 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
1081 nic
->mii
.phy_id_mask
= 0x1F;
1082 nic
->mii
.reg_num_mask
= 0x1F;
1083 nic
->mii
.dev
= nic
->netdev
;
1084 nic
->mii
.mdio_read
= mdio_read
;
1085 nic
->mii
.mdio_write
= mdio_write
;
1088 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1090 struct config
*config
= &cb
->u
.config
;
1091 u8
*c
= (u8
*)config
;
1093 cb
->command
= cpu_to_le16(cb_config
);
1095 memset(config
, 0, sizeof(struct config
));
1097 config
->byte_count
= 0x16; /* bytes in this struct */
1098 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
1099 config
->direct_rx_dma
= 0x1; /* reserved */
1100 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
1101 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
1102 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
1103 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
1104 if (e100_phy_supports_mii(nic
))
1105 config
->mii_mode
= 1; /* 1=MII mode, 0=i82503 mode */
1106 config
->pad10
= 0x6;
1107 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
1108 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1109 config
->ifs
= 0x6; /* x16 = inter frame spacing */
1110 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
1111 config
->pad15_1
= 0x1;
1112 config
->pad15_2
= 0x1;
1113 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
1114 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
1115 config
->tx_padding
= 0x1; /* 1=pad short frames */
1116 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
1117 config
->pad18
= 0x1;
1118 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
1119 config
->pad20_1
= 0x1F;
1120 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1121 config
->pad21_1
= 0x5;
1123 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1124 config
->loopback
= nic
->loopback
;
1126 if (nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1127 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1129 if (nic
->flags
& promiscuous
|| nic
->loopback
) {
1130 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1131 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1132 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1135 if (nic
->flags
& multicast_all
)
1136 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1138 /* disable WoL when up */
1139 if (netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1140 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1142 if (nic
->mac
>= mac_82558_D101_A4
) {
1143 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1144 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1145 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1146 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1147 if (nic
->mac
>= mac_82559_D101M
) {
1148 config
->tno_intr
= 0x1; /* TCO stats enable */
1149 /* Enable TCO in extended config */
1150 if (nic
->mac
>= mac_82551_10
) {
1151 config
->byte_count
= 0x20; /* extended bytes */
1152 config
->rx_d102_mode
= 0x1; /* GMRC for TCO */
1155 config
->standard_stat_counter
= 0x0;
1159 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1160 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1161 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1162 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1163 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1164 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1165 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1166 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1167 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1170 /*************************************************************************
1171 * CPUSaver parameters
1173 * All CPUSaver parameters are 16-bit literals that are part of a
1174 * "move immediate value" instruction. By changing the value of
1175 * the literal in the instruction before the code is loaded, the
1176 * driver can change the algorithm.
1178 * INTDELAY - This loads the dead-man timer with its initial value.
1179 * When this timer expires the interrupt is asserted, and the
1180 * timer is reset each time a new packet is received. (see
1181 * BUNDLEMAX below to set the limit on number of chained packets)
1182 * The current default is 0x600 or 1536. Experiments show that
1183 * the value should probably stay within the 0x200 - 0x1000.
1186 * This sets the maximum number of frames that will be bundled. In
1187 * some situations, such as the TCP windowing algorithm, it may be
1188 * better to limit the growth of the bundle size than let it go as
1189 * high as it can, because that could cause too much added latency.
1190 * The default is six, because this is the number of packets in the
1191 * default TCP window size. A value of 1 would make CPUSaver indicate
1192 * an interrupt for every frame received. If you do not want to put
1193 * a limit on the bundle size, set this value to xFFFF.
1196 * This contains a bit-mask describing the minimum size frame that
1197 * will be bundled. The default masks the lower 7 bits, which means
1198 * that any frame less than 128 bytes in length will not be bundled,
1199 * but will instead immediately generate an interrupt. This does
1200 * not affect the current bundle in any way. Any frame that is 128
1201 * bytes or large will be bundled normally. This feature is meant
1202 * to provide immediate indication of ACK frames in a TCP environment.
1203 * Customers were seeing poor performance when a machine with CPUSaver
1204 * enabled was sending but not receiving. The delay introduced when
1205 * the ACKs were received was enough to reduce total throughput, because
1206 * the sender would sit idle until the ACK was finally seen.
1208 * The current default is 0xFF80, which masks out the lower 7 bits.
1209 * This means that any frame which is x7F (127) bytes or smaller
1210 * will cause an immediate interrupt. Because this value must be a
1211 * bit mask, there are only a few valid values that can be used. To
1212 * turn this feature off, the driver can write the value xFFFF to the
1213 * lower word of this instruction (in the same way that the other
1214 * parameters are used). Likewise, a value of 0xF800 (2047) would
1215 * cause an interrupt to be generated for every frame, because all
1216 * standard Ethernet frames are <= 2047 bytes in length.
1217 *************************************************************************/
1219 /* if you wish to disable the ucode functionality, while maintaining the
1220 * workarounds it provides, set the following defines to:
1225 #define BUNDLESMALL 1
1226 #define BUNDLEMAX (u16)6
1227 #define INTDELAY (u16)1536 /* 0x600 */
1229 /* Initialize firmware */
1230 static const struct firmware
*e100_request_firmware(struct nic
*nic
)
1232 const char *fw_name
;
1233 const struct firmware
*fw
= nic
->fw
;
1234 u8 timer
, bundle
, min_size
;
1237 /* do not load u-code for ICH devices */
1238 if (nic
->flags
& ich
)
1241 /* Search for ucode match against h/w revision */
1242 if (nic
->mac
== mac_82559_D101M
)
1243 fw_name
= FIRMWARE_D101M
;
1244 else if (nic
->mac
== mac_82559_D101S
)
1245 fw_name
= FIRMWARE_D101S
;
1246 else if (nic
->mac
== mac_82551_F
|| nic
->mac
== mac_82551_10
)
1247 fw_name
= FIRMWARE_D102E
;
1248 else /* No ucode on other devices */
1251 /* If the firmware has not previously been loaded, request a pointer
1252 * to it. If it was previously loaded, we are reinitializing the
1253 * adapter, possibly in a resume from hibernate, in which case
1254 * request_firmware() cannot be used.
1257 err
= request_firmware(&fw
, fw_name
, &nic
->pdev
->dev
);
1260 netif_err(nic
, probe
, nic
->netdev
,
1261 "Failed to load firmware \"%s\": %d\n",
1263 return ERR_PTR(err
);
1266 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1267 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1268 if (fw
->size
!= UCODE_SIZE
* 4 + 3) {
1269 netif_err(nic
, probe
, nic
->netdev
,
1270 "Firmware \"%s\" has wrong size %zu\n",
1272 release_firmware(fw
);
1273 return ERR_PTR(-EINVAL
);
1276 /* Read timer, bundle and min_size from end of firmware blob */
1277 timer
= fw
->data
[UCODE_SIZE
* 4];
1278 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1279 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1281 if (timer
>= UCODE_SIZE
|| bundle
>= UCODE_SIZE
||
1282 min_size
>= UCODE_SIZE
) {
1283 netif_err(nic
, probe
, nic
->netdev
,
1284 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1285 fw_name
, timer
, bundle
, min_size
);
1286 release_firmware(fw
);
1287 return ERR_PTR(-EINVAL
);
1290 /* OK, firmware is validated and ready to use. Save a pointer
1291 * to it in the nic */
1296 static void e100_setup_ucode(struct nic
*nic
, struct cb
*cb
,
1297 struct sk_buff
*skb
)
1299 const struct firmware
*fw
= (void *)skb
;
1300 u8 timer
, bundle
, min_size
;
1302 /* It's not a real skb; we just abused the fact that e100_exec_cb
1303 will pass it through to here... */
1306 /* firmware is stored as little endian already */
1307 memcpy(cb
->u
.ucode
, fw
->data
, UCODE_SIZE
* 4);
1309 /* Read timer, bundle and min_size from end of firmware blob */
1310 timer
= fw
->data
[UCODE_SIZE
* 4];
1311 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1312 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1314 /* Insert user-tunable settings in cb->u.ucode */
1315 cb
->u
.ucode
[timer
] &= cpu_to_le32(0xFFFF0000);
1316 cb
->u
.ucode
[timer
] |= cpu_to_le32(INTDELAY
);
1317 cb
->u
.ucode
[bundle
] &= cpu_to_le32(0xFFFF0000);
1318 cb
->u
.ucode
[bundle
] |= cpu_to_le32(BUNDLEMAX
);
1319 cb
->u
.ucode
[min_size
] &= cpu_to_le32(0xFFFF0000);
1320 cb
->u
.ucode
[min_size
] |= cpu_to_le32((BUNDLESMALL
) ? 0xFFFF : 0xFF80);
1322 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1325 static inline int e100_load_ucode_wait(struct nic
*nic
)
1327 const struct firmware
*fw
;
1328 int err
= 0, counter
= 50;
1329 struct cb
*cb
= nic
->cb_to_clean
;
1331 fw
= e100_request_firmware(nic
);
1332 /* If it's NULL, then no ucode is required */
1333 if (!fw
|| IS_ERR(fw
))
1336 if ((err
= e100_exec_cb(nic
, (void *)fw
, e100_setup_ucode
)))
1337 netif_err(nic
, probe
, nic
->netdev
,
1338 "ucode cmd failed with error %d\n", err
);
1340 /* must restart cuc */
1341 nic
->cuc_cmd
= cuc_start
;
1343 /* wait for completion */
1344 e100_write_flush(nic
);
1347 /* wait for possibly (ouch) 500ms */
1348 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1350 if (!--counter
) break;
1353 /* ack any interrupts, something could have been set */
1354 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1356 /* if the command failed, or is not OK, notify and return */
1357 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1358 netif_err(nic
, probe
, nic
->netdev
, "ucode load failed\n");
1365 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1366 struct sk_buff
*skb
)
1368 cb
->command
= cpu_to_le16(cb_iaaddr
);
1369 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1372 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1374 cb
->command
= cpu_to_le16(cb_dump
);
1375 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1376 offsetof(struct mem
, dump_buf
));
1379 static int e100_phy_check_without_mii(struct nic
*nic
)
1384 phy_type
= (nic
->eeprom
[eeprom_phy_iface
] >> 8) & 0x0f;
1387 case NoSuchPhy
: /* Non-MII PHY; UNTESTED! */
1388 case I82503
: /* Non-MII PHY; UNTESTED! */
1389 case S80C24
: /* Non-MII PHY; tested and working */
1390 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1391 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1392 * doesn't have a programming interface of any sort. The
1393 * media is sensed automatically based on how the link partner
1394 * is configured. This is, in essence, manual configuration.
1396 netif_info(nic
, probe
, nic
->netdev
,
1397 "found MII-less i82503 or 80c24 or other PHY\n");
1399 nic
->mdio_ctrl
= mdio_ctrl_phy_mii_emulated
;
1400 nic
->mii
.phy_id
= 0; /* is this ok for an MII-less PHY? */
1402 /* these might be needed for certain MII-less cards...
1403 * nic->flags |= ich;
1404 * nic->flags |= ich_10h_workaround; */
1415 #define NCONFIG_AUTO_SWITCH 0x0080
1416 #define MII_NSC_CONG MII_RESV1
1417 #define NSC_CONG_ENABLE 0x0100
1418 #define NSC_CONG_TXREADY 0x0400
1419 #define ADVERTISE_FC_SUPPORTED 0x0400
1420 static int e100_phy_init(struct nic
*nic
)
1422 struct net_device
*netdev
= nic
->netdev
;
1424 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1426 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1427 for (addr
= 0; addr
< 32; addr
++) {
1428 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1429 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1430 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1431 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1432 if (!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1436 /* uhoh, no PHY detected: check whether we seem to be some
1437 * weird, rare variant which is *known* to not have any MII.
1438 * But do this AFTER MII checking only, since this does
1439 * lookup of EEPROM values which may easily be unreliable. */
1440 if (e100_phy_check_without_mii(nic
))
1441 return 0; /* simply return and hope for the best */
1443 /* for unknown cases log a fatal error */
1444 netif_err(nic
, hw
, nic
->netdev
,
1445 "Failed to locate any known PHY, aborting\n");
1449 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1450 "phy_addr = %d\n", nic
->mii
.phy_id
);
1453 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1454 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1455 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1456 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1457 "phy ID = 0x%08X\n", nic
->phy
);
1459 /* Select the phy and isolate the rest */
1460 for (addr
= 0; addr
< 32; addr
++) {
1461 if (addr
!= nic
->mii
.phy_id
) {
1462 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1463 } else if (nic
->phy
!= phy_82552_v
) {
1464 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1465 mdio_write(netdev
, addr
, MII_BMCR
,
1466 bmcr
& ~BMCR_ISOLATE
);
1470 * Workaround for 82552:
1471 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1472 * other phy_id's) using bmcr value from addr discovery loop above.
1474 if (nic
->phy
== phy_82552_v
)
1475 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
,
1476 bmcr
& ~BMCR_ISOLATE
);
1478 /* Handle National tx phys */
1479 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1480 if ((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1481 /* Disable congestion control */
1482 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1483 cong
|= NSC_CONG_TXREADY
;
1484 cong
&= ~NSC_CONG_ENABLE
;
1485 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1488 if (nic
->phy
== phy_82552_v
) {
1489 u16 advert
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
);
1491 /* assign special tweaked mdio_ctrl() function */
1492 nic
->mdio_ctrl
= mdio_ctrl_phy_82552_v
;
1494 /* Workaround Si not advertising flow-control during autoneg */
1495 advert
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1496 mdio_write(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
, advert
);
1498 /* Reset for the above changes to take effect */
1499 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1501 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, bmcr
);
1502 } else if ((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1503 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1504 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))) {
1505 /* enable/disable MDI/MDI-X auto-switching. */
1506 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1507 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1513 static int e100_hw_init(struct nic
*nic
)
1519 netif_err(nic
, hw
, nic
->netdev
, "e100_hw_init\n");
1520 if (!in_interrupt() && (err
= e100_self_test(nic
)))
1523 if ((err
= e100_phy_init(nic
)))
1525 if ((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1527 if ((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1529 if ((err
= e100_load_ucode_wait(nic
)))
1531 if ((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1533 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1535 if ((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1536 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1538 if ((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1541 e100_disable_irq(nic
);
1546 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1548 struct net_device
*netdev
= nic
->netdev
;
1549 struct netdev_hw_addr
*ha
;
1550 u16 i
, count
= min(netdev_mc_count(netdev
), E100_MAX_MULTICAST_ADDRS
);
1552 cb
->command
= cpu_to_le16(cb_multi
);
1553 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1555 netdev_for_each_mc_addr(ha
, netdev
) {
1558 memcpy(&cb
->u
.multi
.addr
[i
++ * ETH_ALEN
], &ha
->addr
,
1563 static void e100_set_multicast_list(struct net_device
*netdev
)
1565 struct nic
*nic
= netdev_priv(netdev
);
1567 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1568 "mc_count=%d, flags=0x%04X\n",
1569 netdev_mc_count(netdev
), netdev
->flags
);
1571 if (netdev
->flags
& IFF_PROMISC
)
1572 nic
->flags
|= promiscuous
;
1574 nic
->flags
&= ~promiscuous
;
1576 if (netdev
->flags
& IFF_ALLMULTI
||
1577 netdev_mc_count(netdev
) > E100_MAX_MULTICAST_ADDRS
)
1578 nic
->flags
|= multicast_all
;
1580 nic
->flags
&= ~multicast_all
;
1582 e100_exec_cb(nic
, NULL
, e100_configure
);
1583 e100_exec_cb(nic
, NULL
, e100_multi
);
1586 static void e100_update_stats(struct nic
*nic
)
1588 struct net_device
*dev
= nic
->netdev
;
1589 struct net_device_stats
*ns
= &dev
->stats
;
1590 struct stats
*s
= &nic
->mem
->stats
;
1591 __le32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1592 (nic
->mac
< mac_82559_D101M
) ? (__le32
*)&s
->xmt_tco_frames
:
1595 /* Device's stats reporting may take several microseconds to
1596 * complete, so we're always waiting for results of the
1597 * previous command. */
1599 if (*complete
== cpu_to_le32(cuc_dump_reset_complete
)) {
1601 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1602 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1603 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1604 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1605 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1606 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1607 ns
->collisions
+= nic
->tx_collisions
;
1608 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1609 le32_to_cpu(s
->tx_lost_crs
);
1610 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1611 nic
->rx_over_length_errors
;
1612 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1613 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1614 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1615 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1616 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1617 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1618 le32_to_cpu(s
->rx_alignment_errors
) +
1619 le32_to_cpu(s
->rx_short_frame_errors
) +
1620 le32_to_cpu(s
->rx_cdt_errors
);
1621 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1622 nic
->tx_single_collisions
+=
1623 le32_to_cpu(s
->tx_single_collisions
);
1624 nic
->tx_multiple_collisions
+=
1625 le32_to_cpu(s
->tx_multiple_collisions
);
1626 if (nic
->mac
>= mac_82558_D101_A4
) {
1627 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1628 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1629 nic
->rx_fc_unsupported
+=
1630 le32_to_cpu(s
->fc_rcv_unsupported
);
1631 if (nic
->mac
>= mac_82559_D101M
) {
1632 nic
->tx_tco_frames
+=
1633 le16_to_cpu(s
->xmt_tco_frames
);
1634 nic
->rx_tco_frames
+=
1635 le16_to_cpu(s
->rcv_tco_frames
);
1641 if (e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1642 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1643 "exec cuc_dump_reset failed\n");
1646 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1648 /* Adjust inter-frame-spacing (IFS) between two transmits if
1649 * we're getting collisions on a half-duplex connection. */
1651 if (duplex
== DUPLEX_HALF
) {
1652 u32 prev
= nic
->adaptive_ifs
;
1653 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1655 if ((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1656 (nic
->tx_frames
> min_frames
)) {
1657 if (nic
->adaptive_ifs
< 60)
1658 nic
->adaptive_ifs
+= 5;
1659 } else if (nic
->tx_frames
< min_frames
) {
1660 if (nic
->adaptive_ifs
>= 5)
1661 nic
->adaptive_ifs
-= 5;
1663 if (nic
->adaptive_ifs
!= prev
)
1664 e100_exec_cb(nic
, NULL
, e100_configure
);
1668 static void e100_watchdog(unsigned long data
)
1670 struct nic
*nic
= (struct nic
*)data
;
1671 struct ethtool_cmd cmd
;
1673 netif_printk(nic
, timer
, KERN_DEBUG
, nic
->netdev
,
1674 "right now = %ld\n", jiffies
);
1676 /* mii library handles link maintenance tasks */
1678 mii_ethtool_gset(&nic
->mii
, &cmd
);
1680 if (mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1681 netdev_info(nic
->netdev
, "NIC Link is Up %u Mbps %s Duplex\n",
1682 cmd
.speed
== SPEED_100
? 100 : 10,
1683 cmd
.duplex
== DUPLEX_FULL
? "Full" : "Half");
1684 } else if (!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1685 netdev_info(nic
->netdev
, "NIC Link is Down\n");
1688 mii_check_link(&nic
->mii
);
1690 /* Software generated interrupt to recover from (rare) Rx
1691 * allocation failure.
1692 * Unfortunately have to use a spinlock to not re-enable interrupts
1693 * accidentally, due to hardware that shares a register between the
1694 * interrupt mask bit and the SW Interrupt generation bit */
1695 spin_lock_irq(&nic
->cmd_lock
);
1696 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1697 e100_write_flush(nic
);
1698 spin_unlock_irq(&nic
->cmd_lock
);
1700 e100_update_stats(nic
);
1701 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1703 if (nic
->mac
<= mac_82557_D100_C
)
1704 /* Issue a multicast command to workaround a 557 lock up */
1705 e100_set_multicast_list(nic
->netdev
);
1707 if (nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1708 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1709 nic
->flags
|= ich_10h_workaround
;
1711 nic
->flags
&= ~ich_10h_workaround
;
1713 mod_timer(&nic
->watchdog
,
1714 round_jiffies(jiffies
+ E100_WATCHDOG_PERIOD
));
1717 static void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1718 struct sk_buff
*skb
)
1720 cb
->command
= nic
->tx_command
;
1721 /* interrupt every 16 packets regardless of delay */
1722 if ((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1723 cb
->command
|= cpu_to_le16(cb_i
);
1724 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1725 cb
->u
.tcb
.tcb_byte_count
= 0;
1726 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1727 cb
->u
.tcb
.tbd_count
= 1;
1728 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1729 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1730 /* check for mapping failure? */
1731 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1734 static netdev_tx_t
e100_xmit_frame(struct sk_buff
*skb
,
1735 struct net_device
*netdev
)
1737 struct nic
*nic
= netdev_priv(netdev
);
1740 if (nic
->flags
& ich_10h_workaround
) {
1741 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1742 Issue a NOP command followed by a 1us delay before
1743 issuing the Tx command. */
1744 if (e100_exec_cmd(nic
, cuc_nop
, 0))
1745 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1746 "exec cuc_nop failed\n");
1750 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1754 /* We queued the skb, but now we're out of space. */
1755 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1756 "No space for CB\n");
1757 netif_stop_queue(netdev
);
1760 /* This is a hard error - log it. */
1761 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1762 "Out of Tx resources, returning skb\n");
1763 netif_stop_queue(netdev
);
1764 return NETDEV_TX_BUSY
;
1767 return NETDEV_TX_OK
;
1770 static int e100_tx_clean(struct nic
*nic
)
1772 struct net_device
*dev
= nic
->netdev
;
1776 spin_lock(&nic
->cb_lock
);
1778 /* Clean CBs marked complete */
1779 for (cb
= nic
->cb_to_clean
;
1780 cb
->status
& cpu_to_le16(cb_complete
);
1781 cb
= nic
->cb_to_clean
= cb
->next
) {
1782 rmb(); /* read skb after status */
1783 netif_printk(nic
, tx_done
, KERN_DEBUG
, nic
->netdev
,
1784 "cb[%d]->status = 0x%04X\n",
1785 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1788 if (likely(cb
->skb
!= NULL
)) {
1789 dev
->stats
.tx_packets
++;
1790 dev
->stats
.tx_bytes
+= cb
->skb
->len
;
1792 pci_unmap_single(nic
->pdev
,
1793 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1794 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1796 dev_kfree_skb_any(cb
->skb
);
1804 spin_unlock(&nic
->cb_lock
);
1806 /* Recover from running out of Tx resources in xmit_frame */
1807 if (unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1808 netif_wake_queue(nic
->netdev
);
1813 static void e100_clean_cbs(struct nic
*nic
)
1816 while (nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1817 struct cb
*cb
= nic
->cb_to_clean
;
1819 pci_unmap_single(nic
->pdev
,
1820 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1821 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1823 dev_kfree_skb(cb
->skb
);
1825 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1828 pci_pool_free(nic
->cbs_pool
, nic
->cbs
, nic
->cbs_dma_addr
);
1832 nic
->cuc_cmd
= cuc_start
;
1833 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1837 static int e100_alloc_cbs(struct nic
*nic
)
1840 unsigned int i
, count
= nic
->params
.cbs
.count
;
1842 nic
->cuc_cmd
= cuc_start
;
1843 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1846 nic
->cbs
= pci_pool_alloc(nic
->cbs_pool
, GFP_KERNEL
,
1847 &nic
->cbs_dma_addr
);
1850 memset(nic
->cbs
, 0, count
* sizeof(struct cb
));
1852 for (cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1853 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1854 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1856 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1857 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1858 ((i
+1) % count
) * sizeof(struct cb
));
1861 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1862 nic
->cbs_avail
= count
;
1867 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1869 if (!nic
->rxs
) return;
1870 if (RU_SUSPENDED
!= nic
->ru_running
) return;
1872 /* handle init time starts */
1873 if (!rx
) rx
= nic
->rxs
;
1875 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1877 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1878 nic
->ru_running
= RU_RUNNING
;
1882 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1883 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1885 if (!(rx
->skb
= netdev_alloc_skb_ip_align(nic
->netdev
, RFD_BUF_LEN
)))
1888 /* Init, and map the RFD. */
1889 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1890 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1891 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1893 if (pci_dma_mapping_error(nic
->pdev
, rx
->dma_addr
)) {
1894 dev_kfree_skb_any(rx
->skb
);
1900 /* Link the RFD to end of RFA by linking previous RFD to
1901 * this one. We are safe to touch the previous RFD because
1902 * it is protected by the before last buffer's el bit being set */
1903 if (rx
->prev
->skb
) {
1904 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1905 put_unaligned_le32(rx
->dma_addr
, &prev_rfd
->link
);
1906 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1907 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1913 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1914 unsigned int *work_done
, unsigned int work_to_do
)
1916 struct net_device
*dev
= nic
->netdev
;
1917 struct sk_buff
*skb
= rx
->skb
;
1918 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1919 u16 rfd_status
, actual_size
;
1921 if (unlikely(work_done
&& *work_done
>= work_to_do
))
1924 /* Need to sync before taking a peek at cb_complete bit */
1925 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1926 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1927 rfd_status
= le16_to_cpu(rfd
->status
);
1929 netif_printk(nic
, rx_status
, KERN_DEBUG
, nic
->netdev
,
1930 "status=0x%04X\n", rfd_status
);
1931 rmb(); /* read size after status bit */
1933 /* If data isn't ready, nothing to indicate */
1934 if (unlikely(!(rfd_status
& cb_complete
))) {
1935 /* If the next buffer has the el bit, but we think the receiver
1936 * is still running, check to see if it really stopped while
1937 * we had interrupts off.
1938 * This allows for a fast restart without re-enabling
1940 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1941 (RU_RUNNING
== nic
->ru_running
))
1943 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1944 nic
->ru_running
= RU_SUSPENDED
;
1945 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
1947 PCI_DMA_FROMDEVICE
);
1951 /* Get actual data size */
1952 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1953 if (unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1954 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1957 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1958 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1960 /* If this buffer has the el bit, but we think the receiver
1961 * is still running, check to see if it really stopped while
1962 * we had interrupts off.
1963 * This allows for a fast restart without re-enabling interrupts.
1964 * This can happen when the RU sees the size change but also sees
1965 * the el bit set. */
1966 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1967 (RU_RUNNING
== nic
->ru_running
)) {
1969 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1970 nic
->ru_running
= RU_SUSPENDED
;
1973 /* Pull off the RFD and put the actual data (minus eth hdr) */
1974 skb_reserve(skb
, sizeof(struct rfd
));
1975 skb_put(skb
, actual_size
);
1976 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1978 if (unlikely(!(rfd_status
& cb_ok
))) {
1979 /* Don't indicate if hardware indicates errors */
1980 dev_kfree_skb_any(skb
);
1981 } else if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
) {
1982 /* Don't indicate oversized frames */
1983 nic
->rx_over_length_errors
++;
1984 dev_kfree_skb_any(skb
);
1986 dev
->stats
.rx_packets
++;
1987 dev
->stats
.rx_bytes
+= actual_size
;
1988 netif_receive_skb(skb
);
1998 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1999 unsigned int work_to_do
)
2002 int restart_required
= 0, err
= 0;
2003 struct rx
*old_before_last_rx
, *new_before_last_rx
;
2004 struct rfd
*old_before_last_rfd
, *new_before_last_rfd
;
2006 /* Indicate newly arrived packets */
2007 for (rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
2008 err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
2009 /* Hit quota or no more to clean */
2010 if (-EAGAIN
== err
|| -ENODATA
== err
)
2015 /* On EAGAIN, hit quota so have more work to do, restart once
2016 * cleanup is complete.
2017 * Else, are we already rnr? then pay attention!!! this ensures that
2018 * the state machine progression never allows a start with a
2019 * partially cleaned list, avoiding a race between hardware
2020 * and rx_to_clean when in NAPI mode */
2021 if (-EAGAIN
!= err
&& RU_SUSPENDED
== nic
->ru_running
)
2022 restart_required
= 1;
2024 old_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2025 old_before_last_rfd
= (struct rfd
*)old_before_last_rx
->skb
->data
;
2027 /* Alloc new skbs to refill list */
2028 for (rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
2029 if (unlikely(e100_rx_alloc_skb(nic
, rx
)))
2030 break; /* Better luck next time (see watchdog) */
2033 new_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2034 if (new_before_last_rx
!= old_before_last_rx
) {
2035 /* Set the el-bit on the buffer that is before the last buffer.
2036 * This lets us update the next pointer on the last buffer
2037 * without worrying about hardware touching it.
2038 * We set the size to 0 to prevent hardware from touching this
2040 * When the hardware hits the before last buffer with el-bit
2041 * and size of 0, it will RNR interrupt, the RUS will go into
2042 * the No Resources state. It will not complete nor write to
2044 new_before_last_rfd
=
2045 (struct rfd
*)new_before_last_rx
->skb
->data
;
2046 new_before_last_rfd
->size
= 0;
2047 new_before_last_rfd
->command
|= cpu_to_le16(cb_el
);
2048 pci_dma_sync_single_for_device(nic
->pdev
,
2049 new_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2050 PCI_DMA_BIDIRECTIONAL
);
2052 /* Now that we have a new stopping point, we can clear the old
2053 * stopping point. We must sync twice to get the proper
2054 * ordering on the hardware side of things. */
2055 old_before_last_rfd
->command
&= ~cpu_to_le16(cb_el
);
2056 pci_dma_sync_single_for_device(nic
->pdev
,
2057 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2058 PCI_DMA_BIDIRECTIONAL
);
2059 old_before_last_rfd
->size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
2060 pci_dma_sync_single_for_device(nic
->pdev
,
2061 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2062 PCI_DMA_BIDIRECTIONAL
);
2065 if (restart_required
) {
2067 iowrite8(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
2068 e100_start_receiver(nic
, nic
->rx_to_clean
);
2074 static void e100_rx_clean_list(struct nic
*nic
)
2077 unsigned int i
, count
= nic
->params
.rfds
.count
;
2079 nic
->ru_running
= RU_UNINITIALIZED
;
2082 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2084 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
2085 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2086 dev_kfree_skb(rx
->skb
);
2093 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2096 static int e100_rx_alloc_list(struct nic
*nic
)
2099 unsigned int i
, count
= nic
->params
.rfds
.count
;
2100 struct rfd
*before_last
;
2102 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2103 nic
->ru_running
= RU_UNINITIALIZED
;
2105 if (!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_ATOMIC
)))
2108 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2109 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
2110 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
2111 if (e100_rx_alloc_skb(nic
, rx
)) {
2112 e100_rx_clean_list(nic
);
2116 /* Set the el-bit on the buffer that is before the last buffer.
2117 * This lets us update the next pointer on the last buffer without
2118 * worrying about hardware touching it.
2119 * We set the size to 0 to prevent hardware from touching this buffer.
2120 * When the hardware hits the before last buffer with el-bit and size
2121 * of 0, it will RNR interrupt, the RU will go into the No Resources
2122 * state. It will not complete nor write to this buffer. */
2123 rx
= nic
->rxs
->prev
->prev
;
2124 before_last
= (struct rfd
*)rx
->skb
->data
;
2125 before_last
->command
|= cpu_to_le16(cb_el
);
2126 before_last
->size
= 0;
2127 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
2128 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
2130 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
2131 nic
->ru_running
= RU_SUSPENDED
;
2136 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
2138 struct net_device
*netdev
= dev_id
;
2139 struct nic
*nic
= netdev_priv(netdev
);
2140 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
2142 netif_printk(nic
, intr
, KERN_DEBUG
, nic
->netdev
,
2143 "stat_ack = 0x%02X\n", stat_ack
);
2145 if (stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
2146 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
2149 /* Ack interrupt(s) */
2150 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
2152 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2153 if (stat_ack
& stat_ack_rnr
)
2154 nic
->ru_running
= RU_SUSPENDED
;
2156 if (likely(napi_schedule_prep(&nic
->napi
))) {
2157 e100_disable_irq(nic
);
2158 __napi_schedule(&nic
->napi
);
2164 static int e100_poll(struct napi_struct
*napi
, int budget
)
2166 struct nic
*nic
= container_of(napi
, struct nic
, napi
);
2167 unsigned int work_done
= 0;
2169 e100_rx_clean(nic
, &work_done
, budget
);
2172 /* If budget not fully consumed, exit the polling mode */
2173 if (work_done
< budget
) {
2174 napi_complete(napi
);
2175 e100_enable_irq(nic
);
2181 #ifdef CONFIG_NET_POLL_CONTROLLER
2182 static void e100_netpoll(struct net_device
*netdev
)
2184 struct nic
*nic
= netdev_priv(netdev
);
2186 e100_disable_irq(nic
);
2187 e100_intr(nic
->pdev
->irq
, netdev
);
2189 e100_enable_irq(nic
);
2193 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2195 struct nic
*nic
= netdev_priv(netdev
);
2196 struct sockaddr
*addr
= p
;
2198 if (!is_valid_ether_addr(addr
->sa_data
))
2199 return -EADDRNOTAVAIL
;
2201 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2202 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2207 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
2209 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
2211 netdev
->mtu
= new_mtu
;
2215 static int e100_asf(struct nic
*nic
)
2217 /* ASF can be enabled from eeprom */
2218 return (nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2219 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2220 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2221 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE);
2224 static int e100_up(struct nic
*nic
)
2228 if ((err
= e100_rx_alloc_list(nic
)))
2230 if ((err
= e100_alloc_cbs(nic
)))
2231 goto err_rx_clean_list
;
2232 if ((err
= e100_hw_init(nic
)))
2234 e100_set_multicast_list(nic
->netdev
);
2235 e100_start_receiver(nic
, NULL
);
2236 mod_timer(&nic
->watchdog
, jiffies
);
2237 if ((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2238 nic
->netdev
->name
, nic
->netdev
)))
2240 netif_wake_queue(nic
->netdev
);
2241 napi_enable(&nic
->napi
);
2242 /* enable ints _after_ enabling poll, preventing a race between
2243 * disable ints+schedule */
2244 e100_enable_irq(nic
);
2248 del_timer_sync(&nic
->watchdog
);
2250 e100_clean_cbs(nic
);
2252 e100_rx_clean_list(nic
);
2256 static void e100_down(struct nic
*nic
)
2258 /* wait here for poll to complete */
2259 napi_disable(&nic
->napi
);
2260 netif_stop_queue(nic
->netdev
);
2262 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2263 del_timer_sync(&nic
->watchdog
);
2264 netif_carrier_off(nic
->netdev
);
2265 e100_clean_cbs(nic
);
2266 e100_rx_clean_list(nic
);
2269 static void e100_tx_timeout(struct net_device
*netdev
)
2271 struct nic
*nic
= netdev_priv(netdev
);
2273 /* Reset outside of interrupt context, to avoid request_irq
2274 * in interrupt context */
2275 schedule_work(&nic
->tx_timeout_task
);
2278 static void e100_tx_timeout_task(struct work_struct
*work
)
2280 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2281 struct net_device
*netdev
= nic
->netdev
;
2283 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
2284 "scb.status=0x%02X\n", ioread8(&nic
->csr
->scb
.status
));
2287 if (netif_running(netdev
)) {
2288 e100_down(netdev_priv(netdev
));
2289 e100_up(netdev_priv(netdev
));
2294 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2297 struct sk_buff
*skb
;
2299 /* Use driver resources to perform internal MAC or PHY
2300 * loopback test. A single packet is prepared and transmitted
2301 * in loopback mode, and the test passes if the received
2302 * packet compares byte-for-byte to the transmitted packet. */
2304 if ((err
= e100_rx_alloc_list(nic
)))
2306 if ((err
= e100_alloc_cbs(nic
)))
2309 /* ICH PHY loopback is broken so do MAC loopback instead */
2310 if (nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2311 loopback_mode
= lb_mac
;
2313 nic
->loopback
= loopback_mode
;
2314 if ((err
= e100_hw_init(nic
)))
2315 goto err_loopback_none
;
2317 if (loopback_mode
== lb_phy
)
2318 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2321 e100_start_receiver(nic
, NULL
);
2323 if (!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2325 goto err_loopback_none
;
2327 skb_put(skb
, ETH_DATA_LEN
);
2328 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2329 e100_xmit_frame(skb
, nic
->netdev
);
2333 pci_dma_sync_single_for_cpu(nic
->pdev
, nic
->rx_to_clean
->dma_addr
,
2334 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2336 if (memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2337 skb
->data
, ETH_DATA_LEN
))
2341 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2342 nic
->loopback
= lb_none
;
2343 e100_clean_cbs(nic
);
2346 e100_rx_clean_list(nic
);
2350 #define MII_LED_CONTROL 0x1B
2351 #define E100_82552_LED_OVERRIDE 0x19
2352 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2353 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2354 static void e100_blink_led(unsigned long data
)
2356 struct nic
*nic
= (struct nic
*)data
;
2363 u16 led_reg
= MII_LED_CONTROL
;
2365 if (nic
->phy
== phy_82552_v
) {
2366 led_reg
= E100_82552_LED_OVERRIDE
;
2368 nic
->leds
= (nic
->leds
== E100_82552_LED_ON
) ?
2369 E100_82552_LED_OFF
: E100_82552_LED_ON
;
2371 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
2372 (nic
->mac
< mac_82559_D101M
) ? led_on_557
:
2375 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, led_reg
, nic
->leds
);
2376 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
2379 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2381 struct nic
*nic
= netdev_priv(netdev
);
2382 return mii_ethtool_gset(&nic
->mii
, cmd
);
2385 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2387 struct nic
*nic
= netdev_priv(netdev
);
2390 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2391 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2392 e100_exec_cb(nic
, NULL
, e100_configure
);
2397 static void e100_get_drvinfo(struct net_device
*netdev
,
2398 struct ethtool_drvinfo
*info
)
2400 struct nic
*nic
= netdev_priv(netdev
);
2401 strcpy(info
->driver
, DRV_NAME
);
2402 strcpy(info
->version
, DRV_VERSION
);
2403 strcpy(info
->fw_version
, "N/A");
2404 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
2407 #define E100_PHY_REGS 0x1C
2408 static int e100_get_regs_len(struct net_device
*netdev
)
2410 struct nic
*nic
= netdev_priv(netdev
);
2411 return 1 + E100_PHY_REGS
+ sizeof(nic
->mem
->dump_buf
);
2414 static void e100_get_regs(struct net_device
*netdev
,
2415 struct ethtool_regs
*regs
, void *p
)
2417 struct nic
*nic
= netdev_priv(netdev
);
2421 regs
->version
= (1 << 24) | nic
->pdev
->revision
;
2422 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2423 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2424 ioread16(&nic
->csr
->scb
.status
);
2425 for (i
= E100_PHY_REGS
; i
>= 0; i
--)
2426 buff
[1 + E100_PHY_REGS
- i
] =
2427 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2428 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2429 e100_exec_cb(nic
, NULL
, e100_dump
);
2431 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2432 sizeof(nic
->mem
->dump_buf
));
2435 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2437 struct nic
*nic
= netdev_priv(netdev
);
2438 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2439 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2442 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2444 struct nic
*nic
= netdev_priv(netdev
);
2446 if ((wol
->wolopts
&& wol
->wolopts
!= WAKE_MAGIC
) ||
2447 !device_can_wakeup(&nic
->pdev
->dev
))
2451 nic
->flags
|= wol_magic
;
2453 nic
->flags
&= ~wol_magic
;
2455 device_set_wakeup_enable(&nic
->pdev
->dev
, wol
->wolopts
);
2457 e100_exec_cb(nic
, NULL
, e100_configure
);
2462 static u32
e100_get_msglevel(struct net_device
*netdev
)
2464 struct nic
*nic
= netdev_priv(netdev
);
2465 return nic
->msg_enable
;
2468 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2470 struct nic
*nic
= netdev_priv(netdev
);
2471 nic
->msg_enable
= value
;
2474 static int e100_nway_reset(struct net_device
*netdev
)
2476 struct nic
*nic
= netdev_priv(netdev
);
2477 return mii_nway_restart(&nic
->mii
);
2480 static u32
e100_get_link(struct net_device
*netdev
)
2482 struct nic
*nic
= netdev_priv(netdev
);
2483 return mii_link_ok(&nic
->mii
);
2486 static int e100_get_eeprom_len(struct net_device
*netdev
)
2488 struct nic
*nic
= netdev_priv(netdev
);
2489 return nic
->eeprom_wc
<< 1;
2492 #define E100_EEPROM_MAGIC 0x1234
2493 static int e100_get_eeprom(struct net_device
*netdev
,
2494 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2496 struct nic
*nic
= netdev_priv(netdev
);
2498 eeprom
->magic
= E100_EEPROM_MAGIC
;
2499 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2504 static int e100_set_eeprom(struct net_device
*netdev
,
2505 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2507 struct nic
*nic
= netdev_priv(netdev
);
2509 if (eeprom
->magic
!= E100_EEPROM_MAGIC
)
2512 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2514 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2515 (eeprom
->len
>> 1) + 1);
2518 static void e100_get_ringparam(struct net_device
*netdev
,
2519 struct ethtool_ringparam
*ring
)
2521 struct nic
*nic
= netdev_priv(netdev
);
2522 struct param_range
*rfds
= &nic
->params
.rfds
;
2523 struct param_range
*cbs
= &nic
->params
.cbs
;
2525 ring
->rx_max_pending
= rfds
->max
;
2526 ring
->tx_max_pending
= cbs
->max
;
2527 ring
->rx_mini_max_pending
= 0;
2528 ring
->rx_jumbo_max_pending
= 0;
2529 ring
->rx_pending
= rfds
->count
;
2530 ring
->tx_pending
= cbs
->count
;
2531 ring
->rx_mini_pending
= 0;
2532 ring
->rx_jumbo_pending
= 0;
2535 static int e100_set_ringparam(struct net_device
*netdev
,
2536 struct ethtool_ringparam
*ring
)
2538 struct nic
*nic
= netdev_priv(netdev
);
2539 struct param_range
*rfds
= &nic
->params
.rfds
;
2540 struct param_range
*cbs
= &nic
->params
.cbs
;
2542 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2545 if (netif_running(netdev
))
2547 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2548 rfds
->count
= min(rfds
->count
, rfds
->max
);
2549 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2550 cbs
->count
= min(cbs
->count
, cbs
->max
);
2551 netif_info(nic
, drv
, nic
->netdev
, "Ring Param settings: rx: %d, tx %d\n",
2552 rfds
->count
, cbs
->count
);
2553 if (netif_running(netdev
))
2559 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2560 "Link test (on/offline)",
2561 "Eeprom test (on/offline)",
2562 "Self test (offline)",
2563 "Mac loopback (offline)",
2564 "Phy loopback (offline)",
2566 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2568 static void e100_diag_test(struct net_device
*netdev
,
2569 struct ethtool_test
*test
, u64
*data
)
2571 struct ethtool_cmd cmd
;
2572 struct nic
*nic
= netdev_priv(netdev
);
2575 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2576 data
[0] = !mii_link_ok(&nic
->mii
);
2577 data
[1] = e100_eeprom_load(nic
);
2578 if (test
->flags
& ETH_TEST_FL_OFFLINE
) {
2580 /* save speed, duplex & autoneg settings */
2581 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2583 if (netif_running(netdev
))
2585 data
[2] = e100_self_test(nic
);
2586 data
[3] = e100_loopback_test(nic
, lb_mac
);
2587 data
[4] = e100_loopback_test(nic
, lb_phy
);
2589 /* restore speed, duplex & autoneg settings */
2590 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2592 if (netif_running(netdev
))
2595 for (i
= 0; i
< E100_TEST_LEN
; i
++)
2596 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2598 msleep_interruptible(4 * 1000);
2601 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2603 struct nic
*nic
= netdev_priv(netdev
);
2604 u16 led_reg
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OVERRIDE
:
2607 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2608 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2609 mod_timer(&nic
->blink_timer
, jiffies
);
2610 msleep_interruptible(data
* 1000);
2611 del_timer_sync(&nic
->blink_timer
);
2612 mdio_write(netdev
, nic
->mii
.phy_id
, led_reg
, 0);
2617 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2618 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2619 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2620 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2621 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2622 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2623 "tx_heartbeat_errors", "tx_window_errors",
2624 /* device-specific stats */
2625 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2626 "tx_flow_control_pause", "rx_flow_control_pause",
2627 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2629 #define E100_NET_STATS_LEN 21
2630 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2632 static int e100_get_sset_count(struct net_device
*netdev
, int sset
)
2636 return E100_TEST_LEN
;
2638 return E100_STATS_LEN
;
2644 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2645 struct ethtool_stats
*stats
, u64
*data
)
2647 struct nic
*nic
= netdev_priv(netdev
);
2650 for (i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2651 data
[i
] = ((unsigned long *)&netdev
->stats
)[i
];
2653 data
[i
++] = nic
->tx_deferred
;
2654 data
[i
++] = nic
->tx_single_collisions
;
2655 data
[i
++] = nic
->tx_multiple_collisions
;
2656 data
[i
++] = nic
->tx_fc_pause
;
2657 data
[i
++] = nic
->rx_fc_pause
;
2658 data
[i
++] = nic
->rx_fc_unsupported
;
2659 data
[i
++] = nic
->tx_tco_frames
;
2660 data
[i
++] = nic
->rx_tco_frames
;
2663 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2665 switch (stringset
) {
2667 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2670 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2675 static const struct ethtool_ops e100_ethtool_ops
= {
2676 .get_settings
= e100_get_settings
,
2677 .set_settings
= e100_set_settings
,
2678 .get_drvinfo
= e100_get_drvinfo
,
2679 .get_regs_len
= e100_get_regs_len
,
2680 .get_regs
= e100_get_regs
,
2681 .get_wol
= e100_get_wol
,
2682 .set_wol
= e100_set_wol
,
2683 .get_msglevel
= e100_get_msglevel
,
2684 .set_msglevel
= e100_set_msglevel
,
2685 .nway_reset
= e100_nway_reset
,
2686 .get_link
= e100_get_link
,
2687 .get_eeprom_len
= e100_get_eeprom_len
,
2688 .get_eeprom
= e100_get_eeprom
,
2689 .set_eeprom
= e100_set_eeprom
,
2690 .get_ringparam
= e100_get_ringparam
,
2691 .set_ringparam
= e100_set_ringparam
,
2692 .self_test
= e100_diag_test
,
2693 .get_strings
= e100_get_strings
,
2694 .phys_id
= e100_phys_id
,
2695 .get_ethtool_stats
= e100_get_ethtool_stats
,
2696 .get_sset_count
= e100_get_sset_count
,
2699 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2701 struct nic
*nic
= netdev_priv(netdev
);
2703 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2706 static int e100_alloc(struct nic
*nic
)
2708 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2710 return nic
->mem
? 0 : -ENOMEM
;
2713 static void e100_free(struct nic
*nic
)
2716 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2717 nic
->mem
, nic
->dma_addr
);
2722 static int e100_open(struct net_device
*netdev
)
2724 struct nic
*nic
= netdev_priv(netdev
);
2727 netif_carrier_off(netdev
);
2728 if ((err
= e100_up(nic
)))
2729 netif_err(nic
, ifup
, nic
->netdev
, "Cannot open interface, aborting\n");
2733 static int e100_close(struct net_device
*netdev
)
2735 e100_down(netdev_priv(netdev
));
2739 static const struct net_device_ops e100_netdev_ops
= {
2740 .ndo_open
= e100_open
,
2741 .ndo_stop
= e100_close
,
2742 .ndo_start_xmit
= e100_xmit_frame
,
2743 .ndo_validate_addr
= eth_validate_addr
,
2744 .ndo_set_multicast_list
= e100_set_multicast_list
,
2745 .ndo_set_mac_address
= e100_set_mac_address
,
2746 .ndo_change_mtu
= e100_change_mtu
,
2747 .ndo_do_ioctl
= e100_do_ioctl
,
2748 .ndo_tx_timeout
= e100_tx_timeout
,
2749 #ifdef CONFIG_NET_POLL_CONTROLLER
2750 .ndo_poll_controller
= e100_netpoll
,
2754 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2755 const struct pci_device_id
*ent
)
2757 struct net_device
*netdev
;
2761 if (!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2762 if (((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2763 pr_err("Etherdev alloc failed, aborting\n");
2767 netdev
->netdev_ops
= &e100_netdev_ops
;
2768 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2769 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2770 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2772 nic
= netdev_priv(netdev
);
2773 netif_napi_add(netdev
, &nic
->napi
, e100_poll
, E100_NAPI_WEIGHT
);
2774 nic
->netdev
= netdev
;
2776 nic
->msg_enable
= (1 << debug
) - 1;
2777 nic
->mdio_ctrl
= mdio_ctrl_hw
;
2778 pci_set_drvdata(pdev
, netdev
);
2780 if ((err
= pci_enable_device(pdev
))) {
2781 netif_err(nic
, probe
, nic
->netdev
, "Cannot enable PCI device, aborting\n");
2782 goto err_out_free_dev
;
2785 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2786 netif_err(nic
, probe
, nic
->netdev
, "Cannot find proper PCI device base address, aborting\n");
2788 goto err_out_disable_pdev
;
2791 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2792 netif_err(nic
, probe
, nic
->netdev
, "Cannot obtain PCI resources, aborting\n");
2793 goto err_out_disable_pdev
;
2796 if ((err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
2797 netif_err(nic
, probe
, nic
->netdev
, "No usable DMA configuration, aborting\n");
2798 goto err_out_free_res
;
2801 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2804 netif_info(nic
, probe
, nic
->netdev
, "using i/o access mode\n");
2806 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2808 netif_err(nic
, probe
, nic
->netdev
, "Cannot map device registers, aborting\n");
2810 goto err_out_free_res
;
2813 if (ent
->driver_data
)
2818 e100_get_defaults(nic
);
2820 /* locks must be initialized before calling hw_reset */
2821 spin_lock_init(&nic
->cb_lock
);
2822 spin_lock_init(&nic
->cmd_lock
);
2823 spin_lock_init(&nic
->mdio_lock
);
2825 /* Reset the device before pci_set_master() in case device is in some
2826 * funky state and has an interrupt pending - hint: we don't have the
2827 * interrupt handler registered yet. */
2830 pci_set_master(pdev
);
2832 init_timer(&nic
->watchdog
);
2833 nic
->watchdog
.function
= e100_watchdog
;
2834 nic
->watchdog
.data
= (unsigned long)nic
;
2835 init_timer(&nic
->blink_timer
);
2836 nic
->blink_timer
.function
= e100_blink_led
;
2837 nic
->blink_timer
.data
= (unsigned long)nic
;
2839 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2841 if ((err
= e100_alloc(nic
))) {
2842 netif_err(nic
, probe
, nic
->netdev
, "Cannot alloc driver memory, aborting\n");
2843 goto err_out_iounmap
;
2846 if ((err
= e100_eeprom_load(nic
)))
2851 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2852 memcpy(netdev
->perm_addr
, nic
->eeprom
, ETH_ALEN
);
2853 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2854 if (!eeprom_bad_csum_allow
) {
2855 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, aborting\n");
2859 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2863 /* Wol magic packet can be enabled from eeprom */
2864 if ((nic
->mac
>= mac_82558_D101_A4
) &&
2865 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
)) {
2866 nic
->flags
|= wol_magic
;
2867 device_set_wakeup_enable(&pdev
->dev
, true);
2870 /* ack any pending wake events, disable PME */
2871 pci_pme_active(pdev
, false);
2873 strcpy(netdev
->name
, "eth%d");
2874 if ((err
= register_netdev(netdev
))) {
2875 netif_err(nic
, probe
, nic
->netdev
, "Cannot register net device, aborting\n");
2878 nic
->cbs_pool
= pci_pool_create(netdev
->name
,
2880 nic
->params
.cbs
.max
* sizeof(struct cb
),
2883 netif_info(nic
, probe
, nic
->netdev
,
2884 "addr 0x%llx, irq %d, MAC addr %pM\n",
2885 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0),
2886 pdev
->irq
, netdev
->dev_addr
);
2893 pci_iounmap(pdev
, nic
->csr
);
2895 pci_release_regions(pdev
);
2896 err_out_disable_pdev
:
2897 pci_disable_device(pdev
);
2899 pci_set_drvdata(pdev
, NULL
);
2900 free_netdev(netdev
);
2904 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2906 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2909 struct nic
*nic
= netdev_priv(netdev
);
2910 unregister_netdev(netdev
);
2912 pci_iounmap(pdev
, nic
->csr
);
2913 pci_pool_destroy(nic
->cbs_pool
);
2914 free_netdev(netdev
);
2915 pci_release_regions(pdev
);
2916 pci_disable_device(pdev
);
2917 pci_set_drvdata(pdev
, NULL
);
2921 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2922 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2923 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2924 static void __e100_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
2926 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2927 struct nic
*nic
= netdev_priv(netdev
);
2929 if (netif_running(netdev
))
2931 netif_device_detach(netdev
);
2933 pci_save_state(pdev
);
2935 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
2936 /* enable reverse auto-negotiation */
2937 if (nic
->phy
== phy_82552_v
) {
2938 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
2939 E100_82552_SMARTSPEED
);
2941 mdio_write(netdev
, nic
->mii
.phy_id
,
2942 E100_82552_SMARTSPEED
, smartspeed
|
2943 E100_82552_REV_ANEG
| E100_82552_ANEG_NOW
);
2945 *enable_wake
= true;
2947 *enable_wake
= false;
2950 pci_disable_device(pdev
);
2953 static int __e100_power_off(struct pci_dev
*pdev
, bool wake
)
2956 return pci_prepare_to_sleep(pdev
);
2958 pci_wake_from_d3(pdev
, false);
2959 pci_set_power_state(pdev
, PCI_D3hot
);
2965 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2968 __e100_shutdown(pdev
, &wake
);
2969 return __e100_power_off(pdev
, wake
);
2972 static int e100_resume(struct pci_dev
*pdev
)
2974 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2975 struct nic
*nic
= netdev_priv(netdev
);
2977 pci_set_power_state(pdev
, PCI_D0
);
2978 pci_restore_state(pdev
);
2979 /* ack any pending wake events, disable PME */
2980 pci_enable_wake(pdev
, 0, 0);
2982 /* disable reverse auto-negotiation */
2983 if (nic
->phy
== phy_82552_v
) {
2984 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
2985 E100_82552_SMARTSPEED
);
2987 mdio_write(netdev
, nic
->mii
.phy_id
,
2988 E100_82552_SMARTSPEED
,
2989 smartspeed
& ~(E100_82552_REV_ANEG
));
2992 netif_device_attach(netdev
);
2993 if (netif_running(netdev
))
2998 #endif /* CONFIG_PM */
3000 static void e100_shutdown(struct pci_dev
*pdev
)
3003 __e100_shutdown(pdev
, &wake
);
3004 if (system_state
== SYSTEM_POWER_OFF
)
3005 __e100_power_off(pdev
, wake
);
3008 /* ------------------ PCI Error Recovery infrastructure -------------- */
3010 * e100_io_error_detected - called when PCI error is detected.
3011 * @pdev: Pointer to PCI device
3012 * @state: The current pci connection state
3014 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
3016 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3017 struct nic
*nic
= netdev_priv(netdev
);
3019 netif_device_detach(netdev
);
3021 if (state
== pci_channel_io_perm_failure
)
3022 return PCI_ERS_RESULT_DISCONNECT
;
3024 if (netif_running(netdev
))
3026 pci_disable_device(pdev
);
3028 /* Request a slot reset. */
3029 return PCI_ERS_RESULT_NEED_RESET
;
3033 * e100_io_slot_reset - called after the pci bus has been reset.
3034 * @pdev: Pointer to PCI device
3036 * Restart the card from scratch.
3038 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
3040 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3041 struct nic
*nic
= netdev_priv(netdev
);
3043 if (pci_enable_device(pdev
)) {
3044 pr_err("Cannot re-enable PCI device after reset\n");
3045 return PCI_ERS_RESULT_DISCONNECT
;
3047 pci_set_master(pdev
);
3049 /* Only one device per card can do a reset */
3050 if (0 != PCI_FUNC(pdev
->devfn
))
3051 return PCI_ERS_RESULT_RECOVERED
;
3055 return PCI_ERS_RESULT_RECOVERED
;
3059 * e100_io_resume - resume normal operations
3060 * @pdev: Pointer to PCI device
3062 * Resume normal operations after an error recovery
3063 * sequence has been completed.
3065 static void e100_io_resume(struct pci_dev
*pdev
)
3067 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3068 struct nic
*nic
= netdev_priv(netdev
);
3070 /* ack any pending wake events, disable PME */
3071 pci_enable_wake(pdev
, 0, 0);
3073 netif_device_attach(netdev
);
3074 if (netif_running(netdev
)) {
3076 mod_timer(&nic
->watchdog
, jiffies
);
3080 static struct pci_error_handlers e100_err_handler
= {
3081 .error_detected
= e100_io_error_detected
,
3082 .slot_reset
= e100_io_slot_reset
,
3083 .resume
= e100_io_resume
,
3086 static struct pci_driver e100_driver
= {
3088 .id_table
= e100_id_table
,
3089 .probe
= e100_probe
,
3090 .remove
= __devexit_p(e100_remove
),
3092 /* Power Management hooks */
3093 .suspend
= e100_suspend
,
3094 .resume
= e100_resume
,
3096 .shutdown
= e100_shutdown
,
3097 .err_handler
= &e100_err_handler
,
3100 static int __init
e100_init_module(void)
3102 if (((1 << debug
) - 1) & NETIF_MSG_DRV
) {
3103 pr_info("%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
3104 pr_info("%s\n", DRV_COPYRIGHT
);
3106 return pci_register_driver(&e100_driver
);
3109 static void __exit
e100_cleanup_module(void)
3111 pci_unregister_driver(&e100_driver
);
3114 module_init(e100_init_module
);
3115 module_exit(e100_cleanup_module
);