ACPI: ibm-acpi: cleanup fan_write
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blobf250a5e3e28151d293741a6604938d49c9336feb
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/mempolicy.h>
30 #include <linux/taskstats_kern.h>
31 #include <linux/delayacct.h>
32 #include <linux/cpuset.h>
33 #include <linux/syscalls.h>
34 #include <linux/signal.h>
35 #include <linux/posix-timers.h>
36 #include <linux/cn_proc.h>
37 #include <linux/mutex.h>
38 #include <linux/futex.h>
39 #include <linux/compat.h>
40 #include <linux/pipe_fs_i.h>
41 #include <linux/audit.h> /* for audit_free() */
42 #include <linux/resource.h>
43 #include <linux/blkdev.h>
45 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
47 #include <asm/pgtable.h>
48 #include <asm/mmu_context.h>
50 extern void sem_exit (void);
51 extern struct task_struct *child_reaper;
53 static void exit_mm(struct task_struct * tsk);
55 static void __unhash_process(struct task_struct *p)
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
71 * This function expects the tasklist_lock write-locked.
73 static void __exit_signal(struct task_struct *tsk)
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
90 * If there is any task waiting for the group exit
91 * then notify it:
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
94 wake_up_process(sig->group_exit_task);
95 sig->group_exit_task = NULL;
97 if (tsk == sig->curr_target)
98 sig->curr_target = next_thread(tsk);
100 * Accumulate here the counters for all threads but the
101 * group leader as they die, so they can be added into
102 * the process-wide totals when those are taken.
103 * The group leader stays around as a zombie as long
104 * as there are other threads. When it gets reaped,
105 * the exit.c code will add its counts into these totals.
106 * We won't ever get here for the group leader, since it
107 * will have been the last reference on the signal_struct.
109 sig->utime = cputime_add(sig->utime, tsk->utime);
110 sig->stime = cputime_add(sig->stime, tsk->stime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->sched_time += tsk->sched_time;
116 sig = NULL; /* Marker for below. */
119 __unhash_process(tsk);
121 tsk->signal = NULL;
122 tsk->sighand = NULL;
123 spin_unlock(&sighand->siglock);
124 rcu_read_unlock();
126 __cleanup_sighand(sighand);
127 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
128 flush_sigqueue(&tsk->pending);
129 if (sig) {
130 flush_sigqueue(&sig->shared_pending);
131 __cleanup_signal(sig);
135 static void delayed_put_task_struct(struct rcu_head *rhp)
137 put_task_struct(container_of(rhp, struct task_struct, rcu));
140 void release_task(struct task_struct * p)
142 struct task_struct *leader;
143 int zap_leader;
144 repeat:
145 atomic_dec(&p->user->processes);
146 write_lock_irq(&tasklist_lock);
147 ptrace_unlink(p);
148 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
149 __exit_signal(p);
152 * If we are the last non-leader member of the thread
153 * group, and the leader is zombie, then notify the
154 * group leader's parent process. (if it wants notification.)
156 zap_leader = 0;
157 leader = p->group_leader;
158 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
159 BUG_ON(leader->exit_signal == -1);
160 do_notify_parent(leader, leader->exit_signal);
162 * If we were the last child thread and the leader has
163 * exited already, and the leader's parent ignores SIGCHLD,
164 * then we are the one who should release the leader.
166 * do_notify_parent() will have marked it self-reaping in
167 * that case.
169 zap_leader = (leader->exit_signal == -1);
172 sched_exit(p);
173 write_unlock_irq(&tasklist_lock);
174 proc_flush_task(p);
175 release_thread(p);
176 call_rcu(&p->rcu, delayed_put_task_struct);
178 p = leader;
179 if (unlikely(zap_leader))
180 goto repeat;
184 * This checks not only the pgrp, but falls back on the pid if no
185 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
186 * without this...
188 int session_of_pgrp(int pgrp)
190 struct task_struct *p;
191 int sid = -1;
193 read_lock(&tasklist_lock);
194 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
195 if (p->signal->session > 0) {
196 sid = p->signal->session;
197 goto out;
199 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
200 p = find_task_by_pid(pgrp);
201 if (p)
202 sid = p->signal->session;
203 out:
204 read_unlock(&tasklist_lock);
206 return sid;
210 * Determine if a process group is "orphaned", according to the POSIX
211 * definition in 2.2.2.52. Orphaned process groups are not to be affected
212 * by terminal-generated stop signals. Newly orphaned process groups are
213 * to receive a SIGHUP and a SIGCONT.
215 * "I ask you, have you ever known what it is to be an orphan?"
217 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
219 struct task_struct *p;
220 int ret = 1;
222 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
223 if (p == ignored_task
224 || p->exit_state
225 || is_init(p->real_parent))
226 continue;
227 if (process_group(p->real_parent) != pgrp
228 && p->real_parent->signal->session == p->signal->session) {
229 ret = 0;
230 break;
232 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
233 return ret; /* (sighing) "Often!" */
236 int is_orphaned_pgrp(int pgrp)
238 int retval;
240 read_lock(&tasklist_lock);
241 retval = will_become_orphaned_pgrp(pgrp, NULL);
242 read_unlock(&tasklist_lock);
244 return retval;
247 static int has_stopped_jobs(int pgrp)
249 int retval = 0;
250 struct task_struct *p;
252 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
253 if (p->state != TASK_STOPPED)
254 continue;
255 retval = 1;
256 break;
257 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
258 return retval;
262 * reparent_to_init - Reparent the calling kernel thread to the init task.
264 * If a kernel thread is launched as a result of a system call, or if
265 * it ever exits, it should generally reparent itself to init so that
266 * it is correctly cleaned up on exit.
268 * The various task state such as scheduling policy and priority may have
269 * been inherited from a user process, so we reset them to sane values here.
271 * NOTE that reparent_to_init() gives the caller full capabilities.
273 static void reparent_to_init(void)
275 write_lock_irq(&tasklist_lock);
277 ptrace_unlink(current);
278 /* Reparent to init */
279 remove_parent(current);
280 current->parent = child_reaper;
281 current->real_parent = child_reaper;
282 add_parent(current);
284 /* Set the exit signal to SIGCHLD so we signal init on exit */
285 current->exit_signal = SIGCHLD;
287 if (!has_rt_policy(current) && (task_nice(current) < 0))
288 set_user_nice(current, 0);
289 /* cpus_allowed? */
290 /* rt_priority? */
291 /* signals? */
292 security_task_reparent_to_init(current);
293 memcpy(current->signal->rlim, init_task.signal->rlim,
294 sizeof(current->signal->rlim));
295 atomic_inc(&(INIT_USER->__count));
296 write_unlock_irq(&tasklist_lock);
297 switch_uid(INIT_USER);
300 void __set_special_pids(pid_t session, pid_t pgrp)
302 struct task_struct *curr = current->group_leader;
304 if (curr->signal->session != session) {
305 detach_pid(curr, PIDTYPE_SID);
306 curr->signal->session = session;
307 attach_pid(curr, PIDTYPE_SID, session);
309 if (process_group(curr) != pgrp) {
310 detach_pid(curr, PIDTYPE_PGID);
311 curr->signal->pgrp = pgrp;
312 attach_pid(curr, PIDTYPE_PGID, pgrp);
316 void set_special_pids(pid_t session, pid_t pgrp)
318 write_lock_irq(&tasklist_lock);
319 __set_special_pids(session, pgrp);
320 write_unlock_irq(&tasklist_lock);
324 * Let kernel threads use this to say that they
325 * allow a certain signal (since daemonize() will
326 * have disabled all of them by default).
328 int allow_signal(int sig)
330 if (!valid_signal(sig) || sig < 1)
331 return -EINVAL;
333 spin_lock_irq(&current->sighand->siglock);
334 sigdelset(&current->blocked, sig);
335 if (!current->mm) {
336 /* Kernel threads handle their own signals.
337 Let the signal code know it'll be handled, so
338 that they don't get converted to SIGKILL or
339 just silently dropped */
340 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
342 recalc_sigpending();
343 spin_unlock_irq(&current->sighand->siglock);
344 return 0;
347 EXPORT_SYMBOL(allow_signal);
349 int disallow_signal(int sig)
351 if (!valid_signal(sig) || sig < 1)
352 return -EINVAL;
354 spin_lock_irq(&current->sighand->siglock);
355 sigaddset(&current->blocked, sig);
356 recalc_sigpending();
357 spin_unlock_irq(&current->sighand->siglock);
358 return 0;
361 EXPORT_SYMBOL(disallow_signal);
364 * Put all the gunge required to become a kernel thread without
365 * attached user resources in one place where it belongs.
368 void daemonize(const char *name, ...)
370 va_list args;
371 struct fs_struct *fs;
372 sigset_t blocked;
374 va_start(args, name);
375 vsnprintf(current->comm, sizeof(current->comm), name, args);
376 va_end(args);
379 * If we were started as result of loading a module, close all of the
380 * user space pages. We don't need them, and if we didn't close them
381 * they would be locked into memory.
383 exit_mm(current);
385 set_special_pids(1, 1);
386 mutex_lock(&tty_mutex);
387 current->signal->tty = NULL;
388 mutex_unlock(&tty_mutex);
390 /* Block and flush all signals */
391 sigfillset(&blocked);
392 sigprocmask(SIG_BLOCK, &blocked, NULL);
393 flush_signals(current);
395 /* Become as one with the init task */
397 exit_fs(current); /* current->fs->count--; */
398 fs = init_task.fs;
399 current->fs = fs;
400 atomic_inc(&fs->count);
402 exit_task_namespaces(current);
403 current->nsproxy = init_task.nsproxy;
404 get_task_namespaces(current);
406 exit_files(current);
407 current->files = init_task.files;
408 atomic_inc(&current->files->count);
410 reparent_to_init();
413 EXPORT_SYMBOL(daemonize);
415 static void close_files(struct files_struct * files)
417 int i, j;
418 struct fdtable *fdt;
420 j = 0;
423 * It is safe to dereference the fd table without RCU or
424 * ->file_lock because this is the last reference to the
425 * files structure.
427 fdt = files_fdtable(files);
428 for (;;) {
429 unsigned long set;
430 i = j * __NFDBITS;
431 if (i >= fdt->max_fdset || i >= fdt->max_fds)
432 break;
433 set = fdt->open_fds->fds_bits[j++];
434 while (set) {
435 if (set & 1) {
436 struct file * file = xchg(&fdt->fd[i], NULL);
437 if (file)
438 filp_close(file, files);
440 i++;
441 set >>= 1;
446 struct files_struct *get_files_struct(struct task_struct *task)
448 struct files_struct *files;
450 task_lock(task);
451 files = task->files;
452 if (files)
453 atomic_inc(&files->count);
454 task_unlock(task);
456 return files;
459 void fastcall put_files_struct(struct files_struct *files)
461 struct fdtable *fdt;
463 if (atomic_dec_and_test(&files->count)) {
464 close_files(files);
466 * Free the fd and fdset arrays if we expanded them.
467 * If the fdtable was embedded, pass files for freeing
468 * at the end of the RCU grace period. Otherwise,
469 * you can free files immediately.
471 fdt = files_fdtable(files);
472 if (fdt == &files->fdtab)
473 fdt->free_files = files;
474 else
475 kmem_cache_free(files_cachep, files);
476 free_fdtable(fdt);
480 EXPORT_SYMBOL(put_files_struct);
482 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
484 struct files_struct *old;
486 old = tsk->files;
487 task_lock(tsk);
488 tsk->files = files;
489 task_unlock(tsk);
490 put_files_struct(old);
492 EXPORT_SYMBOL(reset_files_struct);
494 static inline void __exit_files(struct task_struct *tsk)
496 struct files_struct * files = tsk->files;
498 if (files) {
499 task_lock(tsk);
500 tsk->files = NULL;
501 task_unlock(tsk);
502 put_files_struct(files);
506 void exit_files(struct task_struct *tsk)
508 __exit_files(tsk);
511 static inline void __put_fs_struct(struct fs_struct *fs)
513 /* No need to hold fs->lock if we are killing it */
514 if (atomic_dec_and_test(&fs->count)) {
515 dput(fs->root);
516 mntput(fs->rootmnt);
517 dput(fs->pwd);
518 mntput(fs->pwdmnt);
519 if (fs->altroot) {
520 dput(fs->altroot);
521 mntput(fs->altrootmnt);
523 kmem_cache_free(fs_cachep, fs);
527 void put_fs_struct(struct fs_struct *fs)
529 __put_fs_struct(fs);
532 static inline void __exit_fs(struct task_struct *tsk)
534 struct fs_struct * fs = tsk->fs;
536 if (fs) {
537 task_lock(tsk);
538 tsk->fs = NULL;
539 task_unlock(tsk);
540 __put_fs_struct(fs);
544 void exit_fs(struct task_struct *tsk)
546 __exit_fs(tsk);
549 EXPORT_SYMBOL_GPL(exit_fs);
552 * Turn us into a lazy TLB process if we
553 * aren't already..
555 static void exit_mm(struct task_struct * tsk)
557 struct mm_struct *mm = tsk->mm;
559 mm_release(tsk, mm);
560 if (!mm)
561 return;
563 * Serialize with any possible pending coredump.
564 * We must hold mmap_sem around checking core_waiters
565 * and clearing tsk->mm. The core-inducing thread
566 * will increment core_waiters for each thread in the
567 * group with ->mm != NULL.
569 down_read(&mm->mmap_sem);
570 if (mm->core_waiters) {
571 up_read(&mm->mmap_sem);
572 down_write(&mm->mmap_sem);
573 if (!--mm->core_waiters)
574 complete(mm->core_startup_done);
575 up_write(&mm->mmap_sem);
577 wait_for_completion(&mm->core_done);
578 down_read(&mm->mmap_sem);
580 atomic_inc(&mm->mm_count);
581 BUG_ON(mm != tsk->active_mm);
582 /* more a memory barrier than a real lock */
583 task_lock(tsk);
584 tsk->mm = NULL;
585 up_read(&mm->mmap_sem);
586 enter_lazy_tlb(mm, current);
587 task_unlock(tsk);
588 mmput(mm);
591 static inline void
592 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
595 * Make sure we're not reparenting to ourselves and that
596 * the parent is not a zombie.
598 BUG_ON(p == reaper || reaper->exit_state);
599 p->real_parent = reaper;
602 static void
603 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
605 /* We don't want people slaying init. */
606 if (p->exit_signal != -1)
607 p->exit_signal = SIGCHLD;
609 if (p->pdeath_signal)
610 /* We already hold the tasklist_lock here. */
611 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
613 /* Move the child from its dying parent to the new one. */
614 if (unlikely(traced)) {
615 /* Preserve ptrace links if someone else is tracing this child. */
616 list_del_init(&p->ptrace_list);
617 if (p->parent != p->real_parent)
618 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
619 } else {
620 /* If this child is being traced, then we're the one tracing it
621 * anyway, so let go of it.
623 p->ptrace = 0;
624 remove_parent(p);
625 p->parent = p->real_parent;
626 add_parent(p);
628 /* If we'd notified the old parent about this child's death,
629 * also notify the new parent.
631 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
632 thread_group_empty(p))
633 do_notify_parent(p, p->exit_signal);
634 else if (p->state == TASK_TRACED) {
636 * If it was at a trace stop, turn it into
637 * a normal stop since it's no longer being
638 * traced.
640 ptrace_untrace(p);
645 * process group orphan check
646 * Case ii: Our child is in a different pgrp
647 * than we are, and it was the only connection
648 * outside, so the child pgrp is now orphaned.
650 if ((process_group(p) != process_group(father)) &&
651 (p->signal->session == father->signal->session)) {
652 int pgrp = process_group(p);
654 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
655 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
656 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
662 * When we die, we re-parent all our children.
663 * Try to give them to another thread in our thread
664 * group, and if no such member exists, give it to
665 * the global child reaper process (ie "init")
667 static void
668 forget_original_parent(struct task_struct *father, struct list_head *to_release)
670 struct task_struct *p, *reaper = father;
671 struct list_head *_p, *_n;
673 do {
674 reaper = next_thread(reaper);
675 if (reaper == father) {
676 reaper = child_reaper;
677 break;
679 } while (reaper->exit_state);
682 * There are only two places where our children can be:
684 * - in our child list
685 * - in our ptraced child list
687 * Search them and reparent children.
689 list_for_each_safe(_p, _n, &father->children) {
690 int ptrace;
691 p = list_entry(_p, struct task_struct, sibling);
693 ptrace = p->ptrace;
695 /* if father isn't the real parent, then ptrace must be enabled */
696 BUG_ON(father != p->real_parent && !ptrace);
698 if (father == p->real_parent) {
699 /* reparent with a reaper, real father it's us */
700 choose_new_parent(p, reaper);
701 reparent_thread(p, father, 0);
702 } else {
703 /* reparent ptraced task to its real parent */
704 __ptrace_unlink (p);
705 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
706 thread_group_empty(p))
707 do_notify_parent(p, p->exit_signal);
711 * if the ptraced child is a zombie with exit_signal == -1
712 * we must collect it before we exit, or it will remain
713 * zombie forever since we prevented it from self-reap itself
714 * while it was being traced by us, to be able to see it in wait4.
716 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
717 list_add(&p->ptrace_list, to_release);
719 list_for_each_safe(_p, _n, &father->ptrace_children) {
720 p = list_entry(_p, struct task_struct, ptrace_list);
721 choose_new_parent(p, reaper);
722 reparent_thread(p, father, 1);
727 * Send signals to all our closest relatives so that they know
728 * to properly mourn us..
730 static void exit_notify(struct task_struct *tsk)
732 int state;
733 struct task_struct *t;
734 struct list_head ptrace_dead, *_p, *_n;
736 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
737 && !thread_group_empty(tsk)) {
739 * This occurs when there was a race between our exit
740 * syscall and a group signal choosing us as the one to
741 * wake up. It could be that we are the only thread
742 * alerted to check for pending signals, but another thread
743 * should be woken now to take the signal since we will not.
744 * Now we'll wake all the threads in the group just to make
745 * sure someone gets all the pending signals.
747 read_lock(&tasklist_lock);
748 spin_lock_irq(&tsk->sighand->siglock);
749 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
750 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
751 recalc_sigpending_tsk(t);
752 if (signal_pending(t))
753 signal_wake_up(t, 0);
755 spin_unlock_irq(&tsk->sighand->siglock);
756 read_unlock(&tasklist_lock);
759 write_lock_irq(&tasklist_lock);
762 * This does two things:
764 * A. Make init inherit all the child processes
765 * B. Check to see if any process groups have become orphaned
766 * as a result of our exiting, and if they have any stopped
767 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
770 INIT_LIST_HEAD(&ptrace_dead);
771 forget_original_parent(tsk, &ptrace_dead);
772 BUG_ON(!list_empty(&tsk->children));
773 BUG_ON(!list_empty(&tsk->ptrace_children));
776 * Check to see if any process groups have become orphaned
777 * as a result of our exiting, and if they have any stopped
778 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
780 * Case i: Our father is in a different pgrp than we are
781 * and we were the only connection outside, so our pgrp
782 * is about to become orphaned.
785 t = tsk->real_parent;
787 if ((process_group(t) != process_group(tsk)) &&
788 (t->signal->session == tsk->signal->session) &&
789 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
790 has_stopped_jobs(process_group(tsk))) {
791 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
792 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
795 /* Let father know we died
797 * Thread signals are configurable, but you aren't going to use
798 * that to send signals to arbitary processes.
799 * That stops right now.
801 * If the parent exec id doesn't match the exec id we saved
802 * when we started then we know the parent has changed security
803 * domain.
805 * If our self_exec id doesn't match our parent_exec_id then
806 * we have changed execution domain as these two values started
807 * the same after a fork.
811 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
812 ( tsk->parent_exec_id != t->self_exec_id ||
813 tsk->self_exec_id != tsk->parent_exec_id)
814 && !capable(CAP_KILL))
815 tsk->exit_signal = SIGCHLD;
818 /* If something other than our normal parent is ptracing us, then
819 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
820 * only has special meaning to our real parent.
822 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
823 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
824 do_notify_parent(tsk, signal);
825 } else if (tsk->ptrace) {
826 do_notify_parent(tsk, SIGCHLD);
829 state = EXIT_ZOMBIE;
830 if (tsk->exit_signal == -1 &&
831 (likely(tsk->ptrace == 0) ||
832 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
833 state = EXIT_DEAD;
834 tsk->exit_state = state;
836 write_unlock_irq(&tasklist_lock);
838 list_for_each_safe(_p, _n, &ptrace_dead) {
839 list_del_init(_p);
840 t = list_entry(_p, struct task_struct, ptrace_list);
841 release_task(t);
844 /* If the process is dead, release it - nobody will wait for it */
845 if (state == EXIT_DEAD)
846 release_task(tsk);
849 fastcall NORET_TYPE void do_exit(long code)
851 struct task_struct *tsk = current;
852 struct taskstats *tidstats;
853 int group_dead;
854 unsigned int mycpu;
856 profile_task_exit(tsk);
858 WARN_ON(atomic_read(&tsk->fs_excl));
860 if (unlikely(in_interrupt()))
861 panic("Aiee, killing interrupt handler!");
862 if (unlikely(!tsk->pid))
863 panic("Attempted to kill the idle task!");
864 if (unlikely(tsk == child_reaper))
865 panic("Attempted to kill init!");
867 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
868 current->ptrace_message = code;
869 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
873 * We're taking recursive faults here in do_exit. Safest is to just
874 * leave this task alone and wait for reboot.
876 if (unlikely(tsk->flags & PF_EXITING)) {
877 printk(KERN_ALERT
878 "Fixing recursive fault but reboot is needed!\n");
879 if (tsk->io_context)
880 exit_io_context();
881 set_current_state(TASK_UNINTERRUPTIBLE);
882 schedule();
885 tsk->flags |= PF_EXITING;
887 if (unlikely(in_atomic()))
888 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
889 current->comm, current->pid,
890 preempt_count());
892 taskstats_exit_alloc(&tidstats, &mycpu);
894 acct_update_integrals(tsk);
895 if (tsk->mm) {
896 update_hiwater_rss(tsk->mm);
897 update_hiwater_vm(tsk->mm);
899 group_dead = atomic_dec_and_test(&tsk->signal->live);
900 if (group_dead) {
901 hrtimer_cancel(&tsk->signal->real_timer);
902 exit_itimers(tsk->signal);
904 acct_collect(code, group_dead);
905 if (unlikely(tsk->robust_list))
906 exit_robust_list(tsk);
907 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
908 if (unlikely(tsk->compat_robust_list))
909 compat_exit_robust_list(tsk);
910 #endif
911 if (unlikely(tsk->audit_context))
912 audit_free(tsk);
913 taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
914 taskstats_exit_free(tidstats);
916 exit_mm(tsk);
918 if (group_dead)
919 acct_process();
920 exit_sem(tsk);
921 __exit_files(tsk);
922 __exit_fs(tsk);
923 exit_thread();
924 cpuset_exit(tsk);
925 exit_keys(tsk);
927 if (group_dead && tsk->signal->leader)
928 disassociate_ctty(1);
930 module_put(task_thread_info(tsk)->exec_domain->module);
931 if (tsk->binfmt)
932 module_put(tsk->binfmt->module);
934 tsk->exit_code = code;
935 proc_exit_connector(tsk);
936 exit_notify(tsk);
937 exit_task_namespaces(tsk);
938 #ifdef CONFIG_NUMA
939 mpol_free(tsk->mempolicy);
940 tsk->mempolicy = NULL;
941 #endif
943 * This must happen late, after the PID is not
944 * hashed anymore:
946 if (unlikely(!list_empty(&tsk->pi_state_list)))
947 exit_pi_state_list(tsk);
948 if (unlikely(current->pi_state_cache))
949 kfree(current->pi_state_cache);
951 * Make sure we are holding no locks:
953 debug_check_no_locks_held(tsk);
955 if (tsk->io_context)
956 exit_io_context();
958 if (tsk->splice_pipe)
959 __free_pipe_info(tsk->splice_pipe);
961 preempt_disable();
962 /* causes final put_task_struct in finish_task_switch(). */
963 tsk->state = TASK_DEAD;
965 schedule();
966 BUG();
967 /* Avoid "noreturn function does return". */
968 for (;;)
969 cpu_relax(); /* For when BUG is null */
972 EXPORT_SYMBOL_GPL(do_exit);
974 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
976 if (comp)
977 complete(comp);
979 do_exit(code);
982 EXPORT_SYMBOL(complete_and_exit);
984 asmlinkage long sys_exit(int error_code)
986 do_exit((error_code&0xff)<<8);
990 * Take down every thread in the group. This is called by fatal signals
991 * as well as by sys_exit_group (below).
993 NORET_TYPE void
994 do_group_exit(int exit_code)
996 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
998 if (current->signal->flags & SIGNAL_GROUP_EXIT)
999 exit_code = current->signal->group_exit_code;
1000 else if (!thread_group_empty(current)) {
1001 struct signal_struct *const sig = current->signal;
1002 struct sighand_struct *const sighand = current->sighand;
1003 spin_lock_irq(&sighand->siglock);
1004 if (sig->flags & SIGNAL_GROUP_EXIT)
1005 /* Another thread got here before we took the lock. */
1006 exit_code = sig->group_exit_code;
1007 else {
1008 sig->group_exit_code = exit_code;
1009 zap_other_threads(current);
1011 spin_unlock_irq(&sighand->siglock);
1014 do_exit(exit_code);
1015 /* NOTREACHED */
1019 * this kills every thread in the thread group. Note that any externally
1020 * wait4()-ing process will get the correct exit code - even if this
1021 * thread is not the thread group leader.
1023 asmlinkage void sys_exit_group(int error_code)
1025 do_group_exit((error_code & 0xff) << 8);
1028 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1030 if (pid > 0) {
1031 if (p->pid != pid)
1032 return 0;
1033 } else if (!pid) {
1034 if (process_group(p) != process_group(current))
1035 return 0;
1036 } else if (pid != -1) {
1037 if (process_group(p) != -pid)
1038 return 0;
1042 * Do not consider detached threads that are
1043 * not ptraced:
1045 if (p->exit_signal == -1 && !p->ptrace)
1046 return 0;
1048 /* Wait for all children (clone and not) if __WALL is set;
1049 * otherwise, wait for clone children *only* if __WCLONE is
1050 * set; otherwise, wait for non-clone children *only*. (Note:
1051 * A "clone" child here is one that reports to its parent
1052 * using a signal other than SIGCHLD.) */
1053 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1054 && !(options & __WALL))
1055 return 0;
1057 * Do not consider thread group leaders that are
1058 * in a non-empty thread group:
1060 if (delay_group_leader(p))
1061 return 2;
1063 if (security_task_wait(p))
1064 return 0;
1066 return 1;
1069 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1070 int why, int status,
1071 struct siginfo __user *infop,
1072 struct rusage __user *rusagep)
1074 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1076 put_task_struct(p);
1077 if (!retval)
1078 retval = put_user(SIGCHLD, &infop->si_signo);
1079 if (!retval)
1080 retval = put_user(0, &infop->si_errno);
1081 if (!retval)
1082 retval = put_user((short)why, &infop->si_code);
1083 if (!retval)
1084 retval = put_user(pid, &infop->si_pid);
1085 if (!retval)
1086 retval = put_user(uid, &infop->si_uid);
1087 if (!retval)
1088 retval = put_user(status, &infop->si_status);
1089 if (!retval)
1090 retval = pid;
1091 return retval;
1095 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1096 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1097 * the lock and this task is uninteresting. If we return nonzero, we have
1098 * released the lock and the system call should return.
1100 static int wait_task_zombie(struct task_struct *p, int noreap,
1101 struct siginfo __user *infop,
1102 int __user *stat_addr, struct rusage __user *ru)
1104 unsigned long state;
1105 int retval;
1106 int status;
1108 if (unlikely(noreap)) {
1109 pid_t pid = p->pid;
1110 uid_t uid = p->uid;
1111 int exit_code = p->exit_code;
1112 int why, status;
1114 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1115 return 0;
1116 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1117 return 0;
1118 get_task_struct(p);
1119 read_unlock(&tasklist_lock);
1120 if ((exit_code & 0x7f) == 0) {
1121 why = CLD_EXITED;
1122 status = exit_code >> 8;
1123 } else {
1124 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1125 status = exit_code & 0x7f;
1127 return wait_noreap_copyout(p, pid, uid, why,
1128 status, infop, ru);
1132 * Try to move the task's state to DEAD
1133 * only one thread is allowed to do this:
1135 state = xchg(&p->exit_state, EXIT_DEAD);
1136 if (state != EXIT_ZOMBIE) {
1137 BUG_ON(state != EXIT_DEAD);
1138 return 0;
1140 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1142 * This can only happen in a race with a ptraced thread
1143 * dying on another processor.
1145 return 0;
1148 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1149 struct signal_struct *psig;
1150 struct signal_struct *sig;
1153 * The resource counters for the group leader are in its
1154 * own task_struct. Those for dead threads in the group
1155 * are in its signal_struct, as are those for the child
1156 * processes it has previously reaped. All these
1157 * accumulate in the parent's signal_struct c* fields.
1159 * We don't bother to take a lock here to protect these
1160 * p->signal fields, because they are only touched by
1161 * __exit_signal, which runs with tasklist_lock
1162 * write-locked anyway, and so is excluded here. We do
1163 * need to protect the access to p->parent->signal fields,
1164 * as other threads in the parent group can be right
1165 * here reaping other children at the same time.
1167 spin_lock_irq(&p->parent->sighand->siglock);
1168 psig = p->parent->signal;
1169 sig = p->signal;
1170 psig->cutime =
1171 cputime_add(psig->cutime,
1172 cputime_add(p->utime,
1173 cputime_add(sig->utime,
1174 sig->cutime)));
1175 psig->cstime =
1176 cputime_add(psig->cstime,
1177 cputime_add(p->stime,
1178 cputime_add(sig->stime,
1179 sig->cstime)));
1180 psig->cmin_flt +=
1181 p->min_flt + sig->min_flt + sig->cmin_flt;
1182 psig->cmaj_flt +=
1183 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1184 psig->cnvcsw +=
1185 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1186 psig->cnivcsw +=
1187 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1188 spin_unlock_irq(&p->parent->sighand->siglock);
1192 * Now we are sure this task is interesting, and no other
1193 * thread can reap it because we set its state to EXIT_DEAD.
1195 read_unlock(&tasklist_lock);
1197 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1198 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1199 ? p->signal->group_exit_code : p->exit_code;
1200 if (!retval && stat_addr)
1201 retval = put_user(status, stat_addr);
1202 if (!retval && infop)
1203 retval = put_user(SIGCHLD, &infop->si_signo);
1204 if (!retval && infop)
1205 retval = put_user(0, &infop->si_errno);
1206 if (!retval && infop) {
1207 int why;
1209 if ((status & 0x7f) == 0) {
1210 why = CLD_EXITED;
1211 status >>= 8;
1212 } else {
1213 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1214 status &= 0x7f;
1216 retval = put_user((short)why, &infop->si_code);
1217 if (!retval)
1218 retval = put_user(status, &infop->si_status);
1220 if (!retval && infop)
1221 retval = put_user(p->pid, &infop->si_pid);
1222 if (!retval && infop)
1223 retval = put_user(p->uid, &infop->si_uid);
1224 if (retval) {
1225 // TODO: is this safe?
1226 p->exit_state = EXIT_ZOMBIE;
1227 return retval;
1229 retval = p->pid;
1230 if (p->real_parent != p->parent) {
1231 write_lock_irq(&tasklist_lock);
1232 /* Double-check with lock held. */
1233 if (p->real_parent != p->parent) {
1234 __ptrace_unlink(p);
1235 // TODO: is this safe?
1236 p->exit_state = EXIT_ZOMBIE;
1238 * If this is not a detached task, notify the parent.
1239 * If it's still not detached after that, don't release
1240 * it now.
1242 if (p->exit_signal != -1) {
1243 do_notify_parent(p, p->exit_signal);
1244 if (p->exit_signal != -1)
1245 p = NULL;
1248 write_unlock_irq(&tasklist_lock);
1250 if (p != NULL)
1251 release_task(p);
1252 BUG_ON(!retval);
1253 return retval;
1257 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1258 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1259 * the lock and this task is uninteresting. If we return nonzero, we have
1260 * released the lock and the system call should return.
1262 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1263 int noreap, struct siginfo __user *infop,
1264 int __user *stat_addr, struct rusage __user *ru)
1266 int retval, exit_code;
1268 if (!p->exit_code)
1269 return 0;
1270 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1271 p->signal && p->signal->group_stop_count > 0)
1273 * A group stop is in progress and this is the group leader.
1274 * We won't report until all threads have stopped.
1276 return 0;
1279 * Now we are pretty sure this task is interesting.
1280 * Make sure it doesn't get reaped out from under us while we
1281 * give up the lock and then examine it below. We don't want to
1282 * keep holding onto the tasklist_lock while we call getrusage and
1283 * possibly take page faults for user memory.
1285 get_task_struct(p);
1286 read_unlock(&tasklist_lock);
1288 if (unlikely(noreap)) {
1289 pid_t pid = p->pid;
1290 uid_t uid = p->uid;
1291 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1293 exit_code = p->exit_code;
1294 if (unlikely(!exit_code) ||
1295 unlikely(p->state & TASK_TRACED))
1296 goto bail_ref;
1297 return wait_noreap_copyout(p, pid, uid,
1298 why, (exit_code << 8) | 0x7f,
1299 infop, ru);
1302 write_lock_irq(&tasklist_lock);
1305 * This uses xchg to be atomic with the thread resuming and setting
1306 * it. It must also be done with the write lock held to prevent a
1307 * race with the EXIT_ZOMBIE case.
1309 exit_code = xchg(&p->exit_code, 0);
1310 if (unlikely(p->exit_state)) {
1312 * The task resumed and then died. Let the next iteration
1313 * catch it in EXIT_ZOMBIE. Note that exit_code might
1314 * already be zero here if it resumed and did _exit(0).
1315 * The task itself is dead and won't touch exit_code again;
1316 * other processors in this function are locked out.
1318 p->exit_code = exit_code;
1319 exit_code = 0;
1321 if (unlikely(exit_code == 0)) {
1323 * Another thread in this function got to it first, or it
1324 * resumed, or it resumed and then died.
1326 write_unlock_irq(&tasklist_lock);
1327 bail_ref:
1328 put_task_struct(p);
1330 * We are returning to the wait loop without having successfully
1331 * removed the process and having released the lock. We cannot
1332 * continue, since the "p" task pointer is potentially stale.
1334 * Return -EAGAIN, and do_wait() will restart the loop from the
1335 * beginning. Do _not_ re-acquire the lock.
1337 return -EAGAIN;
1340 /* move to end of parent's list to avoid starvation */
1341 remove_parent(p);
1342 add_parent(p);
1344 write_unlock_irq(&tasklist_lock);
1346 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1347 if (!retval && stat_addr)
1348 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1349 if (!retval && infop)
1350 retval = put_user(SIGCHLD, &infop->si_signo);
1351 if (!retval && infop)
1352 retval = put_user(0, &infop->si_errno);
1353 if (!retval && infop)
1354 retval = put_user((short)((p->ptrace & PT_PTRACED)
1355 ? CLD_TRAPPED : CLD_STOPPED),
1356 &infop->si_code);
1357 if (!retval && infop)
1358 retval = put_user(exit_code, &infop->si_status);
1359 if (!retval && infop)
1360 retval = put_user(p->pid, &infop->si_pid);
1361 if (!retval && infop)
1362 retval = put_user(p->uid, &infop->si_uid);
1363 if (!retval)
1364 retval = p->pid;
1365 put_task_struct(p);
1367 BUG_ON(!retval);
1368 return retval;
1372 * Handle do_wait work for one task in a live, non-stopped state.
1373 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1374 * the lock and this task is uninteresting. If we return nonzero, we have
1375 * released the lock and the system call should return.
1377 static int wait_task_continued(struct task_struct *p, int noreap,
1378 struct siginfo __user *infop,
1379 int __user *stat_addr, struct rusage __user *ru)
1381 int retval;
1382 pid_t pid;
1383 uid_t uid;
1385 if (unlikely(!p->signal))
1386 return 0;
1388 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1389 return 0;
1391 spin_lock_irq(&p->sighand->siglock);
1392 /* Re-check with the lock held. */
1393 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1394 spin_unlock_irq(&p->sighand->siglock);
1395 return 0;
1397 if (!noreap)
1398 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1399 spin_unlock_irq(&p->sighand->siglock);
1401 pid = p->pid;
1402 uid = p->uid;
1403 get_task_struct(p);
1404 read_unlock(&tasklist_lock);
1406 if (!infop) {
1407 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1408 put_task_struct(p);
1409 if (!retval && stat_addr)
1410 retval = put_user(0xffff, stat_addr);
1411 if (!retval)
1412 retval = p->pid;
1413 } else {
1414 retval = wait_noreap_copyout(p, pid, uid,
1415 CLD_CONTINUED, SIGCONT,
1416 infop, ru);
1417 BUG_ON(retval == 0);
1420 return retval;
1424 static inline int my_ptrace_child(struct task_struct *p)
1426 if (!(p->ptrace & PT_PTRACED))
1427 return 0;
1428 if (!(p->ptrace & PT_ATTACHED))
1429 return 1;
1431 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1432 * we are the attacher. If we are the real parent, this is a race
1433 * inside ptrace_attach. It is waiting for the tasklist_lock,
1434 * which we have to switch the parent links, but has already set
1435 * the flags in p->ptrace.
1437 return (p->parent != p->real_parent);
1440 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1441 int __user *stat_addr, struct rusage __user *ru)
1443 DECLARE_WAITQUEUE(wait, current);
1444 struct task_struct *tsk;
1445 int flag, retval;
1447 add_wait_queue(&current->signal->wait_chldexit,&wait);
1448 repeat:
1450 * We will set this flag if we see any child that might later
1451 * match our criteria, even if we are not able to reap it yet.
1453 flag = 0;
1454 current->state = TASK_INTERRUPTIBLE;
1455 read_lock(&tasklist_lock);
1456 tsk = current;
1457 do {
1458 struct task_struct *p;
1459 struct list_head *_p;
1460 int ret;
1462 list_for_each(_p,&tsk->children) {
1463 p = list_entry(_p, struct task_struct, sibling);
1465 ret = eligible_child(pid, options, p);
1466 if (!ret)
1467 continue;
1469 switch (p->state) {
1470 case TASK_TRACED:
1472 * When we hit the race with PTRACE_ATTACH,
1473 * we will not report this child. But the
1474 * race means it has not yet been moved to
1475 * our ptrace_children list, so we need to
1476 * set the flag here to avoid a spurious ECHILD
1477 * when the race happens with the only child.
1479 flag = 1;
1480 if (!my_ptrace_child(p))
1481 continue;
1482 /*FALLTHROUGH*/
1483 case TASK_STOPPED:
1485 * It's stopped now, so it might later
1486 * continue, exit, or stop again.
1488 flag = 1;
1489 if (!(options & WUNTRACED) &&
1490 !my_ptrace_child(p))
1491 continue;
1492 retval = wait_task_stopped(p, ret == 2,
1493 (options & WNOWAIT),
1494 infop,
1495 stat_addr, ru);
1496 if (retval == -EAGAIN)
1497 goto repeat;
1498 if (retval != 0) /* He released the lock. */
1499 goto end;
1500 break;
1501 default:
1502 // case EXIT_DEAD:
1503 if (p->exit_state == EXIT_DEAD)
1504 continue;
1505 // case EXIT_ZOMBIE:
1506 if (p->exit_state == EXIT_ZOMBIE) {
1508 * Eligible but we cannot release
1509 * it yet:
1511 if (ret == 2)
1512 goto check_continued;
1513 if (!likely(options & WEXITED))
1514 continue;
1515 retval = wait_task_zombie(
1516 p, (options & WNOWAIT),
1517 infop, stat_addr, ru);
1518 /* He released the lock. */
1519 if (retval != 0)
1520 goto end;
1521 break;
1523 check_continued:
1525 * It's running now, so it might later
1526 * exit, stop, or stop and then continue.
1528 flag = 1;
1529 if (!unlikely(options & WCONTINUED))
1530 continue;
1531 retval = wait_task_continued(
1532 p, (options & WNOWAIT),
1533 infop, stat_addr, ru);
1534 if (retval != 0) /* He released the lock. */
1535 goto end;
1536 break;
1539 if (!flag) {
1540 list_for_each(_p, &tsk->ptrace_children) {
1541 p = list_entry(_p, struct task_struct,
1542 ptrace_list);
1543 if (!eligible_child(pid, options, p))
1544 continue;
1545 flag = 1;
1546 break;
1549 if (options & __WNOTHREAD)
1550 break;
1551 tsk = next_thread(tsk);
1552 BUG_ON(tsk->signal != current->signal);
1553 } while (tsk != current);
1555 read_unlock(&tasklist_lock);
1556 if (flag) {
1557 retval = 0;
1558 if (options & WNOHANG)
1559 goto end;
1560 retval = -ERESTARTSYS;
1561 if (signal_pending(current))
1562 goto end;
1563 schedule();
1564 goto repeat;
1566 retval = -ECHILD;
1567 end:
1568 current->state = TASK_RUNNING;
1569 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1570 if (infop) {
1571 if (retval > 0)
1572 retval = 0;
1573 else {
1575 * For a WNOHANG return, clear out all the fields
1576 * we would set so the user can easily tell the
1577 * difference.
1579 if (!retval)
1580 retval = put_user(0, &infop->si_signo);
1581 if (!retval)
1582 retval = put_user(0, &infop->si_errno);
1583 if (!retval)
1584 retval = put_user(0, &infop->si_code);
1585 if (!retval)
1586 retval = put_user(0, &infop->si_pid);
1587 if (!retval)
1588 retval = put_user(0, &infop->si_uid);
1589 if (!retval)
1590 retval = put_user(0, &infop->si_status);
1593 return retval;
1596 asmlinkage long sys_waitid(int which, pid_t pid,
1597 struct siginfo __user *infop, int options,
1598 struct rusage __user *ru)
1600 long ret;
1602 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1603 return -EINVAL;
1604 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1605 return -EINVAL;
1607 switch (which) {
1608 case P_ALL:
1609 pid = -1;
1610 break;
1611 case P_PID:
1612 if (pid <= 0)
1613 return -EINVAL;
1614 break;
1615 case P_PGID:
1616 if (pid <= 0)
1617 return -EINVAL;
1618 pid = -pid;
1619 break;
1620 default:
1621 return -EINVAL;
1624 ret = do_wait(pid, options, infop, NULL, ru);
1626 /* avoid REGPARM breakage on x86: */
1627 prevent_tail_call(ret);
1628 return ret;
1631 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1632 int options, struct rusage __user *ru)
1634 long ret;
1636 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1637 __WNOTHREAD|__WCLONE|__WALL))
1638 return -EINVAL;
1639 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1641 /* avoid REGPARM breakage on x86: */
1642 prevent_tail_call(ret);
1643 return ret;
1646 #ifdef __ARCH_WANT_SYS_WAITPID
1649 * sys_waitpid() remains for compatibility. waitpid() should be
1650 * implemented by calling sys_wait4() from libc.a.
1652 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1654 return sys_wait4(pid, stat_addr, options, NULL);
1657 #endif