4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
36 /* #define DCACHE_DEBUG 1 */
38 int sysctl_vfs_cache_pressure
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 static seqlock_t rename_lock __cacheline_aligned_in_smp
= SEQLOCK_UNLOCKED
;
44 EXPORT_SYMBOL(dcache_lock
);
46 static kmem_cache_t
*dentry_cache
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask
;
62 static unsigned int d_hash_shift
;
63 static struct hlist_head
*dentry_hashtable
;
64 static LIST_HEAD(dentry_unused
);
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat
= {
71 static void d_callback(struct rcu_head
*head
)
73 struct dentry
* dentry
= container_of(head
, struct dentry
, d_rcu
);
75 if (dname_external(dentry
))
76 kfree(dentry
->d_name
.name
);
77 kmem_cache_free(dentry_cache
, dentry
);
81 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
84 static void d_free(struct dentry
*dentry
)
86 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
87 dentry
->d_op
->d_release(dentry
);
88 call_rcu(&dentry
->d_rcu
, d_callback
);
92 * Release the dentry's inode, using the filesystem
93 * d_iput() operation if defined.
94 * Called with dcache_lock and per dentry lock held, drops both.
96 static inline void dentry_iput(struct dentry
* dentry
)
98 struct inode
*inode
= dentry
->d_inode
;
100 dentry
->d_inode
= NULL
;
101 list_del_init(&dentry
->d_alias
);
102 spin_unlock(&dentry
->d_lock
);
103 spin_unlock(&dcache_lock
);
104 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
105 dentry
->d_op
->d_iput(dentry
, inode
);
109 spin_unlock(&dentry
->d_lock
);
110 spin_unlock(&dcache_lock
);
117 * This is complicated by the fact that we do not want to put
118 * dentries that are no longer on any hash chain on the unused
119 * list: we'd much rather just get rid of them immediately.
121 * However, that implies that we have to traverse the dentry
122 * tree upwards to the parents which might _also_ now be
123 * scheduled for deletion (it may have been only waiting for
124 * its last child to go away).
126 * This tail recursion is done by hand as we don't want to depend
127 * on the compiler to always get this right (gcc generally doesn't).
128 * Real recursion would eat up our stack space.
132 * dput - release a dentry
133 * @dentry: dentry to release
135 * Release a dentry. This will drop the usage count and if appropriate
136 * call the dentry unlink method as well as removing it from the queues and
137 * releasing its resources. If the parent dentries were scheduled for release
138 * they too may now get deleted.
140 * no dcache lock, please.
143 void dput(struct dentry
*dentry
)
149 if (atomic_read(&dentry
->d_count
) == 1)
151 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
154 spin_lock(&dentry
->d_lock
);
155 if (atomic_read(&dentry
->d_count
)) {
156 spin_unlock(&dentry
->d_lock
);
157 spin_unlock(&dcache_lock
);
162 * AV: ->d_delete() is _NOT_ allowed to block now.
164 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
165 if (dentry
->d_op
->d_delete(dentry
))
168 /* Unreachable? Get rid of it */
169 if (d_unhashed(dentry
))
171 if (list_empty(&dentry
->d_lru
)) {
172 dentry
->d_flags
|= DCACHE_REFERENCED
;
173 list_add(&dentry
->d_lru
, &dentry_unused
);
174 dentry_stat
.nr_unused
++;
176 spin_unlock(&dentry
->d_lock
);
177 spin_unlock(&dcache_lock
);
184 struct dentry
*parent
;
186 /* If dentry was on d_lru list
187 * delete it from there
189 if (!list_empty(&dentry
->d_lru
)) {
190 list_del(&dentry
->d_lru
);
191 dentry_stat
.nr_unused
--;
193 list_del(&dentry
->d_child
);
194 dentry_stat
.nr_dentry
--; /* For d_free, below */
195 /*drops the locks, at that point nobody can reach this dentry */
197 parent
= dentry
->d_parent
;
199 if (dentry
== parent
)
207 * d_invalidate - invalidate a dentry
208 * @dentry: dentry to invalidate
210 * Try to invalidate the dentry if it turns out to be
211 * possible. If there are other dentries that can be
212 * reached through this one we can't delete it and we
213 * return -EBUSY. On success we return 0.
218 int d_invalidate(struct dentry
* dentry
)
221 * If it's already been dropped, return OK.
223 spin_lock(&dcache_lock
);
224 if (d_unhashed(dentry
)) {
225 spin_unlock(&dcache_lock
);
229 * Check whether to do a partial shrink_dcache
230 * to get rid of unused child entries.
232 if (!list_empty(&dentry
->d_subdirs
)) {
233 spin_unlock(&dcache_lock
);
234 shrink_dcache_parent(dentry
);
235 spin_lock(&dcache_lock
);
239 * Somebody else still using it?
241 * If it's a directory, we can't drop it
242 * for fear of somebody re-populating it
243 * with children (even though dropping it
244 * would make it unreachable from the root,
245 * we might still populate it if it was a
246 * working directory or similar).
248 spin_lock(&dentry
->d_lock
);
249 if (atomic_read(&dentry
->d_count
) > 1) {
250 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
251 spin_unlock(&dentry
->d_lock
);
252 spin_unlock(&dcache_lock
);
258 spin_unlock(&dentry
->d_lock
);
259 spin_unlock(&dcache_lock
);
263 /* This should be called _only_ with dcache_lock held */
265 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
267 atomic_inc(&dentry
->d_count
);
268 if (!list_empty(&dentry
->d_lru
)) {
269 dentry_stat
.nr_unused
--;
270 list_del_init(&dentry
->d_lru
);
275 struct dentry
* dget_locked(struct dentry
*dentry
)
277 return __dget_locked(dentry
);
281 * d_find_alias - grab a hashed alias of inode
282 * @inode: inode in question
283 * @want_discon: flag, used by d_splice_alias, to request
284 * that only a DISCONNECTED alias be returned.
286 * If inode has a hashed alias, or is a directory and has any alias,
287 * acquire the reference to alias and return it. Otherwise return NULL.
288 * Notice that if inode is a directory there can be only one alias and
289 * it can be unhashed only if it has no children, or if it is the root
292 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
293 * any other hashed alias over that one unless @want_discon is set,
294 * in which case only return a DCACHE_DISCONNECTED alias.
297 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
299 struct list_head
*head
, *next
, *tmp
;
300 struct dentry
*alias
, *discon_alias
=NULL
;
302 head
= &inode
->i_dentry
;
303 next
= inode
->i_dentry
.next
;
304 while (next
!= head
) {
308 alias
= list_entry(tmp
, struct dentry
, d_alias
);
309 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
310 if (alias
->d_flags
& DCACHE_DISCONNECTED
)
311 discon_alias
= alias
;
312 else if (!want_discon
) {
313 __dget_locked(alias
);
319 __dget_locked(discon_alias
);
323 struct dentry
* d_find_alias(struct inode
*inode
)
326 spin_lock(&dcache_lock
);
327 de
= __d_find_alias(inode
, 0);
328 spin_unlock(&dcache_lock
);
333 * Try to kill dentries associated with this inode.
334 * WARNING: you must own a reference to inode.
336 void d_prune_aliases(struct inode
*inode
)
338 struct list_head
*tmp
, *head
= &inode
->i_dentry
;
340 spin_lock(&dcache_lock
);
342 while ((tmp
= tmp
->next
) != head
) {
343 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_alias
);
344 spin_lock(&dentry
->d_lock
);
345 if (!atomic_read(&dentry
->d_count
)) {
346 __dget_locked(dentry
);
348 spin_unlock(&dentry
->d_lock
);
349 spin_unlock(&dcache_lock
);
353 spin_unlock(&dentry
->d_lock
);
355 spin_unlock(&dcache_lock
);
359 * Throw away a dentry - free the inode, dput the parent.
360 * This requires that the LRU list has already been
362 * Called with dcache_lock, drops it and then regains.
364 static inline void prune_one_dentry(struct dentry
* dentry
)
366 struct dentry
* parent
;
369 list_del(&dentry
->d_child
);
370 dentry_stat
.nr_dentry
--; /* For d_free, below */
372 parent
= dentry
->d_parent
;
374 if (parent
!= dentry
)
376 spin_lock(&dcache_lock
);
380 * prune_dcache - shrink the dcache
381 * @count: number of entries to try and free
383 * Shrink the dcache. This is done when we need
384 * more memory, or simply when we need to unmount
385 * something (at which point we need to unuse
388 * This function may fail to free any resources if
389 * all the dentries are in use.
392 static void prune_dcache(int count
)
394 spin_lock(&dcache_lock
);
395 for (; count
; count
--) {
396 struct dentry
*dentry
;
397 struct list_head
*tmp
;
399 cond_resched_lock(&dcache_lock
);
401 tmp
= dentry_unused
.prev
;
402 if (tmp
== &dentry_unused
)
405 prefetch(dentry_unused
.prev
);
406 dentry_stat
.nr_unused
--;
407 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
409 spin_lock(&dentry
->d_lock
);
411 * We found an inuse dentry which was not removed from
412 * dentry_unused because of laziness during lookup. Do not free
413 * it - just keep it off the dentry_unused list.
415 if (atomic_read(&dentry
->d_count
)) {
416 spin_unlock(&dentry
->d_lock
);
419 /* If the dentry was recently referenced, don't free it. */
420 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
421 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
422 list_add(&dentry
->d_lru
, &dentry_unused
);
423 dentry_stat
.nr_unused
++;
424 spin_unlock(&dentry
->d_lock
);
427 prune_one_dentry(dentry
);
429 spin_unlock(&dcache_lock
);
433 * Shrink the dcache for the specified super block.
434 * This allows us to unmount a device without disturbing
435 * the dcache for the other devices.
437 * This implementation makes just two traversals of the
438 * unused list. On the first pass we move the selected
439 * dentries to the most recent end, and on the second
440 * pass we free them. The second pass must restart after
441 * each dput(), but since the target dentries are all at
442 * the end, it's really just a single traversal.
446 * shrink_dcache_sb - shrink dcache for a superblock
449 * Shrink the dcache for the specified super block. This
450 * is used to free the dcache before unmounting a file
454 void shrink_dcache_sb(struct super_block
* sb
)
456 struct list_head
*tmp
, *next
;
457 struct dentry
*dentry
;
460 * Pass one ... move the dentries for the specified
461 * superblock to the most recent end of the unused list.
463 spin_lock(&dcache_lock
);
464 next
= dentry_unused
.next
;
465 while (next
!= &dentry_unused
) {
468 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
469 if (dentry
->d_sb
!= sb
)
472 list_add(tmp
, &dentry_unused
);
476 * Pass two ... free the dentries for this superblock.
479 next
= dentry_unused
.next
;
480 while (next
!= &dentry_unused
) {
483 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
484 if (dentry
->d_sb
!= sb
)
486 dentry_stat
.nr_unused
--;
488 spin_lock(&dentry
->d_lock
);
489 if (atomic_read(&dentry
->d_count
)) {
490 spin_unlock(&dentry
->d_lock
);
493 prune_one_dentry(dentry
);
496 spin_unlock(&dcache_lock
);
500 * Search for at least 1 mount point in the dentry's subdirs.
501 * We descend to the next level whenever the d_subdirs
502 * list is non-empty and continue searching.
506 * have_submounts - check for mounts over a dentry
507 * @parent: dentry to check.
509 * Return true if the parent or its subdirectories contain
513 int have_submounts(struct dentry
*parent
)
515 struct dentry
*this_parent
= parent
;
516 struct list_head
*next
;
518 spin_lock(&dcache_lock
);
519 if (d_mountpoint(parent
))
522 next
= this_parent
->d_subdirs
.next
;
524 while (next
!= &this_parent
->d_subdirs
) {
525 struct list_head
*tmp
= next
;
526 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
528 /* Have we found a mount point ? */
529 if (d_mountpoint(dentry
))
531 if (!list_empty(&dentry
->d_subdirs
)) {
532 this_parent
= dentry
;
537 * All done at this level ... ascend and resume the search.
539 if (this_parent
!= parent
) {
540 next
= this_parent
->d_child
.next
;
541 this_parent
= this_parent
->d_parent
;
544 spin_unlock(&dcache_lock
);
545 return 0; /* No mount points found in tree */
547 spin_unlock(&dcache_lock
);
552 * Search the dentry child list for the specified parent,
553 * and move any unused dentries to the end of the unused
554 * list for prune_dcache(). We descend to the next level
555 * whenever the d_subdirs list is non-empty and continue
558 * It returns zero iff there are no unused children,
559 * otherwise it returns the number of children moved to
560 * the end of the unused list. This may not be the total
561 * number of unused children, because select_parent can
562 * drop the lock and return early due to latency
565 static int select_parent(struct dentry
* parent
)
567 struct dentry
*this_parent
= parent
;
568 struct list_head
*next
;
571 spin_lock(&dcache_lock
);
573 next
= this_parent
->d_subdirs
.next
;
575 while (next
!= &this_parent
->d_subdirs
) {
576 struct list_head
*tmp
= next
;
577 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
580 if (!list_empty(&dentry
->d_lru
)) {
581 dentry_stat
.nr_unused
--;
582 list_del_init(&dentry
->d_lru
);
585 * move only zero ref count dentries to the end
586 * of the unused list for prune_dcache
588 if (!atomic_read(&dentry
->d_count
)) {
589 list_add(&dentry
->d_lru
, dentry_unused
.prev
);
590 dentry_stat
.nr_unused
++;
595 * We can return to the caller if we have found some (this
596 * ensures forward progress). We'll be coming back to find
599 if (found
&& need_resched())
603 * Descend a level if the d_subdirs list is non-empty.
605 if (!list_empty(&dentry
->d_subdirs
)) {
606 this_parent
= dentry
;
608 printk(KERN_DEBUG
"select_parent: descending to %s/%s, found=%d\n",
609 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
, found
);
615 * All done at this level ... ascend and resume the search.
617 if (this_parent
!= parent
) {
618 next
= this_parent
->d_child
.next
;
619 this_parent
= this_parent
->d_parent
;
621 printk(KERN_DEBUG
"select_parent: ascending to %s/%s, found=%d\n",
622 this_parent
->d_parent
->d_name
.name
, this_parent
->d_name
.name
, found
);
627 spin_unlock(&dcache_lock
);
632 * shrink_dcache_parent - prune dcache
633 * @parent: parent of entries to prune
635 * Prune the dcache to remove unused children of the parent dentry.
638 void shrink_dcache_parent(struct dentry
* parent
)
642 while ((found
= select_parent(parent
)) != 0)
647 * shrink_dcache_anon - further prune the cache
648 * @head: head of d_hash list of dentries to prune
650 * Prune the dentries that are anonymous
652 * parsing d_hash list does not hlist_for_each_rcu() as it
653 * done under dcache_lock.
656 void shrink_dcache_anon(struct hlist_head
*head
)
658 struct hlist_node
*lp
;
662 spin_lock(&dcache_lock
);
663 hlist_for_each(lp
, head
) {
664 struct dentry
*this = hlist_entry(lp
, struct dentry
, d_hash
);
665 if (!list_empty(&this->d_lru
)) {
666 dentry_stat
.nr_unused
--;
667 list_del_init(&this->d_lru
);
671 * move only zero ref count dentries to the end
672 * of the unused list for prune_dcache
674 if (!atomic_read(&this->d_count
)) {
675 list_add_tail(&this->d_lru
, &dentry_unused
);
676 dentry_stat
.nr_unused
++;
680 spin_unlock(&dcache_lock
);
686 * Scan `nr' dentries and return the number which remain.
688 * We need to avoid reentering the filesystem if the caller is performing a
689 * GFP_NOFS allocation attempt. One example deadlock is:
691 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
692 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
693 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
695 * In this case we return -1 to tell the caller that we baled.
697 static int shrink_dcache_memory(int nr
, unsigned int gfp_mask
)
700 if (!(gfp_mask
& __GFP_FS
))
704 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
708 * d_alloc - allocate a dcache entry
709 * @parent: parent of entry to allocate
710 * @name: qstr of the name
712 * Allocates a dentry. It returns %NULL if there is insufficient memory
713 * available. On a success the dentry is returned. The name passed in is
714 * copied and the copy passed in may be reused after this call.
717 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
719 struct dentry
*dentry
;
722 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
726 if (name
->len
> DNAME_INLINE_LEN
-1) {
727 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
729 kmem_cache_free(dentry_cache
, dentry
);
733 dname
= dentry
->d_iname
;
735 dentry
->d_name
.name
= dname
;
737 dentry
->d_name
.len
= name
->len
;
738 dentry
->d_name
.hash
= name
->hash
;
739 memcpy(dname
, name
->name
, name
->len
);
740 dname
[name
->len
] = 0;
742 atomic_set(&dentry
->d_count
, 1);
743 dentry
->d_flags
= DCACHE_UNHASHED
;
744 spin_lock_init(&dentry
->d_lock
);
745 dentry
->d_inode
= NULL
;
746 dentry
->d_parent
= NULL
;
749 dentry
->d_fsdata
= NULL
;
750 dentry
->d_mounted
= 0;
751 dentry
->d_cookie
= NULL
;
752 INIT_HLIST_NODE(&dentry
->d_hash
);
753 INIT_LIST_HEAD(&dentry
->d_lru
);
754 INIT_LIST_HEAD(&dentry
->d_subdirs
);
755 INIT_LIST_HEAD(&dentry
->d_alias
);
758 dentry
->d_parent
= dget(parent
);
759 dentry
->d_sb
= parent
->d_sb
;
761 INIT_LIST_HEAD(&dentry
->d_child
);
764 spin_lock(&dcache_lock
);
766 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
767 dentry_stat
.nr_dentry
++;
768 spin_unlock(&dcache_lock
);
773 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
778 q
.len
= strlen(name
);
779 q
.hash
= full_name_hash(q
.name
, q
.len
);
780 return d_alloc(parent
, &q
);
784 * d_instantiate - fill in inode information for a dentry
785 * @entry: dentry to complete
786 * @inode: inode to attach to this dentry
788 * Fill in inode information in the entry.
790 * This turns negative dentries into productive full members
793 * NOTE! This assumes that the inode count has been incremented
794 * (or otherwise set) by the caller to indicate that it is now
795 * in use by the dcache.
798 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
800 if (!list_empty(&entry
->d_alias
)) BUG();
801 spin_lock(&dcache_lock
);
803 list_add(&entry
->d_alias
, &inode
->i_dentry
);
804 entry
->d_inode
= inode
;
805 spin_unlock(&dcache_lock
);
806 security_d_instantiate(entry
, inode
);
810 * d_instantiate_unique - instantiate a non-aliased dentry
811 * @entry: dentry to instantiate
812 * @inode: inode to attach to this dentry
814 * Fill in inode information in the entry. On success, it returns NULL.
815 * If an unhashed alias of "entry" already exists, then we return the
816 * aliased dentry instead.
818 * Note that in order to avoid conflicts with rename() etc, the caller
819 * had better be holding the parent directory semaphore.
821 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
823 struct dentry
*alias
;
824 int len
= entry
->d_name
.len
;
825 const char *name
= entry
->d_name
.name
;
826 unsigned int hash
= entry
->d_name
.hash
;
828 BUG_ON(!list_empty(&entry
->d_alias
));
829 spin_lock(&dcache_lock
);
832 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
833 struct qstr
*qstr
= &alias
->d_name
;
835 if (qstr
->hash
!= hash
)
837 if (alias
->d_parent
!= entry
->d_parent
)
839 if (qstr
->len
!= len
)
841 if (memcmp(qstr
->name
, name
, len
))
844 spin_unlock(&dcache_lock
);
845 BUG_ON(!d_unhashed(alias
));
848 list_add(&entry
->d_alias
, &inode
->i_dentry
);
850 entry
->d_inode
= inode
;
851 spin_unlock(&dcache_lock
);
852 security_d_instantiate(entry
, inode
);
855 EXPORT_SYMBOL(d_instantiate_unique
);
858 * d_alloc_root - allocate root dentry
859 * @root_inode: inode to allocate the root for
861 * Allocate a root ("/") dentry for the inode given. The inode is
862 * instantiated and returned. %NULL is returned if there is insufficient
863 * memory or the inode passed is %NULL.
866 struct dentry
* d_alloc_root(struct inode
* root_inode
)
868 struct dentry
*res
= NULL
;
871 static const struct qstr name
= { .name
= "/", .len
= 1 };
873 res
= d_alloc(NULL
, &name
);
875 res
->d_sb
= root_inode
->i_sb
;
877 d_instantiate(res
, root_inode
);
883 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
886 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
887 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
888 return dentry_hashtable
+ (hash
& D_HASHMASK
);
892 * d_alloc_anon - allocate an anonymous dentry
893 * @inode: inode to allocate the dentry for
895 * This is similar to d_alloc_root. It is used by filesystems when
896 * creating a dentry for a given inode, often in the process of
897 * mapping a filehandle to a dentry. The returned dentry may be
898 * anonymous, or may have a full name (if the inode was already
899 * in the cache). The file system may need to make further
900 * efforts to connect this dentry into the dcache properly.
902 * When called on a directory inode, we must ensure that
903 * the inode only ever has one dentry. If a dentry is
904 * found, that is returned instead of allocating a new one.
906 * On successful return, the reference to the inode has been transferred
907 * to the dentry. If %NULL is returned (indicating kmalloc failure),
908 * the reference on the inode has not been released.
911 struct dentry
* d_alloc_anon(struct inode
*inode
)
913 static const struct qstr anonstring
= { .name
= "" };
917 if ((res
= d_find_alias(inode
))) {
922 tmp
= d_alloc(NULL
, &anonstring
);
926 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
928 spin_lock(&dcache_lock
);
929 res
= __d_find_alias(inode
, 0);
931 /* attach a disconnected dentry */
934 spin_lock(&res
->d_lock
);
935 res
->d_sb
= inode
->i_sb
;
937 res
->d_inode
= inode
;
938 res
->d_flags
|= DCACHE_DISCONNECTED
;
939 res
->d_flags
&= ~DCACHE_UNHASHED
;
940 list_add(&res
->d_alias
, &inode
->i_dentry
);
941 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
942 spin_unlock(&res
->d_lock
);
944 inode
= NULL
; /* don't drop reference */
946 spin_unlock(&dcache_lock
);
957 * d_splice_alias - splice a disconnected dentry into the tree if one exists
958 * @inode: the inode which may have a disconnected dentry
959 * @dentry: a negative dentry which we want to point to the inode.
961 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
962 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
963 * and return it, else simply d_add the inode to the dentry and return NULL.
965 * This is needed in the lookup routine of any filesystem that is exportable
966 * (via knfsd) so that we can build dcache paths to directories effectively.
968 * If a dentry was found and moved, then it is returned. Otherwise NULL
969 * is returned. This matches the expected return value of ->lookup.
972 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
974 struct dentry
*new = NULL
;
977 spin_lock(&dcache_lock
);
978 new = __d_find_alias(inode
, 1);
980 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
981 spin_unlock(&dcache_lock
);
982 security_d_instantiate(new, inode
);
987 /* d_instantiate takes dcache_lock, so we do it by hand */
988 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
989 dentry
->d_inode
= inode
;
990 spin_unlock(&dcache_lock
);
991 security_d_instantiate(dentry
, inode
);
995 d_add(dentry
, inode
);
1001 * d_lookup - search for a dentry
1002 * @parent: parent dentry
1003 * @name: qstr of name we wish to find
1005 * Searches the children of the parent dentry for the name in question. If
1006 * the dentry is found its reference count is incremented and the dentry
1007 * is returned. The caller must use d_put to free the entry when it has
1008 * finished using it. %NULL is returned on failure.
1010 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1011 * Memory barriers are used while updating and doing lockless traversal.
1012 * To avoid races with d_move while rename is happening, d_lock is used.
1014 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1015 * and name pointer in one structure pointed by d_qstr.
1017 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1018 * lookup is going on.
1020 * dentry_unused list is not updated even if lookup finds the required dentry
1021 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1022 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1025 * d_lookup() is protected against the concurrent renames in some unrelated
1026 * directory using the seqlockt_t rename_lock.
1029 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1031 struct dentry
* dentry
= NULL
;
1035 seq
= read_seqbegin(&rename_lock
);
1036 dentry
= __d_lookup(parent
, name
);
1039 } while (read_seqretry(&rename_lock
, seq
));
1043 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1045 unsigned int len
= name
->len
;
1046 unsigned int hash
= name
->hash
;
1047 const unsigned char *str
= name
->name
;
1048 struct hlist_head
*head
= d_hash(parent
,hash
);
1049 struct dentry
*found
= NULL
;
1050 struct hlist_node
*node
;
1054 hlist_for_each_rcu(node
, head
) {
1055 struct dentry
*dentry
;
1058 dentry
= hlist_entry(node
, struct dentry
, d_hash
);
1060 if (dentry
->d_name
.hash
!= hash
)
1062 if (dentry
->d_parent
!= parent
)
1065 spin_lock(&dentry
->d_lock
);
1068 * Recheck the dentry after taking the lock - d_move may have
1069 * changed things. Don't bother checking the hash because we're
1070 * about to compare the whole name anyway.
1072 if (dentry
->d_parent
!= parent
)
1076 * It is safe to compare names since d_move() cannot
1077 * change the qstr (protected by d_lock).
1079 qstr
= &dentry
->d_name
;
1080 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1081 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1084 if (qstr
->len
!= len
)
1086 if (memcmp(qstr
->name
, str
, len
))
1090 if (!d_unhashed(dentry
)) {
1091 atomic_inc(&dentry
->d_count
);
1094 spin_unlock(&dentry
->d_lock
);
1097 spin_unlock(&dentry
->d_lock
);
1105 * d_validate - verify dentry provided from insecure source
1106 * @dentry: The dentry alleged to be valid child of @dparent
1107 * @dparent: The parent dentry (known to be valid)
1108 * @hash: Hash of the dentry
1109 * @len: Length of the name
1111 * An insecure source has sent us a dentry, here we verify it and dget() it.
1112 * This is used by ncpfs in its readdir implementation.
1113 * Zero is returned in the dentry is invalid.
1116 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1118 struct hlist_head
*base
;
1119 struct hlist_node
*lhp
;
1121 /* Check whether the ptr might be valid at all.. */
1122 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1125 if (dentry
->d_parent
!= dparent
)
1128 spin_lock(&dcache_lock
);
1129 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1130 hlist_for_each(lhp
,base
) {
1131 /* hlist_for_each_rcu() not required for d_hash list
1132 * as it is parsed under dcache_lock
1134 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1135 __dget_locked(dentry
);
1136 spin_unlock(&dcache_lock
);
1140 spin_unlock(&dcache_lock
);
1146 * When a file is deleted, we have two options:
1147 * - turn this dentry into a negative dentry
1148 * - unhash this dentry and free it.
1150 * Usually, we want to just turn this into
1151 * a negative dentry, but if anybody else is
1152 * currently using the dentry or the inode
1153 * we can't do that and we fall back on removing
1154 * it from the hash queues and waiting for
1155 * it to be deleted later when it has no users
1159 * d_delete - delete a dentry
1160 * @dentry: The dentry to delete
1162 * Turn the dentry into a negative dentry if possible, otherwise
1163 * remove it from the hash queues so it can be deleted later
1166 void d_delete(struct dentry
* dentry
)
1169 * Are we the only user?
1171 spin_lock(&dcache_lock
);
1172 spin_lock(&dentry
->d_lock
);
1173 if (atomic_read(&dentry
->d_count
) == 1) {
1174 dentry_iput(dentry
);
1178 if (!d_unhashed(dentry
))
1181 spin_unlock(&dentry
->d_lock
);
1182 spin_unlock(&dcache_lock
);
1185 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1188 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1189 hlist_add_head_rcu(&entry
->d_hash
, list
);
1193 * d_rehash - add an entry back to the hash
1194 * @entry: dentry to add to the hash
1196 * Adds a dentry to the hash according to its name.
1199 void d_rehash(struct dentry
* entry
)
1201 struct hlist_head
*list
= d_hash(entry
->d_parent
, entry
->d_name
.hash
);
1203 spin_lock(&dcache_lock
);
1204 spin_lock(&entry
->d_lock
);
1205 __d_rehash(entry
, list
);
1206 spin_unlock(&entry
->d_lock
);
1207 spin_unlock(&dcache_lock
);
1210 #define do_switch(x,y) do { \
1211 __typeof__ (x) __tmp = x; \
1212 x = y; y = __tmp; } while (0)
1215 * When switching names, the actual string doesn't strictly have to
1216 * be preserved in the target - because we're dropping the target
1217 * anyway. As such, we can just do a simple memcpy() to copy over
1218 * the new name before we switch.
1220 * Note that we have to be a lot more careful about getting the hash
1221 * switched - we have to switch the hash value properly even if it
1222 * then no longer matches the actual (corrupted) string of the target.
1223 * The hash value has to match the hash queue that the dentry is on..
1225 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1227 if (dname_external(target
)) {
1228 if (dname_external(dentry
)) {
1230 * Both external: swap the pointers
1232 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1235 * dentry:internal, target:external. Steal target's
1236 * storage and make target internal.
1238 dentry
->d_name
.name
= target
->d_name
.name
;
1239 target
->d_name
.name
= target
->d_iname
;
1242 if (dname_external(dentry
)) {
1244 * dentry:external, target:internal. Give dentry's
1245 * storage to target and make dentry internal
1247 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1248 target
->d_name
.len
+ 1);
1249 target
->d_name
.name
= dentry
->d_name
.name
;
1250 dentry
->d_name
.name
= dentry
->d_iname
;
1253 * Both are internal. Just copy target to dentry
1255 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1256 target
->d_name
.len
+ 1);
1262 * We cannibalize "target" when moving dentry on top of it,
1263 * because it's going to be thrown away anyway. We could be more
1264 * polite about it, though.
1266 * This forceful removal will result in ugly /proc output if
1267 * somebody holds a file open that got deleted due to a rename.
1268 * We could be nicer about the deleted file, and let it show
1269 * up under the name it got deleted rather than the name that
1274 * d_move - move a dentry
1275 * @dentry: entry to move
1276 * @target: new dentry
1278 * Update the dcache to reflect the move of a file name. Negative
1279 * dcache entries should not be moved in this way.
1282 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1284 struct hlist_head
*list
;
1286 if (!dentry
->d_inode
)
1287 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1289 spin_lock(&dcache_lock
);
1290 write_seqlock(&rename_lock
);
1292 * XXXX: do we really need to take target->d_lock?
1294 if (target
< dentry
) {
1295 spin_lock(&target
->d_lock
);
1296 spin_lock(&dentry
->d_lock
);
1298 spin_lock(&dentry
->d_lock
);
1299 spin_lock(&target
->d_lock
);
1302 /* Move the dentry to the target hash queue, if on different bucket */
1303 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1304 goto already_unhashed
;
1306 hlist_del_rcu(&dentry
->d_hash
);
1309 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1310 __d_rehash(dentry
, list
);
1312 /* Unhash the target: dput() will then get rid of it */
1315 list_del(&dentry
->d_child
);
1316 list_del(&target
->d_child
);
1318 /* Switch the names.. */
1319 switch_names(dentry
, target
);
1320 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1321 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1323 /* ... and switch the parents */
1324 if (IS_ROOT(dentry
)) {
1325 dentry
->d_parent
= target
->d_parent
;
1326 target
->d_parent
= target
;
1327 INIT_LIST_HEAD(&target
->d_child
);
1329 do_switch(dentry
->d_parent
, target
->d_parent
);
1331 /* And add them back to the (new) parent lists */
1332 list_add(&target
->d_child
, &target
->d_parent
->d_subdirs
);
1335 list_add(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
1336 spin_unlock(&target
->d_lock
);
1337 spin_unlock(&dentry
->d_lock
);
1338 write_sequnlock(&rename_lock
);
1339 spin_unlock(&dcache_lock
);
1343 * d_path - return the path of a dentry
1344 * @dentry: dentry to report
1345 * @vfsmnt: vfsmnt to which the dentry belongs
1346 * @root: root dentry
1347 * @rootmnt: vfsmnt to which the root dentry belongs
1348 * @buffer: buffer to return value in
1349 * @buflen: buffer length
1351 * Convert a dentry into an ASCII path name. If the entry has been deleted
1352 * the string " (deleted)" is appended. Note that this is ambiguous.
1354 * Returns the buffer or an error code if the path was too long.
1356 * "buflen" should be positive. Caller holds the dcache_lock.
1358 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1359 struct dentry
*root
, struct vfsmount
*rootmnt
,
1360 char *buffer
, int buflen
)
1362 char * end
= buffer
+buflen
;
1368 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1373 memcpy(end
, " (deleted)", 10);
1383 struct dentry
* parent
;
1385 if (dentry
== root
&& vfsmnt
== rootmnt
)
1387 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1389 spin_lock(&vfsmount_lock
);
1390 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1391 spin_unlock(&vfsmount_lock
);
1394 dentry
= vfsmnt
->mnt_mountpoint
;
1395 vfsmnt
= vfsmnt
->mnt_parent
;
1396 spin_unlock(&vfsmount_lock
);
1399 parent
= dentry
->d_parent
;
1401 namelen
= dentry
->d_name
.len
;
1402 buflen
-= namelen
+ 1;
1406 memcpy(end
, dentry
->d_name
.name
, namelen
);
1415 namelen
= dentry
->d_name
.len
;
1419 retval
-= namelen
-1; /* hit the slash */
1420 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1423 return ERR_PTR(-ENAMETOOLONG
);
1426 /* write full pathname into buffer and return start of pathname */
1427 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1428 char *buf
, int buflen
)
1431 struct vfsmount
*rootmnt
;
1432 struct dentry
*root
;
1434 read_lock(¤t
->fs
->lock
);
1435 rootmnt
= mntget(current
->fs
->rootmnt
);
1436 root
= dget(current
->fs
->root
);
1437 read_unlock(¤t
->fs
->lock
);
1438 spin_lock(&dcache_lock
);
1439 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1440 spin_unlock(&dcache_lock
);
1447 * NOTE! The user-level library version returns a
1448 * character pointer. The kernel system call just
1449 * returns the length of the buffer filled (which
1450 * includes the ending '\0' character), or a negative
1451 * error value. So libc would do something like
1453 * char *getcwd(char * buf, size_t size)
1457 * retval = sys_getcwd(buf, size);
1464 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1467 struct vfsmount
*pwdmnt
, *rootmnt
;
1468 struct dentry
*pwd
, *root
;
1469 char *page
= (char *) __get_free_page(GFP_USER
);
1474 read_lock(¤t
->fs
->lock
);
1475 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1476 pwd
= dget(current
->fs
->pwd
);
1477 rootmnt
= mntget(current
->fs
->rootmnt
);
1478 root
= dget(current
->fs
->root
);
1479 read_unlock(¤t
->fs
->lock
);
1482 /* Has the current directory has been unlinked? */
1483 spin_lock(&dcache_lock
);
1484 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1488 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1489 spin_unlock(&dcache_lock
);
1491 error
= PTR_ERR(cwd
);
1496 len
= PAGE_SIZE
+ page
- cwd
;
1499 if (copy_to_user(buf
, cwd
, len
))
1503 spin_unlock(&dcache_lock
);
1510 free_page((unsigned long) page
);
1515 * Test whether new_dentry is a subdirectory of old_dentry.
1517 * Trivially implemented using the dcache structure
1521 * is_subdir - is new dentry a subdirectory of old_dentry
1522 * @new_dentry: new dentry
1523 * @old_dentry: old dentry
1525 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1526 * Returns 0 otherwise.
1527 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1530 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1533 struct dentry
* saved
= new_dentry
;
1536 /* need rcu_readlock to protect against the d_parent trashing due to
1541 /* for restarting inner loop in case of seq retry */
1544 seq
= read_seqbegin(&rename_lock
);
1546 if (new_dentry
!= old_dentry
) {
1547 struct dentry
* parent
= new_dentry
->d_parent
;
1548 if (parent
== new_dentry
)
1550 new_dentry
= parent
;
1556 } while (read_seqretry(&rename_lock
, seq
));
1562 void d_genocide(struct dentry
*root
)
1564 struct dentry
*this_parent
= root
;
1565 struct list_head
*next
;
1567 spin_lock(&dcache_lock
);
1569 next
= this_parent
->d_subdirs
.next
;
1571 while (next
!= &this_parent
->d_subdirs
) {
1572 struct list_head
*tmp
= next
;
1573 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1575 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1577 if (!list_empty(&dentry
->d_subdirs
)) {
1578 this_parent
= dentry
;
1581 atomic_dec(&dentry
->d_count
);
1583 if (this_parent
!= root
) {
1584 next
= this_parent
->d_child
.next
;
1585 atomic_dec(&this_parent
->d_count
);
1586 this_parent
= this_parent
->d_parent
;
1589 spin_unlock(&dcache_lock
);
1593 * find_inode_number - check for dentry with name
1594 * @dir: directory to check
1595 * @name: Name to find.
1597 * Check whether a dentry already exists for the given name,
1598 * and return the inode number if it has an inode. Otherwise
1601 * This routine is used to post-process directory listings for
1602 * filesystems using synthetic inode numbers, and is necessary
1603 * to keep getcwd() working.
1606 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1608 struct dentry
* dentry
;
1612 * Check for a fs-specific hash function. Note that we must
1613 * calculate the standard hash first, as the d_op->d_hash()
1614 * routine may choose to leave the hash value unchanged.
1616 name
->hash
= full_name_hash(name
->name
, name
->len
);
1617 if (dir
->d_op
&& dir
->d_op
->d_hash
)
1619 if (dir
->d_op
->d_hash(dir
, name
) != 0)
1623 dentry
= d_lookup(dir
, name
);
1626 if (dentry
->d_inode
)
1627 ino
= dentry
->d_inode
->i_ino
;
1634 static __initdata
unsigned long dhash_entries
;
1635 static int __init
set_dhash_entries(char *str
)
1639 dhash_entries
= simple_strtoul(str
, &str
, 0);
1642 __setup("dhash_entries=", set_dhash_entries
);
1644 static void __init
dcache_init_early(void)
1648 /* If hashes are distributed across NUMA nodes, defer
1649 * hash allocation until vmalloc space is available.
1655 alloc_large_system_hash("Dentry cache",
1656 sizeof(struct hlist_head
),
1664 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1665 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1668 static void __init
dcache_init(unsigned long mempages
)
1673 * A constructor could be added for stable state like the lists,
1674 * but it is probably not worth it because of the cache nature
1677 dentry_cache
= kmem_cache_create("dentry_cache",
1678 sizeof(struct dentry
),
1680 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
,
1683 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
1685 /* Hash may have been set up in dcache_init_early */
1690 alloc_large_system_hash("Dentry cache",
1691 sizeof(struct hlist_head
),
1699 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1700 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1703 /* SLAB cache for __getname() consumers */
1704 kmem_cache_t
*names_cachep
;
1706 /* SLAB cache for file structures */
1707 kmem_cache_t
*filp_cachep
;
1709 EXPORT_SYMBOL(d_genocide
);
1711 extern void bdev_cache_init(void);
1712 extern void chrdev_init(void);
1714 void __init
vfs_caches_init_early(void)
1716 dcache_init_early();
1720 void __init
vfs_caches_init(unsigned long mempages
)
1722 unsigned long reserve
;
1724 /* Base hash sizes on available memory, with a reserve equal to
1725 150% of current kernel size */
1727 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
1728 mempages
-= reserve
;
1730 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
1731 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1733 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
1734 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, filp_ctor
, filp_dtor
);
1736 dcache_init(mempages
);
1737 inode_init(mempages
);
1738 files_init(mempages
);
1744 EXPORT_SYMBOL(d_alloc
);
1745 EXPORT_SYMBOL(d_alloc_anon
);
1746 EXPORT_SYMBOL(d_alloc_root
);
1747 EXPORT_SYMBOL(d_delete
);
1748 EXPORT_SYMBOL(d_find_alias
);
1749 EXPORT_SYMBOL(d_instantiate
);
1750 EXPORT_SYMBOL(d_invalidate
);
1751 EXPORT_SYMBOL(d_lookup
);
1752 EXPORT_SYMBOL(d_move
);
1753 EXPORT_SYMBOL(d_path
);
1754 EXPORT_SYMBOL(d_prune_aliases
);
1755 EXPORT_SYMBOL(d_rehash
);
1756 EXPORT_SYMBOL(d_splice_alias
);
1757 EXPORT_SYMBOL(d_validate
);
1758 EXPORT_SYMBOL(dget_locked
);
1759 EXPORT_SYMBOL(dput
);
1760 EXPORT_SYMBOL(find_inode_number
);
1761 EXPORT_SYMBOL(have_submounts
);
1762 EXPORT_SYMBOL(names_cachep
);
1763 EXPORT_SYMBOL(shrink_dcache_parent
);
1764 EXPORT_SYMBOL(shrink_dcache_sb
);