Merge branch 'for-linus' of git://git.kernel.dk/linux-2.6-block
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sctp / input.c
blob2e4a8646dbc389dcb55fcce1cf6b3ad0f608af0d
1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel implementation
11 * These functions handle all input from the IP layer into SCTP.
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, write to
27 * the Free Software Foundation, 59 Temple Place - Suite 330,
28 * Boston, MA 02111-1307, USA.
30 * Please send any bug reports or fixes you make to the
31 * email address(es):
32 * lksctp developers <lksctp-developers@lists.sourceforge.net>
34 * Or submit a bug report through the following website:
35 * http://www.sf.net/projects/lksctp
37 * Written or modified by:
38 * La Monte H.P. Yarroll <piggy@acm.org>
39 * Karl Knutson <karl@athena.chicago.il.us>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Jon Grimm <jgrimm@us.ibm.com>
42 * Hui Huang <hui.huang@nokia.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Sridhar Samudrala <sri@us.ibm.com>
45 * Ardelle Fan <ardelle.fan@intel.com>
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 #include <net/sctp/checksum.h>
64 #include <net/net_namespace.h>
66 /* Forward declarations for internal helpers. */
67 static int sctp_rcv_ootb(struct sk_buff *);
68 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
69 const union sctp_addr *laddr,
70 const union sctp_addr *paddr,
71 struct sctp_transport **transportp);
72 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
73 static struct sctp_association *__sctp_lookup_association(
74 const union sctp_addr *local,
75 const union sctp_addr *peer,
76 struct sctp_transport **pt);
78 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
81 /* Calculate the SCTP checksum of an SCTP packet. */
82 static inline int sctp_rcv_checksum(struct sk_buff *skb)
84 struct sk_buff *list = skb_shinfo(skb)->frag_list;
85 struct sctphdr *sh = sctp_hdr(skb);
86 __be32 cmp = sh->checksum;
87 __be32 val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
89 for (; list; list = list->next)
90 val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
91 val);
93 val = sctp_end_cksum(val);
95 if (val != cmp) {
96 /* CRC failure, dump it. */
97 SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
98 return -1;
100 return 0;
103 struct sctp_input_cb {
104 union {
105 struct inet_skb_parm h4;
106 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
107 struct inet6_skb_parm h6;
108 #endif
109 } header;
110 struct sctp_chunk *chunk;
112 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0]))
115 * This is the routine which IP calls when receiving an SCTP packet.
117 int sctp_rcv(struct sk_buff *skb)
119 struct sock *sk;
120 struct sctp_association *asoc;
121 struct sctp_endpoint *ep = NULL;
122 struct sctp_ep_common *rcvr;
123 struct sctp_transport *transport = NULL;
124 struct sctp_chunk *chunk;
125 struct sctphdr *sh;
126 union sctp_addr src;
127 union sctp_addr dest;
128 int family;
129 struct sctp_af *af;
131 if (skb->pkt_type!=PACKET_HOST)
132 goto discard_it;
134 SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
136 if (skb_linearize(skb))
137 goto discard_it;
139 sh = sctp_hdr(skb);
141 /* Pull up the IP and SCTP headers. */
142 __skb_pull(skb, skb_transport_offset(skb));
143 if (skb->len < sizeof(struct sctphdr))
144 goto discard_it;
145 if (!skb_csum_unnecessary(skb) && sctp_rcv_checksum(skb) < 0)
146 goto discard_it;
148 skb_pull(skb, sizeof(struct sctphdr));
150 /* Make sure we at least have chunk headers worth of data left. */
151 if (skb->len < sizeof(struct sctp_chunkhdr))
152 goto discard_it;
154 family = ipver2af(ip_hdr(skb)->version);
155 af = sctp_get_af_specific(family);
156 if (unlikely(!af))
157 goto discard_it;
159 /* Initialize local addresses for lookups. */
160 af->from_skb(&src, skb, 1);
161 af->from_skb(&dest, skb, 0);
163 /* If the packet is to or from a non-unicast address,
164 * silently discard the packet.
166 * This is not clearly defined in the RFC except in section
167 * 8.4 - OOTB handling. However, based on the book "Stream Control
168 * Transmission Protocol" 2.1, "It is important to note that the
169 * IP address of an SCTP transport address must be a routable
170 * unicast address. In other words, IP multicast addresses and
171 * IP broadcast addresses cannot be used in an SCTP transport
172 * address."
174 if (!af->addr_valid(&src, NULL, skb) ||
175 !af->addr_valid(&dest, NULL, skb))
176 goto discard_it;
178 asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
180 if (!asoc)
181 ep = __sctp_rcv_lookup_endpoint(&dest);
183 /* Retrieve the common input handling substructure. */
184 rcvr = asoc ? &asoc->base : &ep->base;
185 sk = rcvr->sk;
188 * If a frame arrives on an interface and the receiving socket is
189 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
191 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
193 if (asoc) {
194 sctp_association_put(asoc);
195 asoc = NULL;
196 } else {
197 sctp_endpoint_put(ep);
198 ep = NULL;
200 sk = sctp_get_ctl_sock();
201 ep = sctp_sk(sk)->ep;
202 sctp_endpoint_hold(ep);
203 rcvr = &ep->base;
207 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
208 * An SCTP packet is called an "out of the blue" (OOTB)
209 * packet if it is correctly formed, i.e., passed the
210 * receiver's checksum check, but the receiver is not
211 * able to identify the association to which this
212 * packet belongs.
214 if (!asoc) {
215 if (sctp_rcv_ootb(skb)) {
216 SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
217 goto discard_release;
221 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
222 goto discard_release;
223 nf_reset(skb);
225 if (sk_filter(sk, skb))
226 goto discard_release;
228 /* Create an SCTP packet structure. */
229 chunk = sctp_chunkify(skb, asoc, sk);
230 if (!chunk)
231 goto discard_release;
232 SCTP_INPUT_CB(skb)->chunk = chunk;
234 /* Remember what endpoint is to handle this packet. */
235 chunk->rcvr = rcvr;
237 /* Remember the SCTP header. */
238 chunk->sctp_hdr = sh;
240 /* Set the source and destination addresses of the incoming chunk. */
241 sctp_init_addrs(chunk, &src, &dest);
243 /* Remember where we came from. */
244 chunk->transport = transport;
246 /* Acquire access to the sock lock. Note: We are safe from other
247 * bottom halves on this lock, but a user may be in the lock too,
248 * so check if it is busy.
250 sctp_bh_lock_sock(sk);
252 if (sk != rcvr->sk) {
253 /* Our cached sk is different from the rcvr->sk. This is
254 * because migrate()/accept() may have moved the association
255 * to a new socket and released all the sockets. So now we
256 * are holding a lock on the old socket while the user may
257 * be doing something with the new socket. Switch our veiw
258 * of the current sk.
260 sctp_bh_unlock_sock(sk);
261 sk = rcvr->sk;
262 sctp_bh_lock_sock(sk);
265 if (sock_owned_by_user(sk)) {
266 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
267 sctp_add_backlog(sk, skb);
268 } else {
269 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
270 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
273 sctp_bh_unlock_sock(sk);
275 /* Release the asoc/ep ref we took in the lookup calls. */
276 if (asoc)
277 sctp_association_put(asoc);
278 else
279 sctp_endpoint_put(ep);
281 return 0;
283 discard_it:
284 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
285 kfree_skb(skb);
286 return 0;
288 discard_release:
289 /* Release the asoc/ep ref we took in the lookup calls. */
290 if (asoc)
291 sctp_association_put(asoc);
292 else
293 sctp_endpoint_put(ep);
295 goto discard_it;
298 /* Process the backlog queue of the socket. Every skb on
299 * the backlog holds a ref on an association or endpoint.
300 * We hold this ref throughout the state machine to make
301 * sure that the structure we need is still around.
303 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
305 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
306 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
307 struct sctp_ep_common *rcvr = NULL;
308 int backloged = 0;
310 rcvr = chunk->rcvr;
312 /* If the rcvr is dead then the association or endpoint
313 * has been deleted and we can safely drop the chunk
314 * and refs that we are holding.
316 if (rcvr->dead) {
317 sctp_chunk_free(chunk);
318 goto done;
321 if (unlikely(rcvr->sk != sk)) {
322 /* In this case, the association moved from one socket to
323 * another. We are currently sitting on the backlog of the
324 * old socket, so we need to move.
325 * However, since we are here in the process context we
326 * need to take make sure that the user doesn't own
327 * the new socket when we process the packet.
328 * If the new socket is user-owned, queue the chunk to the
329 * backlog of the new socket without dropping any refs.
330 * Otherwise, we can safely push the chunk on the inqueue.
333 sk = rcvr->sk;
334 sctp_bh_lock_sock(sk);
336 if (sock_owned_by_user(sk)) {
337 sk_add_backlog(sk, skb);
338 backloged = 1;
339 } else
340 sctp_inq_push(inqueue, chunk);
342 sctp_bh_unlock_sock(sk);
344 /* If the chunk was backloged again, don't drop refs */
345 if (backloged)
346 return 0;
347 } else {
348 sctp_inq_push(inqueue, chunk);
351 done:
352 /* Release the refs we took in sctp_add_backlog */
353 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
354 sctp_association_put(sctp_assoc(rcvr));
355 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
356 sctp_endpoint_put(sctp_ep(rcvr));
357 else
358 BUG();
360 return 0;
363 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
365 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
366 struct sctp_ep_common *rcvr = chunk->rcvr;
368 /* Hold the assoc/ep while hanging on the backlog queue.
369 * This way, we know structures we need will not disappear from us
371 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
372 sctp_association_hold(sctp_assoc(rcvr));
373 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
374 sctp_endpoint_hold(sctp_ep(rcvr));
375 else
376 BUG();
378 sk_add_backlog(sk, skb);
381 /* Handle icmp frag needed error. */
382 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
383 struct sctp_transport *t, __u32 pmtu)
385 if (!t || (t->pathmtu <= pmtu))
386 return;
388 if (sock_owned_by_user(sk)) {
389 asoc->pmtu_pending = 1;
390 t->pmtu_pending = 1;
391 return;
394 if (t->param_flags & SPP_PMTUD_ENABLE) {
395 /* Update transports view of the MTU */
396 sctp_transport_update_pmtu(t, pmtu);
398 /* Update association pmtu. */
399 sctp_assoc_sync_pmtu(asoc);
402 /* Retransmit with the new pmtu setting.
403 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
404 * Needed will never be sent, but if a message was sent before
405 * PMTU discovery was disabled that was larger than the PMTU, it
406 * would not be fragmented, so it must be re-transmitted fragmented.
408 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
412 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
414 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
415 * or a "Protocol Unreachable" treat this message as an abort
416 * with the T bit set.
418 * This function sends an event to the state machine, which will abort the
419 * association.
422 void sctp_icmp_proto_unreachable(struct sock *sk,
423 struct sctp_association *asoc,
424 struct sctp_transport *t)
426 SCTP_DEBUG_PRINTK("%s\n", __func__);
428 sctp_do_sm(SCTP_EVENT_T_OTHER,
429 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
430 asoc->state, asoc->ep, asoc, t,
431 GFP_ATOMIC);
435 /* Common lookup code for icmp/icmpv6 error handler. */
436 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
437 struct sctphdr *sctphdr,
438 struct sctp_association **app,
439 struct sctp_transport **tpp)
441 union sctp_addr saddr;
442 union sctp_addr daddr;
443 struct sctp_af *af;
444 struct sock *sk = NULL;
445 struct sctp_association *asoc;
446 struct sctp_transport *transport = NULL;
447 struct sctp_init_chunk *chunkhdr;
448 __u32 vtag = ntohl(sctphdr->vtag);
449 int len = skb->len - ((void *)sctphdr - (void *)skb->data);
451 *app = NULL; *tpp = NULL;
453 af = sctp_get_af_specific(family);
454 if (unlikely(!af)) {
455 return NULL;
458 /* Initialize local addresses for lookups. */
459 af->from_skb(&saddr, skb, 1);
460 af->from_skb(&daddr, skb, 0);
462 /* Look for an association that matches the incoming ICMP error
463 * packet.
465 asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
466 if (!asoc)
467 return NULL;
469 sk = asoc->base.sk;
471 /* RFC 4960, Appendix C. ICMP Handling
473 * ICMP6) An implementation MUST validate that the Verification Tag
474 * contained in the ICMP message matches the Verification Tag of
475 * the peer. If the Verification Tag is not 0 and does NOT
476 * match, discard the ICMP message. If it is 0 and the ICMP
477 * message contains enough bytes to verify that the chunk type is
478 * an INIT chunk and that the Initiate Tag matches the tag of the
479 * peer, continue with ICMP7. If the ICMP message is too short
480 * or the chunk type or the Initiate Tag does not match, silently
481 * discard the packet.
483 if (vtag == 0) {
484 chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
485 + sizeof(struct sctphdr));
486 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
487 + sizeof(__be32) ||
488 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
489 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
490 goto out;
492 } else if (vtag != asoc->c.peer_vtag) {
493 goto out;
496 sctp_bh_lock_sock(sk);
498 /* If too many ICMPs get dropped on busy
499 * servers this needs to be solved differently.
501 if (sock_owned_by_user(sk))
502 NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
504 *app = asoc;
505 *tpp = transport;
506 return sk;
508 out:
509 if (asoc)
510 sctp_association_put(asoc);
511 return NULL;
514 /* Common cleanup code for icmp/icmpv6 error handler. */
515 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
517 sctp_bh_unlock_sock(sk);
518 if (asoc)
519 sctp_association_put(asoc);
523 * This routine is called by the ICMP module when it gets some
524 * sort of error condition. If err < 0 then the socket should
525 * be closed and the error returned to the user. If err > 0
526 * it's just the icmp type << 8 | icmp code. After adjustment
527 * header points to the first 8 bytes of the sctp header. We need
528 * to find the appropriate port.
530 * The locking strategy used here is very "optimistic". When
531 * someone else accesses the socket the ICMP is just dropped
532 * and for some paths there is no check at all.
533 * A more general error queue to queue errors for later handling
534 * is probably better.
537 void sctp_v4_err(struct sk_buff *skb, __u32 info)
539 struct iphdr *iph = (struct iphdr *)skb->data;
540 const int ihlen = iph->ihl * 4;
541 const int type = icmp_hdr(skb)->type;
542 const int code = icmp_hdr(skb)->code;
543 struct sock *sk;
544 struct sctp_association *asoc = NULL;
545 struct sctp_transport *transport;
546 struct inet_sock *inet;
547 sk_buff_data_t saveip, savesctp;
548 int err;
550 if (skb->len < ihlen + 8) {
551 ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
552 return;
555 /* Fix up skb to look at the embedded net header. */
556 saveip = skb->network_header;
557 savesctp = skb->transport_header;
558 skb_reset_network_header(skb);
559 skb_set_transport_header(skb, ihlen);
560 sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
561 /* Put back, the original values. */
562 skb->network_header = saveip;
563 skb->transport_header = savesctp;
564 if (!sk) {
565 ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
566 return;
568 /* Warning: The sock lock is held. Remember to call
569 * sctp_err_finish!
572 switch (type) {
573 case ICMP_PARAMETERPROB:
574 err = EPROTO;
575 break;
576 case ICMP_DEST_UNREACH:
577 if (code > NR_ICMP_UNREACH)
578 goto out_unlock;
580 /* PMTU discovery (RFC1191) */
581 if (ICMP_FRAG_NEEDED == code) {
582 sctp_icmp_frag_needed(sk, asoc, transport, info);
583 goto out_unlock;
585 else {
586 if (ICMP_PROT_UNREACH == code) {
587 sctp_icmp_proto_unreachable(sk, asoc,
588 transport);
589 goto out_unlock;
592 err = icmp_err_convert[code].errno;
593 break;
594 case ICMP_TIME_EXCEEDED:
595 /* Ignore any time exceeded errors due to fragment reassembly
596 * timeouts.
598 if (ICMP_EXC_FRAGTIME == code)
599 goto out_unlock;
601 err = EHOSTUNREACH;
602 break;
603 default:
604 goto out_unlock;
607 inet = inet_sk(sk);
608 if (!sock_owned_by_user(sk) && inet->recverr) {
609 sk->sk_err = err;
610 sk->sk_error_report(sk);
611 } else { /* Only an error on timeout */
612 sk->sk_err_soft = err;
615 out_unlock:
616 sctp_err_finish(sk, asoc);
620 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
622 * This function scans all the chunks in the OOTB packet to determine if
623 * the packet should be discarded right away. If a response might be needed
624 * for this packet, or, if further processing is possible, the packet will
625 * be queued to a proper inqueue for the next phase of handling.
627 * Output:
628 * Return 0 - If further processing is needed.
629 * Return 1 - If the packet can be discarded right away.
631 static int sctp_rcv_ootb(struct sk_buff *skb)
633 sctp_chunkhdr_t *ch;
634 __u8 *ch_end;
635 sctp_errhdr_t *err;
637 ch = (sctp_chunkhdr_t *) skb->data;
639 /* Scan through all the chunks in the packet. */
640 do {
641 /* Break out if chunk length is less then minimal. */
642 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
643 break;
645 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
646 if (ch_end > skb_tail_pointer(skb))
647 break;
649 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
650 * receiver MUST silently discard the OOTB packet and take no
651 * further action.
653 if (SCTP_CID_ABORT == ch->type)
654 goto discard;
656 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
657 * chunk, the receiver should silently discard the packet
658 * and take no further action.
660 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
661 goto discard;
663 /* RFC 4460, 2.11.2
664 * This will discard packets with INIT chunk bundled as
665 * subsequent chunks in the packet. When INIT is first,
666 * the normal INIT processing will discard the chunk.
668 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
669 goto discard;
671 /* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
672 * or a COOKIE ACK the SCTP Packet should be silently
673 * discarded.
675 if (SCTP_CID_COOKIE_ACK == ch->type)
676 goto discard;
678 if (SCTP_CID_ERROR == ch->type) {
679 sctp_walk_errors(err, ch) {
680 if (SCTP_ERROR_STALE_COOKIE == err->cause)
681 goto discard;
685 ch = (sctp_chunkhdr_t *) ch_end;
686 } while (ch_end < skb_tail_pointer(skb));
688 return 0;
690 discard:
691 return 1;
694 /* Insert endpoint into the hash table. */
695 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
697 struct sctp_ep_common *epb;
698 struct sctp_hashbucket *head;
700 epb = &ep->base;
702 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
703 head = &sctp_ep_hashtable[epb->hashent];
705 sctp_write_lock(&head->lock);
706 hlist_add_head(&epb->node, &head->chain);
707 sctp_write_unlock(&head->lock);
710 /* Add an endpoint to the hash. Local BH-safe. */
711 void sctp_hash_endpoint(struct sctp_endpoint *ep)
713 sctp_local_bh_disable();
714 __sctp_hash_endpoint(ep);
715 sctp_local_bh_enable();
718 /* Remove endpoint from the hash table. */
719 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
721 struct sctp_hashbucket *head;
722 struct sctp_ep_common *epb;
724 epb = &ep->base;
726 if (hlist_unhashed(&epb->node))
727 return;
729 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
731 head = &sctp_ep_hashtable[epb->hashent];
733 sctp_write_lock(&head->lock);
734 __hlist_del(&epb->node);
735 sctp_write_unlock(&head->lock);
738 /* Remove endpoint from the hash. Local BH-safe. */
739 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
741 sctp_local_bh_disable();
742 __sctp_unhash_endpoint(ep);
743 sctp_local_bh_enable();
746 /* Look up an endpoint. */
747 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
749 struct sctp_hashbucket *head;
750 struct sctp_ep_common *epb;
751 struct sctp_endpoint *ep;
752 struct hlist_node *node;
753 int hash;
755 hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
756 head = &sctp_ep_hashtable[hash];
757 read_lock(&head->lock);
758 sctp_for_each_hentry(epb, node, &head->chain) {
759 ep = sctp_ep(epb);
760 if (sctp_endpoint_is_match(ep, laddr))
761 goto hit;
764 ep = sctp_sk((sctp_get_ctl_sock()))->ep;
766 hit:
767 sctp_endpoint_hold(ep);
768 read_unlock(&head->lock);
769 return ep;
772 /* Insert association into the hash table. */
773 static void __sctp_hash_established(struct sctp_association *asoc)
775 struct sctp_ep_common *epb;
776 struct sctp_hashbucket *head;
778 epb = &asoc->base;
780 /* Calculate which chain this entry will belong to. */
781 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
783 head = &sctp_assoc_hashtable[epb->hashent];
785 sctp_write_lock(&head->lock);
786 hlist_add_head(&epb->node, &head->chain);
787 sctp_write_unlock(&head->lock);
790 /* Add an association to the hash. Local BH-safe. */
791 void sctp_hash_established(struct sctp_association *asoc)
793 if (asoc->temp)
794 return;
796 sctp_local_bh_disable();
797 __sctp_hash_established(asoc);
798 sctp_local_bh_enable();
801 /* Remove association from the hash table. */
802 static void __sctp_unhash_established(struct sctp_association *asoc)
804 struct sctp_hashbucket *head;
805 struct sctp_ep_common *epb;
807 epb = &asoc->base;
809 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
810 asoc->peer.port);
812 head = &sctp_assoc_hashtable[epb->hashent];
814 sctp_write_lock(&head->lock);
815 __hlist_del(&epb->node);
816 sctp_write_unlock(&head->lock);
819 /* Remove association from the hash table. Local BH-safe. */
820 void sctp_unhash_established(struct sctp_association *asoc)
822 if (asoc->temp)
823 return;
825 sctp_local_bh_disable();
826 __sctp_unhash_established(asoc);
827 sctp_local_bh_enable();
830 /* Look up an association. */
831 static struct sctp_association *__sctp_lookup_association(
832 const union sctp_addr *local,
833 const union sctp_addr *peer,
834 struct sctp_transport **pt)
836 struct sctp_hashbucket *head;
837 struct sctp_ep_common *epb;
838 struct sctp_association *asoc;
839 struct sctp_transport *transport;
840 struct hlist_node *node;
841 int hash;
843 /* Optimize here for direct hit, only listening connections can
844 * have wildcards anyways.
846 hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
847 head = &sctp_assoc_hashtable[hash];
848 read_lock(&head->lock);
849 sctp_for_each_hentry(epb, node, &head->chain) {
850 asoc = sctp_assoc(epb);
851 transport = sctp_assoc_is_match(asoc, local, peer);
852 if (transport)
853 goto hit;
856 read_unlock(&head->lock);
858 return NULL;
860 hit:
861 *pt = transport;
862 sctp_association_hold(asoc);
863 read_unlock(&head->lock);
864 return asoc;
867 /* Look up an association. BH-safe. */
868 SCTP_STATIC
869 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
870 const union sctp_addr *paddr,
871 struct sctp_transport **transportp)
873 struct sctp_association *asoc;
875 sctp_local_bh_disable();
876 asoc = __sctp_lookup_association(laddr, paddr, transportp);
877 sctp_local_bh_enable();
879 return asoc;
882 /* Is there an association matching the given local and peer addresses? */
883 int sctp_has_association(const union sctp_addr *laddr,
884 const union sctp_addr *paddr)
886 struct sctp_association *asoc;
887 struct sctp_transport *transport;
889 if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
890 sctp_association_put(asoc);
891 return 1;
894 return 0;
898 * SCTP Implementors Guide, 2.18 Handling of address
899 * parameters within the INIT or INIT-ACK.
901 * D) When searching for a matching TCB upon reception of an INIT
902 * or INIT-ACK chunk the receiver SHOULD use not only the
903 * source address of the packet (containing the INIT or
904 * INIT-ACK) but the receiver SHOULD also use all valid
905 * address parameters contained within the chunk.
907 * 2.18.3 Solution description
909 * This new text clearly specifies to an implementor the need
910 * to look within the INIT or INIT-ACK. Any implementation that
911 * does not do this, may not be able to establish associations
912 * in certain circumstances.
915 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
916 const union sctp_addr *laddr, struct sctp_transport **transportp)
918 struct sctp_association *asoc;
919 union sctp_addr addr;
920 union sctp_addr *paddr = &addr;
921 struct sctphdr *sh = sctp_hdr(skb);
922 sctp_chunkhdr_t *ch;
923 union sctp_params params;
924 sctp_init_chunk_t *init;
925 struct sctp_transport *transport;
926 struct sctp_af *af;
928 ch = (sctp_chunkhdr_t *) skb->data;
931 * This code will NOT touch anything inside the chunk--it is
932 * strictly READ-ONLY.
934 * RFC 2960 3 SCTP packet Format
936 * Multiple chunks can be bundled into one SCTP packet up to
937 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
938 * COMPLETE chunks. These chunks MUST NOT be bundled with any
939 * other chunk in a packet. See Section 6.10 for more details
940 * on chunk bundling.
943 /* Find the start of the TLVs and the end of the chunk. This is
944 * the region we search for address parameters.
946 init = (sctp_init_chunk_t *)skb->data;
948 /* Walk the parameters looking for embedded addresses. */
949 sctp_walk_params(params, init, init_hdr.params) {
951 /* Note: Ignoring hostname addresses. */
952 af = sctp_get_af_specific(param_type2af(params.p->type));
953 if (!af)
954 continue;
956 af->from_addr_param(paddr, params.addr, sh->source, 0);
958 asoc = __sctp_lookup_association(laddr, paddr, &transport);
959 if (asoc)
960 return asoc;
963 return NULL;
966 /* ADD-IP, Section 5.2
967 * When an endpoint receives an ASCONF Chunk from the remote peer
968 * special procedures may be needed to identify the association the
969 * ASCONF Chunk is associated with. To properly find the association
970 * the following procedures SHOULD be followed:
972 * D2) If the association is not found, use the address found in the
973 * Address Parameter TLV combined with the port number found in the
974 * SCTP common header. If found proceed to rule D4.
976 * D2-ext) If more than one ASCONF Chunks are packed together, use the
977 * address found in the ASCONF Address Parameter TLV of each of the
978 * subsequent ASCONF Chunks. If found, proceed to rule D4.
980 static struct sctp_association *__sctp_rcv_asconf_lookup(
981 sctp_chunkhdr_t *ch,
982 const union sctp_addr *laddr,
983 __be16 peer_port,
984 struct sctp_transport **transportp)
986 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
987 struct sctp_af *af;
988 union sctp_addr_param *param;
989 union sctp_addr paddr;
991 /* Skip over the ADDIP header and find the Address parameter */
992 param = (union sctp_addr_param *)(asconf + 1);
994 af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type));
995 if (unlikely(!af))
996 return NULL;
998 af->from_addr_param(&paddr, param, peer_port, 0);
1000 return __sctp_lookup_association(laddr, &paddr, transportp);
1004 /* SCTP-AUTH, Section 6.3:
1005 * If the receiver does not find a STCB for a packet containing an AUTH
1006 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1007 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1008 * association.
1010 * This means that any chunks that can help us identify the association need
1011 * to be looked at to find this assocation.
1013 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1014 const union sctp_addr *laddr,
1015 struct sctp_transport **transportp)
1017 struct sctp_association *asoc = NULL;
1018 sctp_chunkhdr_t *ch;
1019 int have_auth = 0;
1020 unsigned int chunk_num = 1;
1021 __u8 *ch_end;
1023 /* Walk through the chunks looking for AUTH or ASCONF chunks
1024 * to help us find the association.
1026 ch = (sctp_chunkhdr_t *) skb->data;
1027 do {
1028 /* Break out if chunk length is less then minimal. */
1029 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1030 break;
1032 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1033 if (ch_end > skb_tail_pointer(skb))
1034 break;
1036 switch(ch->type) {
1037 case SCTP_CID_AUTH:
1038 have_auth = chunk_num;
1039 break;
1041 case SCTP_CID_COOKIE_ECHO:
1042 /* If a packet arrives containing an AUTH chunk as
1043 * a first chunk, a COOKIE-ECHO chunk as the second
1044 * chunk, and possibly more chunks after them, and
1045 * the receiver does not have an STCB for that
1046 * packet, then authentication is based on
1047 * the contents of the COOKIE- ECHO chunk.
1049 if (have_auth == 1 && chunk_num == 2)
1050 return NULL;
1051 break;
1053 case SCTP_CID_ASCONF:
1054 if (have_auth || sctp_addip_noauth)
1055 asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1056 sctp_hdr(skb)->source,
1057 transportp);
1058 default:
1059 break;
1062 if (asoc)
1063 break;
1065 ch = (sctp_chunkhdr_t *) ch_end;
1066 chunk_num++;
1067 } while (ch_end < skb_tail_pointer(skb));
1069 return asoc;
1073 * There are circumstances when we need to look inside the SCTP packet
1074 * for information to help us find the association. Examples
1075 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1076 * chunks.
1078 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1079 const union sctp_addr *laddr,
1080 struct sctp_transport **transportp)
1082 sctp_chunkhdr_t *ch;
1084 ch = (sctp_chunkhdr_t *) skb->data;
1086 /* The code below will attempt to walk the chunk and extract
1087 * parameter information. Before we do that, we need to verify
1088 * that the chunk length doesn't cause overflow. Otherwise, we'll
1089 * walk off the end.
1091 if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1092 return NULL;
1094 /* If this is INIT/INIT-ACK look inside the chunk too. */
1095 switch (ch->type) {
1096 case SCTP_CID_INIT:
1097 case SCTP_CID_INIT_ACK:
1098 return __sctp_rcv_init_lookup(skb, laddr, transportp);
1099 break;
1101 default:
1102 return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1103 break;
1107 return NULL;
1110 /* Lookup an association for an inbound skb. */
1111 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1112 const union sctp_addr *paddr,
1113 const union sctp_addr *laddr,
1114 struct sctp_transport **transportp)
1116 struct sctp_association *asoc;
1118 asoc = __sctp_lookup_association(laddr, paddr, transportp);
1120 /* Further lookup for INIT/INIT-ACK packets.
1121 * SCTP Implementors Guide, 2.18 Handling of address
1122 * parameters within the INIT or INIT-ACK.
1124 if (!asoc)
1125 asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1127 return asoc;