2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
31 #include <trace/events/kmem.h>
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has no one operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache
*s
)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
138 #define MIN_PARTIAL 5
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
145 #define MAX_PARTIAL 10
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
158 * Set of flags that will prevent slab merging
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
174 static int kmem_size
= sizeof(struct kmem_cache
);
177 static struct notifier_block slab_notifier
;
181 DOWN
, /* No slab functionality available */
182 PARTIAL
, /* Kmem_cache_node works */
183 UP
, /* Everything works but does not show up in sysfs */
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock
);
189 static LIST_HEAD(slab_caches
);
192 * Tracking user of a slab.
195 unsigned long addr
; /* Called from address */
196 int cpu
; /* Was running on cpu */
197 int pid
; /* Pid context */
198 unsigned long when
; /* When did the operation occur */
201 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
204 static int sysfs_slab_add(struct kmem_cache
*);
205 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
206 static void sysfs_slab_remove(struct kmem_cache
*);
209 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
212 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
220 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state
>= UP
;
236 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
238 return s
->node
[node
];
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache
*s
,
243 struct page
*page
, const void *object
)
250 base
= page_address(page
);
251 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
252 (object
- base
) % s
->size
) {
259 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
261 return *(void **)(object
+ s
->offset
);
264 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
268 #ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
271 p
= get_freepointer(s
, object
);
276 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
278 *(void **)(object
+ s
->offset
) = fp
;
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
287 #define for_each_free_object(__p, __s, __free) \
288 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
293 return (p
- addr
) / s
->size
;
296 static inline size_t slab_ksize(const struct kmem_cache
*s
)
298 #ifdef CONFIG_SLUB_DEBUG
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
303 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
312 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
315 * Else we can use all the padding etc for the allocation
320 static inline int order_objects(int order
, unsigned long size
, int reserved
)
322 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
325 static inline struct kmem_cache_order_objects
oo_make(int order
,
326 unsigned long size
, int reserved
)
328 struct kmem_cache_order_objects x
= {
329 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
335 static inline int oo_order(struct kmem_cache_order_objects x
)
337 return x
.x
>> OO_SHIFT
;
340 static inline int oo_objects(struct kmem_cache_order_objects x
)
342 return x
.x
& OO_MASK
;
345 #ifdef CONFIG_SLUB_DEBUG
349 #ifdef CONFIG_SLUB_DEBUG_ON
350 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
352 static int slub_debug
;
355 static char *slub_debug_slabs
;
356 static int disable_higher_order_debug
;
361 static void print_section(char *text
, u8
*addr
, unsigned int length
)
369 for (i
= 0; i
< length
; i
++) {
371 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
374 printk(KERN_CONT
" %02x", addr
[i
]);
376 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
378 printk(KERN_CONT
" %s\n", ascii
);
385 printk(KERN_CONT
" ");
389 printk(KERN_CONT
" %s\n", ascii
);
393 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
394 enum track_item alloc
)
399 p
= object
+ s
->offset
+ sizeof(void *);
401 p
= object
+ s
->inuse
;
406 static void set_track(struct kmem_cache
*s
, void *object
,
407 enum track_item alloc
, unsigned long addr
)
409 struct track
*p
= get_track(s
, object
, alloc
);
413 p
->cpu
= smp_processor_id();
414 p
->pid
= current
->pid
;
417 memset(p
, 0, sizeof(struct track
));
420 static void init_tracking(struct kmem_cache
*s
, void *object
)
422 if (!(s
->flags
& SLAB_STORE_USER
))
425 set_track(s
, object
, TRACK_FREE
, 0UL);
426 set_track(s
, object
, TRACK_ALLOC
, 0UL);
429 static void print_track(const char *s
, struct track
*t
)
434 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
435 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
438 static void print_tracking(struct kmem_cache
*s
, void *object
)
440 if (!(s
->flags
& SLAB_STORE_USER
))
443 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
444 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
447 static void print_page_info(struct page
*page
)
449 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
450 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
454 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
460 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
462 printk(KERN_ERR
"========================================"
463 "=====================================\n");
464 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
465 printk(KERN_ERR
"----------------------------------------"
466 "-------------------------------------\n\n");
469 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
475 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
477 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
480 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
482 unsigned int off
; /* Offset of last byte */
483 u8
*addr
= page_address(page
);
485 print_tracking(s
, p
);
487 print_page_info(page
);
489 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490 p
, p
- addr
, get_freepointer(s
, p
));
493 print_section("Bytes b4", p
- 16, 16);
495 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
497 if (s
->flags
& SLAB_RED_ZONE
)
498 print_section("Redzone", p
+ s
->objsize
,
499 s
->inuse
- s
->objsize
);
502 off
= s
->offset
+ sizeof(void *);
506 if (s
->flags
& SLAB_STORE_USER
)
507 off
+= 2 * sizeof(struct track
);
510 /* Beginning of the filler is the free pointer */
511 print_section("Padding", p
+ off
, s
->size
- off
);
516 static void object_err(struct kmem_cache
*s
, struct page
*page
,
517 u8
*object
, char *reason
)
519 slab_bug(s
, "%s", reason
);
520 print_trailer(s
, page
, object
);
523 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
529 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
531 slab_bug(s
, "%s", buf
);
532 print_page_info(page
);
536 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
540 if (s
->flags
& __OBJECT_POISON
) {
541 memset(p
, POISON_FREE
, s
->objsize
- 1);
542 p
[s
->objsize
- 1] = POISON_END
;
545 if (s
->flags
& SLAB_RED_ZONE
)
546 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
549 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
552 if (*start
!= (u8
)value
)
560 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
561 void *from
, void *to
)
563 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
564 memset(from
, data
, to
- from
);
567 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
568 u8
*object
, char *what
,
569 u8
*start
, unsigned int value
, unsigned int bytes
)
574 fault
= check_bytes(start
, value
, bytes
);
579 while (end
> fault
&& end
[-1] == value
)
582 slab_bug(s
, "%s overwritten", what
);
583 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
584 fault
, end
- 1, fault
[0], value
);
585 print_trailer(s
, page
, object
);
587 restore_bytes(s
, what
, value
, fault
, end
);
595 * Bytes of the object to be managed.
596 * If the freepointer may overlay the object then the free
597 * pointer is the first word of the object.
599 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
602 * object + s->objsize
603 * Padding to reach word boundary. This is also used for Redzoning.
604 * Padding is extended by another word if Redzoning is enabled and
607 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
608 * 0xcc (RED_ACTIVE) for objects in use.
611 * Meta data starts here.
613 * A. Free pointer (if we cannot overwrite object on free)
614 * B. Tracking data for SLAB_STORE_USER
615 * C. Padding to reach required alignment boundary or at mininum
616 * one word if debugging is on to be able to detect writes
617 * before the word boundary.
619 * Padding is done using 0x5a (POISON_INUSE)
622 * Nothing is used beyond s->size.
624 * If slabcaches are merged then the objsize and inuse boundaries are mostly
625 * ignored. And therefore no slab options that rely on these boundaries
626 * may be used with merged slabcaches.
629 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
631 unsigned long off
= s
->inuse
; /* The end of info */
634 /* Freepointer is placed after the object. */
635 off
+= sizeof(void *);
637 if (s
->flags
& SLAB_STORE_USER
)
638 /* We also have user information there */
639 off
+= 2 * sizeof(struct track
);
644 return check_bytes_and_report(s
, page
, p
, "Object padding",
645 p
+ off
, POISON_INUSE
, s
->size
- off
);
648 /* Check the pad bytes at the end of a slab page */
649 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
657 if (!(s
->flags
& SLAB_POISON
))
660 start
= page_address(page
);
661 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
662 end
= start
+ length
;
663 remainder
= length
% s
->size
;
667 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
670 while (end
> fault
&& end
[-1] == POISON_INUSE
)
673 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
674 print_section("Padding", end
- remainder
, remainder
);
676 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
680 static int check_object(struct kmem_cache
*s
, struct page
*page
,
681 void *object
, u8 val
)
684 u8
*endobject
= object
+ s
->objsize
;
686 if (s
->flags
& SLAB_RED_ZONE
) {
687 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
688 endobject
, val
, s
->inuse
- s
->objsize
))
691 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
692 check_bytes_and_report(s
, page
, p
, "Alignment padding",
693 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
697 if (s
->flags
& SLAB_POISON
) {
698 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
699 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
700 POISON_FREE
, s
->objsize
- 1) ||
701 !check_bytes_and_report(s
, page
, p
, "Poison",
702 p
+ s
->objsize
- 1, POISON_END
, 1)))
705 * check_pad_bytes cleans up on its own.
707 check_pad_bytes(s
, page
, p
);
710 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
712 * Object and freepointer overlap. Cannot check
713 * freepointer while object is allocated.
717 /* Check free pointer validity */
718 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
719 object_err(s
, page
, p
, "Freepointer corrupt");
721 * No choice but to zap it and thus lose the remainder
722 * of the free objects in this slab. May cause
723 * another error because the object count is now wrong.
725 set_freepointer(s
, p
, NULL
);
731 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
735 VM_BUG_ON(!irqs_disabled());
737 if (!PageSlab(page
)) {
738 slab_err(s
, page
, "Not a valid slab page");
742 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
743 if (page
->objects
> maxobj
) {
744 slab_err(s
, page
, "objects %u > max %u",
745 s
->name
, page
->objects
, maxobj
);
748 if (page
->inuse
> page
->objects
) {
749 slab_err(s
, page
, "inuse %u > max %u",
750 s
->name
, page
->inuse
, page
->objects
);
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s
, page
);
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
762 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
765 void *fp
= page
->freelist
;
767 unsigned long max_objects
;
769 while (fp
&& nr
<= page
->objects
) {
772 if (!check_valid_pointer(s
, page
, fp
)) {
774 object_err(s
, page
, object
,
775 "Freechain corrupt");
776 set_freepointer(s
, object
, NULL
);
779 slab_err(s
, page
, "Freepointer corrupt");
780 page
->freelist
= NULL
;
781 page
->inuse
= page
->objects
;
782 slab_fix(s
, "Freelist cleared");
788 fp
= get_freepointer(s
, object
);
792 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
793 if (max_objects
> MAX_OBJS_PER_PAGE
)
794 max_objects
= MAX_OBJS_PER_PAGE
;
796 if (page
->objects
!= max_objects
) {
797 slab_err(s
, page
, "Wrong number of objects. Found %d but "
798 "should be %d", page
->objects
, max_objects
);
799 page
->objects
= max_objects
;
800 slab_fix(s
, "Number of objects adjusted.");
802 if (page
->inuse
!= page
->objects
- nr
) {
803 slab_err(s
, page
, "Wrong object count. Counter is %d but "
804 "counted were %d", page
->inuse
, page
->objects
- nr
);
805 page
->inuse
= page
->objects
- nr
;
806 slab_fix(s
, "Object count adjusted.");
808 return search
== NULL
;
811 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
814 if (s
->flags
& SLAB_TRACE
) {
815 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
817 alloc
? "alloc" : "free",
822 print_section("Object", (void *)object
, s
->objsize
);
829 * Hooks for other subsystems that check memory allocations. In a typical
830 * production configuration these hooks all should produce no code at all.
832 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
834 flags
&= gfp_allowed_mask
;
835 lockdep_trace_alloc(flags
);
836 might_sleep_if(flags
& __GFP_WAIT
);
838 return should_failslab(s
->objsize
, flags
, s
->flags
);
841 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
843 flags
&= gfp_allowed_mask
;
844 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
845 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
848 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
850 kmemleak_free_recursive(x
, s
->flags
);
853 * Trouble is that we may no longer disable interupts in the fast path
854 * So in order to make the debug calls that expect irqs to be
855 * disabled we need to disable interrupts temporarily.
857 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
861 local_irq_save(flags
);
862 kmemcheck_slab_free(s
, x
, s
->objsize
);
863 debug_check_no_locks_freed(x
, s
->objsize
);
864 local_irq_restore(flags
);
867 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
868 debug_check_no_obj_freed(x
, s
->objsize
);
872 * Tracking of fully allocated slabs for debugging purposes.
874 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
876 spin_lock(&n
->list_lock
);
877 list_add(&page
->lru
, &n
->full
);
878 spin_unlock(&n
->list_lock
);
881 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
883 struct kmem_cache_node
*n
;
885 if (!(s
->flags
& SLAB_STORE_USER
))
888 n
= get_node(s
, page_to_nid(page
));
890 spin_lock(&n
->list_lock
);
891 list_del(&page
->lru
);
892 spin_unlock(&n
->list_lock
);
895 /* Tracking of the number of slabs for debugging purposes */
896 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
898 struct kmem_cache_node
*n
= get_node(s
, node
);
900 return atomic_long_read(&n
->nr_slabs
);
903 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
905 return atomic_long_read(&n
->nr_slabs
);
908 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
910 struct kmem_cache_node
*n
= get_node(s
, node
);
913 * May be called early in order to allocate a slab for the
914 * kmem_cache_node structure. Solve the chicken-egg
915 * dilemma by deferring the increment of the count during
916 * bootstrap (see early_kmem_cache_node_alloc).
919 atomic_long_inc(&n
->nr_slabs
);
920 atomic_long_add(objects
, &n
->total_objects
);
923 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
925 struct kmem_cache_node
*n
= get_node(s
, node
);
927 atomic_long_dec(&n
->nr_slabs
);
928 atomic_long_sub(objects
, &n
->total_objects
);
931 /* Object debug checks for alloc/free paths */
932 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
935 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
938 init_object(s
, object
, SLUB_RED_INACTIVE
);
939 init_tracking(s
, object
);
942 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
943 void *object
, unsigned long addr
)
945 if (!check_slab(s
, page
))
948 if (!on_freelist(s
, page
, object
)) {
949 object_err(s
, page
, object
, "Object already allocated");
953 if (!check_valid_pointer(s
, page
, object
)) {
954 object_err(s
, page
, object
, "Freelist Pointer check fails");
958 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
961 /* Success perform special debug activities for allocs */
962 if (s
->flags
& SLAB_STORE_USER
)
963 set_track(s
, object
, TRACK_ALLOC
, addr
);
964 trace(s
, page
, object
, 1);
965 init_object(s
, object
, SLUB_RED_ACTIVE
);
969 if (PageSlab(page
)) {
971 * If this is a slab page then lets do the best we can
972 * to avoid issues in the future. Marking all objects
973 * as used avoids touching the remaining objects.
975 slab_fix(s
, "Marking all objects used");
976 page
->inuse
= page
->objects
;
977 page
->freelist
= NULL
;
982 static noinline
int free_debug_processing(struct kmem_cache
*s
,
983 struct page
*page
, void *object
, unsigned long addr
)
985 if (!check_slab(s
, page
))
988 if (!check_valid_pointer(s
, page
, object
)) {
989 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
993 if (on_freelist(s
, page
, object
)) {
994 object_err(s
, page
, object
, "Object already free");
998 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1001 if (unlikely(s
!= page
->slab
)) {
1002 if (!PageSlab(page
)) {
1003 slab_err(s
, page
, "Attempt to free object(0x%p) "
1004 "outside of slab", object
);
1005 } else if (!page
->slab
) {
1007 "SLUB <none>: no slab for object 0x%p.\n",
1011 object_err(s
, page
, object
,
1012 "page slab pointer corrupt.");
1016 /* Special debug activities for freeing objects */
1017 if (!PageSlubFrozen(page
) && !page
->freelist
)
1018 remove_full(s
, page
);
1019 if (s
->flags
& SLAB_STORE_USER
)
1020 set_track(s
, object
, TRACK_FREE
, addr
);
1021 trace(s
, page
, object
, 0);
1022 init_object(s
, object
, SLUB_RED_INACTIVE
);
1026 slab_fix(s
, "Object at 0x%p not freed", object
);
1030 static int __init
setup_slub_debug(char *str
)
1032 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1033 if (*str
++ != '=' || !*str
)
1035 * No options specified. Switch on full debugging.
1041 * No options but restriction on slabs. This means full
1042 * debugging for slabs matching a pattern.
1046 if (tolower(*str
) == 'o') {
1048 * Avoid enabling debugging on caches if its minimum order
1049 * would increase as a result.
1051 disable_higher_order_debug
= 1;
1058 * Switch off all debugging measures.
1063 * Determine which debug features should be switched on
1065 for (; *str
&& *str
!= ','; str
++) {
1066 switch (tolower(*str
)) {
1068 slub_debug
|= SLAB_DEBUG_FREE
;
1071 slub_debug
|= SLAB_RED_ZONE
;
1074 slub_debug
|= SLAB_POISON
;
1077 slub_debug
|= SLAB_STORE_USER
;
1080 slub_debug
|= SLAB_TRACE
;
1083 slub_debug
|= SLAB_FAILSLAB
;
1086 printk(KERN_ERR
"slub_debug option '%c' "
1087 "unknown. skipped\n", *str
);
1093 slub_debug_slabs
= str
+ 1;
1098 __setup("slub_debug", setup_slub_debug
);
1100 static unsigned long kmem_cache_flags(unsigned long objsize
,
1101 unsigned long flags
, const char *name
,
1102 void (*ctor
)(void *))
1105 * Enable debugging if selected on the kernel commandline.
1107 if (slub_debug
&& (!slub_debug_slabs
||
1108 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1109 flags
|= slub_debug
;
1114 static inline void setup_object_debug(struct kmem_cache
*s
,
1115 struct page
*page
, void *object
) {}
1117 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1118 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1120 static inline int free_debug_processing(struct kmem_cache
*s
,
1121 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1123 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1125 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1126 void *object
, u8 val
) { return 1; }
1127 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1128 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1129 unsigned long flags
, const char *name
,
1130 void (*ctor
)(void *))
1134 #define slub_debug 0
1136 #define disable_higher_order_debug 0
1138 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1140 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1142 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1144 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1147 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1150 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1153 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1155 #endif /* CONFIG_SLUB_DEBUG */
1158 * Slab allocation and freeing
1160 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1161 struct kmem_cache_order_objects oo
)
1163 int order
= oo_order(oo
);
1165 flags
|= __GFP_NOTRACK
;
1167 if (node
== NUMA_NO_NODE
)
1168 return alloc_pages(flags
, order
);
1170 return alloc_pages_exact_node(node
, flags
, order
);
1173 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1176 struct kmem_cache_order_objects oo
= s
->oo
;
1179 flags
|= s
->allocflags
;
1182 * Let the initial higher-order allocation fail under memory pressure
1183 * so we fall-back to the minimum order allocation.
1185 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1187 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1188 if (unlikely(!page
)) {
1191 * Allocation may have failed due to fragmentation.
1192 * Try a lower order alloc if possible
1194 page
= alloc_slab_page(flags
, node
, oo
);
1198 stat(s
, ORDER_FALLBACK
);
1201 if (kmemcheck_enabled
1202 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1203 int pages
= 1 << oo_order(oo
);
1205 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1208 * Objects from caches that have a constructor don't get
1209 * cleared when they're allocated, so we need to do it here.
1212 kmemcheck_mark_uninitialized_pages(page
, pages
);
1214 kmemcheck_mark_unallocated_pages(page
, pages
);
1217 page
->objects
= oo_objects(oo
);
1218 mod_zone_page_state(page_zone(page
),
1219 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1220 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1226 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1229 setup_object_debug(s
, page
, object
);
1230 if (unlikely(s
->ctor
))
1234 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1241 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1243 page
= allocate_slab(s
,
1244 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1248 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1250 page
->flags
|= 1 << PG_slab
;
1252 start
= page_address(page
);
1254 if (unlikely(s
->flags
& SLAB_POISON
))
1255 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1258 for_each_object(p
, s
, start
, page
->objects
) {
1259 setup_object(s
, page
, last
);
1260 set_freepointer(s
, last
, p
);
1263 setup_object(s
, page
, last
);
1264 set_freepointer(s
, last
, NULL
);
1266 page
->freelist
= start
;
1272 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1274 int order
= compound_order(page
);
1275 int pages
= 1 << order
;
1277 if (kmem_cache_debug(s
)) {
1280 slab_pad_check(s
, page
);
1281 for_each_object(p
, s
, page_address(page
),
1283 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1286 kmemcheck_free_shadow(page
, compound_order(page
));
1288 mod_zone_page_state(page_zone(page
),
1289 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1290 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1293 __ClearPageSlab(page
);
1294 reset_page_mapcount(page
);
1295 if (current
->reclaim_state
)
1296 current
->reclaim_state
->reclaimed_slab
+= pages
;
1297 __free_pages(page
, order
);
1300 #define need_reserve_slab_rcu \
1301 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1303 static void rcu_free_slab(struct rcu_head
*h
)
1307 if (need_reserve_slab_rcu
)
1308 page
= virt_to_head_page(h
);
1310 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1312 __free_slab(page
->slab
, page
);
1315 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1317 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1318 struct rcu_head
*head
;
1320 if (need_reserve_slab_rcu
) {
1321 int order
= compound_order(page
);
1322 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1324 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1325 head
= page_address(page
) + offset
;
1328 * RCU free overloads the RCU head over the LRU
1330 head
= (void *)&page
->lru
;
1333 call_rcu(head
, rcu_free_slab
);
1335 __free_slab(s
, page
);
1338 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1340 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1345 * Per slab locking using the pagelock
1347 static __always_inline
void slab_lock(struct page
*page
)
1349 bit_spin_lock(PG_locked
, &page
->flags
);
1352 static __always_inline
void slab_unlock(struct page
*page
)
1354 __bit_spin_unlock(PG_locked
, &page
->flags
);
1357 static __always_inline
int slab_trylock(struct page
*page
)
1361 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1366 * Management of partially allocated slabs
1368 static void add_partial(struct kmem_cache_node
*n
,
1369 struct page
*page
, int tail
)
1371 spin_lock(&n
->list_lock
);
1374 list_add_tail(&page
->lru
, &n
->partial
);
1376 list_add(&page
->lru
, &n
->partial
);
1377 spin_unlock(&n
->list_lock
);
1380 static inline void __remove_partial(struct kmem_cache_node
*n
,
1383 list_del(&page
->lru
);
1387 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1389 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1391 spin_lock(&n
->list_lock
);
1392 __remove_partial(n
, page
);
1393 spin_unlock(&n
->list_lock
);
1397 * Lock slab and remove from the partial list.
1399 * Must hold list_lock.
1401 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1404 if (slab_trylock(page
)) {
1405 __remove_partial(n
, page
);
1406 __SetPageSlubFrozen(page
);
1413 * Try to allocate a partial slab from a specific node.
1415 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1420 * Racy check. If we mistakenly see no partial slabs then we
1421 * just allocate an empty slab. If we mistakenly try to get a
1422 * partial slab and there is none available then get_partials()
1425 if (!n
|| !n
->nr_partial
)
1428 spin_lock(&n
->list_lock
);
1429 list_for_each_entry(page
, &n
->partial
, lru
)
1430 if (lock_and_freeze_slab(n
, page
))
1434 spin_unlock(&n
->list_lock
);
1439 * Get a page from somewhere. Search in increasing NUMA distances.
1441 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1444 struct zonelist
*zonelist
;
1447 enum zone_type high_zoneidx
= gfp_zone(flags
);
1451 * The defrag ratio allows a configuration of the tradeoffs between
1452 * inter node defragmentation and node local allocations. A lower
1453 * defrag_ratio increases the tendency to do local allocations
1454 * instead of attempting to obtain partial slabs from other nodes.
1456 * If the defrag_ratio is set to 0 then kmalloc() always
1457 * returns node local objects. If the ratio is higher then kmalloc()
1458 * may return off node objects because partial slabs are obtained
1459 * from other nodes and filled up.
1461 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1462 * defrag_ratio = 1000) then every (well almost) allocation will
1463 * first attempt to defrag slab caches on other nodes. This means
1464 * scanning over all nodes to look for partial slabs which may be
1465 * expensive if we do it every time we are trying to find a slab
1466 * with available objects.
1468 if (!s
->remote_node_defrag_ratio
||
1469 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1473 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1474 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1475 struct kmem_cache_node
*n
;
1477 n
= get_node(s
, zone_to_nid(zone
));
1479 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1480 n
->nr_partial
> s
->min_partial
) {
1481 page
= get_partial_node(n
);
1494 * Get a partial page, lock it and return it.
1496 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1499 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1501 page
= get_partial_node(get_node(s
, searchnode
));
1502 if (page
|| node
!= -1)
1505 return get_any_partial(s
, flags
);
1509 * Move a page back to the lists.
1511 * Must be called with the slab lock held.
1513 * On exit the slab lock will have been dropped.
1515 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1518 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1520 __ClearPageSlubFrozen(page
);
1523 if (page
->freelist
) {
1524 add_partial(n
, page
, tail
);
1525 stat(s
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1527 stat(s
, DEACTIVATE_FULL
);
1528 if (kmem_cache_debug(s
) && (s
->flags
& SLAB_STORE_USER
))
1533 stat(s
, DEACTIVATE_EMPTY
);
1534 if (n
->nr_partial
< s
->min_partial
) {
1536 * Adding an empty slab to the partial slabs in order
1537 * to avoid page allocator overhead. This slab needs
1538 * to come after the other slabs with objects in
1539 * so that the others get filled first. That way the
1540 * size of the partial list stays small.
1542 * kmem_cache_shrink can reclaim any empty slabs from
1545 add_partial(n
, page
, 1);
1550 discard_slab(s
, page
);
1555 #ifdef CONFIG_CMPXCHG_LOCAL
1556 #ifdef CONFIG_PREEMPT
1558 * Calculate the next globally unique transaction for disambiguiation
1559 * during cmpxchg. The transactions start with the cpu number and are then
1560 * incremented by CONFIG_NR_CPUS.
1562 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1565 * No preemption supported therefore also no need to check for
1571 static inline unsigned long next_tid(unsigned long tid
)
1573 return tid
+ TID_STEP
;
1576 static inline unsigned int tid_to_cpu(unsigned long tid
)
1578 return tid
% TID_STEP
;
1581 static inline unsigned long tid_to_event(unsigned long tid
)
1583 return tid
/ TID_STEP
;
1586 static inline unsigned int init_tid(int cpu
)
1591 static inline void note_cmpxchg_failure(const char *n
,
1592 const struct kmem_cache
*s
, unsigned long tid
)
1594 #ifdef SLUB_DEBUG_CMPXCHG
1595 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1597 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1599 #ifdef CONFIG_PREEMPT
1600 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1601 printk("due to cpu change %d -> %d\n",
1602 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1605 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1606 printk("due to cpu running other code. Event %ld->%ld\n",
1607 tid_to_event(tid
), tid_to_event(actual_tid
));
1609 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1610 actual_tid
, tid
, next_tid(tid
));
1612 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1617 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1619 #ifdef CONFIG_CMPXCHG_LOCAL
1622 for_each_possible_cpu(cpu
)
1623 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1628 * Remove the cpu slab
1630 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1633 struct page
*page
= c
->page
;
1637 stat(s
, DEACTIVATE_REMOTE_FREES
);
1639 * Merge cpu freelist into slab freelist. Typically we get here
1640 * because both freelists are empty. So this is unlikely
1643 while (unlikely(c
->freelist
)) {
1646 tail
= 0; /* Hot objects. Put the slab first */
1648 /* Retrieve object from cpu_freelist */
1649 object
= c
->freelist
;
1650 c
->freelist
= get_freepointer(s
, c
->freelist
);
1652 /* And put onto the regular freelist */
1653 set_freepointer(s
, object
, page
->freelist
);
1654 page
->freelist
= object
;
1658 #ifdef CONFIG_CMPXCHG_LOCAL
1659 c
->tid
= next_tid(c
->tid
);
1661 unfreeze_slab(s
, page
, tail
);
1664 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1666 stat(s
, CPUSLAB_FLUSH
);
1668 deactivate_slab(s
, c
);
1674 * Called from IPI handler with interrupts disabled.
1676 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1678 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
1680 if (likely(c
&& c
->page
))
1684 static void flush_cpu_slab(void *d
)
1686 struct kmem_cache
*s
= d
;
1688 __flush_cpu_slab(s
, smp_processor_id());
1691 static void flush_all(struct kmem_cache
*s
)
1693 on_each_cpu(flush_cpu_slab
, s
, 1);
1697 * Check if the objects in a per cpu structure fit numa
1698 * locality expectations.
1700 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1703 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
1709 static int count_free(struct page
*page
)
1711 return page
->objects
- page
->inuse
;
1714 static unsigned long count_partial(struct kmem_cache_node
*n
,
1715 int (*get_count
)(struct page
*))
1717 unsigned long flags
;
1718 unsigned long x
= 0;
1721 spin_lock_irqsave(&n
->list_lock
, flags
);
1722 list_for_each_entry(page
, &n
->partial
, lru
)
1723 x
+= get_count(page
);
1724 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1728 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1730 #ifdef CONFIG_SLUB_DEBUG
1731 return atomic_long_read(&n
->total_objects
);
1737 static noinline
void
1738 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1743 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1745 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1746 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1747 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1749 if (oo_order(s
->min
) > get_order(s
->objsize
))
1750 printk(KERN_WARNING
" %s debugging increased min order, use "
1751 "slub_debug=O to disable.\n", s
->name
);
1753 for_each_online_node(node
) {
1754 struct kmem_cache_node
*n
= get_node(s
, node
);
1755 unsigned long nr_slabs
;
1756 unsigned long nr_objs
;
1757 unsigned long nr_free
;
1762 nr_free
= count_partial(n
, count_free
);
1763 nr_slabs
= node_nr_slabs(n
);
1764 nr_objs
= node_nr_objs(n
);
1767 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1768 node
, nr_slabs
, nr_objs
, nr_free
);
1773 * Slow path. The lockless freelist is empty or we need to perform
1776 * Interrupts are disabled.
1778 * Processing is still very fast if new objects have been freed to the
1779 * regular freelist. In that case we simply take over the regular freelist
1780 * as the lockless freelist and zap the regular freelist.
1782 * If that is not working then we fall back to the partial lists. We take the
1783 * first element of the freelist as the object to allocate now and move the
1784 * rest of the freelist to the lockless freelist.
1786 * And if we were unable to get a new slab from the partial slab lists then
1787 * we need to allocate a new slab. This is the slowest path since it involves
1788 * a call to the page allocator and the setup of a new slab.
1790 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1791 unsigned long addr
, struct kmem_cache_cpu
*c
)
1795 #ifdef CONFIG_CMPXCHG_LOCAL
1796 unsigned long flags
;
1798 local_irq_save(flags
);
1799 #ifdef CONFIG_PREEMPT
1801 * We may have been preempted and rescheduled on a different
1802 * cpu before disabling interrupts. Need to reload cpu area
1805 c
= this_cpu_ptr(s
->cpu_slab
);
1809 /* We handle __GFP_ZERO in the caller */
1810 gfpflags
&= ~__GFP_ZERO
;
1816 if (unlikely(!node_match(c
, node
)))
1819 stat(s
, ALLOC_REFILL
);
1822 object
= c
->page
->freelist
;
1823 if (unlikely(!object
))
1825 if (kmem_cache_debug(s
))
1828 c
->freelist
= get_freepointer(s
, object
);
1829 c
->page
->inuse
= c
->page
->objects
;
1830 c
->page
->freelist
= NULL
;
1831 c
->node
= page_to_nid(c
->page
);
1833 slab_unlock(c
->page
);
1834 #ifdef CONFIG_CMPXCHG_LOCAL
1835 c
->tid
= next_tid(c
->tid
);
1836 local_irq_restore(flags
);
1838 stat(s
, ALLOC_SLOWPATH
);
1842 deactivate_slab(s
, c
);
1845 new = get_partial(s
, gfpflags
, node
);
1848 stat(s
, ALLOC_FROM_PARTIAL
);
1852 gfpflags
&= gfp_allowed_mask
;
1853 if (gfpflags
& __GFP_WAIT
)
1856 new = new_slab(s
, gfpflags
, node
);
1858 if (gfpflags
& __GFP_WAIT
)
1859 local_irq_disable();
1862 c
= __this_cpu_ptr(s
->cpu_slab
);
1863 stat(s
, ALLOC_SLAB
);
1867 __SetPageSlubFrozen(new);
1871 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1872 slab_out_of_memory(s
, gfpflags
, node
);
1873 #ifdef CONFIG_CMPXCHG_LOCAL
1874 local_irq_restore(flags
);
1878 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1882 c
->page
->freelist
= get_freepointer(s
, object
);
1883 c
->node
= NUMA_NO_NODE
;
1888 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1889 * have the fastpath folded into their functions. So no function call
1890 * overhead for requests that can be satisfied on the fastpath.
1892 * The fastpath works by first checking if the lockless freelist can be used.
1893 * If not then __slab_alloc is called for slow processing.
1895 * Otherwise we can simply pick the next object from the lockless free list.
1897 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1898 gfp_t gfpflags
, int node
, unsigned long addr
)
1901 struct kmem_cache_cpu
*c
;
1902 #ifdef CONFIG_CMPXCHG_LOCAL
1905 unsigned long flags
;
1908 if (slab_pre_alloc_hook(s
, gfpflags
))
1911 #ifndef CONFIG_CMPXCHG_LOCAL
1912 local_irq_save(flags
);
1918 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1919 * enabled. We may switch back and forth between cpus while
1920 * reading from one cpu area. That does not matter as long
1921 * as we end up on the original cpu again when doing the cmpxchg.
1923 c
= __this_cpu_ptr(s
->cpu_slab
);
1925 #ifdef CONFIG_CMPXCHG_LOCAL
1927 * The transaction ids are globally unique per cpu and per operation on
1928 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1929 * occurs on the right processor and that there was no operation on the
1930 * linked list in between.
1936 object
= c
->freelist
;
1937 if (unlikely(!object
|| !node_match(c
, node
)))
1939 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1942 #ifdef CONFIG_CMPXCHG_LOCAL
1944 * The cmpxchg will only match if there was no additional
1945 * operation and if we are on the right processor.
1947 * The cmpxchg does the following atomically (without lock semantics!)
1948 * 1. Relocate first pointer to the current per cpu area.
1949 * 2. Verify that tid and freelist have not been changed
1950 * 3. If they were not changed replace tid and freelist
1952 * Since this is without lock semantics the protection is only against
1953 * code executing on this cpu *not* from access by other cpus.
1955 if (unlikely(!irqsafe_cpu_cmpxchg_double(
1956 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
1958 get_freepointer_safe(s
, object
), next_tid(tid
)))) {
1960 note_cmpxchg_failure("slab_alloc", s
, tid
);
1964 c
->freelist
= get_freepointer(s
, object
);
1966 stat(s
, ALLOC_FASTPATH
);
1969 #ifndef CONFIG_CMPXCHG_LOCAL
1970 local_irq_restore(flags
);
1973 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
1974 memset(object
, 0, s
->objsize
);
1976 slab_post_alloc_hook(s
, gfpflags
, object
);
1981 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1983 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
1985 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1989 EXPORT_SYMBOL(kmem_cache_alloc
);
1991 #ifdef CONFIG_TRACING
1992 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
1994 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
1995 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
1998 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2000 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2002 void *ret
= kmalloc_order(size
, flags
, order
);
2003 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2006 EXPORT_SYMBOL(kmalloc_order_trace
);
2010 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2012 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2014 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2015 s
->objsize
, s
->size
, gfpflags
, node
);
2019 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2021 #ifdef CONFIG_TRACING
2022 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2024 int node
, size_t size
)
2026 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2028 trace_kmalloc_node(_RET_IP_
, ret
,
2029 size
, s
->size
, gfpflags
, node
);
2032 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2037 * Slow patch handling. This may still be called frequently since objects
2038 * have a longer lifetime than the cpu slabs in most processing loads.
2040 * So we still attempt to reduce cache line usage. Just take the slab
2041 * lock and free the item. If there is no additional partial page
2042 * handling required then we can return immediately.
2044 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2045 void *x
, unsigned long addr
)
2048 void **object
= (void *)x
;
2049 #ifdef CONFIG_CMPXCHG_LOCAL
2050 unsigned long flags
;
2052 local_irq_save(flags
);
2055 stat(s
, FREE_SLOWPATH
);
2057 if (kmem_cache_debug(s
))
2061 prior
= page
->freelist
;
2062 set_freepointer(s
, object
, prior
);
2063 page
->freelist
= object
;
2066 if (unlikely(PageSlubFrozen(page
))) {
2067 stat(s
, FREE_FROZEN
);
2071 if (unlikely(!page
->inuse
))
2075 * Objects left in the slab. If it was not on the partial list before
2078 if (unlikely(!prior
)) {
2079 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
2080 stat(s
, FREE_ADD_PARTIAL
);
2085 #ifdef CONFIG_CMPXCHG_LOCAL
2086 local_irq_restore(flags
);
2093 * Slab still on the partial list.
2095 remove_partial(s
, page
);
2096 stat(s
, FREE_REMOVE_PARTIAL
);
2099 #ifdef CONFIG_CMPXCHG_LOCAL
2100 local_irq_restore(flags
);
2103 discard_slab(s
, page
);
2107 if (!free_debug_processing(s
, page
, x
, addr
))
2113 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2114 * can perform fastpath freeing without additional function calls.
2116 * The fastpath is only possible if we are freeing to the current cpu slab
2117 * of this processor. This typically the case if we have just allocated
2120 * If fastpath is not possible then fall back to __slab_free where we deal
2121 * with all sorts of special processing.
2123 static __always_inline
void slab_free(struct kmem_cache
*s
,
2124 struct page
*page
, void *x
, unsigned long addr
)
2126 void **object
= (void *)x
;
2127 struct kmem_cache_cpu
*c
;
2128 #ifdef CONFIG_CMPXCHG_LOCAL
2131 unsigned long flags
;
2134 slab_free_hook(s
, x
);
2136 #ifndef CONFIG_CMPXCHG_LOCAL
2137 local_irq_save(flags
);
2144 * Determine the currently cpus per cpu slab.
2145 * The cpu may change afterward. However that does not matter since
2146 * data is retrieved via this pointer. If we are on the same cpu
2147 * during the cmpxchg then the free will succedd.
2149 c
= __this_cpu_ptr(s
->cpu_slab
);
2151 #ifdef CONFIG_CMPXCHG_LOCAL
2156 if (likely(page
== c
->page
&& c
->node
!= NUMA_NO_NODE
)) {
2157 set_freepointer(s
, object
, c
->freelist
);
2159 #ifdef CONFIG_CMPXCHG_LOCAL
2160 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2161 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2163 object
, next_tid(tid
)))) {
2165 note_cmpxchg_failure("slab_free", s
, tid
);
2169 c
->freelist
= object
;
2171 stat(s
, FREE_FASTPATH
);
2173 __slab_free(s
, page
, x
, addr
);
2175 #ifndef CONFIG_CMPXCHG_LOCAL
2176 local_irq_restore(flags
);
2180 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2184 page
= virt_to_head_page(x
);
2186 slab_free(s
, page
, x
, _RET_IP_
);
2188 trace_kmem_cache_free(_RET_IP_
, x
);
2190 EXPORT_SYMBOL(kmem_cache_free
);
2193 * Object placement in a slab is made very easy because we always start at
2194 * offset 0. If we tune the size of the object to the alignment then we can
2195 * get the required alignment by putting one properly sized object after
2198 * Notice that the allocation order determines the sizes of the per cpu
2199 * caches. Each processor has always one slab available for allocations.
2200 * Increasing the allocation order reduces the number of times that slabs
2201 * must be moved on and off the partial lists and is therefore a factor in
2206 * Mininum / Maximum order of slab pages. This influences locking overhead
2207 * and slab fragmentation. A higher order reduces the number of partial slabs
2208 * and increases the number of allocations possible without having to
2209 * take the list_lock.
2211 static int slub_min_order
;
2212 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2213 static int slub_min_objects
;
2216 * Merge control. If this is set then no merging of slab caches will occur.
2217 * (Could be removed. This was introduced to pacify the merge skeptics.)
2219 static int slub_nomerge
;
2222 * Calculate the order of allocation given an slab object size.
2224 * The order of allocation has significant impact on performance and other
2225 * system components. Generally order 0 allocations should be preferred since
2226 * order 0 does not cause fragmentation in the page allocator. Larger objects
2227 * be problematic to put into order 0 slabs because there may be too much
2228 * unused space left. We go to a higher order if more than 1/16th of the slab
2231 * In order to reach satisfactory performance we must ensure that a minimum
2232 * number of objects is in one slab. Otherwise we may generate too much
2233 * activity on the partial lists which requires taking the list_lock. This is
2234 * less a concern for large slabs though which are rarely used.
2236 * slub_max_order specifies the order where we begin to stop considering the
2237 * number of objects in a slab as critical. If we reach slub_max_order then
2238 * we try to keep the page order as low as possible. So we accept more waste
2239 * of space in favor of a small page order.
2241 * Higher order allocations also allow the placement of more objects in a
2242 * slab and thereby reduce object handling overhead. If the user has
2243 * requested a higher mininum order then we start with that one instead of
2244 * the smallest order which will fit the object.
2246 static inline int slab_order(int size
, int min_objects
,
2247 int max_order
, int fract_leftover
, int reserved
)
2251 int min_order
= slub_min_order
;
2253 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2254 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2256 for (order
= max(min_order
,
2257 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2258 order
<= max_order
; order
++) {
2260 unsigned long slab_size
= PAGE_SIZE
<< order
;
2262 if (slab_size
< min_objects
* size
+ reserved
)
2265 rem
= (slab_size
- reserved
) % size
;
2267 if (rem
<= slab_size
/ fract_leftover
)
2275 static inline int calculate_order(int size
, int reserved
)
2283 * Attempt to find best configuration for a slab. This
2284 * works by first attempting to generate a layout with
2285 * the best configuration and backing off gradually.
2287 * First we reduce the acceptable waste in a slab. Then
2288 * we reduce the minimum objects required in a slab.
2290 min_objects
= slub_min_objects
;
2292 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2293 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2294 min_objects
= min(min_objects
, max_objects
);
2296 while (min_objects
> 1) {
2298 while (fraction
>= 4) {
2299 order
= slab_order(size
, min_objects
,
2300 slub_max_order
, fraction
, reserved
);
2301 if (order
<= slub_max_order
)
2309 * We were unable to place multiple objects in a slab. Now
2310 * lets see if we can place a single object there.
2312 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2313 if (order
<= slub_max_order
)
2317 * Doh this slab cannot be placed using slub_max_order.
2319 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2320 if (order
< MAX_ORDER
)
2326 * Figure out what the alignment of the objects will be.
2328 static unsigned long calculate_alignment(unsigned long flags
,
2329 unsigned long align
, unsigned long size
)
2332 * If the user wants hardware cache aligned objects then follow that
2333 * suggestion if the object is sufficiently large.
2335 * The hardware cache alignment cannot override the specified
2336 * alignment though. If that is greater then use it.
2338 if (flags
& SLAB_HWCACHE_ALIGN
) {
2339 unsigned long ralign
= cache_line_size();
2340 while (size
<= ralign
/ 2)
2342 align
= max(align
, ralign
);
2345 if (align
< ARCH_SLAB_MINALIGN
)
2346 align
= ARCH_SLAB_MINALIGN
;
2348 return ALIGN(align
, sizeof(void *));
2352 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2355 spin_lock_init(&n
->list_lock
);
2356 INIT_LIST_HEAD(&n
->partial
);
2357 #ifdef CONFIG_SLUB_DEBUG
2358 atomic_long_set(&n
->nr_slabs
, 0);
2359 atomic_long_set(&n
->total_objects
, 0);
2360 INIT_LIST_HEAD(&n
->full
);
2364 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2366 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2367 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2369 #ifdef CONFIG_CMPXCHG_LOCAL
2371 * Must align to double word boundary for the double cmpxchg instructions
2374 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
), 2 * sizeof(void *));
2376 /* Regular alignment is sufficient */
2377 s
->cpu_slab
= alloc_percpu(struct kmem_cache_cpu
);
2383 init_kmem_cache_cpus(s
);
2388 static struct kmem_cache
*kmem_cache_node
;
2391 * No kmalloc_node yet so do it by hand. We know that this is the first
2392 * slab on the node for this slabcache. There are no concurrent accesses
2395 * Note that this function only works on the kmalloc_node_cache
2396 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2397 * memory on a fresh node that has no slab structures yet.
2399 static void early_kmem_cache_node_alloc(int node
)
2402 struct kmem_cache_node
*n
;
2403 unsigned long flags
;
2405 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2407 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2410 if (page_to_nid(page
) != node
) {
2411 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2413 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2414 "in order to be able to continue\n");
2419 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2421 kmem_cache_node
->node
[node
] = n
;
2422 #ifdef CONFIG_SLUB_DEBUG
2423 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2424 init_tracking(kmem_cache_node
, n
);
2426 init_kmem_cache_node(n
, kmem_cache_node
);
2427 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2430 * lockdep requires consistent irq usage for each lock
2431 * so even though there cannot be a race this early in
2432 * the boot sequence, we still disable irqs.
2434 local_irq_save(flags
);
2435 add_partial(n
, page
, 0);
2436 local_irq_restore(flags
);
2439 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2443 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2444 struct kmem_cache_node
*n
= s
->node
[node
];
2447 kmem_cache_free(kmem_cache_node
, n
);
2449 s
->node
[node
] = NULL
;
2453 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2457 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2458 struct kmem_cache_node
*n
;
2460 if (slab_state
== DOWN
) {
2461 early_kmem_cache_node_alloc(node
);
2464 n
= kmem_cache_alloc_node(kmem_cache_node
,
2468 free_kmem_cache_nodes(s
);
2473 init_kmem_cache_node(n
, s
);
2478 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2480 if (min
< MIN_PARTIAL
)
2482 else if (min
> MAX_PARTIAL
)
2484 s
->min_partial
= min
;
2488 * calculate_sizes() determines the order and the distribution of data within
2491 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2493 unsigned long flags
= s
->flags
;
2494 unsigned long size
= s
->objsize
;
2495 unsigned long align
= s
->align
;
2499 * Round up object size to the next word boundary. We can only
2500 * place the free pointer at word boundaries and this determines
2501 * the possible location of the free pointer.
2503 size
= ALIGN(size
, sizeof(void *));
2505 #ifdef CONFIG_SLUB_DEBUG
2507 * Determine if we can poison the object itself. If the user of
2508 * the slab may touch the object after free or before allocation
2509 * then we should never poison the object itself.
2511 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2513 s
->flags
|= __OBJECT_POISON
;
2515 s
->flags
&= ~__OBJECT_POISON
;
2519 * If we are Redzoning then check if there is some space between the
2520 * end of the object and the free pointer. If not then add an
2521 * additional word to have some bytes to store Redzone information.
2523 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2524 size
+= sizeof(void *);
2528 * With that we have determined the number of bytes in actual use
2529 * by the object. This is the potential offset to the free pointer.
2533 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2536 * Relocate free pointer after the object if it is not
2537 * permitted to overwrite the first word of the object on
2540 * This is the case if we do RCU, have a constructor or
2541 * destructor or are poisoning the objects.
2544 size
+= sizeof(void *);
2547 #ifdef CONFIG_SLUB_DEBUG
2548 if (flags
& SLAB_STORE_USER
)
2550 * Need to store information about allocs and frees after
2553 size
+= 2 * sizeof(struct track
);
2555 if (flags
& SLAB_RED_ZONE
)
2557 * Add some empty padding so that we can catch
2558 * overwrites from earlier objects rather than let
2559 * tracking information or the free pointer be
2560 * corrupted if a user writes before the start
2563 size
+= sizeof(void *);
2567 * Determine the alignment based on various parameters that the
2568 * user specified and the dynamic determination of cache line size
2571 align
= calculate_alignment(flags
, align
, s
->objsize
);
2575 * SLUB stores one object immediately after another beginning from
2576 * offset 0. In order to align the objects we have to simply size
2577 * each object to conform to the alignment.
2579 size
= ALIGN(size
, align
);
2581 if (forced_order
>= 0)
2582 order
= forced_order
;
2584 order
= calculate_order(size
, s
->reserved
);
2591 s
->allocflags
|= __GFP_COMP
;
2593 if (s
->flags
& SLAB_CACHE_DMA
)
2594 s
->allocflags
|= SLUB_DMA
;
2596 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2597 s
->allocflags
|= __GFP_RECLAIMABLE
;
2600 * Determine the number of objects per slab
2602 s
->oo
= oo_make(order
, size
, s
->reserved
);
2603 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2604 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2607 return !!oo_objects(s
->oo
);
2611 static int kmem_cache_open(struct kmem_cache
*s
,
2612 const char *name
, size_t size
,
2613 size_t align
, unsigned long flags
,
2614 void (*ctor
)(void *))
2616 memset(s
, 0, kmem_size
);
2621 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2624 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
2625 s
->reserved
= sizeof(struct rcu_head
);
2627 if (!calculate_sizes(s
, -1))
2629 if (disable_higher_order_debug
) {
2631 * Disable debugging flags that store metadata if the min slab
2634 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2635 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2637 if (!calculate_sizes(s
, -1))
2643 * The larger the object size is, the more pages we want on the partial
2644 * list to avoid pounding the page allocator excessively.
2646 set_min_partial(s
, ilog2(s
->size
));
2649 s
->remote_node_defrag_ratio
= 1000;
2651 if (!init_kmem_cache_nodes(s
))
2654 if (alloc_kmem_cache_cpus(s
))
2657 free_kmem_cache_nodes(s
);
2659 if (flags
& SLAB_PANIC
)
2660 panic("Cannot create slab %s size=%lu realsize=%u "
2661 "order=%u offset=%u flags=%lx\n",
2662 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2668 * Determine the size of a slab object
2670 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2674 EXPORT_SYMBOL(kmem_cache_size
);
2676 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2679 #ifdef CONFIG_SLUB_DEBUG
2680 void *addr
= page_address(page
);
2682 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
2683 sizeof(long), GFP_ATOMIC
);
2686 slab_err(s
, page
, "%s", text
);
2688 for_each_free_object(p
, s
, page
->freelist
)
2689 set_bit(slab_index(p
, s
, addr
), map
);
2691 for_each_object(p
, s
, addr
, page
->objects
) {
2693 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2694 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2696 print_tracking(s
, p
);
2705 * Attempt to free all partial slabs on a node.
2707 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2709 unsigned long flags
;
2710 struct page
*page
, *h
;
2712 spin_lock_irqsave(&n
->list_lock
, flags
);
2713 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2715 __remove_partial(n
, page
);
2716 discard_slab(s
, page
);
2718 list_slab_objects(s
, page
,
2719 "Objects remaining on kmem_cache_close()");
2722 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2726 * Release all resources used by a slab cache.
2728 static inline int kmem_cache_close(struct kmem_cache
*s
)
2733 free_percpu(s
->cpu_slab
);
2734 /* Attempt to free all objects */
2735 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2736 struct kmem_cache_node
*n
= get_node(s
, node
);
2739 if (n
->nr_partial
|| slabs_node(s
, node
))
2742 free_kmem_cache_nodes(s
);
2747 * Close a cache and release the kmem_cache structure
2748 * (must be used for caches created using kmem_cache_create)
2750 void kmem_cache_destroy(struct kmem_cache
*s
)
2752 down_write(&slub_lock
);
2756 if (kmem_cache_close(s
)) {
2757 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2758 "still has objects.\n", s
->name
, __func__
);
2761 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2763 sysfs_slab_remove(s
);
2765 up_write(&slub_lock
);
2767 EXPORT_SYMBOL(kmem_cache_destroy
);
2769 /********************************************************************
2771 *******************************************************************/
2773 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
2774 EXPORT_SYMBOL(kmalloc_caches
);
2776 static struct kmem_cache
*kmem_cache
;
2778 #ifdef CONFIG_ZONE_DMA
2779 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
2782 static int __init
setup_slub_min_order(char *str
)
2784 get_option(&str
, &slub_min_order
);
2789 __setup("slub_min_order=", setup_slub_min_order
);
2791 static int __init
setup_slub_max_order(char *str
)
2793 get_option(&str
, &slub_max_order
);
2794 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2799 __setup("slub_max_order=", setup_slub_max_order
);
2801 static int __init
setup_slub_min_objects(char *str
)
2803 get_option(&str
, &slub_min_objects
);
2808 __setup("slub_min_objects=", setup_slub_min_objects
);
2810 static int __init
setup_slub_nomerge(char *str
)
2816 __setup("slub_nomerge", setup_slub_nomerge
);
2818 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
2819 int size
, unsigned int flags
)
2821 struct kmem_cache
*s
;
2823 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
2826 * This function is called with IRQs disabled during early-boot on
2827 * single CPU so there's no need to take slub_lock here.
2829 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2833 list_add(&s
->list
, &slab_caches
);
2837 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2842 * Conversion table for small slabs sizes / 8 to the index in the
2843 * kmalloc array. This is necessary for slabs < 192 since we have non power
2844 * of two cache sizes there. The size of larger slabs can be determined using
2847 static s8 size_index
[24] = {
2874 static inline int size_index_elem(size_t bytes
)
2876 return (bytes
- 1) / 8;
2879 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2885 return ZERO_SIZE_PTR
;
2887 index
= size_index
[size_index_elem(size
)];
2889 index
= fls(size
- 1);
2891 #ifdef CONFIG_ZONE_DMA
2892 if (unlikely((flags
& SLUB_DMA
)))
2893 return kmalloc_dma_caches
[index
];
2896 return kmalloc_caches
[index
];
2899 void *__kmalloc(size_t size
, gfp_t flags
)
2901 struct kmem_cache
*s
;
2904 if (unlikely(size
> SLUB_MAX_SIZE
))
2905 return kmalloc_large(size
, flags
);
2907 s
= get_slab(size
, flags
);
2909 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2912 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
2914 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2918 EXPORT_SYMBOL(__kmalloc
);
2921 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2926 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2927 page
= alloc_pages_node(node
, flags
, get_order(size
));
2929 ptr
= page_address(page
);
2931 kmemleak_alloc(ptr
, size
, 1, flags
);
2935 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2937 struct kmem_cache
*s
;
2940 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2941 ret
= kmalloc_large_node(size
, flags
, node
);
2943 trace_kmalloc_node(_RET_IP_
, ret
,
2944 size
, PAGE_SIZE
<< get_order(size
),
2950 s
= get_slab(size
, flags
);
2952 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2955 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2957 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2961 EXPORT_SYMBOL(__kmalloc_node
);
2964 size_t ksize(const void *object
)
2968 if (unlikely(object
== ZERO_SIZE_PTR
))
2971 page
= virt_to_head_page(object
);
2973 if (unlikely(!PageSlab(page
))) {
2974 WARN_ON(!PageCompound(page
));
2975 return PAGE_SIZE
<< compound_order(page
);
2978 return slab_ksize(page
->slab
);
2980 EXPORT_SYMBOL(ksize
);
2982 void kfree(const void *x
)
2985 void *object
= (void *)x
;
2987 trace_kfree(_RET_IP_
, x
);
2989 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2992 page
= virt_to_head_page(x
);
2993 if (unlikely(!PageSlab(page
))) {
2994 BUG_ON(!PageCompound(page
));
2999 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3001 EXPORT_SYMBOL(kfree
);
3004 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3005 * the remaining slabs by the number of items in use. The slabs with the
3006 * most items in use come first. New allocations will then fill those up
3007 * and thus they can be removed from the partial lists.
3009 * The slabs with the least items are placed last. This results in them
3010 * being allocated from last increasing the chance that the last objects
3011 * are freed in them.
3013 int kmem_cache_shrink(struct kmem_cache
*s
)
3017 struct kmem_cache_node
*n
;
3020 int objects
= oo_objects(s
->max
);
3021 struct list_head
*slabs_by_inuse
=
3022 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3023 unsigned long flags
;
3025 if (!slabs_by_inuse
)
3029 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3030 n
= get_node(s
, node
);
3035 for (i
= 0; i
< objects
; i
++)
3036 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3038 spin_lock_irqsave(&n
->list_lock
, flags
);
3041 * Build lists indexed by the items in use in each slab.
3043 * Note that concurrent frees may occur while we hold the
3044 * list_lock. page->inuse here is the upper limit.
3046 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3047 if (!page
->inuse
&& slab_trylock(page
)) {
3049 * Must hold slab lock here because slab_free
3050 * may have freed the last object and be
3051 * waiting to release the slab.
3053 __remove_partial(n
, page
);
3055 discard_slab(s
, page
);
3057 list_move(&page
->lru
,
3058 slabs_by_inuse
+ page
->inuse
);
3063 * Rebuild the partial list with the slabs filled up most
3064 * first and the least used slabs at the end.
3066 for (i
= objects
- 1; i
>= 0; i
--)
3067 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3069 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3072 kfree(slabs_by_inuse
);
3075 EXPORT_SYMBOL(kmem_cache_shrink
);
3077 #if defined(CONFIG_MEMORY_HOTPLUG)
3078 static int slab_mem_going_offline_callback(void *arg
)
3080 struct kmem_cache
*s
;
3082 down_read(&slub_lock
);
3083 list_for_each_entry(s
, &slab_caches
, list
)
3084 kmem_cache_shrink(s
);
3085 up_read(&slub_lock
);
3090 static void slab_mem_offline_callback(void *arg
)
3092 struct kmem_cache_node
*n
;
3093 struct kmem_cache
*s
;
3094 struct memory_notify
*marg
= arg
;
3097 offline_node
= marg
->status_change_nid
;
3100 * If the node still has available memory. we need kmem_cache_node
3103 if (offline_node
< 0)
3106 down_read(&slub_lock
);
3107 list_for_each_entry(s
, &slab_caches
, list
) {
3108 n
= get_node(s
, offline_node
);
3111 * if n->nr_slabs > 0, slabs still exist on the node
3112 * that is going down. We were unable to free them,
3113 * and offline_pages() function shouldn't call this
3114 * callback. So, we must fail.
3116 BUG_ON(slabs_node(s
, offline_node
));
3118 s
->node
[offline_node
] = NULL
;
3119 kmem_cache_free(kmem_cache_node
, n
);
3122 up_read(&slub_lock
);
3125 static int slab_mem_going_online_callback(void *arg
)
3127 struct kmem_cache_node
*n
;
3128 struct kmem_cache
*s
;
3129 struct memory_notify
*marg
= arg
;
3130 int nid
= marg
->status_change_nid
;
3134 * If the node's memory is already available, then kmem_cache_node is
3135 * already created. Nothing to do.
3141 * We are bringing a node online. No memory is available yet. We must
3142 * allocate a kmem_cache_node structure in order to bring the node
3145 down_read(&slub_lock
);
3146 list_for_each_entry(s
, &slab_caches
, list
) {
3148 * XXX: kmem_cache_alloc_node will fallback to other nodes
3149 * since memory is not yet available from the node that
3152 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3157 init_kmem_cache_node(n
, s
);
3161 up_read(&slub_lock
);
3165 static int slab_memory_callback(struct notifier_block
*self
,
3166 unsigned long action
, void *arg
)
3171 case MEM_GOING_ONLINE
:
3172 ret
= slab_mem_going_online_callback(arg
);
3174 case MEM_GOING_OFFLINE
:
3175 ret
= slab_mem_going_offline_callback(arg
);
3178 case MEM_CANCEL_ONLINE
:
3179 slab_mem_offline_callback(arg
);
3182 case MEM_CANCEL_OFFLINE
:
3186 ret
= notifier_from_errno(ret
);
3192 #endif /* CONFIG_MEMORY_HOTPLUG */
3194 /********************************************************************
3195 * Basic setup of slabs
3196 *******************************************************************/
3199 * Used for early kmem_cache structures that were allocated using
3200 * the page allocator
3203 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3207 list_add(&s
->list
, &slab_caches
);
3210 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3211 struct kmem_cache_node
*n
= get_node(s
, node
);
3215 list_for_each_entry(p
, &n
->partial
, lru
)
3218 #ifdef CONFIG_SLAB_DEBUG
3219 list_for_each_entry(p
, &n
->full
, lru
)
3226 void __init
kmem_cache_init(void)
3230 struct kmem_cache
*temp_kmem_cache
;
3232 struct kmem_cache
*temp_kmem_cache_node
;
3233 unsigned long kmalloc_size
;
3235 kmem_size
= offsetof(struct kmem_cache
, node
) +
3236 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3238 /* Allocate two kmem_caches from the page allocator */
3239 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3240 order
= get_order(2 * kmalloc_size
);
3241 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3244 * Must first have the slab cache available for the allocations of the
3245 * struct kmem_cache_node's. There is special bootstrap code in
3246 * kmem_cache_open for slab_state == DOWN.
3248 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3250 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3251 sizeof(struct kmem_cache_node
),
3252 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3254 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3256 /* Able to allocate the per node structures */
3257 slab_state
= PARTIAL
;
3259 temp_kmem_cache
= kmem_cache
;
3260 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3261 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3262 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3263 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3266 * Allocate kmem_cache_node properly from the kmem_cache slab.
3267 * kmem_cache_node is separately allocated so no need to
3268 * update any list pointers.
3270 temp_kmem_cache_node
= kmem_cache_node
;
3272 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3273 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3275 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3278 kmem_cache_bootstrap_fixup(kmem_cache
);
3280 /* Free temporary boot structure */
3281 free_pages((unsigned long)temp_kmem_cache
, order
);
3283 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3286 * Patch up the size_index table if we have strange large alignment
3287 * requirements for the kmalloc array. This is only the case for
3288 * MIPS it seems. The standard arches will not generate any code here.
3290 * Largest permitted alignment is 256 bytes due to the way we
3291 * handle the index determination for the smaller caches.
3293 * Make sure that nothing crazy happens if someone starts tinkering
3294 * around with ARCH_KMALLOC_MINALIGN
3296 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3297 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3299 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3300 int elem
= size_index_elem(i
);
3301 if (elem
>= ARRAY_SIZE(size_index
))
3303 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3306 if (KMALLOC_MIN_SIZE
== 64) {
3308 * The 96 byte size cache is not used if the alignment
3311 for (i
= 64 + 8; i
<= 96; i
+= 8)
3312 size_index
[size_index_elem(i
)] = 7;
3313 } else if (KMALLOC_MIN_SIZE
== 128) {
3315 * The 192 byte sized cache is not used if the alignment
3316 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3319 for (i
= 128 + 8; i
<= 192; i
+= 8)
3320 size_index
[size_index_elem(i
)] = 8;
3323 /* Caches that are not of the two-to-the-power-of size */
3324 if (KMALLOC_MIN_SIZE
<= 32) {
3325 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3329 if (KMALLOC_MIN_SIZE
<= 64) {
3330 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3334 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3335 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3341 /* Provide the correct kmalloc names now that the caches are up */
3342 if (KMALLOC_MIN_SIZE
<= 32) {
3343 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3344 BUG_ON(!kmalloc_caches
[1]->name
);
3347 if (KMALLOC_MIN_SIZE
<= 64) {
3348 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3349 BUG_ON(!kmalloc_caches
[2]->name
);
3352 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3353 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3356 kmalloc_caches
[i
]->name
= s
;
3360 register_cpu_notifier(&slab_notifier
);
3363 #ifdef CONFIG_ZONE_DMA
3364 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3365 struct kmem_cache
*s
= kmalloc_caches
[i
];
3368 char *name
= kasprintf(GFP_NOWAIT
,
3369 "dma-kmalloc-%d", s
->objsize
);
3372 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3373 s
->objsize
, SLAB_CACHE_DMA
);
3378 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3379 " CPUs=%d, Nodes=%d\n",
3380 caches
, cache_line_size(),
3381 slub_min_order
, slub_max_order
, slub_min_objects
,
3382 nr_cpu_ids
, nr_node_ids
);
3385 void __init
kmem_cache_init_late(void)
3390 * Find a mergeable slab cache
3392 static int slab_unmergeable(struct kmem_cache
*s
)
3394 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3401 * We may have set a slab to be unmergeable during bootstrap.
3403 if (s
->refcount
< 0)
3409 static struct kmem_cache
*find_mergeable(size_t size
,
3410 size_t align
, unsigned long flags
, const char *name
,
3411 void (*ctor
)(void *))
3413 struct kmem_cache
*s
;
3415 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3421 size
= ALIGN(size
, sizeof(void *));
3422 align
= calculate_alignment(flags
, align
, size
);
3423 size
= ALIGN(size
, align
);
3424 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3426 list_for_each_entry(s
, &slab_caches
, list
) {
3427 if (slab_unmergeable(s
))
3433 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3436 * Check if alignment is compatible.
3437 * Courtesy of Adrian Drzewiecki
3439 if ((s
->size
& ~(align
- 1)) != s
->size
)
3442 if (s
->size
- size
>= sizeof(void *))
3450 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3451 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3453 struct kmem_cache
*s
;
3459 down_write(&slub_lock
);
3460 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3464 * Adjust the object sizes so that we clear
3465 * the complete object on kzalloc.
3467 s
->objsize
= max(s
->objsize
, (int)size
);
3468 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3470 if (sysfs_slab_alias(s
, name
)) {
3474 up_write(&slub_lock
);
3478 n
= kstrdup(name
, GFP_KERNEL
);
3482 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3484 if (kmem_cache_open(s
, n
,
3485 size
, align
, flags
, ctor
)) {
3486 list_add(&s
->list
, &slab_caches
);
3487 if (sysfs_slab_add(s
)) {
3493 up_write(&slub_lock
);
3500 up_write(&slub_lock
);
3502 if (flags
& SLAB_PANIC
)
3503 panic("Cannot create slabcache %s\n", name
);
3508 EXPORT_SYMBOL(kmem_cache_create
);
3512 * Use the cpu notifier to insure that the cpu slabs are flushed when
3515 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3516 unsigned long action
, void *hcpu
)
3518 long cpu
= (long)hcpu
;
3519 struct kmem_cache
*s
;
3520 unsigned long flags
;
3523 case CPU_UP_CANCELED
:
3524 case CPU_UP_CANCELED_FROZEN
:
3526 case CPU_DEAD_FROZEN
:
3527 down_read(&slub_lock
);
3528 list_for_each_entry(s
, &slab_caches
, list
) {
3529 local_irq_save(flags
);
3530 __flush_cpu_slab(s
, cpu
);
3531 local_irq_restore(flags
);
3533 up_read(&slub_lock
);
3541 static struct notifier_block __cpuinitdata slab_notifier
= {
3542 .notifier_call
= slab_cpuup_callback
3547 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3549 struct kmem_cache
*s
;
3552 if (unlikely(size
> SLUB_MAX_SIZE
))
3553 return kmalloc_large(size
, gfpflags
);
3555 s
= get_slab(size
, gfpflags
);
3557 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3560 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
3562 /* Honor the call site pointer we received. */
3563 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3569 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3570 int node
, unsigned long caller
)
3572 struct kmem_cache
*s
;
3575 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3576 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3578 trace_kmalloc_node(caller
, ret
,
3579 size
, PAGE_SIZE
<< get_order(size
),
3585 s
= get_slab(size
, gfpflags
);
3587 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3590 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3592 /* Honor the call site pointer we received. */
3593 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3600 static int count_inuse(struct page
*page
)
3605 static int count_total(struct page
*page
)
3607 return page
->objects
;
3611 #ifdef CONFIG_SLUB_DEBUG
3612 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3616 void *addr
= page_address(page
);
3618 if (!check_slab(s
, page
) ||
3619 !on_freelist(s
, page
, NULL
))
3622 /* Now we know that a valid freelist exists */
3623 bitmap_zero(map
, page
->objects
);
3625 for_each_free_object(p
, s
, page
->freelist
) {
3626 set_bit(slab_index(p
, s
, addr
), map
);
3627 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3631 for_each_object(p
, s
, addr
, page
->objects
)
3632 if (!test_bit(slab_index(p
, s
, addr
), map
))
3633 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3638 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3641 if (slab_trylock(page
)) {
3642 validate_slab(s
, page
, map
);
3645 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3649 static int validate_slab_node(struct kmem_cache
*s
,
3650 struct kmem_cache_node
*n
, unsigned long *map
)
3652 unsigned long count
= 0;
3654 unsigned long flags
;
3656 spin_lock_irqsave(&n
->list_lock
, flags
);
3658 list_for_each_entry(page
, &n
->partial
, lru
) {
3659 validate_slab_slab(s
, page
, map
);
3662 if (count
!= n
->nr_partial
)
3663 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3664 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3666 if (!(s
->flags
& SLAB_STORE_USER
))
3669 list_for_each_entry(page
, &n
->full
, lru
) {
3670 validate_slab_slab(s
, page
, map
);
3673 if (count
!= atomic_long_read(&n
->nr_slabs
))
3674 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3675 "counter=%ld\n", s
->name
, count
,
3676 atomic_long_read(&n
->nr_slabs
));
3679 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3683 static long validate_slab_cache(struct kmem_cache
*s
)
3686 unsigned long count
= 0;
3687 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3688 sizeof(unsigned long), GFP_KERNEL
);
3694 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3695 struct kmem_cache_node
*n
= get_node(s
, node
);
3697 count
+= validate_slab_node(s
, n
, map
);
3703 * Generate lists of code addresses where slabcache objects are allocated
3708 unsigned long count
;
3715 DECLARE_BITMAP(cpus
, NR_CPUS
);
3721 unsigned long count
;
3722 struct location
*loc
;
3725 static void free_loc_track(struct loc_track
*t
)
3728 free_pages((unsigned long)t
->loc
,
3729 get_order(sizeof(struct location
) * t
->max
));
3732 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3737 order
= get_order(sizeof(struct location
) * max
);
3739 l
= (void *)__get_free_pages(flags
, order
);
3744 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3752 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3753 const struct track
*track
)
3755 long start
, end
, pos
;
3757 unsigned long caddr
;
3758 unsigned long age
= jiffies
- track
->when
;
3764 pos
= start
+ (end
- start
+ 1) / 2;
3767 * There is nothing at "end". If we end up there
3768 * we need to add something to before end.
3773 caddr
= t
->loc
[pos
].addr
;
3774 if (track
->addr
== caddr
) {
3780 if (age
< l
->min_time
)
3782 if (age
> l
->max_time
)
3785 if (track
->pid
< l
->min_pid
)
3786 l
->min_pid
= track
->pid
;
3787 if (track
->pid
> l
->max_pid
)
3788 l
->max_pid
= track
->pid
;
3790 cpumask_set_cpu(track
->cpu
,
3791 to_cpumask(l
->cpus
));
3793 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3797 if (track
->addr
< caddr
)
3804 * Not found. Insert new tracking element.
3806 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3812 (t
->count
- pos
) * sizeof(struct location
));
3815 l
->addr
= track
->addr
;
3819 l
->min_pid
= track
->pid
;
3820 l
->max_pid
= track
->pid
;
3821 cpumask_clear(to_cpumask(l
->cpus
));
3822 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3823 nodes_clear(l
->nodes
);
3824 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3828 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3829 struct page
*page
, enum track_item alloc
,
3832 void *addr
= page_address(page
);
3835 bitmap_zero(map
, page
->objects
);
3836 for_each_free_object(p
, s
, page
->freelist
)
3837 set_bit(slab_index(p
, s
, addr
), map
);
3839 for_each_object(p
, s
, addr
, page
->objects
)
3840 if (!test_bit(slab_index(p
, s
, addr
), map
))
3841 add_location(t
, s
, get_track(s
, p
, alloc
));
3844 static int list_locations(struct kmem_cache
*s
, char *buf
,
3845 enum track_item alloc
)
3849 struct loc_track t
= { 0, 0, NULL
};
3851 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3852 sizeof(unsigned long), GFP_KERNEL
);
3854 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3857 return sprintf(buf
, "Out of memory\n");
3859 /* Push back cpu slabs */
3862 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3863 struct kmem_cache_node
*n
= get_node(s
, node
);
3864 unsigned long flags
;
3867 if (!atomic_long_read(&n
->nr_slabs
))
3870 spin_lock_irqsave(&n
->list_lock
, flags
);
3871 list_for_each_entry(page
, &n
->partial
, lru
)
3872 process_slab(&t
, s
, page
, alloc
, map
);
3873 list_for_each_entry(page
, &n
->full
, lru
)
3874 process_slab(&t
, s
, page
, alloc
, map
);
3875 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3878 for (i
= 0; i
< t
.count
; i
++) {
3879 struct location
*l
= &t
.loc
[i
];
3881 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3883 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3886 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
3888 len
+= sprintf(buf
+ len
, "<not-available>");
3890 if (l
->sum_time
!= l
->min_time
) {
3891 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3893 (long)div_u64(l
->sum_time
, l
->count
),
3896 len
+= sprintf(buf
+ len
, " age=%ld",
3899 if (l
->min_pid
!= l
->max_pid
)
3900 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3901 l
->min_pid
, l
->max_pid
);
3903 len
+= sprintf(buf
+ len
, " pid=%ld",
3906 if (num_online_cpus() > 1 &&
3907 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3908 len
< PAGE_SIZE
- 60) {
3909 len
+= sprintf(buf
+ len
, " cpus=");
3910 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3911 to_cpumask(l
->cpus
));
3914 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3915 len
< PAGE_SIZE
- 60) {
3916 len
+= sprintf(buf
+ len
, " nodes=");
3917 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3921 len
+= sprintf(buf
+ len
, "\n");
3927 len
+= sprintf(buf
, "No data\n");
3932 #ifdef SLUB_RESILIENCY_TEST
3933 static void resiliency_test(void)
3937 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
3939 printk(KERN_ERR
"SLUB resiliency testing\n");
3940 printk(KERN_ERR
"-----------------------\n");
3941 printk(KERN_ERR
"A. Corruption after allocation\n");
3943 p
= kzalloc(16, GFP_KERNEL
);
3945 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3946 " 0x12->0x%p\n\n", p
+ 16);
3948 validate_slab_cache(kmalloc_caches
[4]);
3950 /* Hmmm... The next two are dangerous */
3951 p
= kzalloc(32, GFP_KERNEL
);
3952 p
[32 + sizeof(void *)] = 0x34;
3953 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3954 " 0x34 -> -0x%p\n", p
);
3956 "If allocated object is overwritten then not detectable\n\n");
3958 validate_slab_cache(kmalloc_caches
[5]);
3959 p
= kzalloc(64, GFP_KERNEL
);
3960 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3962 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3965 "If allocated object is overwritten then not detectable\n\n");
3966 validate_slab_cache(kmalloc_caches
[6]);
3968 printk(KERN_ERR
"\nB. Corruption after free\n");
3969 p
= kzalloc(128, GFP_KERNEL
);
3972 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3973 validate_slab_cache(kmalloc_caches
[7]);
3975 p
= kzalloc(256, GFP_KERNEL
);
3978 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3980 validate_slab_cache(kmalloc_caches
[8]);
3982 p
= kzalloc(512, GFP_KERNEL
);
3985 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3986 validate_slab_cache(kmalloc_caches
[9]);
3990 static void resiliency_test(void) {};
3995 enum slab_stat_type
{
3996 SL_ALL
, /* All slabs */
3997 SL_PARTIAL
, /* Only partially allocated slabs */
3998 SL_CPU
, /* Only slabs used for cpu caches */
3999 SL_OBJECTS
, /* Determine allocated objects not slabs */
4000 SL_TOTAL
/* Determine object capacity not slabs */
4003 #define SO_ALL (1 << SL_ALL)
4004 #define SO_PARTIAL (1 << SL_PARTIAL)
4005 #define SO_CPU (1 << SL_CPU)
4006 #define SO_OBJECTS (1 << SL_OBJECTS)
4007 #define SO_TOTAL (1 << SL_TOTAL)
4009 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4010 char *buf
, unsigned long flags
)
4012 unsigned long total
= 0;
4015 unsigned long *nodes
;
4016 unsigned long *per_cpu
;
4018 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4021 per_cpu
= nodes
+ nr_node_ids
;
4023 if (flags
& SO_CPU
) {
4026 for_each_possible_cpu(cpu
) {
4027 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4029 if (!c
|| c
->node
< 0)
4033 if (flags
& SO_TOTAL
)
4034 x
= c
->page
->objects
;
4035 else if (flags
& SO_OBJECTS
)
4041 nodes
[c
->node
] += x
;
4047 lock_memory_hotplug();
4048 #ifdef CONFIG_SLUB_DEBUG
4049 if (flags
& SO_ALL
) {
4050 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4051 struct kmem_cache_node
*n
= get_node(s
, node
);
4053 if (flags
& SO_TOTAL
)
4054 x
= atomic_long_read(&n
->total_objects
);
4055 else if (flags
& SO_OBJECTS
)
4056 x
= atomic_long_read(&n
->total_objects
) -
4057 count_partial(n
, count_free
);
4060 x
= atomic_long_read(&n
->nr_slabs
);
4067 if (flags
& SO_PARTIAL
) {
4068 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4069 struct kmem_cache_node
*n
= get_node(s
, node
);
4071 if (flags
& SO_TOTAL
)
4072 x
= count_partial(n
, count_total
);
4073 else if (flags
& SO_OBJECTS
)
4074 x
= count_partial(n
, count_inuse
);
4081 x
= sprintf(buf
, "%lu", total
);
4083 for_each_node_state(node
, N_NORMAL_MEMORY
)
4085 x
+= sprintf(buf
+ x
, " N%d=%lu",
4088 unlock_memory_hotplug();
4090 return x
+ sprintf(buf
+ x
, "\n");
4093 #ifdef CONFIG_SLUB_DEBUG
4094 static int any_slab_objects(struct kmem_cache
*s
)
4098 for_each_online_node(node
) {
4099 struct kmem_cache_node
*n
= get_node(s
, node
);
4104 if (atomic_long_read(&n
->total_objects
))
4111 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4112 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4114 struct slab_attribute
{
4115 struct attribute attr
;
4116 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4117 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4120 #define SLAB_ATTR_RO(_name) \
4121 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4123 #define SLAB_ATTR(_name) \
4124 static struct slab_attribute _name##_attr = \
4125 __ATTR(_name, 0644, _name##_show, _name##_store)
4127 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4129 return sprintf(buf
, "%d\n", s
->size
);
4131 SLAB_ATTR_RO(slab_size
);
4133 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4135 return sprintf(buf
, "%d\n", s
->align
);
4137 SLAB_ATTR_RO(align
);
4139 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4141 return sprintf(buf
, "%d\n", s
->objsize
);
4143 SLAB_ATTR_RO(object_size
);
4145 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4147 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4149 SLAB_ATTR_RO(objs_per_slab
);
4151 static ssize_t
order_store(struct kmem_cache
*s
,
4152 const char *buf
, size_t length
)
4154 unsigned long order
;
4157 err
= strict_strtoul(buf
, 10, &order
);
4161 if (order
> slub_max_order
|| order
< slub_min_order
)
4164 calculate_sizes(s
, order
);
4168 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4170 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4174 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4176 return sprintf(buf
, "%lu\n", s
->min_partial
);
4179 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4185 err
= strict_strtoul(buf
, 10, &min
);
4189 set_min_partial(s
, min
);
4192 SLAB_ATTR(min_partial
);
4194 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4198 return sprintf(buf
, "%pS\n", s
->ctor
);
4202 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4204 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4206 SLAB_ATTR_RO(aliases
);
4208 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4210 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4212 SLAB_ATTR_RO(partial
);
4214 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4216 return show_slab_objects(s
, buf
, SO_CPU
);
4218 SLAB_ATTR_RO(cpu_slabs
);
4220 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4222 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4224 SLAB_ATTR_RO(objects
);
4226 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4228 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4230 SLAB_ATTR_RO(objects_partial
);
4232 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4234 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4237 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4238 const char *buf
, size_t length
)
4240 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4242 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4245 SLAB_ATTR(reclaim_account
);
4247 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4249 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4251 SLAB_ATTR_RO(hwcache_align
);
4253 #ifdef CONFIG_ZONE_DMA
4254 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4256 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4258 SLAB_ATTR_RO(cache_dma
);
4261 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4263 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4265 SLAB_ATTR_RO(destroy_by_rcu
);
4267 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4269 return sprintf(buf
, "%d\n", s
->reserved
);
4271 SLAB_ATTR_RO(reserved
);
4273 #ifdef CONFIG_SLUB_DEBUG
4274 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4276 return show_slab_objects(s
, buf
, SO_ALL
);
4278 SLAB_ATTR_RO(slabs
);
4280 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4282 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4284 SLAB_ATTR_RO(total_objects
);
4286 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4288 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4291 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4292 const char *buf
, size_t length
)
4294 s
->flags
&= ~SLAB_DEBUG_FREE
;
4296 s
->flags
|= SLAB_DEBUG_FREE
;
4299 SLAB_ATTR(sanity_checks
);
4301 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4303 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4306 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4309 s
->flags
&= ~SLAB_TRACE
;
4311 s
->flags
|= SLAB_TRACE
;
4316 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4318 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4321 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4322 const char *buf
, size_t length
)
4324 if (any_slab_objects(s
))
4327 s
->flags
&= ~SLAB_RED_ZONE
;
4329 s
->flags
|= SLAB_RED_ZONE
;
4330 calculate_sizes(s
, -1);
4333 SLAB_ATTR(red_zone
);
4335 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4337 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4340 static ssize_t
poison_store(struct kmem_cache
*s
,
4341 const char *buf
, size_t length
)
4343 if (any_slab_objects(s
))
4346 s
->flags
&= ~SLAB_POISON
;
4348 s
->flags
|= SLAB_POISON
;
4349 calculate_sizes(s
, -1);
4354 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4356 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4359 static ssize_t
store_user_store(struct kmem_cache
*s
,
4360 const char *buf
, size_t length
)
4362 if (any_slab_objects(s
))
4365 s
->flags
&= ~SLAB_STORE_USER
;
4367 s
->flags
|= SLAB_STORE_USER
;
4368 calculate_sizes(s
, -1);
4371 SLAB_ATTR(store_user
);
4373 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4378 static ssize_t
validate_store(struct kmem_cache
*s
,
4379 const char *buf
, size_t length
)
4383 if (buf
[0] == '1') {
4384 ret
= validate_slab_cache(s
);
4390 SLAB_ATTR(validate
);
4392 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4394 if (!(s
->flags
& SLAB_STORE_USER
))
4396 return list_locations(s
, buf
, TRACK_ALLOC
);
4398 SLAB_ATTR_RO(alloc_calls
);
4400 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4402 if (!(s
->flags
& SLAB_STORE_USER
))
4404 return list_locations(s
, buf
, TRACK_FREE
);
4406 SLAB_ATTR_RO(free_calls
);
4407 #endif /* CONFIG_SLUB_DEBUG */
4409 #ifdef CONFIG_FAILSLAB
4410 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4412 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4415 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4418 s
->flags
&= ~SLAB_FAILSLAB
;
4420 s
->flags
|= SLAB_FAILSLAB
;
4423 SLAB_ATTR(failslab
);
4426 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4431 static ssize_t
shrink_store(struct kmem_cache
*s
,
4432 const char *buf
, size_t length
)
4434 if (buf
[0] == '1') {
4435 int rc
= kmem_cache_shrink(s
);
4446 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4448 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4451 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4452 const char *buf
, size_t length
)
4454 unsigned long ratio
;
4457 err
= strict_strtoul(buf
, 10, &ratio
);
4462 s
->remote_node_defrag_ratio
= ratio
* 10;
4466 SLAB_ATTR(remote_node_defrag_ratio
);
4469 #ifdef CONFIG_SLUB_STATS
4470 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4472 unsigned long sum
= 0;
4475 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4480 for_each_online_cpu(cpu
) {
4481 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4487 len
= sprintf(buf
, "%lu", sum
);
4490 for_each_online_cpu(cpu
) {
4491 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4492 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4496 return len
+ sprintf(buf
+ len
, "\n");
4499 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4503 for_each_online_cpu(cpu
)
4504 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4507 #define STAT_ATTR(si, text) \
4508 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4510 return show_stat(s, buf, si); \
4512 static ssize_t text##_store(struct kmem_cache *s, \
4513 const char *buf, size_t length) \
4515 if (buf[0] != '0') \
4517 clear_stat(s, si); \
4522 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4523 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4524 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4525 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4526 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4527 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4528 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4529 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4530 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4531 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4532 STAT_ATTR(FREE_SLAB
, free_slab
);
4533 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4534 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4535 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4536 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4537 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4538 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4539 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4542 static struct attribute
*slab_attrs
[] = {
4543 &slab_size_attr
.attr
,
4544 &object_size_attr
.attr
,
4545 &objs_per_slab_attr
.attr
,
4547 &min_partial_attr
.attr
,
4549 &objects_partial_attr
.attr
,
4551 &cpu_slabs_attr
.attr
,
4555 &hwcache_align_attr
.attr
,
4556 &reclaim_account_attr
.attr
,
4557 &destroy_by_rcu_attr
.attr
,
4559 &reserved_attr
.attr
,
4560 #ifdef CONFIG_SLUB_DEBUG
4561 &total_objects_attr
.attr
,
4563 &sanity_checks_attr
.attr
,
4565 &red_zone_attr
.attr
,
4567 &store_user_attr
.attr
,
4568 &validate_attr
.attr
,
4569 &alloc_calls_attr
.attr
,
4570 &free_calls_attr
.attr
,
4572 #ifdef CONFIG_ZONE_DMA
4573 &cache_dma_attr
.attr
,
4576 &remote_node_defrag_ratio_attr
.attr
,
4578 #ifdef CONFIG_SLUB_STATS
4579 &alloc_fastpath_attr
.attr
,
4580 &alloc_slowpath_attr
.attr
,
4581 &free_fastpath_attr
.attr
,
4582 &free_slowpath_attr
.attr
,
4583 &free_frozen_attr
.attr
,
4584 &free_add_partial_attr
.attr
,
4585 &free_remove_partial_attr
.attr
,
4586 &alloc_from_partial_attr
.attr
,
4587 &alloc_slab_attr
.attr
,
4588 &alloc_refill_attr
.attr
,
4589 &free_slab_attr
.attr
,
4590 &cpuslab_flush_attr
.attr
,
4591 &deactivate_full_attr
.attr
,
4592 &deactivate_empty_attr
.attr
,
4593 &deactivate_to_head_attr
.attr
,
4594 &deactivate_to_tail_attr
.attr
,
4595 &deactivate_remote_frees_attr
.attr
,
4596 &order_fallback_attr
.attr
,
4598 #ifdef CONFIG_FAILSLAB
4599 &failslab_attr
.attr
,
4605 static struct attribute_group slab_attr_group
= {
4606 .attrs
= slab_attrs
,
4609 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4610 struct attribute
*attr
,
4613 struct slab_attribute
*attribute
;
4614 struct kmem_cache
*s
;
4617 attribute
= to_slab_attr(attr
);
4620 if (!attribute
->show
)
4623 err
= attribute
->show(s
, buf
);
4628 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4629 struct attribute
*attr
,
4630 const char *buf
, size_t len
)
4632 struct slab_attribute
*attribute
;
4633 struct kmem_cache
*s
;
4636 attribute
= to_slab_attr(attr
);
4639 if (!attribute
->store
)
4642 err
= attribute
->store(s
, buf
, len
);
4647 static void kmem_cache_release(struct kobject
*kobj
)
4649 struct kmem_cache
*s
= to_slab(kobj
);
4655 static const struct sysfs_ops slab_sysfs_ops
= {
4656 .show
= slab_attr_show
,
4657 .store
= slab_attr_store
,
4660 static struct kobj_type slab_ktype
= {
4661 .sysfs_ops
= &slab_sysfs_ops
,
4662 .release
= kmem_cache_release
4665 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4667 struct kobj_type
*ktype
= get_ktype(kobj
);
4669 if (ktype
== &slab_ktype
)
4674 static const struct kset_uevent_ops slab_uevent_ops
= {
4675 .filter
= uevent_filter
,
4678 static struct kset
*slab_kset
;
4680 #define ID_STR_LENGTH 64
4682 /* Create a unique string id for a slab cache:
4684 * Format :[flags-]size
4686 static char *create_unique_id(struct kmem_cache
*s
)
4688 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4695 * First flags affecting slabcache operations. We will only
4696 * get here for aliasable slabs so we do not need to support
4697 * too many flags. The flags here must cover all flags that
4698 * are matched during merging to guarantee that the id is
4701 if (s
->flags
& SLAB_CACHE_DMA
)
4703 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4705 if (s
->flags
& SLAB_DEBUG_FREE
)
4707 if (!(s
->flags
& SLAB_NOTRACK
))
4711 p
+= sprintf(p
, "%07d", s
->size
);
4712 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4716 static int sysfs_slab_add(struct kmem_cache
*s
)
4722 if (slab_state
< SYSFS
)
4723 /* Defer until later */
4726 unmergeable
= slab_unmergeable(s
);
4729 * Slabcache can never be merged so we can use the name proper.
4730 * This is typically the case for debug situations. In that
4731 * case we can catch duplicate names easily.
4733 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4737 * Create a unique name for the slab as a target
4740 name
= create_unique_id(s
);
4743 s
->kobj
.kset
= slab_kset
;
4744 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4746 kobject_put(&s
->kobj
);
4750 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4752 kobject_del(&s
->kobj
);
4753 kobject_put(&s
->kobj
);
4756 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4758 /* Setup first alias */
4759 sysfs_slab_alias(s
, s
->name
);
4765 static void sysfs_slab_remove(struct kmem_cache
*s
)
4767 if (slab_state
< SYSFS
)
4769 * Sysfs has not been setup yet so no need to remove the
4774 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4775 kobject_del(&s
->kobj
);
4776 kobject_put(&s
->kobj
);
4780 * Need to buffer aliases during bootup until sysfs becomes
4781 * available lest we lose that information.
4783 struct saved_alias
{
4784 struct kmem_cache
*s
;
4786 struct saved_alias
*next
;
4789 static struct saved_alias
*alias_list
;
4791 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4793 struct saved_alias
*al
;
4795 if (slab_state
== SYSFS
) {
4797 * If we have a leftover link then remove it.
4799 sysfs_remove_link(&slab_kset
->kobj
, name
);
4800 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4803 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4809 al
->next
= alias_list
;
4814 static int __init
slab_sysfs_init(void)
4816 struct kmem_cache
*s
;
4819 down_write(&slub_lock
);
4821 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4823 up_write(&slub_lock
);
4824 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4830 list_for_each_entry(s
, &slab_caches
, list
) {
4831 err
= sysfs_slab_add(s
);
4833 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4834 " to sysfs\n", s
->name
);
4837 while (alias_list
) {
4838 struct saved_alias
*al
= alias_list
;
4840 alias_list
= alias_list
->next
;
4841 err
= sysfs_slab_alias(al
->s
, al
->name
);
4843 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4844 " %s to sysfs\n", s
->name
);
4848 up_write(&slub_lock
);
4853 __initcall(slab_sysfs_init
);
4854 #endif /* CONFIG_SYSFS */
4857 * The /proc/slabinfo ABI
4859 #ifdef CONFIG_SLABINFO
4860 static void print_slabinfo_header(struct seq_file
*m
)
4862 seq_puts(m
, "slabinfo - version: 2.1\n");
4863 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4864 "<objperslab> <pagesperslab>");
4865 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4866 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4870 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4874 down_read(&slub_lock
);
4876 print_slabinfo_header(m
);
4878 return seq_list_start(&slab_caches
, *pos
);
4881 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4883 return seq_list_next(p
, &slab_caches
, pos
);
4886 static void s_stop(struct seq_file
*m
, void *p
)
4888 up_read(&slub_lock
);
4891 static int s_show(struct seq_file
*m
, void *p
)
4893 unsigned long nr_partials
= 0;
4894 unsigned long nr_slabs
= 0;
4895 unsigned long nr_inuse
= 0;
4896 unsigned long nr_objs
= 0;
4897 unsigned long nr_free
= 0;
4898 struct kmem_cache
*s
;
4901 s
= list_entry(p
, struct kmem_cache
, list
);
4903 for_each_online_node(node
) {
4904 struct kmem_cache_node
*n
= get_node(s
, node
);
4909 nr_partials
+= n
->nr_partial
;
4910 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4911 nr_objs
+= atomic_long_read(&n
->total_objects
);
4912 nr_free
+= count_partial(n
, count_free
);
4915 nr_inuse
= nr_objs
- nr_free
;
4917 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4918 nr_objs
, s
->size
, oo_objects(s
->oo
),
4919 (1 << oo_order(s
->oo
)));
4920 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4921 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4927 static const struct seq_operations slabinfo_op
= {
4934 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4936 return seq_open(file
, &slabinfo_op
);
4939 static const struct file_operations proc_slabinfo_operations
= {
4940 .open
= slabinfo_open
,
4942 .llseek
= seq_lseek
,
4943 .release
= seq_release
,
4946 static int __init
slab_proc_init(void)
4948 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
4951 module_init(slab_proc_init
);
4952 #endif /* CONFIG_SLABINFO */