4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
53 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
64 # define SET_FPEMU_CTL(a,b) (-EINVAL)
67 # define GET_FPEMU_CTL(a,b) (-EINVAL)
70 # define SET_FPEXC_CTL(a,b) (-EINVAL)
73 # define GET_FPEXC_CTL(a,b) (-EINVAL)
76 # define GET_ENDIAN(a,b) (-EINVAL)
79 # define SET_ENDIAN(a,b) (-EINVAL)
82 # define GET_TSC_CTL(a) (-EINVAL)
85 # define SET_TSC_CTL(a) (-EINVAL)
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
93 int overflowuid
= DEFAULT_OVERFLOWUID
;
94 int overflowgid
= DEFAULT_OVERFLOWGID
;
97 EXPORT_SYMBOL(overflowuid
);
98 EXPORT_SYMBOL(overflowgid
);
102 * the same as above, but for filesystems which can only store a 16-bit
103 * UID and GID. as such, this is needed on all architectures
106 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
107 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
109 EXPORT_SYMBOL(fs_overflowuid
);
110 EXPORT_SYMBOL(fs_overflowgid
);
113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
118 EXPORT_SYMBOL(cad_pid
);
121 * If set, this is used for preparing the system to power off.
124 void (*pm_power_off_prepare
)(void);
127 * Returns true if current's euid is same as p's uid or euid,
128 * or has CAP_SYS_NICE to p's user_ns.
130 * Called with rcu_read_lock, creds are safe
132 static bool set_one_prio_perm(struct task_struct
*p
)
134 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
136 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
137 (pcred
->uid
== cred
->euid
||
138 pcred
->euid
== cred
->euid
))
140 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
149 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
153 if (!set_one_prio_perm(p
)) {
157 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
161 no_nice
= security_task_setnice(p
, niceval
);
168 set_user_nice(p
, niceval
);
173 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
175 struct task_struct
*g
, *p
;
176 struct user_struct
*user
;
177 const struct cred
*cred
= current_cred();
181 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
184 /* normalize: avoid signed division (rounding problems) */
192 read_lock(&tasklist_lock
);
196 p
= find_task_by_vpid(who
);
200 error
= set_one_prio(p
, niceval
, error
);
204 pgrp
= find_vpid(who
);
206 pgrp
= task_pgrp(current
);
207 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
208 error
= set_one_prio(p
, niceval
, error
);
209 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
212 user
= (struct user_struct
*) cred
->user
;
215 else if ((who
!= cred
->uid
) &&
216 !(user
= find_user(who
)))
217 goto out_unlock
; /* No processes for this user */
219 do_each_thread(g
, p
) {
220 if (__task_cred(p
)->uid
== who
)
221 error
= set_one_prio(p
, niceval
, error
);
222 } while_each_thread(g
, p
);
223 if (who
!= cred
->uid
)
224 free_uid(user
); /* For find_user() */
228 read_unlock(&tasklist_lock
);
235 * Ugh. To avoid negative return values, "getpriority()" will
236 * not return the normal nice-value, but a negated value that
237 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238 * to stay compatible.
240 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
242 struct task_struct
*g
, *p
;
243 struct user_struct
*user
;
244 const struct cred
*cred
= current_cred();
245 long niceval
, retval
= -ESRCH
;
248 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
252 read_lock(&tasklist_lock
);
256 p
= find_task_by_vpid(who
);
260 niceval
= 20 - task_nice(p
);
261 if (niceval
> retval
)
267 pgrp
= find_vpid(who
);
269 pgrp
= task_pgrp(current
);
270 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
271 niceval
= 20 - task_nice(p
);
272 if (niceval
> retval
)
274 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
277 user
= (struct user_struct
*) cred
->user
;
280 else if ((who
!= cred
->uid
) &&
281 !(user
= find_user(who
)))
282 goto out_unlock
; /* No processes for this user */
284 do_each_thread(g
, p
) {
285 if (__task_cred(p
)->uid
== who
) {
286 niceval
= 20 - task_nice(p
);
287 if (niceval
> retval
)
290 } while_each_thread(g
, p
);
291 if (who
!= cred
->uid
)
292 free_uid(user
); /* for find_user() */
296 read_unlock(&tasklist_lock
);
303 * emergency_restart - reboot the system
305 * Without shutting down any hardware or taking any locks
306 * reboot the system. This is called when we know we are in
307 * trouble so this is our best effort to reboot. This is
308 * safe to call in interrupt context.
310 void emergency_restart(void)
312 kmsg_dump(KMSG_DUMP_EMERG
);
313 machine_emergency_restart();
315 EXPORT_SYMBOL_GPL(emergency_restart
);
317 void kernel_restart_prepare(char *cmd
)
319 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
320 system_state
= SYSTEM_RESTART
;
321 usermodehelper_disable();
327 * register_reboot_notifier - Register function to be called at reboot time
328 * @nb: Info about notifier function to be called
330 * Registers a function with the list of functions
331 * to be called at reboot time.
333 * Currently always returns zero, as blocking_notifier_chain_register()
334 * always returns zero.
336 int register_reboot_notifier(struct notifier_block
*nb
)
338 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
340 EXPORT_SYMBOL(register_reboot_notifier
);
343 * unregister_reboot_notifier - Unregister previously registered reboot notifier
344 * @nb: Hook to be unregistered
346 * Unregisters a previously registered reboot
349 * Returns zero on success, or %-ENOENT on failure.
351 int unregister_reboot_notifier(struct notifier_block
*nb
)
353 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
355 EXPORT_SYMBOL(unregister_reboot_notifier
);
358 * kernel_restart - reboot the system
359 * @cmd: pointer to buffer containing command to execute for restart
362 * Shutdown everything and perform a clean reboot.
363 * This is not safe to call in interrupt context.
365 void kernel_restart(char *cmd
)
367 kernel_restart_prepare(cmd
);
369 printk(KERN_EMERG
"Restarting system.\n");
371 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
372 kmsg_dump(KMSG_DUMP_RESTART
);
373 machine_restart(cmd
);
375 EXPORT_SYMBOL_GPL(kernel_restart
);
377 static void kernel_shutdown_prepare(enum system_states state
)
379 blocking_notifier_call_chain(&reboot_notifier_list
,
380 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
381 system_state
= state
;
382 usermodehelper_disable();
386 * kernel_halt - halt the system
388 * Shutdown everything and perform a clean system halt.
390 void kernel_halt(void)
392 kernel_shutdown_prepare(SYSTEM_HALT
);
394 printk(KERN_EMERG
"System halted.\n");
395 kmsg_dump(KMSG_DUMP_HALT
);
399 EXPORT_SYMBOL_GPL(kernel_halt
);
402 * kernel_power_off - power_off the system
404 * Shutdown everything and perform a clean system power_off.
406 void kernel_power_off(void)
408 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
409 if (pm_power_off_prepare
)
410 pm_power_off_prepare();
411 disable_nonboot_cpus();
413 printk(KERN_EMERG
"Power down.\n");
414 kmsg_dump(KMSG_DUMP_POWEROFF
);
417 EXPORT_SYMBOL_GPL(kernel_power_off
);
419 static DEFINE_MUTEX(reboot_mutex
);
422 * Reboot system call: for obvious reasons only root may call it,
423 * and even root needs to set up some magic numbers in the registers
424 * so that some mistake won't make this reboot the whole machine.
425 * You can also set the meaning of the ctrl-alt-del-key here.
427 * reboot doesn't sync: do that yourself before calling this.
429 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
435 /* We only trust the superuser with rebooting the system. */
436 if (!capable(CAP_SYS_BOOT
))
439 /* For safety, we require "magic" arguments. */
440 if (magic1
!= LINUX_REBOOT_MAGIC1
||
441 (magic2
!= LINUX_REBOOT_MAGIC2
&&
442 magic2
!= LINUX_REBOOT_MAGIC2A
&&
443 magic2
!= LINUX_REBOOT_MAGIC2B
&&
444 magic2
!= LINUX_REBOOT_MAGIC2C
))
447 /* Instead of trying to make the power_off code look like
448 * halt when pm_power_off is not set do it the easy way.
450 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
451 cmd
= LINUX_REBOOT_CMD_HALT
;
453 mutex_lock(&reboot_mutex
);
455 case LINUX_REBOOT_CMD_RESTART
:
456 kernel_restart(NULL
);
459 case LINUX_REBOOT_CMD_CAD_ON
:
463 case LINUX_REBOOT_CMD_CAD_OFF
:
467 case LINUX_REBOOT_CMD_HALT
:
470 panic("cannot halt");
472 case LINUX_REBOOT_CMD_POWER_OFF
:
477 case LINUX_REBOOT_CMD_RESTART2
:
478 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
482 buffer
[sizeof(buffer
) - 1] = '\0';
484 kernel_restart(buffer
);
488 case LINUX_REBOOT_CMD_KEXEC
:
489 ret
= kernel_kexec();
493 #ifdef CONFIG_HIBERNATION
494 case LINUX_REBOOT_CMD_SW_SUSPEND
:
503 mutex_unlock(&reboot_mutex
);
507 static void deferred_cad(struct work_struct
*dummy
)
509 kernel_restart(NULL
);
513 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
514 * As it's called within an interrupt, it may NOT sync: the only choice
515 * is whether to reboot at once, or just ignore the ctrl-alt-del.
517 void ctrl_alt_del(void)
519 static DECLARE_WORK(cad_work
, deferred_cad
);
522 schedule_work(&cad_work
);
524 kill_cad_pid(SIGINT
, 1);
528 * Unprivileged users may change the real gid to the effective gid
529 * or vice versa. (BSD-style)
531 * If you set the real gid at all, or set the effective gid to a value not
532 * equal to the real gid, then the saved gid is set to the new effective gid.
534 * This makes it possible for a setgid program to completely drop its
535 * privileges, which is often a useful assertion to make when you are doing
536 * a security audit over a program.
538 * The general idea is that a program which uses just setregid() will be
539 * 100% compatible with BSD. A program which uses just setgid() will be
540 * 100% compatible with POSIX with saved IDs.
542 * SMP: There are not races, the GIDs are checked only by filesystem
543 * operations (as far as semantic preservation is concerned).
545 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
547 const struct cred
*old
;
551 new = prepare_creds();
554 old
= current_cred();
557 if (rgid
!= (gid_t
) -1) {
558 if (old
->gid
== rgid
||
560 nsown_capable(CAP_SETGID
))
565 if (egid
!= (gid_t
) -1) {
566 if (old
->gid
== egid
||
569 nsown_capable(CAP_SETGID
))
575 if (rgid
!= (gid_t
) -1 ||
576 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
577 new->sgid
= new->egid
;
578 new->fsgid
= new->egid
;
580 return commit_creds(new);
588 * setgid() is implemented like SysV w/ SAVED_IDS
590 * SMP: Same implicit races as above.
592 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
594 const struct cred
*old
;
598 new = prepare_creds();
601 old
= current_cred();
604 if (nsown_capable(CAP_SETGID
))
605 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
606 else if (gid
== old
->gid
|| gid
== old
->sgid
)
607 new->egid
= new->fsgid
= gid
;
611 return commit_creds(new);
619 * change the user struct in a credentials set to match the new UID
621 static int set_user(struct cred
*new)
623 struct user_struct
*new_user
;
625 new_user
= alloc_uid(current_user_ns(), new->uid
);
630 * We don't fail in case of NPROC limit excess here because too many
631 * poorly written programs don't check set*uid() return code, assuming
632 * it never fails if called by root. We may still enforce NPROC limit
633 * for programs doing set*uid()+execve() by harmlessly deferring the
634 * failure to the execve() stage.
636 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
637 new_user
!= INIT_USER
)
638 current
->flags
|= PF_NPROC_EXCEEDED
;
640 current
->flags
&= ~PF_NPROC_EXCEEDED
;
643 new->user
= new_user
;
648 * Unprivileged users may change the real uid to the effective uid
649 * or vice versa. (BSD-style)
651 * If you set the real uid at all, or set the effective uid to a value not
652 * equal to the real uid, then the saved uid is set to the new effective uid.
654 * This makes it possible for a setuid program to completely drop its
655 * privileges, which is often a useful assertion to make when you are doing
656 * a security audit over a program.
658 * The general idea is that a program which uses just setreuid() will be
659 * 100% compatible with BSD. A program which uses just setuid() will be
660 * 100% compatible with POSIX with saved IDs.
662 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
664 const struct cred
*old
;
668 new = prepare_creds();
671 old
= current_cred();
674 if (ruid
!= (uid_t
) -1) {
676 if (old
->uid
!= ruid
&&
678 !nsown_capable(CAP_SETUID
))
682 if (euid
!= (uid_t
) -1) {
684 if (old
->uid
!= euid
&&
687 !nsown_capable(CAP_SETUID
))
691 if (new->uid
!= old
->uid
) {
692 retval
= set_user(new);
696 if (ruid
!= (uid_t
) -1 ||
697 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
698 new->suid
= new->euid
;
699 new->fsuid
= new->euid
;
701 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
705 return commit_creds(new);
713 * setuid() is implemented like SysV with SAVED_IDS
715 * Note that SAVED_ID's is deficient in that a setuid root program
716 * like sendmail, for example, cannot set its uid to be a normal
717 * user and then switch back, because if you're root, setuid() sets
718 * the saved uid too. If you don't like this, blame the bright people
719 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
720 * will allow a root program to temporarily drop privileges and be able to
721 * regain them by swapping the real and effective uid.
723 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
725 const struct cred
*old
;
729 new = prepare_creds();
732 old
= current_cred();
735 if (nsown_capable(CAP_SETUID
)) {
736 new->suid
= new->uid
= uid
;
737 if (uid
!= old
->uid
) {
738 retval
= set_user(new);
742 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
746 new->fsuid
= new->euid
= uid
;
748 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
752 return commit_creds(new);
761 * This function implements a generic ability to update ruid, euid,
762 * and suid. This allows you to implement the 4.4 compatible seteuid().
764 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
766 const struct cred
*old
;
770 new = prepare_creds();
774 old
= current_cred();
777 if (!nsown_capable(CAP_SETUID
)) {
778 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
779 ruid
!= old
->euid
&& ruid
!= old
->suid
)
781 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
782 euid
!= old
->euid
&& euid
!= old
->suid
)
784 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
785 suid
!= old
->euid
&& suid
!= old
->suid
)
789 if (ruid
!= (uid_t
) -1) {
791 if (ruid
!= old
->uid
) {
792 retval
= set_user(new);
797 if (euid
!= (uid_t
) -1)
799 if (suid
!= (uid_t
) -1)
801 new->fsuid
= new->euid
;
803 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
807 return commit_creds(new);
814 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
816 const struct cred
*cred
= current_cred();
819 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
820 !(retval
= put_user(cred
->euid
, euid
)))
821 retval
= put_user(cred
->suid
, suid
);
827 * Same as above, but for rgid, egid, sgid.
829 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
831 const struct cred
*old
;
835 new = prepare_creds();
838 old
= current_cred();
841 if (!nsown_capable(CAP_SETGID
)) {
842 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
843 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
845 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
846 egid
!= old
->egid
&& egid
!= old
->sgid
)
848 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
849 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
853 if (rgid
!= (gid_t
) -1)
855 if (egid
!= (gid_t
) -1)
857 if (sgid
!= (gid_t
) -1)
859 new->fsgid
= new->egid
;
861 return commit_creds(new);
868 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
870 const struct cred
*cred
= current_cred();
873 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
874 !(retval
= put_user(cred
->egid
, egid
)))
875 retval
= put_user(cred
->sgid
, sgid
);
882 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
883 * is used for "access()" and for the NFS daemon (letting nfsd stay at
884 * whatever uid it wants to). It normally shadows "euid", except when
885 * explicitly set by setfsuid() or for access..
887 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
889 const struct cred
*old
;
893 new = prepare_creds();
895 return current_fsuid();
896 old
= current_cred();
897 old_fsuid
= old
->fsuid
;
899 if (uid
== old
->uid
|| uid
== old
->euid
||
900 uid
== old
->suid
|| uid
== old
->fsuid
||
901 nsown_capable(CAP_SETUID
)) {
902 if (uid
!= old_fsuid
) {
904 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
918 * Samma på svenska..
920 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
922 const struct cred
*old
;
926 new = prepare_creds();
928 return current_fsgid();
929 old
= current_cred();
930 old_fsgid
= old
->fsgid
;
932 if (gid
== old
->gid
|| gid
== old
->egid
||
933 gid
== old
->sgid
|| gid
== old
->fsgid
||
934 nsown_capable(CAP_SETGID
)) {
935 if (gid
!= old_fsgid
) {
949 void do_sys_times(struct tms
*tms
)
951 cputime_t tgutime
, tgstime
, cutime
, cstime
;
953 spin_lock_irq(¤t
->sighand
->siglock
);
954 thread_group_times(current
, &tgutime
, &tgstime
);
955 cutime
= current
->signal
->cutime
;
956 cstime
= current
->signal
->cstime
;
957 spin_unlock_irq(¤t
->sighand
->siglock
);
958 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
959 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
960 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
961 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
964 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
970 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
973 force_successful_syscall_return();
974 return (long) jiffies_64_to_clock_t(get_jiffies_64());
978 * This needs some heavy checking ...
979 * I just haven't the stomach for it. I also don't fully
980 * understand sessions/pgrp etc. Let somebody who does explain it.
982 * OK, I think I have the protection semantics right.... this is really
983 * only important on a multi-user system anyway, to make sure one user
984 * can't send a signal to a process owned by another. -TYT, 12/12/91
986 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
989 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
991 struct task_struct
*p
;
992 struct task_struct
*group_leader
= current
->group_leader
;
997 pid
= task_pid_vnr(group_leader
);
1004 /* From this point forward we keep holding onto the tasklist lock
1005 * so that our parent does not change from under us. -DaveM
1007 write_lock_irq(&tasklist_lock
);
1010 p
= find_task_by_vpid(pid
);
1015 if (!thread_group_leader(p
))
1018 if (same_thread_group(p
->real_parent
, group_leader
)) {
1020 if (task_session(p
) != task_session(group_leader
))
1027 if (p
!= group_leader
)
1032 if (p
->signal
->leader
)
1037 struct task_struct
*g
;
1039 pgrp
= find_vpid(pgid
);
1040 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1041 if (!g
|| task_session(g
) != task_session(group_leader
))
1045 err
= security_task_setpgid(p
, pgid
);
1049 if (task_pgrp(p
) != pgrp
)
1050 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1054 /* All paths lead to here, thus we are safe. -DaveM */
1055 write_unlock_irq(&tasklist_lock
);
1060 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1062 struct task_struct
*p
;
1068 grp
= task_pgrp(current
);
1071 p
= find_task_by_vpid(pid
);
1078 retval
= security_task_getpgid(p
);
1082 retval
= pid_vnr(grp
);
1088 #ifdef __ARCH_WANT_SYS_GETPGRP
1090 SYSCALL_DEFINE0(getpgrp
)
1092 return sys_getpgid(0);
1097 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1099 struct task_struct
*p
;
1105 sid
= task_session(current
);
1108 p
= find_task_by_vpid(pid
);
1111 sid
= task_session(p
);
1115 retval
= security_task_getsid(p
);
1119 retval
= pid_vnr(sid
);
1125 SYSCALL_DEFINE0(setsid
)
1127 struct task_struct
*group_leader
= current
->group_leader
;
1128 struct pid
*sid
= task_pid(group_leader
);
1129 pid_t session
= pid_vnr(sid
);
1132 write_lock_irq(&tasklist_lock
);
1133 /* Fail if I am already a session leader */
1134 if (group_leader
->signal
->leader
)
1137 /* Fail if a process group id already exists that equals the
1138 * proposed session id.
1140 if (pid_task(sid
, PIDTYPE_PGID
))
1143 group_leader
->signal
->leader
= 1;
1144 __set_special_pids(sid
);
1146 proc_clear_tty(group_leader
);
1150 write_unlock_irq(&tasklist_lock
);
1152 proc_sid_connector(group_leader
);
1153 sched_autogroup_create_attach(group_leader
);
1158 DECLARE_RWSEM(uts_sem
);
1160 #ifdef COMPAT_UTS_MACHINE
1161 #define override_architecture(name) \
1162 (personality(current->personality) == PER_LINUX32 && \
1163 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1164 sizeof(COMPAT_UTS_MACHINE)))
1166 #define override_architecture(name) 0
1170 * Work around broken programs that cannot handle "Linux 3.0".
1171 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1173 static int override_release(char __user
*release
, int len
)
1178 if (current
->personality
& UNAME26
) {
1179 char *rest
= UTS_RELEASE
;
1184 if (*rest
== '.' && ++ndots
>= 3)
1186 if (!isdigit(*rest
) && *rest
!= '.')
1190 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1191 snprintf(buf
, len
, "2.6.%u%s", v
, rest
);
1192 ret
= copy_to_user(release
, buf
, len
);
1197 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1201 down_read(&uts_sem
);
1202 if (copy_to_user(name
, utsname(), sizeof *name
))
1206 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1208 if (!errno
&& override_architecture(name
))
1213 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1217 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1224 down_read(&uts_sem
);
1225 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1229 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1231 if (!error
&& override_architecture(name
))
1236 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1242 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1245 down_read(&uts_sem
);
1246 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1248 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1249 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1251 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1252 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1254 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1255 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1257 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1258 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1260 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1263 if (!error
&& override_architecture(name
))
1265 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1267 return error
? -EFAULT
: 0;
1271 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1274 char tmp
[__NEW_UTS_LEN
];
1276 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1279 if (len
< 0 || len
> __NEW_UTS_LEN
)
1281 down_write(&uts_sem
);
1283 if (!copy_from_user(tmp
, name
, len
)) {
1284 struct new_utsname
*u
= utsname();
1286 memcpy(u
->nodename
, tmp
, len
);
1287 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1290 uts_proc_notify(UTS_PROC_HOSTNAME
);
1295 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1297 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1300 struct new_utsname
*u
;
1304 down_read(&uts_sem
);
1306 i
= 1 + strlen(u
->nodename
);
1310 if (copy_to_user(name
, u
->nodename
, i
))
1319 * Only setdomainname; getdomainname can be implemented by calling
1322 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1325 char tmp
[__NEW_UTS_LEN
];
1327 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1329 if (len
< 0 || len
> __NEW_UTS_LEN
)
1332 down_write(&uts_sem
);
1334 if (!copy_from_user(tmp
, name
, len
)) {
1335 struct new_utsname
*u
= utsname();
1337 memcpy(u
->domainname
, tmp
, len
);
1338 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1341 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1346 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1348 struct rlimit value
;
1351 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1353 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1358 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1361 * Back compatibility for getrlimit. Needed for some apps.
1364 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1365 struct rlimit __user
*, rlim
)
1368 if (resource
>= RLIM_NLIMITS
)
1371 task_lock(current
->group_leader
);
1372 x
= current
->signal
->rlim
[resource
];
1373 task_unlock(current
->group_leader
);
1374 if (x
.rlim_cur
> 0x7FFFFFFF)
1375 x
.rlim_cur
= 0x7FFFFFFF;
1376 if (x
.rlim_max
> 0x7FFFFFFF)
1377 x
.rlim_max
= 0x7FFFFFFF;
1378 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1383 static inline bool rlim64_is_infinity(__u64 rlim64
)
1385 #if BITS_PER_LONG < 64
1386 return rlim64
>= ULONG_MAX
;
1388 return rlim64
== RLIM64_INFINITY
;
1392 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1394 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1395 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1397 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1398 if (rlim
->rlim_max
== RLIM_INFINITY
)
1399 rlim64
->rlim_max
= RLIM64_INFINITY
;
1401 rlim64
->rlim_max
= rlim
->rlim_max
;
1404 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1406 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1407 rlim
->rlim_cur
= RLIM_INFINITY
;
1409 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1410 if (rlim64_is_infinity(rlim64
->rlim_max
))
1411 rlim
->rlim_max
= RLIM_INFINITY
;
1413 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1416 /* make sure you are allowed to change @tsk limits before calling this */
1417 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1418 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1420 struct rlimit
*rlim
;
1423 if (resource
>= RLIM_NLIMITS
)
1426 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1428 if (resource
== RLIMIT_NOFILE
&&
1429 new_rlim
->rlim_max
> sysctl_nr_open
)
1433 /* protect tsk->signal and tsk->sighand from disappearing */
1434 read_lock(&tasklist_lock
);
1435 if (!tsk
->sighand
) {
1440 rlim
= tsk
->signal
->rlim
+ resource
;
1441 task_lock(tsk
->group_leader
);
1443 /* Keep the capable check against init_user_ns until
1444 cgroups can contain all limits */
1445 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1446 !capable(CAP_SYS_RESOURCE
))
1449 retval
= security_task_setrlimit(tsk
->group_leader
,
1450 resource
, new_rlim
);
1451 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1453 * The caller is asking for an immediate RLIMIT_CPU
1454 * expiry. But we use the zero value to mean "it was
1455 * never set". So let's cheat and make it one second
1458 new_rlim
->rlim_cur
= 1;
1467 task_unlock(tsk
->group_leader
);
1470 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1471 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1472 * very long-standing error, and fixing it now risks breakage of
1473 * applications, so we live with it
1475 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1476 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1477 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1479 read_unlock(&tasklist_lock
);
1483 /* rcu lock must be held */
1484 static int check_prlimit_permission(struct task_struct
*task
)
1486 const struct cred
*cred
= current_cred(), *tcred
;
1488 if (current
== task
)
1491 tcred
= __task_cred(task
);
1492 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1493 (cred
->uid
== tcred
->euid
&&
1494 cred
->uid
== tcred
->suid
&&
1495 cred
->uid
== tcred
->uid
&&
1496 cred
->gid
== tcred
->egid
&&
1497 cred
->gid
== tcred
->sgid
&&
1498 cred
->gid
== tcred
->gid
))
1500 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1506 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1507 const struct rlimit64 __user
*, new_rlim
,
1508 struct rlimit64 __user
*, old_rlim
)
1510 struct rlimit64 old64
, new64
;
1511 struct rlimit old
, new;
1512 struct task_struct
*tsk
;
1516 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1518 rlim64_to_rlim(&new64
, &new);
1522 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1527 ret
= check_prlimit_permission(tsk
);
1532 get_task_struct(tsk
);
1535 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1536 old_rlim
? &old
: NULL
);
1538 if (!ret
&& old_rlim
) {
1539 rlim_to_rlim64(&old
, &old64
);
1540 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1544 put_task_struct(tsk
);
1548 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1550 struct rlimit new_rlim
;
1552 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1554 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1558 * It would make sense to put struct rusage in the task_struct,
1559 * except that would make the task_struct be *really big*. After
1560 * task_struct gets moved into malloc'ed memory, it would
1561 * make sense to do this. It will make moving the rest of the information
1562 * a lot simpler! (Which we're not doing right now because we're not
1563 * measuring them yet).
1565 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1566 * races with threads incrementing their own counters. But since word
1567 * reads are atomic, we either get new values or old values and we don't
1568 * care which for the sums. We always take the siglock to protect reading
1569 * the c* fields from p->signal from races with exit.c updating those
1570 * fields when reaping, so a sample either gets all the additions of a
1571 * given child after it's reaped, or none so this sample is before reaping.
1574 * We need to take the siglock for CHILDEREN, SELF and BOTH
1575 * for the cases current multithreaded, non-current single threaded
1576 * non-current multithreaded. Thread traversal is now safe with
1578 * Strictly speaking, we donot need to take the siglock if we are current and
1579 * single threaded, as no one else can take our signal_struct away, no one
1580 * else can reap the children to update signal->c* counters, and no one else
1581 * can race with the signal-> fields. If we do not take any lock, the
1582 * signal-> fields could be read out of order while another thread was just
1583 * exiting. So we should place a read memory barrier when we avoid the lock.
1584 * On the writer side, write memory barrier is implied in __exit_signal
1585 * as __exit_signal releases the siglock spinlock after updating the signal->
1586 * fields. But we don't do this yet to keep things simple.
1590 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1592 r
->ru_nvcsw
+= t
->nvcsw
;
1593 r
->ru_nivcsw
+= t
->nivcsw
;
1594 r
->ru_minflt
+= t
->min_flt
;
1595 r
->ru_majflt
+= t
->maj_flt
;
1596 r
->ru_inblock
+= task_io_get_inblock(t
);
1597 r
->ru_oublock
+= task_io_get_oublock(t
);
1600 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1602 struct task_struct
*t
;
1603 unsigned long flags
;
1604 cputime_t tgutime
, tgstime
, utime
, stime
;
1605 unsigned long maxrss
= 0;
1607 memset((char *) r
, 0, sizeof *r
);
1610 if (who
== RUSAGE_THREAD
) {
1611 task_times(current
, &utime
, &stime
);
1612 accumulate_thread_rusage(p
, r
);
1613 maxrss
= p
->signal
->maxrss
;
1617 if (!lock_task_sighand(p
, &flags
))
1622 case RUSAGE_CHILDREN
:
1623 utime
= p
->signal
->cutime
;
1624 stime
= p
->signal
->cstime
;
1625 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1626 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1627 r
->ru_minflt
= p
->signal
->cmin_flt
;
1628 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1629 r
->ru_inblock
= p
->signal
->cinblock
;
1630 r
->ru_oublock
= p
->signal
->coublock
;
1631 maxrss
= p
->signal
->cmaxrss
;
1633 if (who
== RUSAGE_CHILDREN
)
1637 thread_group_times(p
, &tgutime
, &tgstime
);
1640 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1641 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1642 r
->ru_minflt
+= p
->signal
->min_flt
;
1643 r
->ru_majflt
+= p
->signal
->maj_flt
;
1644 r
->ru_inblock
+= p
->signal
->inblock
;
1645 r
->ru_oublock
+= p
->signal
->oublock
;
1646 if (maxrss
< p
->signal
->maxrss
)
1647 maxrss
= p
->signal
->maxrss
;
1650 accumulate_thread_rusage(t
, r
);
1658 unlock_task_sighand(p
, &flags
);
1661 cputime_to_timeval(utime
, &r
->ru_utime
);
1662 cputime_to_timeval(stime
, &r
->ru_stime
);
1664 if (who
!= RUSAGE_CHILDREN
) {
1665 struct mm_struct
*mm
= get_task_mm(p
);
1667 setmax_mm_hiwater_rss(&maxrss
, mm
);
1671 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1674 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1677 k_getrusage(p
, who
, &r
);
1678 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1681 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1683 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1684 who
!= RUSAGE_THREAD
)
1686 return getrusage(current
, who
, ru
);
1689 SYSCALL_DEFINE1(umask
, int, mask
)
1691 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1695 #ifdef CONFIG_CHECKPOINT_RESTORE
1696 static int prctl_set_mm(int opt
, unsigned long addr
,
1697 unsigned long arg4
, unsigned long arg5
)
1699 unsigned long rlim
= rlimit(RLIMIT_DATA
);
1700 unsigned long vm_req_flags
;
1701 unsigned long vm_bad_flags
;
1702 struct vm_area_struct
*vma
;
1704 struct mm_struct
*mm
= current
->mm
;
1709 if (!capable(CAP_SYS_ADMIN
))
1712 if (addr
>= TASK_SIZE
)
1715 down_read(&mm
->mmap_sem
);
1716 vma
= find_vma(mm
, addr
);
1718 if (opt
!= PR_SET_MM_START_BRK
&& opt
!= PR_SET_MM_BRK
) {
1719 /* It must be existing VMA */
1720 if (!vma
|| vma
->vm_start
> addr
)
1726 case PR_SET_MM_START_CODE
:
1727 case PR_SET_MM_END_CODE
:
1728 vm_req_flags
= VM_READ
| VM_EXEC
;
1729 vm_bad_flags
= VM_WRITE
| VM_MAYSHARE
;
1731 if ((vma
->vm_flags
& vm_req_flags
) != vm_req_flags
||
1732 (vma
->vm_flags
& vm_bad_flags
))
1735 if (opt
== PR_SET_MM_START_CODE
)
1736 mm
->start_code
= addr
;
1738 mm
->end_code
= addr
;
1741 case PR_SET_MM_START_DATA
:
1742 case PR_SET_MM_END_DATA
:
1743 vm_req_flags
= VM_READ
| VM_WRITE
;
1744 vm_bad_flags
= VM_EXEC
| VM_MAYSHARE
;
1746 if ((vma
->vm_flags
& vm_req_flags
) != vm_req_flags
||
1747 (vma
->vm_flags
& vm_bad_flags
))
1750 if (opt
== PR_SET_MM_START_DATA
)
1751 mm
->start_data
= addr
;
1753 mm
->end_data
= addr
;
1756 case PR_SET_MM_START_STACK
:
1758 #ifdef CONFIG_STACK_GROWSUP
1759 vm_req_flags
= VM_READ
| VM_WRITE
| VM_GROWSUP
;
1761 vm_req_flags
= VM_READ
| VM_WRITE
| VM_GROWSDOWN
;
1763 if ((vma
->vm_flags
& vm_req_flags
) != vm_req_flags
)
1766 mm
->start_stack
= addr
;
1769 case PR_SET_MM_START_BRK
:
1770 if (addr
<= mm
->end_data
)
1773 if (rlim
< RLIM_INFINITY
&&
1775 (mm
->end_data
- mm
->start_data
) > rlim
)
1778 mm
->start_brk
= addr
;
1782 if (addr
<= mm
->end_data
)
1785 if (rlim
< RLIM_INFINITY
&&
1786 (addr
- mm
->start_brk
) +
1787 (mm
->end_data
- mm
->start_data
) > rlim
)
1801 up_read(&mm
->mmap_sem
);
1805 #else /* CONFIG_CHECKPOINT_RESTORE */
1806 static int prctl_set_mm(int opt
, unsigned long addr
,
1807 unsigned long arg4
, unsigned long arg5
)
1813 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1814 unsigned long, arg4
, unsigned long, arg5
)
1816 struct task_struct
*me
= current
;
1817 unsigned char comm
[sizeof(me
->comm
)];
1820 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1821 if (error
!= -ENOSYS
)
1826 case PR_SET_PDEATHSIG
:
1827 if (!valid_signal(arg2
)) {
1831 me
->pdeath_signal
= arg2
;
1834 case PR_GET_PDEATHSIG
:
1835 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1837 case PR_GET_DUMPABLE
:
1838 error
= get_dumpable(me
->mm
);
1840 case PR_SET_DUMPABLE
:
1841 if (arg2
< 0 || arg2
> 1) {
1845 set_dumpable(me
->mm
, arg2
);
1849 case PR_SET_UNALIGN
:
1850 error
= SET_UNALIGN_CTL(me
, arg2
);
1852 case PR_GET_UNALIGN
:
1853 error
= GET_UNALIGN_CTL(me
, arg2
);
1856 error
= SET_FPEMU_CTL(me
, arg2
);
1859 error
= GET_FPEMU_CTL(me
, arg2
);
1862 error
= SET_FPEXC_CTL(me
, arg2
);
1865 error
= GET_FPEXC_CTL(me
, arg2
);
1868 error
= PR_TIMING_STATISTICAL
;
1871 if (arg2
!= PR_TIMING_STATISTICAL
)
1878 comm
[sizeof(me
->comm
)-1] = 0;
1879 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1880 sizeof(me
->comm
) - 1) < 0)
1882 set_task_comm(me
, comm
);
1883 proc_comm_connector(me
);
1886 get_task_comm(comm
, me
);
1887 if (copy_to_user((char __user
*)arg2
, comm
,
1892 error
= GET_ENDIAN(me
, arg2
);
1895 error
= SET_ENDIAN(me
, arg2
);
1898 case PR_GET_SECCOMP
:
1899 error
= prctl_get_seccomp();
1901 case PR_SET_SECCOMP
:
1902 error
= prctl_set_seccomp(arg2
);
1905 error
= GET_TSC_CTL(arg2
);
1908 error
= SET_TSC_CTL(arg2
);
1910 case PR_TASK_PERF_EVENTS_DISABLE
:
1911 error
= perf_event_task_disable();
1913 case PR_TASK_PERF_EVENTS_ENABLE
:
1914 error
= perf_event_task_enable();
1916 case PR_GET_TIMERSLACK
:
1917 error
= current
->timer_slack_ns
;
1919 case PR_SET_TIMERSLACK
:
1921 current
->timer_slack_ns
=
1922 current
->default_timer_slack_ns
;
1924 current
->timer_slack_ns
= arg2
;
1931 case PR_MCE_KILL_CLEAR
:
1934 current
->flags
&= ~PF_MCE_PROCESS
;
1936 case PR_MCE_KILL_SET
:
1937 current
->flags
|= PF_MCE_PROCESS
;
1938 if (arg3
== PR_MCE_KILL_EARLY
)
1939 current
->flags
|= PF_MCE_EARLY
;
1940 else if (arg3
== PR_MCE_KILL_LATE
)
1941 current
->flags
&= ~PF_MCE_EARLY
;
1942 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1944 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1953 case PR_MCE_KILL_GET
:
1954 if (arg2
| arg3
| arg4
| arg5
)
1956 if (current
->flags
& PF_MCE_PROCESS
)
1957 error
= (current
->flags
& PF_MCE_EARLY
) ?
1958 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1960 error
= PR_MCE_KILL_DEFAULT
;
1963 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
1972 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1973 struct getcpu_cache __user
*, unused
)
1976 int cpu
= raw_smp_processor_id();
1978 err
|= put_user(cpu
, cpup
);
1980 err
|= put_user(cpu_to_node(cpu
), nodep
);
1981 return err
? -EFAULT
: 0;
1984 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1986 static void argv_cleanup(struct subprocess_info
*info
)
1988 argv_free(info
->argv
);
1992 * orderly_poweroff - Trigger an orderly system poweroff
1993 * @force: force poweroff if command execution fails
1995 * This may be called from any context to trigger a system shutdown.
1996 * If the orderly shutdown fails, it will force an immediate shutdown.
1998 int orderly_poweroff(bool force
)
2001 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
2002 static char *envp
[] = {
2004 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2008 struct subprocess_info
*info
;
2011 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
2012 __func__
, poweroff_cmd
);
2016 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
2022 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
2024 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
2028 printk(KERN_WARNING
"Failed to start orderly shutdown: "
2029 "forcing the issue\n");
2031 /* I guess this should try to kick off some daemon to
2032 sync and poweroff asap. Or not even bother syncing
2033 if we're doing an emergency shutdown? */
2040 EXPORT_SYMBOL_GPL(orderly_poweroff
);