perf: Make common SAMPLE_EVENT parser
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / tools / perf / builtin-timechart.c
blobf472df9561ee8aa972b8c9a540b0c3bf3b5159ed
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
15 #include "builtin.h"
17 #include "util/util.h"
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/string.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/data_map.h"
34 #include "util/svghelper.h"
36 static char const *input_name = "perf.data";
37 static char const *output_name = "output.svg";
40 static u64 sample_type;
42 static unsigned int numcpus;
43 static u64 min_freq; /* Lowest CPU frequency seen */
44 static u64 max_freq; /* Highest CPU frequency seen */
45 static u64 turbo_frequency;
47 static u64 first_time, last_time;
49 static int power_only;
52 struct per_pid;
53 struct per_pidcomm;
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
59 struct sample_wrapper;
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
71 struct per_pid {
72 struct per_pid *next;
74 int pid;
75 int ppid;
77 u64 start_time;
78 u64 end_time;
79 u64 total_time;
80 int display;
82 struct per_pidcomm *all;
83 struct per_pidcomm *current;
85 int painted;
89 struct per_pidcomm {
90 struct per_pidcomm *next;
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
96 int Y;
97 int display;
99 long state;
100 u64 state_since;
102 char *comm;
104 struct cpu_sample *samples;
107 struct sample_wrapper {
108 struct sample_wrapper *next;
110 u64 timestamp;
111 unsigned char data[0];
114 #define TYPE_NONE 0
115 #define TYPE_RUNNING 1
116 #define TYPE_WAITING 2
117 #define TYPE_BLOCKED 3
119 struct cpu_sample {
120 struct cpu_sample *next;
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
128 static struct per_pid *all_data;
130 #define CSTATE 1
131 #define PSTATE 2
133 struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
142 struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
149 static struct power_event *power_events;
150 static struct wake_event *wake_events;
152 struct sample_wrapper *all_samples;
155 struct process_filter;
156 struct process_filter {
157 char *name;
158 int pid;
159 struct process_filter *next;
162 static struct process_filter *process_filter;
165 static struct per_pid *find_create_pid(int pid)
167 struct per_pid *cursor = all_data;
169 while (cursor) {
170 if (cursor->pid == pid)
171 return cursor;
172 cursor = cursor->next;
174 cursor = malloc(sizeof(struct per_pid));
175 assert(cursor != NULL);
176 memset(cursor, 0, sizeof(struct per_pid));
177 cursor->pid = pid;
178 cursor->next = all_data;
179 all_data = cursor;
180 return cursor;
183 static void pid_set_comm(int pid, char *comm)
185 struct per_pid *p;
186 struct per_pidcomm *c;
187 p = find_create_pid(pid);
188 c = p->all;
189 while (c) {
190 if (c->comm && strcmp(c->comm, comm) == 0) {
191 p->current = c;
192 return;
194 if (!c->comm) {
195 c->comm = strdup(comm);
196 p->current = c;
197 return;
199 c = c->next;
201 c = malloc(sizeof(struct per_pidcomm));
202 assert(c != NULL);
203 memset(c, 0, sizeof(struct per_pidcomm));
204 c->comm = strdup(comm);
205 p->current = c;
206 c->next = p->all;
207 p->all = c;
210 static void pid_fork(int pid, int ppid, u64 timestamp)
212 struct per_pid *p, *pp;
213 p = find_create_pid(pid);
214 pp = find_create_pid(ppid);
215 p->ppid = ppid;
216 if (pp->current && pp->current->comm && !p->current)
217 pid_set_comm(pid, pp->current->comm);
219 p->start_time = timestamp;
220 if (p->current) {
221 p->current->start_time = timestamp;
222 p->current->state_since = timestamp;
226 static void pid_exit(int pid, u64 timestamp)
228 struct per_pid *p;
229 p = find_create_pid(pid);
230 p->end_time = timestamp;
231 if (p->current)
232 p->current->end_time = timestamp;
235 static void
236 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
238 struct per_pid *p;
239 struct per_pidcomm *c;
240 struct cpu_sample *sample;
242 p = find_create_pid(pid);
243 c = p->current;
244 if (!c) {
245 c = malloc(sizeof(struct per_pidcomm));
246 assert(c != NULL);
247 memset(c, 0, sizeof(struct per_pidcomm));
248 p->current = c;
249 c->next = p->all;
250 p->all = c;
253 sample = malloc(sizeof(struct cpu_sample));
254 assert(sample != NULL);
255 memset(sample, 0, sizeof(struct cpu_sample));
256 sample->start_time = start;
257 sample->end_time = end;
258 sample->type = type;
259 sample->next = c->samples;
260 sample->cpu = cpu;
261 c->samples = sample;
263 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
264 c->total_time += (end-start);
265 p->total_time += (end-start);
268 if (c->start_time == 0 || c->start_time > start)
269 c->start_time = start;
270 if (p->start_time == 0 || p->start_time > start)
271 p->start_time = start;
273 if (cpu > numcpus)
274 numcpus = cpu;
277 #define MAX_CPUS 4096
279 static u64 cpus_cstate_start_times[MAX_CPUS];
280 static int cpus_cstate_state[MAX_CPUS];
281 static u64 cpus_pstate_start_times[MAX_CPUS];
282 static u64 cpus_pstate_state[MAX_CPUS];
284 static int
285 process_comm_event(event_t *event)
287 pid_set_comm(event->comm.pid, event->comm.comm);
288 return 0;
290 static int
291 process_fork_event(event_t *event)
293 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
294 return 0;
297 static int
298 process_exit_event(event_t *event)
300 pid_exit(event->fork.pid, event->fork.time);
301 return 0;
304 struct trace_entry {
305 unsigned short type;
306 unsigned char flags;
307 unsigned char preempt_count;
308 int pid;
309 int lock_depth;
312 struct power_entry {
313 struct trace_entry te;
314 s64 type;
315 s64 value;
318 #define TASK_COMM_LEN 16
319 struct wakeup_entry {
320 struct trace_entry te;
321 char comm[TASK_COMM_LEN];
322 int pid;
323 int prio;
324 int success;
328 * trace_flag_type is an enumeration that holds different
329 * states when a trace occurs. These are:
330 * IRQS_OFF - interrupts were disabled
331 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
332 * NEED_RESCED - reschedule is requested
333 * HARDIRQ - inside an interrupt handler
334 * SOFTIRQ - inside a softirq handler
336 enum trace_flag_type {
337 TRACE_FLAG_IRQS_OFF = 0x01,
338 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
339 TRACE_FLAG_NEED_RESCHED = 0x04,
340 TRACE_FLAG_HARDIRQ = 0x08,
341 TRACE_FLAG_SOFTIRQ = 0x10,
346 struct sched_switch {
347 struct trace_entry te;
348 char prev_comm[TASK_COMM_LEN];
349 int prev_pid;
350 int prev_prio;
351 long prev_state; /* Arjan weeps. */
352 char next_comm[TASK_COMM_LEN];
353 int next_pid;
354 int next_prio;
357 static void c_state_start(int cpu, u64 timestamp, int state)
359 cpus_cstate_start_times[cpu] = timestamp;
360 cpus_cstate_state[cpu] = state;
363 static void c_state_end(int cpu, u64 timestamp)
365 struct power_event *pwr;
366 pwr = malloc(sizeof(struct power_event));
367 if (!pwr)
368 return;
369 memset(pwr, 0, sizeof(struct power_event));
371 pwr->state = cpus_cstate_state[cpu];
372 pwr->start_time = cpus_cstate_start_times[cpu];
373 pwr->end_time = timestamp;
374 pwr->cpu = cpu;
375 pwr->type = CSTATE;
376 pwr->next = power_events;
378 power_events = pwr;
381 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
383 struct power_event *pwr;
384 pwr = malloc(sizeof(struct power_event));
386 if (new_freq > 8000000) /* detect invalid data */
387 return;
389 if (!pwr)
390 return;
391 memset(pwr, 0, sizeof(struct power_event));
393 pwr->state = cpus_pstate_state[cpu];
394 pwr->start_time = cpus_pstate_start_times[cpu];
395 pwr->end_time = timestamp;
396 pwr->cpu = cpu;
397 pwr->type = PSTATE;
398 pwr->next = power_events;
400 if (!pwr->start_time)
401 pwr->start_time = first_time;
403 power_events = pwr;
405 cpus_pstate_state[cpu] = new_freq;
406 cpus_pstate_start_times[cpu] = timestamp;
408 if ((u64)new_freq > max_freq)
409 max_freq = new_freq;
411 if (new_freq < min_freq || min_freq == 0)
412 min_freq = new_freq;
414 if (new_freq == max_freq - 1000)
415 turbo_frequency = max_freq;
418 static void
419 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
421 struct wake_event *we;
422 struct per_pid *p;
423 struct wakeup_entry *wake = (void *)te;
425 we = malloc(sizeof(struct wake_event));
426 if (!we)
427 return;
429 memset(we, 0, sizeof(struct wake_event));
430 we->time = timestamp;
431 we->waker = pid;
433 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
434 we->waker = -1;
436 we->wakee = wake->pid;
437 we->next = wake_events;
438 wake_events = we;
439 p = find_create_pid(we->wakee);
441 if (p && p->current && p->current->state == TYPE_NONE) {
442 p->current->state_since = timestamp;
443 p->current->state = TYPE_WAITING;
445 if (p && p->current && p->current->state == TYPE_BLOCKED) {
446 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
447 p->current->state_since = timestamp;
448 p->current->state = TYPE_WAITING;
452 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
454 struct per_pid *p = NULL, *prev_p;
455 struct sched_switch *sw = (void *)te;
458 prev_p = find_create_pid(sw->prev_pid);
460 p = find_create_pid(sw->next_pid);
462 if (prev_p->current && prev_p->current->state != TYPE_NONE)
463 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
464 if (p && p->current) {
465 if (p->current->state != TYPE_NONE)
466 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
468 p->current->state_since = timestamp;
469 p->current->state = TYPE_RUNNING;
472 if (prev_p->current) {
473 prev_p->current->state = TYPE_NONE;
474 prev_p->current->state_since = timestamp;
475 if (sw->prev_state & 2)
476 prev_p->current->state = TYPE_BLOCKED;
477 if (sw->prev_state == 0)
478 prev_p->current->state = TYPE_WAITING;
483 static int
484 process_sample_event(event_t *event)
486 struct sample_data data;
487 struct trace_entry *te;
489 memset(&data, 0, sizeof(data));
491 event__parse_sample(event, sample_type, &data);
493 if (sample_type & PERF_SAMPLE_TIME) {
494 if (!first_time || first_time > data.time)
495 first_time = data.time;
496 if (last_time < data.time)
497 last_time = data.time;
500 te = (void *)data.raw_data;
501 if (sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
502 char *event_str;
503 struct power_entry *pe;
505 pe = (void *)te;
507 event_str = perf_header__find_event(te->type);
509 if (!event_str)
510 return 0;
512 if (strcmp(event_str, "power:power_start") == 0)
513 c_state_start(data.cpu, data.time, pe->value);
515 if (strcmp(event_str, "power:power_end") == 0)
516 c_state_end(data.cpu, data.time);
518 if (strcmp(event_str, "power:power_frequency") == 0)
519 p_state_change(data.cpu, data.time, pe->value);
521 if (strcmp(event_str, "sched:sched_wakeup") == 0)
522 sched_wakeup(data.cpu, data.time, data.pid, te);
524 if (strcmp(event_str, "sched:sched_switch") == 0)
525 sched_switch(data.cpu, data.time, te);
527 return 0;
531 * After the last sample we need to wrap up the current C/P state
532 * and close out each CPU for these.
534 static void end_sample_processing(void)
536 u64 cpu;
537 struct power_event *pwr;
539 for (cpu = 0; cpu <= numcpus; cpu++) {
540 pwr = malloc(sizeof(struct power_event));
541 if (!pwr)
542 return;
543 memset(pwr, 0, sizeof(struct power_event));
545 /* C state */
546 #if 0
547 pwr->state = cpus_cstate_state[cpu];
548 pwr->start_time = cpus_cstate_start_times[cpu];
549 pwr->end_time = last_time;
550 pwr->cpu = cpu;
551 pwr->type = CSTATE;
552 pwr->next = power_events;
554 power_events = pwr;
555 #endif
556 /* P state */
558 pwr = malloc(sizeof(struct power_event));
559 if (!pwr)
560 return;
561 memset(pwr, 0, sizeof(struct power_event));
563 pwr->state = cpus_pstate_state[cpu];
564 pwr->start_time = cpus_pstate_start_times[cpu];
565 pwr->end_time = last_time;
566 pwr->cpu = cpu;
567 pwr->type = PSTATE;
568 pwr->next = power_events;
570 if (!pwr->start_time)
571 pwr->start_time = first_time;
572 if (!pwr->state)
573 pwr->state = min_freq;
574 power_events = pwr;
578 static u64 sample_time(event_t *event)
580 int cursor;
582 cursor = 0;
583 if (sample_type & PERF_SAMPLE_IP)
584 cursor++;
585 if (sample_type & PERF_SAMPLE_TID)
586 cursor++;
587 if (sample_type & PERF_SAMPLE_TIME)
588 return event->sample.array[cursor];
589 return 0;
594 * We first queue all events, sorted backwards by insertion.
595 * The order will get flipped later.
597 static int
598 queue_sample_event(event_t *event)
600 struct sample_wrapper *copy, *prev;
601 int size;
603 size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
605 copy = malloc(size);
606 if (!copy)
607 return 1;
609 memset(copy, 0, size);
611 copy->next = NULL;
612 copy->timestamp = sample_time(event);
614 memcpy(&copy->data, event, event->sample.header.size);
616 /* insert in the right place in the list */
618 if (!all_samples) {
619 /* first sample ever */
620 all_samples = copy;
621 return 0;
624 if (all_samples->timestamp < copy->timestamp) {
625 /* insert at the head of the list */
626 copy->next = all_samples;
627 all_samples = copy;
628 return 0;
631 prev = all_samples;
632 while (prev->next) {
633 if (prev->next->timestamp < copy->timestamp) {
634 copy->next = prev->next;
635 prev->next = copy;
636 return 0;
638 prev = prev->next;
640 /* insert at the end of the list */
641 prev->next = copy;
643 return 0;
646 static void sort_queued_samples(void)
648 struct sample_wrapper *cursor, *next;
650 cursor = all_samples;
651 all_samples = NULL;
653 while (cursor) {
654 next = cursor->next;
655 cursor->next = all_samples;
656 all_samples = cursor;
657 cursor = next;
662 * Sort the pid datastructure
664 static void sort_pids(void)
666 struct per_pid *new_list, *p, *cursor, *prev;
667 /* sort by ppid first, then by pid, lowest to highest */
669 new_list = NULL;
671 while (all_data) {
672 p = all_data;
673 all_data = p->next;
674 p->next = NULL;
676 if (new_list == NULL) {
677 new_list = p;
678 p->next = NULL;
679 continue;
681 prev = NULL;
682 cursor = new_list;
683 while (cursor) {
684 if (cursor->ppid > p->ppid ||
685 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
686 /* must insert before */
687 if (prev) {
688 p->next = prev->next;
689 prev->next = p;
690 cursor = NULL;
691 continue;
692 } else {
693 p->next = new_list;
694 new_list = p;
695 cursor = NULL;
696 continue;
700 prev = cursor;
701 cursor = cursor->next;
702 if (!cursor)
703 prev->next = p;
706 all_data = new_list;
710 static void draw_c_p_states(void)
712 struct power_event *pwr;
713 pwr = power_events;
716 * two pass drawing so that the P state bars are on top of the C state blocks
718 while (pwr) {
719 if (pwr->type == CSTATE)
720 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
721 pwr = pwr->next;
724 pwr = power_events;
725 while (pwr) {
726 if (pwr->type == PSTATE) {
727 if (!pwr->state)
728 pwr->state = min_freq;
729 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
731 pwr = pwr->next;
735 static void draw_wakeups(void)
737 struct wake_event *we;
738 struct per_pid *p;
739 struct per_pidcomm *c;
741 we = wake_events;
742 while (we) {
743 int from = 0, to = 0;
744 char *task_from = NULL, *task_to = NULL;
746 /* locate the column of the waker and wakee */
747 p = all_data;
748 while (p) {
749 if (p->pid == we->waker || p->pid == we->wakee) {
750 c = p->all;
751 while (c) {
752 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
753 if (p->pid == we->waker && !from) {
754 from = c->Y;
755 task_from = strdup(c->comm);
757 if (p->pid == we->wakee && !to) {
758 to = c->Y;
759 task_to = strdup(c->comm);
762 c = c->next;
764 c = p->all;
765 while (c) {
766 if (p->pid == we->waker && !from) {
767 from = c->Y;
768 task_from = strdup(c->comm);
770 if (p->pid == we->wakee && !to) {
771 to = c->Y;
772 task_to = strdup(c->comm);
774 c = c->next;
777 p = p->next;
780 if (!task_from) {
781 task_from = malloc(40);
782 sprintf(task_from, "[%i]", we->waker);
784 if (!task_to) {
785 task_to = malloc(40);
786 sprintf(task_to, "[%i]", we->wakee);
789 if (we->waker == -1)
790 svg_interrupt(we->time, to);
791 else if (from && to && abs(from - to) == 1)
792 svg_wakeline(we->time, from, to);
793 else
794 svg_partial_wakeline(we->time, from, task_from, to, task_to);
795 we = we->next;
797 free(task_from);
798 free(task_to);
802 static void draw_cpu_usage(void)
804 struct per_pid *p;
805 struct per_pidcomm *c;
806 struct cpu_sample *sample;
807 p = all_data;
808 while (p) {
809 c = p->all;
810 while (c) {
811 sample = c->samples;
812 while (sample) {
813 if (sample->type == TYPE_RUNNING)
814 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
816 sample = sample->next;
818 c = c->next;
820 p = p->next;
824 static void draw_process_bars(void)
826 struct per_pid *p;
827 struct per_pidcomm *c;
828 struct cpu_sample *sample;
829 int Y = 0;
831 Y = 2 * numcpus + 2;
833 p = all_data;
834 while (p) {
835 c = p->all;
836 while (c) {
837 if (!c->display) {
838 c->Y = 0;
839 c = c->next;
840 continue;
843 svg_box(Y, c->start_time, c->end_time, "process");
844 sample = c->samples;
845 while (sample) {
846 if (sample->type == TYPE_RUNNING)
847 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
848 if (sample->type == TYPE_BLOCKED)
849 svg_box(Y, sample->start_time, sample->end_time, "blocked");
850 if (sample->type == TYPE_WAITING)
851 svg_waiting(Y, sample->start_time, sample->end_time);
852 sample = sample->next;
855 if (c->comm) {
856 char comm[256];
857 if (c->total_time > 5000000000) /* 5 seconds */
858 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
859 else
860 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
862 svg_text(Y, c->start_time, comm);
864 c->Y = Y;
865 Y++;
866 c = c->next;
868 p = p->next;
872 static void add_process_filter(const char *string)
874 struct process_filter *filt;
875 int pid;
877 pid = strtoull(string, NULL, 10);
878 filt = malloc(sizeof(struct process_filter));
879 if (!filt)
880 return;
882 filt->name = strdup(string);
883 filt->pid = pid;
884 filt->next = process_filter;
886 process_filter = filt;
889 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
891 struct process_filter *filt;
892 if (!process_filter)
893 return 1;
895 filt = process_filter;
896 while (filt) {
897 if (filt->pid && p->pid == filt->pid)
898 return 1;
899 if (strcmp(filt->name, c->comm) == 0)
900 return 1;
901 filt = filt->next;
903 return 0;
906 static int determine_display_tasks_filtered(void)
908 struct per_pid *p;
909 struct per_pidcomm *c;
910 int count = 0;
912 p = all_data;
913 while (p) {
914 p->display = 0;
915 if (p->start_time == 1)
916 p->start_time = first_time;
918 /* no exit marker, task kept running to the end */
919 if (p->end_time == 0)
920 p->end_time = last_time;
922 c = p->all;
924 while (c) {
925 c->display = 0;
927 if (c->start_time == 1)
928 c->start_time = first_time;
930 if (passes_filter(p, c)) {
931 c->display = 1;
932 p->display = 1;
933 count++;
936 if (c->end_time == 0)
937 c->end_time = last_time;
939 c = c->next;
941 p = p->next;
943 return count;
946 static int determine_display_tasks(u64 threshold)
948 struct per_pid *p;
949 struct per_pidcomm *c;
950 int count = 0;
952 if (process_filter)
953 return determine_display_tasks_filtered();
955 p = all_data;
956 while (p) {
957 p->display = 0;
958 if (p->start_time == 1)
959 p->start_time = first_time;
961 /* no exit marker, task kept running to the end */
962 if (p->end_time == 0)
963 p->end_time = last_time;
964 if (p->total_time >= threshold && !power_only)
965 p->display = 1;
967 c = p->all;
969 while (c) {
970 c->display = 0;
972 if (c->start_time == 1)
973 c->start_time = first_time;
975 if (c->total_time >= threshold && !power_only) {
976 c->display = 1;
977 count++;
980 if (c->end_time == 0)
981 c->end_time = last_time;
983 c = c->next;
985 p = p->next;
987 return count;
992 #define TIME_THRESH 10000000
994 static void write_svg_file(const char *filename)
996 u64 i;
997 int count;
999 numcpus++;
1002 count = determine_display_tasks(TIME_THRESH);
1004 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
1005 if (count < 15)
1006 count = determine_display_tasks(TIME_THRESH / 10);
1008 open_svg(filename, numcpus, count, first_time, last_time);
1010 svg_time_grid();
1011 svg_legenda();
1013 for (i = 0; i < numcpus; i++)
1014 svg_cpu_box(i, max_freq, turbo_frequency);
1016 draw_cpu_usage();
1017 draw_process_bars();
1018 draw_c_p_states();
1019 draw_wakeups();
1021 svg_close();
1024 static void process_samples(void)
1026 struct sample_wrapper *cursor;
1027 event_t *event;
1029 sort_queued_samples();
1031 cursor = all_samples;
1032 while (cursor) {
1033 event = (void *)&cursor->data;
1034 cursor = cursor->next;
1035 process_sample_event(event);
1039 static int sample_type_check(u64 type)
1041 sample_type = type;
1043 if (!(sample_type & PERF_SAMPLE_RAW)) {
1044 fprintf(stderr, "No trace samples found in the file.\n"
1045 "Have you used 'perf timechart record' to record it?\n");
1046 return -1;
1049 return 0;
1052 static struct perf_file_handler file_handler = {
1053 .process_comm_event = process_comm_event,
1054 .process_fork_event = process_fork_event,
1055 .process_exit_event = process_exit_event,
1056 .process_sample_event = queue_sample_event,
1057 .sample_type_check = sample_type_check,
1060 static int __cmd_timechart(void)
1062 struct perf_header *header;
1063 int ret;
1065 register_perf_file_handler(&file_handler);
1067 ret = mmap_dispatch_perf_file(&header, input_name, 0, 0,
1068 &event__cwdlen, &event__cwd);
1069 if (ret)
1070 return EXIT_FAILURE;
1072 process_samples();
1074 end_sample_processing();
1076 sort_pids();
1078 write_svg_file(output_name);
1080 pr_info("Written %2.1f seconds of trace to %s.\n",
1081 (last_time - first_time) / 1000000000.0, output_name);
1083 return EXIT_SUCCESS;
1086 static const char * const timechart_usage[] = {
1087 "perf timechart [<options>] {record}",
1088 NULL
1091 static const char *record_args[] = {
1092 "record",
1093 "-a",
1094 "-R",
1095 "-M",
1096 "-f",
1097 "-c", "1",
1098 "-e", "power:power_start",
1099 "-e", "power:power_end",
1100 "-e", "power:power_frequency",
1101 "-e", "sched:sched_wakeup",
1102 "-e", "sched:sched_switch",
1105 static int __cmd_record(int argc, const char **argv)
1107 unsigned int rec_argc, i, j;
1108 const char **rec_argv;
1110 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1111 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1113 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1114 rec_argv[i] = strdup(record_args[i]);
1116 for (j = 1; j < (unsigned int)argc; j++, i++)
1117 rec_argv[i] = argv[j];
1119 return cmd_record(i, rec_argv, NULL);
1122 static int
1123 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1125 if (arg)
1126 add_process_filter(arg);
1127 return 0;
1130 static const struct option options[] = {
1131 OPT_STRING('i', "input", &input_name, "file",
1132 "input file name"),
1133 OPT_STRING('o', "output", &output_name, "file",
1134 "output file name"),
1135 OPT_INTEGER('w', "width", &svg_page_width,
1136 "page width"),
1137 OPT_BOOLEAN('P', "power-only", &power_only,
1138 "output power data only"),
1139 OPT_CALLBACK('p', "process", NULL, "process",
1140 "process selector. Pass a pid or process name.",
1141 parse_process),
1142 OPT_END()
1146 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1148 symbol__init(0);
1150 argc = parse_options(argc, argv, options, timechart_usage,
1151 PARSE_OPT_STOP_AT_NON_OPTION);
1153 if (argc && !strncmp(argv[0], "rec", 3))
1154 return __cmd_record(argc, argv);
1155 else if (argc)
1156 usage_with_options(timechart_usage, options);
1158 setup_pager();
1160 return __cmd_timechart();