md/raid10: don't clear bitmap during recovery if array will still be degraded.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / as-iosched.c
blobc48fa670d221342f223d196ab12e17d67452fe89
1 /*
2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
7 */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/rbtree.h>
18 #include <linux/interrupt.h>
21 * See Documentation/block/as-iosched.txt
25 * max time before a read is submitted.
27 #define default_read_expire (HZ / 8)
30 * ditto for writes, these limits are not hard, even
31 * if the disk is capable of satisfying them.
33 #define default_write_expire (HZ / 4)
36 * read_batch_expire describes how long we will allow a stream of reads to
37 * persist before looking to see whether it is time to switch over to writes.
39 #define default_read_batch_expire (HZ / 2)
42 * write_batch_expire describes how long we want a stream of writes to run for.
43 * This is not a hard limit, but a target we set for the auto-tuning thingy.
44 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
45 * a short amount of time...
47 #define default_write_batch_expire (HZ / 8)
50 * max time we may wait to anticipate a read (default around 6ms)
52 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
55 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
56 * however huge values tend to interfere and not decay fast enough. A program
57 * might be in a non-io phase of operation. Waiting on user input for example,
58 * or doing a lengthy computation. A small penalty can be justified there, and
59 * will still catch out those processes that constantly have large thinktimes.
61 #define MAX_THINKTIME (HZ/50UL)
63 /* Bits in as_io_context.state */
64 enum as_io_states {
65 AS_TASK_RUNNING=0, /* Process has not exited */
66 AS_TASK_IOSTARTED, /* Process has started some IO */
67 AS_TASK_IORUNNING, /* Process has completed some IO */
70 enum anticipation_status {
71 ANTIC_OFF=0, /* Not anticipating (normal operation) */
72 ANTIC_WAIT_REQ, /* The last read has not yet completed */
73 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
74 last read (which has completed) */
75 ANTIC_FINISHED, /* Anticipating but have found a candidate
76 * or timed out */
79 struct as_data {
81 * run time data
84 struct request_queue *q; /* the "owner" queue */
87 * requests (as_rq s) are present on both sort_list and fifo_list
89 struct rb_root sort_list[2];
90 struct list_head fifo_list[2];
92 struct request *next_rq[2]; /* next in sort order */
93 sector_t last_sector[2]; /* last SYNC & ASYNC sectors */
95 unsigned long exit_prob; /* probability a task will exit while
96 being waited on */
97 unsigned long exit_no_coop; /* probablility an exited task will
98 not be part of a later cooperating
99 request */
100 unsigned long new_ttime_total; /* mean thinktime on new proc */
101 unsigned long new_ttime_mean;
102 u64 new_seek_total; /* mean seek on new proc */
103 sector_t new_seek_mean;
105 unsigned long current_batch_expires;
106 unsigned long last_check_fifo[2];
107 int changed_batch; /* 1: waiting for old batch to end */
108 int new_batch; /* 1: waiting on first read complete */
109 int batch_data_dir; /* current batch SYNC / ASYNC */
110 int write_batch_count; /* max # of reqs in a write batch */
111 int current_write_count; /* how many requests left this batch */
112 int write_batch_idled; /* has the write batch gone idle? */
114 enum anticipation_status antic_status;
115 unsigned long antic_start; /* jiffies: when it started */
116 struct timer_list antic_timer; /* anticipatory scheduling timer */
117 struct work_struct antic_work; /* Deferred unplugging */
118 struct io_context *io_context; /* Identify the expected process */
119 int ioc_finished; /* IO associated with io_context is finished */
120 int nr_dispatched;
123 * settings that change how the i/o scheduler behaves
125 unsigned long fifo_expire[2];
126 unsigned long batch_expire[2];
127 unsigned long antic_expire;
131 * per-request data.
133 enum arq_state {
134 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
135 AS_RQ_QUEUED, /* In the request queue. It belongs to the
136 scheduler */
137 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
138 driver now */
139 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
140 AS_RQ_REMOVED,
141 AS_RQ_MERGED,
142 AS_RQ_POSTSCHED, /* when they shouldn't be */
145 #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
146 #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
147 #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
149 static DEFINE_PER_CPU(unsigned long, ioc_count);
150 static struct completion *ioc_gone;
151 static DEFINE_SPINLOCK(ioc_gone_lock);
153 static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
154 static void as_antic_stop(struct as_data *ad);
157 * IO Context helper functions
160 /* Called to deallocate the as_io_context */
161 static void free_as_io_context(struct as_io_context *aic)
163 kfree(aic);
164 elv_ioc_count_dec(ioc_count);
165 if (ioc_gone) {
167 * AS scheduler is exiting, grab exit lock and check
168 * the pending io context count. If it hits zero,
169 * complete ioc_gone and set it back to NULL.
171 spin_lock(&ioc_gone_lock);
172 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
173 complete(ioc_gone);
174 ioc_gone = NULL;
176 spin_unlock(&ioc_gone_lock);
180 static void as_trim(struct io_context *ioc)
182 spin_lock_irq(&ioc->lock);
183 if (ioc->aic)
184 free_as_io_context(ioc->aic);
185 ioc->aic = NULL;
186 spin_unlock_irq(&ioc->lock);
189 /* Called when the task exits */
190 static void exit_as_io_context(struct as_io_context *aic)
192 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
193 clear_bit(AS_TASK_RUNNING, &aic->state);
196 static struct as_io_context *alloc_as_io_context(void)
198 struct as_io_context *ret;
200 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
201 if (ret) {
202 ret->dtor = free_as_io_context;
203 ret->exit = exit_as_io_context;
204 ret->state = 1 << AS_TASK_RUNNING;
205 atomic_set(&ret->nr_queued, 0);
206 atomic_set(&ret->nr_dispatched, 0);
207 spin_lock_init(&ret->lock);
208 ret->ttime_total = 0;
209 ret->ttime_samples = 0;
210 ret->ttime_mean = 0;
211 ret->seek_total = 0;
212 ret->seek_samples = 0;
213 ret->seek_mean = 0;
214 elv_ioc_count_inc(ioc_count);
217 return ret;
221 * If the current task has no AS IO context then create one and initialise it.
222 * Then take a ref on the task's io context and return it.
224 static struct io_context *as_get_io_context(int node)
226 struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
227 if (ioc && !ioc->aic) {
228 ioc->aic = alloc_as_io_context();
229 if (!ioc->aic) {
230 put_io_context(ioc);
231 ioc = NULL;
234 return ioc;
237 static void as_put_io_context(struct request *rq)
239 struct as_io_context *aic;
241 if (unlikely(!RQ_IOC(rq)))
242 return;
244 aic = RQ_IOC(rq)->aic;
246 if (rq_is_sync(rq) && aic) {
247 unsigned long flags;
249 spin_lock_irqsave(&aic->lock, flags);
250 set_bit(AS_TASK_IORUNNING, &aic->state);
251 aic->last_end_request = jiffies;
252 spin_unlock_irqrestore(&aic->lock, flags);
255 put_io_context(RQ_IOC(rq));
259 * rb tree support functions
261 #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
263 static void as_add_rq_rb(struct as_data *ad, struct request *rq)
265 struct request *alias;
267 while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
268 as_move_to_dispatch(ad, alias);
269 as_antic_stop(ad);
273 static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
275 elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
279 * IO Scheduler proper
282 #define MAXBACK (1024 * 1024) /*
283 * Maximum distance the disk will go backward
284 * for a request.
287 #define BACK_PENALTY 2
290 * as_choose_req selects the preferred one of two requests of the same data_dir
291 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
293 static struct request *
294 as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
296 int data_dir;
297 sector_t last, s1, s2, d1, d2;
298 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
299 const sector_t maxback = MAXBACK;
301 if (rq1 == NULL || rq1 == rq2)
302 return rq2;
303 if (rq2 == NULL)
304 return rq1;
306 data_dir = rq_is_sync(rq1);
308 last = ad->last_sector[data_dir];
309 s1 = rq1->sector;
310 s2 = rq2->sector;
312 BUG_ON(data_dir != rq_is_sync(rq2));
315 * Strict one way elevator _except_ in the case where we allow
316 * short backward seeks which are biased as twice the cost of a
317 * similar forward seek.
319 if (s1 >= last)
320 d1 = s1 - last;
321 else if (s1+maxback >= last)
322 d1 = (last - s1)*BACK_PENALTY;
323 else {
324 r1_wrap = 1;
325 d1 = 0; /* shut up, gcc */
328 if (s2 >= last)
329 d2 = s2 - last;
330 else if (s2+maxback >= last)
331 d2 = (last - s2)*BACK_PENALTY;
332 else {
333 r2_wrap = 1;
334 d2 = 0;
337 /* Found required data */
338 if (!r1_wrap && r2_wrap)
339 return rq1;
340 else if (!r2_wrap && r1_wrap)
341 return rq2;
342 else if (r1_wrap && r2_wrap) {
343 /* both behind the head */
344 if (s1 <= s2)
345 return rq1;
346 else
347 return rq2;
350 /* Both requests in front of the head */
351 if (d1 < d2)
352 return rq1;
353 else if (d2 < d1)
354 return rq2;
355 else {
356 if (s1 >= s2)
357 return rq1;
358 else
359 return rq2;
364 * as_find_next_rq finds the next request after @prev in elevator order.
365 * this with as_choose_req form the basis for how the scheduler chooses
366 * what request to process next. Anticipation works on top of this.
368 static struct request *
369 as_find_next_rq(struct as_data *ad, struct request *last)
371 struct rb_node *rbnext = rb_next(&last->rb_node);
372 struct rb_node *rbprev = rb_prev(&last->rb_node);
373 struct request *next = NULL, *prev = NULL;
375 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
377 if (rbprev)
378 prev = rb_entry_rq(rbprev);
380 if (rbnext)
381 next = rb_entry_rq(rbnext);
382 else {
383 const int data_dir = rq_is_sync(last);
385 rbnext = rb_first(&ad->sort_list[data_dir]);
386 if (rbnext && rbnext != &last->rb_node)
387 next = rb_entry_rq(rbnext);
390 return as_choose_req(ad, next, prev);
394 * anticipatory scheduling functions follow
398 * as_antic_expired tells us when we have anticipated too long.
399 * The funny "absolute difference" math on the elapsed time is to handle
400 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
402 static int as_antic_expired(struct as_data *ad)
404 long delta_jif;
406 delta_jif = jiffies - ad->antic_start;
407 if (unlikely(delta_jif < 0))
408 delta_jif = -delta_jif;
409 if (delta_jif < ad->antic_expire)
410 return 0;
412 return 1;
416 * as_antic_waitnext starts anticipating that a nice request will soon be
417 * submitted. See also as_antic_waitreq
419 static void as_antic_waitnext(struct as_data *ad)
421 unsigned long timeout;
423 BUG_ON(ad->antic_status != ANTIC_OFF
424 && ad->antic_status != ANTIC_WAIT_REQ);
426 timeout = ad->antic_start + ad->antic_expire;
428 mod_timer(&ad->antic_timer, timeout);
430 ad->antic_status = ANTIC_WAIT_NEXT;
434 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
435 * until the request that we're anticipating on has finished. This means we
436 * are timing from when the candidate process wakes up hopefully.
438 static void as_antic_waitreq(struct as_data *ad)
440 BUG_ON(ad->antic_status == ANTIC_FINISHED);
441 if (ad->antic_status == ANTIC_OFF) {
442 if (!ad->io_context || ad->ioc_finished)
443 as_antic_waitnext(ad);
444 else
445 ad->antic_status = ANTIC_WAIT_REQ;
450 * This is called directly by the functions in this file to stop anticipation.
451 * We kill the timer and schedule a call to the request_fn asap.
453 static void as_antic_stop(struct as_data *ad)
455 int status = ad->antic_status;
457 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
458 if (status == ANTIC_WAIT_NEXT)
459 del_timer(&ad->antic_timer);
460 ad->antic_status = ANTIC_FINISHED;
461 /* see as_work_handler */
462 kblockd_schedule_work(ad->q, &ad->antic_work);
467 * as_antic_timeout is the timer function set by as_antic_waitnext.
469 static void as_antic_timeout(unsigned long data)
471 struct request_queue *q = (struct request_queue *)data;
472 struct as_data *ad = q->elevator->elevator_data;
473 unsigned long flags;
475 spin_lock_irqsave(q->queue_lock, flags);
476 if (ad->antic_status == ANTIC_WAIT_REQ
477 || ad->antic_status == ANTIC_WAIT_NEXT) {
478 struct as_io_context *aic;
479 spin_lock(&ad->io_context->lock);
480 aic = ad->io_context->aic;
482 ad->antic_status = ANTIC_FINISHED;
483 kblockd_schedule_work(q, &ad->antic_work);
485 if (aic->ttime_samples == 0) {
486 /* process anticipated on has exited or timed out*/
487 ad->exit_prob = (7*ad->exit_prob + 256)/8;
489 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
490 /* process not "saved" by a cooperating request */
491 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
493 spin_unlock(&ad->io_context->lock);
495 spin_unlock_irqrestore(q->queue_lock, flags);
498 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
499 unsigned long ttime)
501 /* fixed point: 1.0 == 1<<8 */
502 if (aic->ttime_samples == 0) {
503 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
504 ad->new_ttime_mean = ad->new_ttime_total / 256;
506 ad->exit_prob = (7*ad->exit_prob)/8;
508 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
509 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
510 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
513 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
514 sector_t sdist)
516 u64 total;
518 if (aic->seek_samples == 0) {
519 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
520 ad->new_seek_mean = ad->new_seek_total / 256;
524 * Don't allow the seek distance to get too large from the
525 * odd fragment, pagein, etc
527 if (aic->seek_samples <= 60) /* second&third seek */
528 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
529 else
530 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
532 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
533 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
534 total = aic->seek_total + (aic->seek_samples/2);
535 do_div(total, aic->seek_samples);
536 aic->seek_mean = (sector_t)total;
540 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
541 * updates @aic->ttime_mean based on that. It is called when a new
542 * request is queued.
544 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
545 struct request *rq)
547 int data_dir = rq_is_sync(rq);
548 unsigned long thinktime = 0;
549 sector_t seek_dist;
551 if (aic == NULL)
552 return;
554 if (data_dir == BLK_RW_SYNC) {
555 unsigned long in_flight = atomic_read(&aic->nr_queued)
556 + atomic_read(&aic->nr_dispatched);
557 spin_lock(&aic->lock);
558 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
559 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
560 /* Calculate read -> read thinktime */
561 if (test_bit(AS_TASK_IORUNNING, &aic->state)
562 && in_flight == 0) {
563 thinktime = jiffies - aic->last_end_request;
564 thinktime = min(thinktime, MAX_THINKTIME-1);
566 as_update_thinktime(ad, aic, thinktime);
568 /* Calculate read -> read seek distance */
569 if (aic->last_request_pos < rq->sector)
570 seek_dist = rq->sector - aic->last_request_pos;
571 else
572 seek_dist = aic->last_request_pos - rq->sector;
573 as_update_seekdist(ad, aic, seek_dist);
575 aic->last_request_pos = rq->sector + rq->nr_sectors;
576 set_bit(AS_TASK_IOSTARTED, &aic->state);
577 spin_unlock(&aic->lock);
582 * as_close_req decides if one request is considered "close" to the
583 * previous one issued.
585 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
586 struct request *rq)
588 unsigned long delay; /* jiffies */
589 sector_t last = ad->last_sector[ad->batch_data_dir];
590 sector_t next = rq->sector;
591 sector_t delta; /* acceptable close offset (in sectors) */
592 sector_t s;
594 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
595 delay = 0;
596 else
597 delay = jiffies - ad->antic_start;
599 if (delay == 0)
600 delta = 8192;
601 else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire)
602 delta = 8192 << delay;
603 else
604 return 1;
606 if ((last <= next + (delta>>1)) && (next <= last + delta))
607 return 1;
609 if (last < next)
610 s = next - last;
611 else
612 s = last - next;
614 if (aic->seek_samples == 0) {
616 * Process has just started IO. Use past statistics to
617 * gauge success possibility
619 if (ad->new_seek_mean > s) {
620 /* this request is better than what we're expecting */
621 return 1;
624 } else {
625 if (aic->seek_mean > s) {
626 /* this request is better than what we're expecting */
627 return 1;
631 return 0;
635 * as_can_break_anticipation returns true if we have been anticipating this
636 * request.
638 * It also returns true if the process against which we are anticipating
639 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
640 * dispatch it ASAP, because we know that application will not be submitting
641 * any new reads.
643 * If the task which has submitted the request has exited, break anticipation.
645 * If this task has queued some other IO, do not enter enticipation.
647 static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
649 struct io_context *ioc;
650 struct as_io_context *aic;
652 ioc = ad->io_context;
653 BUG_ON(!ioc);
654 spin_lock(&ioc->lock);
656 if (rq && ioc == RQ_IOC(rq)) {
657 /* request from same process */
658 spin_unlock(&ioc->lock);
659 return 1;
662 if (ad->ioc_finished && as_antic_expired(ad)) {
664 * In this situation status should really be FINISHED,
665 * however the timer hasn't had the chance to run yet.
667 spin_unlock(&ioc->lock);
668 return 1;
671 aic = ioc->aic;
672 if (!aic) {
673 spin_unlock(&ioc->lock);
674 return 0;
677 if (atomic_read(&aic->nr_queued) > 0) {
678 /* process has more requests queued */
679 spin_unlock(&ioc->lock);
680 return 1;
683 if (atomic_read(&aic->nr_dispatched) > 0) {
684 /* process has more requests dispatched */
685 spin_unlock(&ioc->lock);
686 return 1;
689 if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
691 * Found a close request that is not one of ours.
693 * This makes close requests from another process update
694 * our IO history. Is generally useful when there are
695 * two or more cooperating processes working in the same
696 * area.
698 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
699 if (aic->ttime_samples == 0)
700 ad->exit_prob = (7*ad->exit_prob + 256)/8;
702 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
705 as_update_iohist(ad, aic, rq);
706 spin_unlock(&ioc->lock);
707 return 1;
710 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
711 /* process anticipated on has exited */
712 if (aic->ttime_samples == 0)
713 ad->exit_prob = (7*ad->exit_prob + 256)/8;
715 if (ad->exit_no_coop > 128) {
716 spin_unlock(&ioc->lock);
717 return 1;
721 if (aic->ttime_samples == 0) {
722 if (ad->new_ttime_mean > ad->antic_expire) {
723 spin_unlock(&ioc->lock);
724 return 1;
726 if (ad->exit_prob * ad->exit_no_coop > 128*256) {
727 spin_unlock(&ioc->lock);
728 return 1;
730 } else if (aic->ttime_mean > ad->antic_expire) {
731 /* the process thinks too much between requests */
732 spin_unlock(&ioc->lock);
733 return 1;
735 spin_unlock(&ioc->lock);
736 return 0;
740 * as_can_anticipate indicates whether we should either run rq
741 * or keep anticipating a better request.
743 static int as_can_anticipate(struct as_data *ad, struct request *rq)
745 #if 0 /* disable for now, we need to check tag level as well */
747 * SSD device without seek penalty, disable idling
749 if (blk_queue_nonrot(ad->q)) axman
750 return 0;
751 #endif
753 if (!ad->io_context)
755 * Last request submitted was a write
757 return 0;
759 if (ad->antic_status == ANTIC_FINISHED)
761 * Don't restart if we have just finished. Run the next request
763 return 0;
765 if (as_can_break_anticipation(ad, rq))
767 * This request is a good candidate. Don't keep anticipating,
768 * run it.
770 return 0;
773 * OK from here, we haven't finished, and don't have a decent request!
774 * Status is either ANTIC_OFF so start waiting,
775 * ANTIC_WAIT_REQ so continue waiting for request to finish
776 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
779 return 1;
783 * as_update_rq must be called whenever a request (rq) is added to
784 * the sort_list. This function keeps caches up to date, and checks if the
785 * request might be one we are "anticipating"
787 static void as_update_rq(struct as_data *ad, struct request *rq)
789 const int data_dir = rq_is_sync(rq);
791 /* keep the next_rq cache up to date */
792 ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
795 * have we been anticipating this request?
796 * or does it come from the same process as the one we are anticipating
797 * for?
799 if (ad->antic_status == ANTIC_WAIT_REQ
800 || ad->antic_status == ANTIC_WAIT_NEXT) {
801 if (as_can_break_anticipation(ad, rq))
802 as_antic_stop(ad);
807 * Gathers timings and resizes the write batch automatically
809 static void update_write_batch(struct as_data *ad)
811 unsigned long batch = ad->batch_expire[BLK_RW_ASYNC];
812 long write_time;
814 write_time = (jiffies - ad->current_batch_expires) + batch;
815 if (write_time < 0)
816 write_time = 0;
818 if (write_time > batch && !ad->write_batch_idled) {
819 if (write_time > batch * 3)
820 ad->write_batch_count /= 2;
821 else
822 ad->write_batch_count--;
823 } else if (write_time < batch && ad->current_write_count == 0) {
824 if (batch > write_time * 3)
825 ad->write_batch_count *= 2;
826 else
827 ad->write_batch_count++;
830 if (ad->write_batch_count < 1)
831 ad->write_batch_count = 1;
835 * as_completed_request is to be called when a request has completed and
836 * returned something to the requesting process, be it an error or data.
838 static void as_completed_request(struct request_queue *q, struct request *rq)
840 struct as_data *ad = q->elevator->elevator_data;
842 WARN_ON(!list_empty(&rq->queuelist));
844 if (RQ_STATE(rq) != AS_RQ_REMOVED) {
845 WARN(1, "rq->state %d\n", RQ_STATE(rq));
846 goto out;
849 if (ad->changed_batch && ad->nr_dispatched == 1) {
850 ad->current_batch_expires = jiffies +
851 ad->batch_expire[ad->batch_data_dir];
852 kblockd_schedule_work(q, &ad->antic_work);
853 ad->changed_batch = 0;
855 if (ad->batch_data_dir == BLK_RW_SYNC)
856 ad->new_batch = 1;
858 WARN_ON(ad->nr_dispatched == 0);
859 ad->nr_dispatched--;
862 * Start counting the batch from when a request of that direction is
863 * actually serviced. This should help devices with big TCQ windows
864 * and writeback caches
866 if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
867 update_write_batch(ad);
868 ad->current_batch_expires = jiffies +
869 ad->batch_expire[BLK_RW_SYNC];
870 ad->new_batch = 0;
873 if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
874 ad->antic_start = jiffies;
875 ad->ioc_finished = 1;
876 if (ad->antic_status == ANTIC_WAIT_REQ) {
878 * We were waiting on this request, now anticipate
879 * the next one
881 as_antic_waitnext(ad);
885 as_put_io_context(rq);
886 out:
887 RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
891 * as_remove_queued_request removes a request from the pre dispatch queue
892 * without updating refcounts. It is expected the caller will drop the
893 * reference unless it replaces the request at somepart of the elevator
894 * (ie. the dispatch queue)
896 static void as_remove_queued_request(struct request_queue *q,
897 struct request *rq)
899 const int data_dir = rq_is_sync(rq);
900 struct as_data *ad = q->elevator->elevator_data;
901 struct io_context *ioc;
903 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
905 ioc = RQ_IOC(rq);
906 if (ioc && ioc->aic) {
907 BUG_ON(!atomic_read(&ioc->aic->nr_queued));
908 atomic_dec(&ioc->aic->nr_queued);
912 * Update the "next_rq" cache if we are about to remove its
913 * entry
915 if (ad->next_rq[data_dir] == rq)
916 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
918 rq_fifo_clear(rq);
919 as_del_rq_rb(ad, rq);
923 * as_fifo_expired returns 0 if there are no expired requests on the fifo,
924 * 1 otherwise. It is ratelimited so that we only perform the check once per
925 * `fifo_expire' interval. Otherwise a large number of expired requests
926 * would create a hopeless seekstorm.
928 * See as_antic_expired comment.
930 static int as_fifo_expired(struct as_data *ad, int adir)
932 struct request *rq;
933 long delta_jif;
935 delta_jif = jiffies - ad->last_check_fifo[adir];
936 if (unlikely(delta_jif < 0))
937 delta_jif = -delta_jif;
938 if (delta_jif < ad->fifo_expire[adir])
939 return 0;
941 ad->last_check_fifo[adir] = jiffies;
943 if (list_empty(&ad->fifo_list[adir]))
944 return 0;
946 rq = rq_entry_fifo(ad->fifo_list[adir].next);
948 return time_after(jiffies, rq_fifo_time(rq));
952 * as_batch_expired returns true if the current batch has expired. A batch
953 * is a set of reads or a set of writes.
955 static inline int as_batch_expired(struct as_data *ad)
957 if (ad->changed_batch || ad->new_batch)
958 return 0;
960 if (ad->batch_data_dir == BLK_RW_SYNC)
961 /* TODO! add a check so a complete fifo gets written? */
962 return time_after(jiffies, ad->current_batch_expires);
964 return time_after(jiffies, ad->current_batch_expires)
965 || ad->current_write_count == 0;
969 * move an entry to dispatch queue
971 static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
973 const int data_dir = rq_is_sync(rq);
975 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
977 as_antic_stop(ad);
978 ad->antic_status = ANTIC_OFF;
981 * This has to be set in order to be correctly updated by
982 * as_find_next_rq
984 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
986 if (data_dir == BLK_RW_SYNC) {
987 struct io_context *ioc = RQ_IOC(rq);
988 /* In case we have to anticipate after this */
989 copy_io_context(&ad->io_context, &ioc);
990 } else {
991 if (ad->io_context) {
992 put_io_context(ad->io_context);
993 ad->io_context = NULL;
996 if (ad->current_write_count != 0)
997 ad->current_write_count--;
999 ad->ioc_finished = 0;
1001 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
1004 * take it off the sort and fifo list, add to dispatch queue
1006 as_remove_queued_request(ad->q, rq);
1007 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
1009 elv_dispatch_sort(ad->q, rq);
1011 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1012 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1013 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1014 ad->nr_dispatched++;
1018 * as_dispatch_request selects the best request according to
1019 * read/write expire, batch expire, etc, and moves it to the dispatch
1020 * queue. Returns 1 if a request was found, 0 otherwise.
1022 static int as_dispatch_request(struct request_queue *q, int force)
1024 struct as_data *ad = q->elevator->elevator_data;
1025 const int reads = !list_empty(&ad->fifo_list[BLK_RW_SYNC]);
1026 const int writes = !list_empty(&ad->fifo_list[BLK_RW_ASYNC]);
1027 struct request *rq;
1029 if (unlikely(force)) {
1031 * Forced dispatch, accounting is useless. Reset
1032 * accounting states and dump fifo_lists. Note that
1033 * batch_data_dir is reset to BLK_RW_SYNC to avoid
1034 * screwing write batch accounting as write batch
1035 * accounting occurs on W->R transition.
1037 int dispatched = 0;
1039 ad->batch_data_dir = BLK_RW_SYNC;
1040 ad->changed_batch = 0;
1041 ad->new_batch = 0;
1043 while (ad->next_rq[BLK_RW_SYNC]) {
1044 as_move_to_dispatch(ad, ad->next_rq[BLK_RW_SYNC]);
1045 dispatched++;
1047 ad->last_check_fifo[BLK_RW_SYNC] = jiffies;
1049 while (ad->next_rq[BLK_RW_ASYNC]) {
1050 as_move_to_dispatch(ad, ad->next_rq[BLK_RW_ASYNC]);
1051 dispatched++;
1053 ad->last_check_fifo[BLK_RW_ASYNC] = jiffies;
1055 return dispatched;
1058 /* Signal that the write batch was uncontended, so we can't time it */
1059 if (ad->batch_data_dir == BLK_RW_ASYNC && !reads) {
1060 if (ad->current_write_count == 0 || !writes)
1061 ad->write_batch_idled = 1;
1064 if (!(reads || writes)
1065 || ad->antic_status == ANTIC_WAIT_REQ
1066 || ad->antic_status == ANTIC_WAIT_NEXT
1067 || ad->changed_batch)
1068 return 0;
1070 if (!(reads && writes && as_batch_expired(ad))) {
1072 * batch is still running or no reads or no writes
1074 rq = ad->next_rq[ad->batch_data_dir];
1076 if (ad->batch_data_dir == BLK_RW_SYNC && ad->antic_expire) {
1077 if (as_fifo_expired(ad, BLK_RW_SYNC))
1078 goto fifo_expired;
1080 if (as_can_anticipate(ad, rq)) {
1081 as_antic_waitreq(ad);
1082 return 0;
1086 if (rq) {
1087 /* we have a "next request" */
1088 if (reads && !writes)
1089 ad->current_batch_expires =
1090 jiffies + ad->batch_expire[BLK_RW_SYNC];
1091 goto dispatch_request;
1096 * at this point we are not running a batch. select the appropriate
1097 * data direction (read / write)
1100 if (reads) {
1101 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_SYNC]));
1103 if (writes && ad->batch_data_dir == BLK_RW_SYNC)
1105 * Last batch was a read, switch to writes
1107 goto dispatch_writes;
1109 if (ad->batch_data_dir == BLK_RW_ASYNC) {
1110 WARN_ON(ad->new_batch);
1111 ad->changed_batch = 1;
1113 ad->batch_data_dir = BLK_RW_SYNC;
1114 rq = rq_entry_fifo(ad->fifo_list[BLK_RW_SYNC].next);
1115 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1116 goto dispatch_request;
1120 * the last batch was a read
1123 if (writes) {
1124 dispatch_writes:
1125 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_ASYNC]));
1127 if (ad->batch_data_dir == BLK_RW_SYNC) {
1128 ad->changed_batch = 1;
1131 * new_batch might be 1 when the queue runs out of
1132 * reads. A subsequent submission of a write might
1133 * cause a change of batch before the read is finished.
1135 ad->new_batch = 0;
1137 ad->batch_data_dir = BLK_RW_ASYNC;
1138 ad->current_write_count = ad->write_batch_count;
1139 ad->write_batch_idled = 0;
1140 rq = rq_entry_fifo(ad->fifo_list[BLK_RW_ASYNC].next);
1141 ad->last_check_fifo[BLK_RW_ASYNC] = jiffies;
1142 goto dispatch_request;
1145 BUG();
1146 return 0;
1148 dispatch_request:
1150 * If a request has expired, service it.
1153 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1154 fifo_expired:
1155 rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1158 if (ad->changed_batch) {
1159 WARN_ON(ad->new_batch);
1161 if (ad->nr_dispatched)
1162 return 0;
1164 if (ad->batch_data_dir == BLK_RW_ASYNC)
1165 ad->current_batch_expires = jiffies +
1166 ad->batch_expire[BLK_RW_ASYNC];
1167 else
1168 ad->new_batch = 1;
1170 ad->changed_batch = 0;
1174 * rq is the selected appropriate request.
1176 as_move_to_dispatch(ad, rq);
1178 return 1;
1182 * add rq to rbtree and fifo
1184 static void as_add_request(struct request_queue *q, struct request *rq)
1186 struct as_data *ad = q->elevator->elevator_data;
1187 int data_dir;
1189 RQ_SET_STATE(rq, AS_RQ_NEW);
1191 data_dir = rq_is_sync(rq);
1193 rq->elevator_private = as_get_io_context(q->node);
1195 if (RQ_IOC(rq)) {
1196 as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
1197 atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
1200 as_add_rq_rb(ad, rq);
1203 * set expire time and add to fifo list
1205 rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
1206 list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
1208 as_update_rq(ad, rq); /* keep state machine up to date */
1209 RQ_SET_STATE(rq, AS_RQ_QUEUED);
1212 static void as_activate_request(struct request_queue *q, struct request *rq)
1214 WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
1215 RQ_SET_STATE(rq, AS_RQ_REMOVED);
1216 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1217 atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
1220 static void as_deactivate_request(struct request_queue *q, struct request *rq)
1222 WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
1223 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1224 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1225 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1229 * as_queue_empty tells us if there are requests left in the device. It may
1230 * not be the case that a driver can get the next request even if the queue
1231 * is not empty - it is used in the block layer to check for plugging and
1232 * merging opportunities
1234 static int as_queue_empty(struct request_queue *q)
1236 struct as_data *ad = q->elevator->elevator_data;
1238 return list_empty(&ad->fifo_list[BLK_RW_ASYNC])
1239 && list_empty(&ad->fifo_list[BLK_RW_SYNC]);
1242 static int
1243 as_merge(struct request_queue *q, struct request **req, struct bio *bio)
1245 struct as_data *ad = q->elevator->elevator_data;
1246 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1247 struct request *__rq;
1250 * check for front merge
1252 __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
1253 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1254 *req = __rq;
1255 return ELEVATOR_FRONT_MERGE;
1258 return ELEVATOR_NO_MERGE;
1261 static void as_merged_request(struct request_queue *q, struct request *req,
1262 int type)
1264 struct as_data *ad = q->elevator->elevator_data;
1267 * if the merge was a front merge, we need to reposition request
1269 if (type == ELEVATOR_FRONT_MERGE) {
1270 as_del_rq_rb(ad, req);
1271 as_add_rq_rb(ad, req);
1273 * Note! At this stage of this and the next function, our next
1274 * request may not be optimal - eg the request may have "grown"
1275 * behind the disk head. We currently don't bother adjusting.
1280 static void as_merged_requests(struct request_queue *q, struct request *req,
1281 struct request *next)
1284 * if next expires before rq, assign its expire time to arq
1285 * and move into next position (next will be deleted) in fifo
1287 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
1288 if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
1289 list_move(&req->queuelist, &next->queuelist);
1290 rq_set_fifo_time(req, rq_fifo_time(next));
1295 * kill knowledge of next, this one is a goner
1297 as_remove_queued_request(q, next);
1298 as_put_io_context(next);
1300 RQ_SET_STATE(next, AS_RQ_MERGED);
1304 * This is executed in a "deferred" process context, by kblockd. It calls the
1305 * driver's request_fn so the driver can submit that request.
1307 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1308 * state before calling, and don't rely on any state over calls.
1310 * FIXME! dispatch queue is not a queue at all!
1312 static void as_work_handler(struct work_struct *work)
1314 struct as_data *ad = container_of(work, struct as_data, antic_work);
1315 struct request_queue *q = ad->q;
1316 unsigned long flags;
1318 spin_lock_irqsave(q->queue_lock, flags);
1319 blk_start_queueing(q);
1320 spin_unlock_irqrestore(q->queue_lock, flags);
1323 static int as_may_queue(struct request_queue *q, int rw)
1325 int ret = ELV_MQUEUE_MAY;
1326 struct as_data *ad = q->elevator->elevator_data;
1327 struct io_context *ioc;
1328 if (ad->antic_status == ANTIC_WAIT_REQ ||
1329 ad->antic_status == ANTIC_WAIT_NEXT) {
1330 ioc = as_get_io_context(q->node);
1331 if (ad->io_context == ioc)
1332 ret = ELV_MQUEUE_MUST;
1333 put_io_context(ioc);
1336 return ret;
1339 static void as_exit_queue(struct elevator_queue *e)
1341 struct as_data *ad = e->elevator_data;
1343 del_timer_sync(&ad->antic_timer);
1344 cancel_work_sync(&ad->antic_work);
1346 BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_SYNC]));
1347 BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_ASYNC]));
1349 put_io_context(ad->io_context);
1350 kfree(ad);
1354 * initialize elevator private data (as_data).
1356 static void *as_init_queue(struct request_queue *q)
1358 struct as_data *ad;
1360 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node);
1361 if (!ad)
1362 return NULL;
1364 ad->q = q; /* Identify what queue the data belongs to */
1366 /* anticipatory scheduling helpers */
1367 ad->antic_timer.function = as_antic_timeout;
1368 ad->antic_timer.data = (unsigned long)q;
1369 init_timer(&ad->antic_timer);
1370 INIT_WORK(&ad->antic_work, as_work_handler);
1372 INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_SYNC]);
1373 INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_ASYNC]);
1374 ad->sort_list[BLK_RW_SYNC] = RB_ROOT;
1375 ad->sort_list[BLK_RW_ASYNC] = RB_ROOT;
1376 ad->fifo_expire[BLK_RW_SYNC] = default_read_expire;
1377 ad->fifo_expire[BLK_RW_ASYNC] = default_write_expire;
1378 ad->antic_expire = default_antic_expire;
1379 ad->batch_expire[BLK_RW_SYNC] = default_read_batch_expire;
1380 ad->batch_expire[BLK_RW_ASYNC] = default_write_batch_expire;
1382 ad->current_batch_expires = jiffies + ad->batch_expire[BLK_RW_SYNC];
1383 ad->write_batch_count = ad->batch_expire[BLK_RW_ASYNC] / 10;
1384 if (ad->write_batch_count < 2)
1385 ad->write_batch_count = 2;
1387 return ad;
1391 * sysfs parts below
1394 static ssize_t
1395 as_var_show(unsigned int var, char *page)
1397 return sprintf(page, "%d\n", var);
1400 static ssize_t
1401 as_var_store(unsigned long *var, const char *page, size_t count)
1403 char *p = (char *) page;
1405 *var = simple_strtoul(p, &p, 10);
1406 return count;
1409 static ssize_t est_time_show(struct elevator_queue *e, char *page)
1411 struct as_data *ad = e->elevator_data;
1412 int pos = 0;
1414 pos += sprintf(page+pos, "%lu %% exit probability\n",
1415 100*ad->exit_prob/256);
1416 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1417 "cooperating process submitting IO\n",
1418 100*ad->exit_no_coop/256);
1419 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1420 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1421 (unsigned long long)ad->new_seek_mean);
1423 return pos;
1426 #define SHOW_FUNCTION(__FUNC, __VAR) \
1427 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1429 struct as_data *ad = e->elevator_data; \
1430 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1432 SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[BLK_RW_SYNC]);
1433 SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[BLK_RW_ASYNC]);
1434 SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1435 SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[BLK_RW_SYNC]);
1436 SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[BLK_RW_ASYNC]);
1437 #undef SHOW_FUNCTION
1439 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1440 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1442 struct as_data *ad = e->elevator_data; \
1443 int ret = as_var_store(__PTR, (page), count); \
1444 if (*(__PTR) < (MIN)) \
1445 *(__PTR) = (MIN); \
1446 else if (*(__PTR) > (MAX)) \
1447 *(__PTR) = (MAX); \
1448 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1449 return ret; \
1451 STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[BLK_RW_SYNC], 0, INT_MAX);
1452 STORE_FUNCTION(as_write_expire_store,
1453 &ad->fifo_expire[BLK_RW_ASYNC], 0, INT_MAX);
1454 STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1455 STORE_FUNCTION(as_read_batch_expire_store,
1456 &ad->batch_expire[BLK_RW_SYNC], 0, INT_MAX);
1457 STORE_FUNCTION(as_write_batch_expire_store,
1458 &ad->batch_expire[BLK_RW_ASYNC], 0, INT_MAX);
1459 #undef STORE_FUNCTION
1461 #define AS_ATTR(name) \
1462 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1464 static struct elv_fs_entry as_attrs[] = {
1465 __ATTR_RO(est_time),
1466 AS_ATTR(read_expire),
1467 AS_ATTR(write_expire),
1468 AS_ATTR(antic_expire),
1469 AS_ATTR(read_batch_expire),
1470 AS_ATTR(write_batch_expire),
1471 __ATTR_NULL
1474 static struct elevator_type iosched_as = {
1475 .ops = {
1476 .elevator_merge_fn = as_merge,
1477 .elevator_merged_fn = as_merged_request,
1478 .elevator_merge_req_fn = as_merged_requests,
1479 .elevator_dispatch_fn = as_dispatch_request,
1480 .elevator_add_req_fn = as_add_request,
1481 .elevator_activate_req_fn = as_activate_request,
1482 .elevator_deactivate_req_fn = as_deactivate_request,
1483 .elevator_queue_empty_fn = as_queue_empty,
1484 .elevator_completed_req_fn = as_completed_request,
1485 .elevator_former_req_fn = elv_rb_former_request,
1486 .elevator_latter_req_fn = elv_rb_latter_request,
1487 .elevator_may_queue_fn = as_may_queue,
1488 .elevator_init_fn = as_init_queue,
1489 .elevator_exit_fn = as_exit_queue,
1490 .trim = as_trim,
1493 .elevator_attrs = as_attrs,
1494 .elevator_name = "anticipatory",
1495 .elevator_owner = THIS_MODULE,
1498 static int __init as_init(void)
1500 elv_register(&iosched_as);
1502 return 0;
1505 static void __exit as_exit(void)
1507 DECLARE_COMPLETION_ONSTACK(all_gone);
1508 elv_unregister(&iosched_as);
1509 ioc_gone = &all_gone;
1510 /* ioc_gone's update must be visible before reading ioc_count */
1511 smp_wmb();
1512 if (elv_ioc_count_read(ioc_count))
1513 wait_for_completion(&all_gone);
1514 synchronize_rcu();
1517 module_init(as_init);
1518 module_exit(as_exit);
1520 MODULE_AUTHOR("Nick Piggin");
1521 MODULE_LICENSE("GPL");
1522 MODULE_DESCRIPTION("anticipatory IO scheduler");