2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 static DEFINE_SPINLOCK(elv_list_lock
);
41 static LIST_HEAD(elv_list
);
46 static const int elv_hash_shift
= 6;
47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
48 #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
50 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
54 * Query io scheduler to see if the current process issuing bio may be
57 static int elv_iosched_allow_merge(struct request
*rq
, struct bio
*bio
)
59 request_queue_t
*q
= rq
->q
;
60 elevator_t
*e
= q
->elevator
;
62 if (e
->ops
->elevator_allow_merge_fn
)
63 return e
->ops
->elevator_allow_merge_fn(q
, rq
, bio
);
69 * can we safely merge with this request?
71 inline int elv_rq_merge_ok(struct request
*rq
, struct bio
*bio
)
73 if (!rq_mergeable(rq
))
77 * different data direction or already started, don't merge
79 if (bio_data_dir(bio
) != rq_data_dir(rq
))
83 * must be same device and not a special request
85 if (rq
->rq_disk
!= bio
->bi_bdev
->bd_disk
|| rq
->special
)
88 if (!elv_iosched_allow_merge(rq
, bio
))
93 EXPORT_SYMBOL(elv_rq_merge_ok
);
95 static inline int elv_try_merge(struct request
*__rq
, struct bio
*bio
)
97 int ret
= ELEVATOR_NO_MERGE
;
100 * we can merge and sequence is ok, check if it's possible
102 if (elv_rq_merge_ok(__rq
, bio
)) {
103 if (__rq
->sector
+ __rq
->nr_sectors
== bio
->bi_sector
)
104 ret
= ELEVATOR_BACK_MERGE
;
105 else if (__rq
->sector
- bio_sectors(bio
) == bio
->bi_sector
)
106 ret
= ELEVATOR_FRONT_MERGE
;
112 static struct elevator_type
*elevator_find(const char *name
)
114 struct elevator_type
*e
;
115 struct list_head
*entry
;
117 list_for_each(entry
, &elv_list
) {
119 e
= list_entry(entry
, struct elevator_type
, list
);
121 if (!strcmp(e
->elevator_name
, name
))
128 static void elevator_put(struct elevator_type
*e
)
130 module_put(e
->elevator_owner
);
133 static struct elevator_type
*elevator_get(const char *name
)
135 struct elevator_type
*e
;
137 spin_lock(&elv_list_lock
);
139 e
= elevator_find(name
);
140 if (e
&& !try_module_get(e
->elevator_owner
))
143 spin_unlock(&elv_list_lock
);
148 static void *elevator_init_queue(request_queue_t
*q
, struct elevator_queue
*eq
)
150 return eq
->ops
->elevator_init_fn(q
);
153 static void elevator_attach(request_queue_t
*q
, struct elevator_queue
*eq
,
157 eq
->elevator_data
= data
;
160 static char chosen_elevator
[16];
162 static int __init
elevator_setup(char *str
)
165 * Be backwards-compatible with previous kernels, so users
166 * won't get the wrong elevator.
168 if (!strcmp(str
, "as"))
169 strcpy(chosen_elevator
, "anticipatory");
171 strncpy(chosen_elevator
, str
, sizeof(chosen_elevator
) - 1);
175 __setup("elevator=", elevator_setup
);
177 static struct kobj_type elv_ktype
;
179 static elevator_t
*elevator_alloc(request_queue_t
*q
, struct elevator_type
*e
)
184 eq
= kmalloc_node(sizeof(elevator_t
), GFP_KERNEL
, q
->node
);
188 memset(eq
, 0, sizeof(*eq
));
190 eq
->elevator_type
= e
;
191 kobject_init(&eq
->kobj
);
192 snprintf(eq
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "iosched");
193 eq
->kobj
.ktype
= &elv_ktype
;
194 mutex_init(&eq
->sysfs_lock
);
196 eq
->hash
= kmalloc_node(sizeof(struct hlist_head
) * ELV_HASH_ENTRIES
,
197 GFP_KERNEL
, q
->node
);
201 for (i
= 0; i
< ELV_HASH_ENTRIES
; i
++)
202 INIT_HLIST_HEAD(&eq
->hash
[i
]);
211 static void elevator_release(struct kobject
*kobj
)
213 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
215 elevator_put(e
->elevator_type
);
220 int elevator_init(request_queue_t
*q
, char *name
)
222 struct elevator_type
*e
= NULL
;
223 struct elevator_queue
*eq
;
227 INIT_LIST_HEAD(&q
->queue_head
);
228 q
->last_merge
= NULL
;
230 q
->boundary_rq
= NULL
;
232 if (name
&& !(e
= elevator_get(name
)))
235 if (!e
&& *chosen_elevator
&& !(e
= elevator_get(chosen_elevator
)))
236 printk("I/O scheduler %s not found\n", chosen_elevator
);
238 if (!e
&& !(e
= elevator_get(CONFIG_DEFAULT_IOSCHED
))) {
239 printk("Default I/O scheduler not found, using no-op\n");
240 e
= elevator_get("noop");
243 eq
= elevator_alloc(q
, e
);
247 data
= elevator_init_queue(q
, eq
);
249 kobject_put(&eq
->kobj
);
253 elevator_attach(q
, eq
, data
);
257 EXPORT_SYMBOL(elevator_init
);
259 void elevator_exit(elevator_t
*e
)
261 mutex_lock(&e
->sysfs_lock
);
262 if (e
->ops
->elevator_exit_fn
)
263 e
->ops
->elevator_exit_fn(e
);
265 mutex_unlock(&e
->sysfs_lock
);
267 kobject_put(&e
->kobj
);
270 EXPORT_SYMBOL(elevator_exit
);
272 static void elv_activate_rq(request_queue_t
*q
, struct request
*rq
)
274 elevator_t
*e
= q
->elevator
;
276 if (e
->ops
->elevator_activate_req_fn
)
277 e
->ops
->elevator_activate_req_fn(q
, rq
);
280 static void elv_deactivate_rq(request_queue_t
*q
, struct request
*rq
)
282 elevator_t
*e
= q
->elevator
;
284 if (e
->ops
->elevator_deactivate_req_fn
)
285 e
->ops
->elevator_deactivate_req_fn(q
, rq
);
288 static inline void __elv_rqhash_del(struct request
*rq
)
290 hlist_del_init(&rq
->hash
);
293 static void elv_rqhash_del(request_queue_t
*q
, struct request
*rq
)
296 __elv_rqhash_del(rq
);
299 static void elv_rqhash_add(request_queue_t
*q
, struct request
*rq
)
301 elevator_t
*e
= q
->elevator
;
303 BUG_ON(ELV_ON_HASH(rq
));
304 hlist_add_head(&rq
->hash
, &e
->hash
[ELV_HASH_FN(rq_hash_key(rq
))]);
307 static void elv_rqhash_reposition(request_queue_t
*q
, struct request
*rq
)
309 __elv_rqhash_del(rq
);
310 elv_rqhash_add(q
, rq
);
313 static struct request
*elv_rqhash_find(request_queue_t
*q
, sector_t offset
)
315 elevator_t
*e
= q
->elevator
;
316 struct hlist_head
*hash_list
= &e
->hash
[ELV_HASH_FN(offset
)];
317 struct hlist_node
*entry
, *next
;
320 hlist_for_each_entry_safe(rq
, entry
, next
, hash_list
, hash
) {
321 BUG_ON(!ELV_ON_HASH(rq
));
323 if (unlikely(!rq_mergeable(rq
))) {
324 __elv_rqhash_del(rq
);
328 if (rq_hash_key(rq
) == offset
)
336 * RB-tree support functions for inserting/lookup/removal of requests
337 * in a sorted RB tree.
339 struct request
*elv_rb_add(struct rb_root
*root
, struct request
*rq
)
341 struct rb_node
**p
= &root
->rb_node
;
342 struct rb_node
*parent
= NULL
;
343 struct request
*__rq
;
347 __rq
= rb_entry(parent
, struct request
, rb_node
);
349 if (rq
->sector
< __rq
->sector
)
351 else if (rq
->sector
> __rq
->sector
)
357 rb_link_node(&rq
->rb_node
, parent
, p
);
358 rb_insert_color(&rq
->rb_node
, root
);
362 EXPORT_SYMBOL(elv_rb_add
);
364 void elv_rb_del(struct rb_root
*root
, struct request
*rq
)
366 BUG_ON(RB_EMPTY_NODE(&rq
->rb_node
));
367 rb_erase(&rq
->rb_node
, root
);
368 RB_CLEAR_NODE(&rq
->rb_node
);
371 EXPORT_SYMBOL(elv_rb_del
);
373 struct request
*elv_rb_find(struct rb_root
*root
, sector_t sector
)
375 struct rb_node
*n
= root
->rb_node
;
379 rq
= rb_entry(n
, struct request
, rb_node
);
381 if (sector
< rq
->sector
)
383 else if (sector
> rq
->sector
)
392 EXPORT_SYMBOL(elv_rb_find
);
395 * Insert rq into dispatch queue of q. Queue lock must be held on
396 * entry. rq is sort insted into the dispatch queue. To be used by
397 * specific elevators.
399 void elv_dispatch_sort(request_queue_t
*q
, struct request
*rq
)
402 struct list_head
*entry
;
404 if (q
->last_merge
== rq
)
405 q
->last_merge
= NULL
;
407 elv_rqhash_del(q
, rq
);
411 boundary
= q
->end_sector
;
413 list_for_each_prev(entry
, &q
->queue_head
) {
414 struct request
*pos
= list_entry_rq(entry
);
416 if (rq_data_dir(rq
) != rq_data_dir(pos
))
418 if (pos
->cmd_flags
& (REQ_SOFTBARRIER
|REQ_HARDBARRIER
|REQ_STARTED
))
420 if (rq
->sector
>= boundary
) {
421 if (pos
->sector
< boundary
)
424 if (pos
->sector
>= boundary
)
427 if (rq
->sector
>= pos
->sector
)
431 list_add(&rq
->queuelist
, entry
);
434 EXPORT_SYMBOL(elv_dispatch_sort
);
437 * Insert rq into dispatch queue of q. Queue lock must be held on
438 * entry. rq is added to the back of the dispatch queue. To be used by
439 * specific elevators.
441 void elv_dispatch_add_tail(struct request_queue
*q
, struct request
*rq
)
443 if (q
->last_merge
== rq
)
444 q
->last_merge
= NULL
;
446 elv_rqhash_del(q
, rq
);
450 q
->end_sector
= rq_end_sector(rq
);
452 list_add_tail(&rq
->queuelist
, &q
->queue_head
);
455 EXPORT_SYMBOL(elv_dispatch_add_tail
);
457 int elv_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
459 elevator_t
*e
= q
->elevator
;
460 struct request
*__rq
;
464 * First try one-hit cache.
467 ret
= elv_try_merge(q
->last_merge
, bio
);
468 if (ret
!= ELEVATOR_NO_MERGE
) {
469 *req
= q
->last_merge
;
475 * See if our hash lookup can find a potential backmerge.
477 __rq
= elv_rqhash_find(q
, bio
->bi_sector
);
478 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
480 return ELEVATOR_BACK_MERGE
;
483 if (e
->ops
->elevator_merge_fn
)
484 return e
->ops
->elevator_merge_fn(q
, req
, bio
);
486 return ELEVATOR_NO_MERGE
;
489 void elv_merged_request(request_queue_t
*q
, struct request
*rq
, int type
)
491 elevator_t
*e
= q
->elevator
;
493 if (e
->ops
->elevator_merged_fn
)
494 e
->ops
->elevator_merged_fn(q
, rq
, type
);
496 if (type
== ELEVATOR_BACK_MERGE
)
497 elv_rqhash_reposition(q
, rq
);
502 void elv_merge_requests(request_queue_t
*q
, struct request
*rq
,
503 struct request
*next
)
505 elevator_t
*e
= q
->elevator
;
507 if (e
->ops
->elevator_merge_req_fn
)
508 e
->ops
->elevator_merge_req_fn(q
, rq
, next
);
510 elv_rqhash_reposition(q
, rq
);
511 elv_rqhash_del(q
, next
);
517 void elv_requeue_request(request_queue_t
*q
, struct request
*rq
)
520 * it already went through dequeue, we need to decrement the
521 * in_flight count again
523 if (blk_account_rq(rq
)) {
525 if (blk_sorted_rq(rq
))
526 elv_deactivate_rq(q
, rq
);
529 rq
->cmd_flags
&= ~REQ_STARTED
;
531 elv_insert(q
, rq
, ELEVATOR_INSERT_REQUEUE
);
534 static void elv_drain_elevator(request_queue_t
*q
)
537 while (q
->elevator
->ops
->elevator_dispatch_fn(q
, 1))
539 if (q
->nr_sorted
== 0)
541 if (printed
++ < 10) {
542 printk(KERN_ERR
"%s: forced dispatching is broken "
543 "(nr_sorted=%u), please report this\n",
544 q
->elevator
->elevator_type
->elevator_name
, q
->nr_sorted
);
548 void elv_insert(request_queue_t
*q
, struct request
*rq
, int where
)
550 struct list_head
*pos
;
554 blk_add_trace_rq(q
, rq
, BLK_TA_INSERT
);
559 case ELEVATOR_INSERT_FRONT
:
560 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
562 list_add(&rq
->queuelist
, &q
->queue_head
);
565 case ELEVATOR_INSERT_BACK
:
566 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
567 elv_drain_elevator(q
);
568 list_add_tail(&rq
->queuelist
, &q
->queue_head
);
570 * We kick the queue here for the following reasons.
571 * - The elevator might have returned NULL previously
572 * to delay requests and returned them now. As the
573 * queue wasn't empty before this request, ll_rw_blk
574 * won't run the queue on return, resulting in hang.
575 * - Usually, back inserted requests won't be merged
576 * with anything. There's no point in delaying queue
583 case ELEVATOR_INSERT_SORT
:
584 BUG_ON(!blk_fs_request(rq
));
585 rq
->cmd_flags
|= REQ_SORTED
;
587 if (rq_mergeable(rq
)) {
588 elv_rqhash_add(q
, rq
);
594 * Some ioscheds (cfq) run q->request_fn directly, so
595 * rq cannot be accessed after calling
596 * elevator_add_req_fn.
598 q
->elevator
->ops
->elevator_add_req_fn(q
, rq
);
601 case ELEVATOR_INSERT_REQUEUE
:
603 * If ordered flush isn't in progress, we do front
604 * insertion; otherwise, requests should be requeued
607 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
610 * Most requeues happen because of a busy condition,
611 * don't force unplug of the queue for that case.
615 if (q
->ordseq
== 0) {
616 list_add(&rq
->queuelist
, &q
->queue_head
);
620 ordseq
= blk_ordered_req_seq(rq
);
622 list_for_each(pos
, &q
->queue_head
) {
623 struct request
*pos_rq
= list_entry_rq(pos
);
624 if (ordseq
<= blk_ordered_req_seq(pos_rq
))
628 list_add_tail(&rq
->queuelist
, pos
);
632 printk(KERN_ERR
"%s: bad insertion point %d\n",
633 __FUNCTION__
, where
);
637 if (unplug_it
&& blk_queue_plugged(q
)) {
638 int nrq
= q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]
641 if (nrq
>= q
->unplug_thresh
)
642 __generic_unplug_device(q
);
646 void __elv_add_request(request_queue_t
*q
, struct request
*rq
, int where
,
650 rq
->cmd_flags
|= REQ_ORDERED_COLOR
;
652 if (rq
->cmd_flags
& (REQ_SOFTBARRIER
| REQ_HARDBARRIER
)) {
654 * toggle ordered color
656 if (blk_barrier_rq(rq
))
660 * barriers implicitly indicate back insertion
662 if (where
== ELEVATOR_INSERT_SORT
)
663 where
= ELEVATOR_INSERT_BACK
;
666 * this request is scheduling boundary, update
669 if (blk_fs_request(rq
)) {
670 q
->end_sector
= rq_end_sector(rq
);
673 } else if (!(rq
->cmd_flags
& REQ_ELVPRIV
) && where
== ELEVATOR_INSERT_SORT
)
674 where
= ELEVATOR_INSERT_BACK
;
679 elv_insert(q
, rq
, where
);
682 EXPORT_SYMBOL(__elv_add_request
);
684 void elv_add_request(request_queue_t
*q
, struct request
*rq
, int where
,
689 spin_lock_irqsave(q
->queue_lock
, flags
);
690 __elv_add_request(q
, rq
, where
, plug
);
691 spin_unlock_irqrestore(q
->queue_lock
, flags
);
694 EXPORT_SYMBOL(elv_add_request
);
696 static inline struct request
*__elv_next_request(request_queue_t
*q
)
701 while (!list_empty(&q
->queue_head
)) {
702 rq
= list_entry_rq(q
->queue_head
.next
);
703 if (blk_do_ordered(q
, &rq
))
707 if (!q
->elevator
->ops
->elevator_dispatch_fn(q
, 0))
712 struct request
*elv_next_request(request_queue_t
*q
)
717 while ((rq
= __elv_next_request(q
)) != NULL
) {
718 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
720 * This is the first time the device driver
721 * sees this request (possibly after
722 * requeueing). Notify IO scheduler.
724 if (blk_sorted_rq(rq
))
725 elv_activate_rq(q
, rq
);
728 * just mark as started even if we don't start
729 * it, a request that has been delayed should
730 * not be passed by new incoming requests
732 rq
->cmd_flags
|= REQ_STARTED
;
733 blk_add_trace_rq(q
, rq
, BLK_TA_ISSUE
);
736 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
737 q
->end_sector
= rq_end_sector(rq
);
738 q
->boundary_rq
= NULL
;
741 if ((rq
->cmd_flags
& REQ_DONTPREP
) || !q
->prep_rq_fn
)
744 ret
= q
->prep_rq_fn(q
, rq
);
745 if (ret
== BLKPREP_OK
) {
747 } else if (ret
== BLKPREP_DEFER
) {
749 * the request may have been (partially) prepped.
750 * we need to keep this request in the front to
751 * avoid resource deadlock. REQ_STARTED will
752 * prevent other fs requests from passing this one.
756 } else if (ret
== BLKPREP_KILL
) {
757 int nr_bytes
= rq
->hard_nr_sectors
<< 9;
760 nr_bytes
= rq
->data_len
;
762 blkdev_dequeue_request(rq
);
763 rq
->cmd_flags
|= REQ_QUIET
;
764 end_that_request_chunk(rq
, 0, nr_bytes
);
765 end_that_request_last(rq
, 0);
767 printk(KERN_ERR
"%s: bad return=%d\n", __FUNCTION__
,
776 EXPORT_SYMBOL(elv_next_request
);
778 void elv_dequeue_request(request_queue_t
*q
, struct request
*rq
)
780 BUG_ON(list_empty(&rq
->queuelist
));
781 BUG_ON(ELV_ON_HASH(rq
));
783 list_del_init(&rq
->queuelist
);
786 * the time frame between a request being removed from the lists
787 * and to it is freed is accounted as io that is in progress at
790 if (blk_account_rq(rq
))
794 EXPORT_SYMBOL(elv_dequeue_request
);
796 int elv_queue_empty(request_queue_t
*q
)
798 elevator_t
*e
= q
->elevator
;
800 if (!list_empty(&q
->queue_head
))
803 if (e
->ops
->elevator_queue_empty_fn
)
804 return e
->ops
->elevator_queue_empty_fn(q
);
809 EXPORT_SYMBOL(elv_queue_empty
);
811 struct request
*elv_latter_request(request_queue_t
*q
, struct request
*rq
)
813 elevator_t
*e
= q
->elevator
;
815 if (e
->ops
->elevator_latter_req_fn
)
816 return e
->ops
->elevator_latter_req_fn(q
, rq
);
820 struct request
*elv_former_request(request_queue_t
*q
, struct request
*rq
)
822 elevator_t
*e
= q
->elevator
;
824 if (e
->ops
->elevator_former_req_fn
)
825 return e
->ops
->elevator_former_req_fn(q
, rq
);
829 int elv_set_request(request_queue_t
*q
, struct request
*rq
, gfp_t gfp_mask
)
831 elevator_t
*e
= q
->elevator
;
833 if (e
->ops
->elevator_set_req_fn
)
834 return e
->ops
->elevator_set_req_fn(q
, rq
, gfp_mask
);
836 rq
->elevator_private
= NULL
;
840 void elv_put_request(request_queue_t
*q
, struct request
*rq
)
842 elevator_t
*e
= q
->elevator
;
844 if (e
->ops
->elevator_put_req_fn
)
845 e
->ops
->elevator_put_req_fn(rq
);
848 int elv_may_queue(request_queue_t
*q
, int rw
)
850 elevator_t
*e
= q
->elevator
;
852 if (e
->ops
->elevator_may_queue_fn
)
853 return e
->ops
->elevator_may_queue_fn(q
, rw
);
855 return ELV_MQUEUE_MAY
;
858 void elv_completed_request(request_queue_t
*q
, struct request
*rq
)
860 elevator_t
*e
= q
->elevator
;
863 * request is released from the driver, io must be done
865 if (blk_account_rq(rq
)) {
867 if (blk_sorted_rq(rq
) && e
->ops
->elevator_completed_req_fn
)
868 e
->ops
->elevator_completed_req_fn(q
, rq
);
872 * Check if the queue is waiting for fs requests to be
873 * drained for flush sequence.
875 if (unlikely(q
->ordseq
)) {
876 struct request
*first_rq
= list_entry_rq(q
->queue_head
.next
);
877 if (q
->in_flight
== 0 &&
878 blk_ordered_cur_seq(q
) == QUEUE_ORDSEQ_DRAIN
&&
879 blk_ordered_req_seq(first_rq
) > QUEUE_ORDSEQ_DRAIN
) {
880 blk_ordered_complete_seq(q
, QUEUE_ORDSEQ_DRAIN
, 0);
886 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
889 elv_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
891 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
892 struct elv_fs_entry
*entry
= to_elv(attr
);
898 mutex_lock(&e
->sysfs_lock
);
899 error
= e
->ops
? entry
->show(e
, page
) : -ENOENT
;
900 mutex_unlock(&e
->sysfs_lock
);
905 elv_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
906 const char *page
, size_t length
)
908 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
909 struct elv_fs_entry
*entry
= to_elv(attr
);
915 mutex_lock(&e
->sysfs_lock
);
916 error
= e
->ops
? entry
->store(e
, page
, length
) : -ENOENT
;
917 mutex_unlock(&e
->sysfs_lock
);
921 static struct sysfs_ops elv_sysfs_ops
= {
922 .show
= elv_attr_show
,
923 .store
= elv_attr_store
,
926 static struct kobj_type elv_ktype
= {
927 .sysfs_ops
= &elv_sysfs_ops
,
928 .release
= elevator_release
,
931 int elv_register_queue(struct request_queue
*q
)
933 elevator_t
*e
= q
->elevator
;
936 e
->kobj
.parent
= &q
->kobj
;
938 error
= kobject_add(&e
->kobj
);
940 struct elv_fs_entry
*attr
= e
->elevator_type
->elevator_attrs
;
942 while (attr
->attr
.name
) {
943 if (sysfs_create_file(&e
->kobj
, &attr
->attr
))
948 kobject_uevent(&e
->kobj
, KOBJ_ADD
);
953 static void __elv_unregister_queue(elevator_t
*e
)
955 kobject_uevent(&e
->kobj
, KOBJ_REMOVE
);
956 kobject_del(&e
->kobj
);
959 void elv_unregister_queue(struct request_queue
*q
)
962 __elv_unregister_queue(q
->elevator
);
965 int elv_register(struct elevator_type
*e
)
969 spin_lock(&elv_list_lock
);
970 BUG_ON(elevator_find(e
->elevator_name
));
971 list_add_tail(&e
->list
, &elv_list
);
972 spin_unlock(&elv_list_lock
);
974 if (!strcmp(e
->elevator_name
, chosen_elevator
) ||
975 (!*chosen_elevator
&&
976 !strcmp(e
->elevator_name
, CONFIG_DEFAULT_IOSCHED
)))
979 printk(KERN_INFO
"io scheduler %s registered%s\n", e
->elevator_name
, def
);
982 EXPORT_SYMBOL_GPL(elv_register
);
984 void elv_unregister(struct elevator_type
*e
)
986 struct task_struct
*g
, *p
;
989 * Iterate every thread in the process to remove the io contexts.
992 read_lock(&tasklist_lock
);
993 do_each_thread(g
, p
) {
996 e
->ops
.trim(p
->io_context
);
998 } while_each_thread(g
, p
);
999 read_unlock(&tasklist_lock
);
1002 spin_lock(&elv_list_lock
);
1003 list_del_init(&e
->list
);
1004 spin_unlock(&elv_list_lock
);
1006 EXPORT_SYMBOL_GPL(elv_unregister
);
1009 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1010 * we don't free the old io scheduler, before we have allocated what we
1011 * need for the new one. this way we have a chance of going back to the old
1012 * one, if the new one fails init for some reason.
1014 static int elevator_switch(request_queue_t
*q
, struct elevator_type
*new_e
)
1016 elevator_t
*old_elevator
, *e
;
1020 * Allocate new elevator
1022 e
= elevator_alloc(q
, new_e
);
1026 data
= elevator_init_queue(q
, e
);
1028 kobject_put(&e
->kobj
);
1033 * Turn on BYPASS and drain all requests w/ elevator private data
1035 spin_lock_irq(q
->queue_lock
);
1037 set_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1039 elv_drain_elevator(q
);
1041 while (q
->rq
.elvpriv
) {
1044 spin_unlock_irq(q
->queue_lock
);
1046 spin_lock_irq(q
->queue_lock
);
1047 elv_drain_elevator(q
);
1051 * Remember old elevator.
1053 old_elevator
= q
->elevator
;
1056 * attach and start new elevator
1058 elevator_attach(q
, e
, data
);
1060 spin_unlock_irq(q
->queue_lock
);
1062 __elv_unregister_queue(old_elevator
);
1064 if (elv_register_queue(q
))
1068 * finally exit old elevator and turn off BYPASS.
1070 elevator_exit(old_elevator
);
1071 clear_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1076 * switch failed, exit the new io scheduler and reattach the old
1077 * one again (along with re-adding the sysfs dir)
1080 q
->elevator
= old_elevator
;
1081 elv_register_queue(q
);
1082 clear_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1086 ssize_t
elv_iosched_store(request_queue_t
*q
, const char *name
, size_t count
)
1088 char elevator_name
[ELV_NAME_MAX
];
1090 struct elevator_type
*e
;
1092 elevator_name
[sizeof(elevator_name
) - 1] = '\0';
1093 strncpy(elevator_name
, name
, sizeof(elevator_name
) - 1);
1094 len
= strlen(elevator_name
);
1096 if (len
&& elevator_name
[len
- 1] == '\n')
1097 elevator_name
[len
- 1] = '\0';
1099 e
= elevator_get(elevator_name
);
1101 printk(KERN_ERR
"elevator: type %s not found\n", elevator_name
);
1105 if (!strcmp(elevator_name
, q
->elevator
->elevator_type
->elevator_name
)) {
1110 if (!elevator_switch(q
, e
))
1111 printk(KERN_ERR
"elevator: switch to %s failed\n",elevator_name
);
1115 ssize_t
elv_iosched_show(request_queue_t
*q
, char *name
)
1117 elevator_t
*e
= q
->elevator
;
1118 struct elevator_type
*elv
= e
->elevator_type
;
1119 struct list_head
*entry
;
1122 spin_lock(&elv_list_lock
);
1123 list_for_each(entry
, &elv_list
) {
1124 struct elevator_type
*__e
;
1126 __e
= list_entry(entry
, struct elevator_type
, list
);
1127 if (!strcmp(elv
->elevator_name
, __e
->elevator_name
))
1128 len
+= sprintf(name
+len
, "[%s] ", elv
->elevator_name
);
1130 len
+= sprintf(name
+len
, "%s ", __e
->elevator_name
);
1132 spin_unlock(&elv_list_lock
);
1134 len
+= sprintf(len
+name
, "\n");
1138 struct request
*elv_rb_former_request(request_queue_t
*q
, struct request
*rq
)
1140 struct rb_node
*rbprev
= rb_prev(&rq
->rb_node
);
1143 return rb_entry_rq(rbprev
);
1148 EXPORT_SYMBOL(elv_rb_former_request
);
1150 struct request
*elv_rb_latter_request(request_queue_t
*q
, struct request
*rq
)
1152 struct rb_node
*rbnext
= rb_next(&rq
->rb_node
);
1155 return rb_entry_rq(rbnext
);
1160 EXPORT_SYMBOL(elv_rb_latter_request
);