drm/i915: paper over missed irq issues with force wake voodoo
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob8359dc777041be9265e53907025564196b1d0fbc
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
53 static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file);
57 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
70 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71 size_t size)
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
77 static int
78 i915_gem_wait_for_error(struct drm_device *dev)
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
82 unsigned long flags;
83 int ret;
85 if (!atomic_read(&dev_priv->mm.wedged))
86 return 0;
88 ret = wait_for_completion_interruptible(x);
89 if (ret)
90 return ret;
92 if (atomic_read(&dev_priv->mm.wedged)) {
93 /* GPU is hung, bump the completion count to account for
94 * the token we just consumed so that we never hit zero and
95 * end up waiting upon a subsequent completion event that
96 * will never happen.
98 spin_lock_irqsave(&x->wait.lock, flags);
99 x->done++;
100 spin_unlock_irqrestore(&x->wait.lock, flags);
102 return 0;
105 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 int ret;
109 ret = i915_gem_wait_for_error(dev);
110 if (ret)
111 return ret;
113 ret = mutex_lock_interruptible(&dev->struct_mutex);
114 if (ret)
115 return ret;
117 WARN_ON(i915_verify_lists(dev));
118 return 0;
121 static inline bool
122 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 return obj->gtt_space && !obj->active && obj->pin_count == 0;
127 void i915_gem_do_init(struct drm_device *dev,
128 unsigned long start,
129 unsigned long mappable_end,
130 unsigned long end)
132 drm_i915_private_t *dev_priv = dev->dev_private;
134 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136 dev_priv->mm.gtt_start = start;
137 dev_priv->mm.gtt_mappable_end = mappable_end;
138 dev_priv->mm.gtt_end = end;
139 dev_priv->mm.gtt_total = end - start;
140 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 /* Take over this portion of the GTT */
143 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
150 struct drm_i915_gem_init *args = data;
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
156 mutex_lock(&dev->struct_mutex);
157 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
160 return 0;
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
172 if (!(dev->driver->driver_features & DRIVER_GEM))
173 return -ENODEV;
175 pinned = 0;
176 mutex_lock(&dev->struct_mutex);
177 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178 pinned += obj->gtt_space->size;
179 mutex_unlock(&dev->struct_mutex);
181 args->aper_size = dev_priv->mm.gtt_total;
182 args->aper_available_size = args->aper_size - pinned;
184 return 0;
187 static int
188 i915_gem_create(struct drm_file *file,
189 struct drm_device *dev,
190 uint64_t size,
191 uint32_t *handle_p)
193 struct drm_i915_gem_object *obj;
194 int ret;
195 u32 handle;
197 size = roundup(size, PAGE_SIZE);
198 if (size == 0)
199 return -EINVAL;
201 /* Allocate the new object */
202 obj = i915_gem_alloc_object(dev, size);
203 if (obj == NULL)
204 return -ENOMEM;
206 ret = drm_gem_handle_create(file, &obj->base, &handle);
207 if (ret) {
208 drm_gem_object_release(&obj->base);
209 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
210 kfree(obj);
211 return ret;
214 /* drop reference from allocate - handle holds it now */
215 drm_gem_object_unreference(&obj->base);
216 trace_i915_gem_object_create(obj);
218 *handle_p = handle;
219 return 0;
223 i915_gem_dumb_create(struct drm_file *file,
224 struct drm_device *dev,
225 struct drm_mode_create_dumb *args)
227 /* have to work out size/pitch and return them */
228 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
229 args->size = args->pitch * args->height;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
234 int i915_gem_dumb_destroy(struct drm_file *file,
235 struct drm_device *dev,
236 uint32_t handle)
238 return drm_gem_handle_delete(file, handle);
242 * Creates a new mm object and returns a handle to it.
245 i915_gem_create_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file)
248 struct drm_i915_gem_create *args = data;
249 return i915_gem_create(file, dev,
250 args->size, &args->handle);
253 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
255 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
257 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
258 obj->tiling_mode != I915_TILING_NONE;
261 static inline void
262 slow_shmem_copy(struct page *dst_page,
263 int dst_offset,
264 struct page *src_page,
265 int src_offset,
266 int length)
268 char *dst_vaddr, *src_vaddr;
270 dst_vaddr = kmap(dst_page);
271 src_vaddr = kmap(src_page);
273 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
275 kunmap(src_page);
276 kunmap(dst_page);
279 static inline void
280 slow_shmem_bit17_copy(struct page *gpu_page,
281 int gpu_offset,
282 struct page *cpu_page,
283 int cpu_offset,
284 int length,
285 int is_read)
287 char *gpu_vaddr, *cpu_vaddr;
289 /* Use the unswizzled path if this page isn't affected. */
290 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
291 if (is_read)
292 return slow_shmem_copy(cpu_page, cpu_offset,
293 gpu_page, gpu_offset, length);
294 else
295 return slow_shmem_copy(gpu_page, gpu_offset,
296 cpu_page, cpu_offset, length);
299 gpu_vaddr = kmap(gpu_page);
300 cpu_vaddr = kmap(cpu_page);
302 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
303 * XORing with the other bits (A9 for Y, A9 and A10 for X)
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
310 if (is_read) {
311 memcpy(cpu_vaddr + cpu_offset,
312 gpu_vaddr + swizzled_gpu_offset,
313 this_length);
314 } else {
315 memcpy(gpu_vaddr + swizzled_gpu_offset,
316 cpu_vaddr + cpu_offset,
317 this_length);
319 cpu_offset += this_length;
320 gpu_offset += this_length;
321 length -= this_length;
324 kunmap(cpu_page);
325 kunmap(gpu_page);
329 * This is the fast shmem pread path, which attempts to copy_from_user directly
330 * from the backing pages of the object to the user's address space. On a
331 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
333 static int
334 i915_gem_shmem_pread_fast(struct drm_device *dev,
335 struct drm_i915_gem_object *obj,
336 struct drm_i915_gem_pread *args,
337 struct drm_file *file)
339 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
340 ssize_t remain;
341 loff_t offset;
342 char __user *user_data;
343 int page_offset, page_length;
345 user_data = (char __user *) (uintptr_t) args->data_ptr;
346 remain = args->size;
348 offset = args->offset;
350 while (remain > 0) {
351 struct page *page;
352 char *vaddr;
353 int ret;
355 /* Operation in this page
357 * page_offset = offset within page
358 * page_length = bytes to copy for this page
360 page_offset = offset_in_page(offset);
361 page_length = remain;
362 if ((page_offset + remain) > PAGE_SIZE)
363 page_length = PAGE_SIZE - page_offset;
365 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
378 return -EFAULT;
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
385 return 0;
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
394 static int
395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
397 struct drm_i915_gem_pread *args,
398 struct drm_file *file)
400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
411 int do_bit17_swizzling;
413 remain = args->size;
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 if (user_pages == NULL)
425 return -ENOMEM;
427 mutex_unlock(&dev->struct_mutex);
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430 num_pages, 1, 0, user_pages, NULL);
431 up_read(&mm->mmap_sem);
432 mutex_lock(&dev->struct_mutex);
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
435 goto out;
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
441 if (ret)
442 goto out;
444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
446 offset = args->offset;
448 while (remain > 0) {
449 struct page *page;
451 /* Operation in this page
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
458 shmem_page_offset = offset_in_page(offset);
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = offset_in_page(data_ptr);
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
468 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
469 if (IS_ERR(page)) {
470 ret = PTR_ERR(page);
471 goto out;
474 if (do_bit17_swizzling) {
475 slow_shmem_bit17_copy(page,
476 shmem_page_offset,
477 user_pages[data_page_index],
478 data_page_offset,
479 page_length,
481 } else {
482 slow_shmem_copy(user_pages[data_page_index],
483 data_page_offset,
484 page,
485 shmem_page_offset,
486 page_length);
489 mark_page_accessed(page);
490 page_cache_release(page);
492 remain -= page_length;
493 data_ptr += page_length;
494 offset += page_length;
497 out:
498 for (i = 0; i < pinned_pages; i++) {
499 SetPageDirty(user_pages[i]);
500 mark_page_accessed(user_pages[i]);
501 page_cache_release(user_pages[i]);
503 drm_free_large(user_pages);
505 return ret;
509 * Reads data from the object referenced by handle.
511 * On error, the contents of *data are undefined.
514 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515 struct drm_file *file)
517 struct drm_i915_gem_pread *args = data;
518 struct drm_i915_gem_object *obj;
519 int ret = 0;
521 if (args->size == 0)
522 return 0;
524 if (!access_ok(VERIFY_WRITE,
525 (char __user *)(uintptr_t)args->data_ptr,
526 args->size))
527 return -EFAULT;
529 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
530 args->size);
531 if (ret)
532 return -EFAULT;
534 ret = i915_mutex_lock_interruptible(dev);
535 if (ret)
536 return ret;
538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539 if (&obj->base == NULL) {
540 ret = -ENOENT;
541 goto unlock;
544 /* Bounds check source. */
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
547 ret = -EINVAL;
548 goto out;
551 trace_i915_gem_object_pread(obj, args->offset, args->size);
553 ret = i915_gem_object_set_cpu_read_domain_range(obj,
554 args->offset,
555 args->size);
556 if (ret)
557 goto out;
559 ret = -EFAULT;
560 if (!i915_gem_object_needs_bit17_swizzle(obj))
561 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
562 if (ret == -EFAULT)
563 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
565 out:
566 drm_gem_object_unreference(&obj->base);
567 unlock:
568 mutex_unlock(&dev->struct_mutex);
569 return ret;
572 /* This is the fast write path which cannot handle
573 * page faults in the source data
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
582 char *vaddr_atomic;
583 unsigned long unwritten;
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
592 /* Here's the write path which can sleep for
593 * page faults
596 static inline void
597 slow_kernel_write(struct io_mapping *mapping,
598 loff_t gtt_base, int gtt_offset,
599 struct page *user_page, int user_offset,
600 int length)
602 char __iomem *dst_vaddr;
603 char *src_vaddr;
605 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
606 src_vaddr = kmap(user_page);
608 memcpy_toio(dst_vaddr + gtt_offset,
609 src_vaddr + user_offset,
610 length);
612 kunmap(user_page);
613 io_mapping_unmap(dst_vaddr);
617 * This is the fast pwrite path, where we copy the data directly from the
618 * user into the GTT, uncached.
620 static int
621 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
622 struct drm_i915_gem_object *obj,
623 struct drm_i915_gem_pwrite *args,
624 struct drm_file *file)
626 drm_i915_private_t *dev_priv = dev->dev_private;
627 ssize_t remain;
628 loff_t offset, page_base;
629 char __user *user_data;
630 int page_offset, page_length;
632 user_data = (char __user *) (uintptr_t) args->data_ptr;
633 remain = args->size;
635 offset = obj->gtt_offset + args->offset;
637 while (remain > 0) {
638 /* Operation in this page
640 * page_base = page offset within aperture
641 * page_offset = offset within page
642 * page_length = bytes to copy for this page
644 page_base = offset & PAGE_MASK;
645 page_offset = offset_in_page(offset);
646 page_length = remain;
647 if ((page_offset + remain) > PAGE_SIZE)
648 page_length = PAGE_SIZE - page_offset;
650 /* If we get a fault while copying data, then (presumably) our
651 * source page isn't available. Return the error and we'll
652 * retry in the slow path.
654 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
655 page_offset, user_data, page_length))
656 return -EFAULT;
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
663 return 0;
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
673 static int
674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
676 struct drm_i915_gem_pwrite *args,
677 struct drm_file *file)
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
687 int ret;
688 uint64_t data_ptr = args->data_ptr;
690 remain = args->size;
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 if (user_pages == NULL)
702 return -ENOMEM;
704 mutex_unlock(&dev->struct_mutex);
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
709 mutex_lock(&dev->struct_mutex);
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
719 ret = i915_gem_object_put_fence(obj);
720 if (ret)
721 goto out_unpin_pages;
723 offset = obj->gtt_offset + args->offset;
725 while (remain > 0) {
726 /* Operation in this page
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset_in_page(offset);
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = offset_in_page(data_ptr);
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
756 out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
759 drm_free_large(user_pages);
761 return ret;
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
768 static int
769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
771 struct drm_i915_gem_pwrite *args,
772 struct drm_file *file)
774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775 ssize_t remain;
776 loff_t offset;
777 char __user *user_data;
778 int page_offset, page_length;
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
783 offset = args->offset;
784 obj->dirty = 1;
786 while (remain > 0) {
787 struct page *page;
788 char *vaddr;
789 int ret;
791 /* Operation in this page
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
796 page_offset = offset_in_page(offset);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
801 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802 if (IS_ERR(page))
803 return PTR_ERR(page);
805 vaddr = kmap_atomic(page);
806 ret = __copy_from_user_inatomic(vaddr + page_offset,
807 user_data,
808 page_length);
809 kunmap_atomic(vaddr);
811 set_page_dirty(page);
812 mark_page_accessed(page);
813 page_cache_release(page);
815 /* If we get a fault while copying data, then (presumably) our
816 * source page isn't available. Return the error and we'll
817 * retry in the slow path.
819 if (ret)
820 return -EFAULT;
822 remain -= page_length;
823 user_data += page_length;
824 offset += page_length;
827 return 0;
831 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
832 * the memory and maps it using kmap_atomic for copying.
834 * This avoids taking mmap_sem for faulting on the user's address while the
835 * struct_mutex is held.
837 static int
838 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
839 struct drm_i915_gem_object *obj,
840 struct drm_i915_gem_pwrite *args,
841 struct drm_file *file)
843 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
844 struct mm_struct *mm = current->mm;
845 struct page **user_pages;
846 ssize_t remain;
847 loff_t offset, pinned_pages, i;
848 loff_t first_data_page, last_data_page, num_pages;
849 int shmem_page_offset;
850 int data_page_index, data_page_offset;
851 int page_length;
852 int ret;
853 uint64_t data_ptr = args->data_ptr;
854 int do_bit17_swizzling;
856 remain = args->size;
858 /* Pin the user pages containing the data. We can't fault while
859 * holding the struct mutex, and all of the pwrite implementations
860 * want to hold it while dereferencing the user data.
862 first_data_page = data_ptr / PAGE_SIZE;
863 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
864 num_pages = last_data_page - first_data_page + 1;
866 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
867 if (user_pages == NULL)
868 return -ENOMEM;
870 mutex_unlock(&dev->struct_mutex);
871 down_read(&mm->mmap_sem);
872 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
873 num_pages, 0, 0, user_pages, NULL);
874 up_read(&mm->mmap_sem);
875 mutex_lock(&dev->struct_mutex);
876 if (pinned_pages < num_pages) {
877 ret = -EFAULT;
878 goto out;
881 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
882 if (ret)
883 goto out;
885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887 offset = args->offset;
888 obj->dirty = 1;
890 while (remain > 0) {
891 struct page *page;
893 /* Operation in this page
895 * shmem_page_offset = offset within page in shmem file
896 * data_page_index = page number in get_user_pages return
897 * data_page_offset = offset with data_page_index page.
898 * page_length = bytes to copy for this page
900 shmem_page_offset = offset_in_page(offset);
901 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
902 data_page_offset = offset_in_page(data_ptr);
904 page_length = remain;
905 if ((shmem_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - shmem_page_offset;
907 if ((data_page_offset + page_length) > PAGE_SIZE)
908 page_length = PAGE_SIZE - data_page_offset;
910 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
911 if (IS_ERR(page)) {
912 ret = PTR_ERR(page);
913 goto out;
916 if (do_bit17_swizzling) {
917 slow_shmem_bit17_copy(page,
918 shmem_page_offset,
919 user_pages[data_page_index],
920 data_page_offset,
921 page_length,
923 } else {
924 slow_shmem_copy(page,
925 shmem_page_offset,
926 user_pages[data_page_index],
927 data_page_offset,
928 page_length);
931 set_page_dirty(page);
932 mark_page_accessed(page);
933 page_cache_release(page);
935 remain -= page_length;
936 data_ptr += page_length;
937 offset += page_length;
940 out:
941 for (i = 0; i < pinned_pages; i++)
942 page_cache_release(user_pages[i]);
943 drm_free_large(user_pages);
945 return ret;
949 * Writes data to the object referenced by handle.
951 * On error, the contents of the buffer that were to be modified are undefined.
954 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
955 struct drm_file *file)
957 struct drm_i915_gem_pwrite *args = data;
958 struct drm_i915_gem_object *obj;
959 int ret;
961 if (args->size == 0)
962 return 0;
964 if (!access_ok(VERIFY_READ,
965 (char __user *)(uintptr_t)args->data_ptr,
966 args->size))
967 return -EFAULT;
969 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
970 args->size);
971 if (ret)
972 return -EFAULT;
974 ret = i915_mutex_lock_interruptible(dev);
975 if (ret)
976 return ret;
978 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
979 if (&obj->base == NULL) {
980 ret = -ENOENT;
981 goto unlock;
984 /* Bounds check destination. */
985 if (args->offset > obj->base.size ||
986 args->size > obj->base.size - args->offset) {
987 ret = -EINVAL;
988 goto out;
991 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
993 /* We can only do the GTT pwrite on untiled buffers, as otherwise
994 * it would end up going through the fenced access, and we'll get
995 * different detiling behavior between reading and writing.
996 * pread/pwrite currently are reading and writing from the CPU
997 * perspective, requiring manual detiling by the client.
999 if (obj->phys_obj)
1000 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1001 else if (obj->gtt_space &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 ret = i915_gem_object_pin(obj, 0, true);
1004 if (ret)
1005 goto out;
1007 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1008 if (ret)
1009 goto out_unpin;
1011 ret = i915_gem_object_put_fence(obj);
1012 if (ret)
1013 goto out_unpin;
1015 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1016 if (ret == -EFAULT)
1017 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1019 out_unpin:
1020 i915_gem_object_unpin(obj);
1021 } else {
1022 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1023 if (ret)
1024 goto out;
1026 ret = -EFAULT;
1027 if (!i915_gem_object_needs_bit17_swizzle(obj))
1028 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1029 if (ret == -EFAULT)
1030 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1033 out:
1034 drm_gem_object_unreference(&obj->base);
1035 unlock:
1036 mutex_unlock(&dev->struct_mutex);
1037 return ret;
1041 * Called when user space prepares to use an object with the CPU, either
1042 * through the mmap ioctl's mapping or a GTT mapping.
1045 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1048 struct drm_i915_gem_set_domain *args = data;
1049 struct drm_i915_gem_object *obj;
1050 uint32_t read_domains = args->read_domains;
1051 uint32_t write_domain = args->write_domain;
1052 int ret;
1054 if (!(dev->driver->driver_features & DRIVER_GEM))
1055 return -ENODEV;
1057 /* Only handle setting domains to types used by the CPU. */
1058 if (write_domain & I915_GEM_GPU_DOMAINS)
1059 return -EINVAL;
1061 if (read_domains & I915_GEM_GPU_DOMAINS)
1062 return -EINVAL;
1064 /* Having something in the write domain implies it's in the read
1065 * domain, and only that read domain. Enforce that in the request.
1067 if (write_domain != 0 && read_domains != write_domain)
1068 return -EINVAL;
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 return ret;
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1080 if (read_domains & I915_GEM_DOMAIN_GTT) {
1081 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1083 /* Silently promote "you're not bound, there was nothing to do"
1084 * to success, since the client was just asking us to
1085 * make sure everything was done.
1087 if (ret == -EINVAL)
1088 ret = 0;
1089 } else {
1090 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093 drm_gem_object_unreference(&obj->base);
1094 unlock:
1095 mutex_unlock(&dev->struct_mutex);
1096 return ret;
1100 * Called when user space has done writes to this buffer
1103 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1104 struct drm_file *file)
1106 struct drm_i915_gem_sw_finish *args = data;
1107 struct drm_i915_gem_object *obj;
1108 int ret = 0;
1110 if (!(dev->driver->driver_features & DRIVER_GEM))
1111 return -ENODEV;
1113 ret = i915_mutex_lock_interruptible(dev);
1114 if (ret)
1115 return ret;
1117 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1118 if (&obj->base == NULL) {
1119 ret = -ENOENT;
1120 goto unlock;
1123 /* Pinned buffers may be scanout, so flush the cache */
1124 if (obj->pin_count)
1125 i915_gem_object_flush_cpu_write_domain(obj);
1127 drm_gem_object_unreference(&obj->base);
1128 unlock:
1129 mutex_unlock(&dev->struct_mutex);
1130 return ret;
1134 * Maps the contents of an object, returning the address it is mapped
1135 * into.
1137 * While the mapping holds a reference on the contents of the object, it doesn't
1138 * imply a ref on the object itself.
1141 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1142 struct drm_file *file)
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 struct drm_i915_gem_mmap *args = data;
1146 struct drm_gem_object *obj;
1147 unsigned long addr;
1149 if (!(dev->driver->driver_features & DRIVER_GEM))
1150 return -ENODEV;
1152 obj = drm_gem_object_lookup(dev, file, args->handle);
1153 if (obj == NULL)
1154 return -ENOENT;
1156 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1157 drm_gem_object_unreference_unlocked(obj);
1158 return -E2BIG;
1161 down_write(&current->mm->mmap_sem);
1162 addr = do_mmap(obj->filp, 0, args->size,
1163 PROT_READ | PROT_WRITE, MAP_SHARED,
1164 args->offset);
1165 up_write(&current->mm->mmap_sem);
1166 drm_gem_object_unreference_unlocked(obj);
1167 if (IS_ERR((void *)addr))
1168 return addr;
1170 args->addr_ptr = (uint64_t) addr;
1172 return 0;
1176 * i915_gem_fault - fault a page into the GTT
1177 * vma: VMA in question
1178 * vmf: fault info
1180 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1181 * from userspace. The fault handler takes care of binding the object to
1182 * the GTT (if needed), allocating and programming a fence register (again,
1183 * only if needed based on whether the old reg is still valid or the object
1184 * is tiled) and inserting a new PTE into the faulting process.
1186 * Note that the faulting process may involve evicting existing objects
1187 * from the GTT and/or fence registers to make room. So performance may
1188 * suffer if the GTT working set is large or there are few fence registers
1189 * left.
1191 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1193 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1194 struct drm_device *dev = obj->base.dev;
1195 drm_i915_private_t *dev_priv = dev->dev_private;
1196 pgoff_t page_offset;
1197 unsigned long pfn;
1198 int ret = 0;
1199 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1201 /* We don't use vmf->pgoff since that has the fake offset */
1202 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1203 PAGE_SHIFT;
1205 ret = i915_mutex_lock_interruptible(dev);
1206 if (ret)
1207 goto out;
1209 trace_i915_gem_object_fault(obj, page_offset, true, write);
1211 /* Now bind it into the GTT if needed */
1212 if (!obj->map_and_fenceable) {
1213 ret = i915_gem_object_unbind(obj);
1214 if (ret)
1215 goto unlock;
1217 if (!obj->gtt_space) {
1218 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1219 if (ret)
1220 goto unlock;
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1223 if (ret)
1224 goto unlock;
1227 if (obj->tiling_mode == I915_TILING_NONE)
1228 ret = i915_gem_object_put_fence(obj);
1229 else
1230 ret = i915_gem_object_get_fence(obj, NULL);
1231 if (ret)
1232 goto unlock;
1234 if (i915_gem_object_is_inactive(obj))
1235 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1237 obj->fault_mappable = true;
1239 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1240 page_offset;
1242 /* Finally, remap it using the new GTT offset */
1243 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1244 unlock:
1245 mutex_unlock(&dev->struct_mutex);
1246 out:
1247 switch (ret) {
1248 case -EIO:
1249 case -EAGAIN:
1250 /* Give the error handler a chance to run and move the
1251 * objects off the GPU active list. Next time we service the
1252 * fault, we should be able to transition the page into the
1253 * GTT without touching the GPU (and so avoid further
1254 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1255 * with coherency, just lost writes.
1257 set_need_resched();
1258 case 0:
1259 case -ERESTARTSYS:
1260 case -EINTR:
1261 return VM_FAULT_NOPAGE;
1262 case -ENOMEM:
1263 return VM_FAULT_OOM;
1264 default:
1265 return VM_FAULT_SIGBUS;
1270 * i915_gem_release_mmap - remove physical page mappings
1271 * @obj: obj in question
1273 * Preserve the reservation of the mmapping with the DRM core code, but
1274 * relinquish ownership of the pages back to the system.
1276 * It is vital that we remove the page mapping if we have mapped a tiled
1277 * object through the GTT and then lose the fence register due to
1278 * resource pressure. Similarly if the object has been moved out of the
1279 * aperture, than pages mapped into userspace must be revoked. Removing the
1280 * mapping will then trigger a page fault on the next user access, allowing
1281 * fixup by i915_gem_fault().
1283 void
1284 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1286 if (!obj->fault_mappable)
1287 return;
1289 if (obj->base.dev->dev_mapping)
1290 unmap_mapping_range(obj->base.dev->dev_mapping,
1291 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1292 obj->base.size, 1);
1294 obj->fault_mappable = false;
1297 static uint32_t
1298 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1300 uint32_t gtt_size;
1302 if (INTEL_INFO(dev)->gen >= 4 ||
1303 tiling_mode == I915_TILING_NONE)
1304 return size;
1306 /* Previous chips need a power-of-two fence region when tiling */
1307 if (INTEL_INFO(dev)->gen == 3)
1308 gtt_size = 1024*1024;
1309 else
1310 gtt_size = 512*1024;
1312 while (gtt_size < size)
1313 gtt_size <<= 1;
1315 return gtt_size;
1319 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320 * @obj: object to check
1322 * Return the required GTT alignment for an object, taking into account
1323 * potential fence register mapping.
1325 static uint32_t
1326 i915_gem_get_gtt_alignment(struct drm_device *dev,
1327 uint32_t size,
1328 int tiling_mode)
1331 * Minimum alignment is 4k (GTT page size), but might be greater
1332 * if a fence register is needed for the object.
1334 if (INTEL_INFO(dev)->gen >= 4 ||
1335 tiling_mode == I915_TILING_NONE)
1336 return 4096;
1339 * Previous chips need to be aligned to the size of the smallest
1340 * fence register that can contain the object.
1342 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1346 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1347 * unfenced object
1348 * @dev: the device
1349 * @size: size of the object
1350 * @tiling_mode: tiling mode of the object
1352 * Return the required GTT alignment for an object, only taking into account
1353 * unfenced tiled surface requirements.
1355 uint32_t
1356 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1357 uint32_t size,
1358 int tiling_mode)
1361 * Minimum alignment is 4k (GTT page size) for sane hw.
1363 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1364 tiling_mode == I915_TILING_NONE)
1365 return 4096;
1367 /* Previous hardware however needs to be aligned to a power-of-two
1368 * tile height. The simplest method for determining this is to reuse
1369 * the power-of-tile object size.
1371 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1375 i915_gem_mmap_gtt(struct drm_file *file,
1376 struct drm_device *dev,
1377 uint32_t handle,
1378 uint64_t *offset)
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 struct drm_i915_gem_object *obj;
1382 int ret;
1384 if (!(dev->driver->driver_features & DRIVER_GEM))
1385 return -ENODEV;
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 return ret;
1391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1392 if (&obj->base == NULL) {
1393 ret = -ENOENT;
1394 goto unlock;
1397 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1398 ret = -E2BIG;
1399 goto out;
1402 if (obj->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 ret = -EINVAL;
1405 goto out;
1408 if (!obj->base.map_list.map) {
1409 ret = drm_gem_create_mmap_offset(&obj->base);
1410 if (ret)
1411 goto out;
1414 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1416 out:
1417 drm_gem_object_unreference(&obj->base);
1418 unlock:
1419 mutex_unlock(&dev->struct_mutex);
1420 return ret;
1424 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1425 * @dev: DRM device
1426 * @data: GTT mapping ioctl data
1427 * @file: GEM object info
1429 * Simply returns the fake offset to userspace so it can mmap it.
1430 * The mmap call will end up in drm_gem_mmap(), which will set things
1431 * up so we can get faults in the handler above.
1433 * The fault handler will take care of binding the object into the GTT
1434 * (since it may have been evicted to make room for something), allocating
1435 * a fence register, and mapping the appropriate aperture address into
1436 * userspace.
1439 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1440 struct drm_file *file)
1442 struct drm_i915_gem_mmap_gtt *args = data;
1444 if (!(dev->driver->driver_features & DRIVER_GEM))
1445 return -ENODEV;
1447 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1451 static int
1452 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1453 gfp_t gfpmask)
1455 int page_count, i;
1456 struct address_space *mapping;
1457 struct inode *inode;
1458 struct page *page;
1460 /* Get the list of pages out of our struct file. They'll be pinned
1461 * at this point until we release them.
1463 page_count = obj->base.size / PAGE_SIZE;
1464 BUG_ON(obj->pages != NULL);
1465 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1466 if (obj->pages == NULL)
1467 return -ENOMEM;
1469 inode = obj->base.filp->f_path.dentry->d_inode;
1470 mapping = inode->i_mapping;
1471 gfpmask |= mapping_gfp_mask(mapping);
1473 for (i = 0; i < page_count; i++) {
1474 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1475 if (IS_ERR(page))
1476 goto err_pages;
1478 obj->pages[i] = page;
1481 if (i915_gem_object_needs_bit17_swizzle(obj))
1482 i915_gem_object_do_bit_17_swizzle(obj);
1484 return 0;
1486 err_pages:
1487 while (i--)
1488 page_cache_release(obj->pages[i]);
1490 drm_free_large(obj->pages);
1491 obj->pages = NULL;
1492 return PTR_ERR(page);
1495 static void
1496 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1498 int page_count = obj->base.size / PAGE_SIZE;
1499 int i;
1501 BUG_ON(obj->madv == __I915_MADV_PURGED);
1503 if (i915_gem_object_needs_bit17_swizzle(obj))
1504 i915_gem_object_save_bit_17_swizzle(obj);
1506 if (obj->madv == I915_MADV_DONTNEED)
1507 obj->dirty = 0;
1509 for (i = 0; i < page_count; i++) {
1510 if (obj->dirty)
1511 set_page_dirty(obj->pages[i]);
1513 if (obj->madv == I915_MADV_WILLNEED)
1514 mark_page_accessed(obj->pages[i]);
1516 page_cache_release(obj->pages[i]);
1518 obj->dirty = 0;
1520 drm_free_large(obj->pages);
1521 obj->pages = NULL;
1524 void
1525 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1526 struct intel_ring_buffer *ring,
1527 u32 seqno)
1529 struct drm_device *dev = obj->base.dev;
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1532 BUG_ON(ring == NULL);
1533 obj->ring = ring;
1535 /* Add a reference if we're newly entering the active list. */
1536 if (!obj->active) {
1537 drm_gem_object_reference(&obj->base);
1538 obj->active = 1;
1541 /* Move from whatever list we were on to the tail of execution. */
1542 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1543 list_move_tail(&obj->ring_list, &ring->active_list);
1545 obj->last_rendering_seqno = seqno;
1546 if (obj->fenced_gpu_access) {
1547 struct drm_i915_fence_reg *reg;
1549 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1551 obj->last_fenced_seqno = seqno;
1552 obj->last_fenced_ring = ring;
1554 reg = &dev_priv->fence_regs[obj->fence_reg];
1555 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1559 static void
1560 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1562 list_del_init(&obj->ring_list);
1563 obj->last_rendering_seqno = 0;
1566 static void
1567 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1569 struct drm_device *dev = obj->base.dev;
1570 drm_i915_private_t *dev_priv = dev->dev_private;
1572 BUG_ON(!obj->active);
1573 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1575 i915_gem_object_move_off_active(obj);
1578 static void
1579 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1581 struct drm_device *dev = obj->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1584 if (obj->pin_count != 0)
1585 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1586 else
1587 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1589 BUG_ON(!list_empty(&obj->gpu_write_list));
1590 BUG_ON(!obj->active);
1591 obj->ring = NULL;
1593 i915_gem_object_move_off_active(obj);
1594 obj->fenced_gpu_access = false;
1596 obj->active = 0;
1597 obj->pending_gpu_write = false;
1598 drm_gem_object_unreference(&obj->base);
1600 WARN_ON(i915_verify_lists(dev));
1603 /* Immediately discard the backing storage */
1604 static void
1605 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1607 struct inode *inode;
1609 /* Our goal here is to return as much of the memory as
1610 * is possible back to the system as we are called from OOM.
1611 * To do this we must instruct the shmfs to drop all of its
1612 * backing pages, *now*.
1614 inode = obj->base.filp->f_path.dentry->d_inode;
1615 shmem_truncate_range(inode, 0, (loff_t)-1);
1617 obj->madv = __I915_MADV_PURGED;
1620 static inline int
1621 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1623 return obj->madv == I915_MADV_DONTNEED;
1626 static void
1627 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1628 uint32_t flush_domains)
1630 struct drm_i915_gem_object *obj, *next;
1632 list_for_each_entry_safe(obj, next,
1633 &ring->gpu_write_list,
1634 gpu_write_list) {
1635 if (obj->base.write_domain & flush_domains) {
1636 uint32_t old_write_domain = obj->base.write_domain;
1638 obj->base.write_domain = 0;
1639 list_del_init(&obj->gpu_write_list);
1640 i915_gem_object_move_to_active(obj, ring,
1641 i915_gem_next_request_seqno(ring));
1643 trace_i915_gem_object_change_domain(obj,
1644 obj->base.read_domains,
1645 old_write_domain);
1651 i915_add_request(struct intel_ring_buffer *ring,
1652 struct drm_file *file,
1653 struct drm_i915_gem_request *request)
1655 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1656 uint32_t seqno;
1657 int was_empty;
1658 int ret;
1660 BUG_ON(request == NULL);
1662 ret = ring->add_request(ring, &seqno);
1663 if (ret)
1664 return ret;
1666 trace_i915_gem_request_add(ring, seqno);
1668 request->seqno = seqno;
1669 request->ring = ring;
1670 request->emitted_jiffies = jiffies;
1671 was_empty = list_empty(&ring->request_list);
1672 list_add_tail(&request->list, &ring->request_list);
1674 if (file) {
1675 struct drm_i915_file_private *file_priv = file->driver_priv;
1677 spin_lock(&file_priv->mm.lock);
1678 request->file_priv = file_priv;
1679 list_add_tail(&request->client_list,
1680 &file_priv->mm.request_list);
1681 spin_unlock(&file_priv->mm.lock);
1684 ring->outstanding_lazy_request = false;
1686 if (!dev_priv->mm.suspended) {
1687 if (i915_enable_hangcheck) {
1688 mod_timer(&dev_priv->hangcheck_timer,
1689 jiffies +
1690 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1692 if (was_empty)
1693 queue_delayed_work(dev_priv->wq,
1694 &dev_priv->mm.retire_work, HZ);
1696 return 0;
1699 static inline void
1700 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1702 struct drm_i915_file_private *file_priv = request->file_priv;
1704 if (!file_priv)
1705 return;
1707 spin_lock(&file_priv->mm.lock);
1708 if (request->file_priv) {
1709 list_del(&request->client_list);
1710 request->file_priv = NULL;
1712 spin_unlock(&file_priv->mm.lock);
1715 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1716 struct intel_ring_buffer *ring)
1718 while (!list_empty(&ring->request_list)) {
1719 struct drm_i915_gem_request *request;
1721 request = list_first_entry(&ring->request_list,
1722 struct drm_i915_gem_request,
1723 list);
1725 list_del(&request->list);
1726 i915_gem_request_remove_from_client(request);
1727 kfree(request);
1730 while (!list_empty(&ring->active_list)) {
1731 struct drm_i915_gem_object *obj;
1733 obj = list_first_entry(&ring->active_list,
1734 struct drm_i915_gem_object,
1735 ring_list);
1737 obj->base.write_domain = 0;
1738 list_del_init(&obj->gpu_write_list);
1739 i915_gem_object_move_to_inactive(obj);
1743 static void i915_gem_reset_fences(struct drm_device *dev)
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 int i;
1748 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1749 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1750 struct drm_i915_gem_object *obj = reg->obj;
1752 if (!obj)
1753 continue;
1755 if (obj->tiling_mode)
1756 i915_gem_release_mmap(obj);
1758 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1759 reg->obj->fenced_gpu_access = false;
1760 reg->obj->last_fenced_seqno = 0;
1761 reg->obj->last_fenced_ring = NULL;
1762 i915_gem_clear_fence_reg(dev, reg);
1766 void i915_gem_reset(struct drm_device *dev)
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct drm_i915_gem_object *obj;
1770 int i;
1772 for (i = 0; i < I915_NUM_RINGS; i++)
1773 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1775 /* Remove anything from the flushing lists. The GPU cache is likely
1776 * to be lost on reset along with the data, so simply move the
1777 * lost bo to the inactive list.
1779 while (!list_empty(&dev_priv->mm.flushing_list)) {
1780 obj = list_first_entry(&dev_priv->mm.flushing_list,
1781 struct drm_i915_gem_object,
1782 mm_list);
1784 obj->base.write_domain = 0;
1785 list_del_init(&obj->gpu_write_list);
1786 i915_gem_object_move_to_inactive(obj);
1789 /* Move everything out of the GPU domains to ensure we do any
1790 * necessary invalidation upon reuse.
1792 list_for_each_entry(obj,
1793 &dev_priv->mm.inactive_list,
1794 mm_list)
1796 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1799 /* The fence registers are invalidated so clear them out */
1800 i915_gem_reset_fences(dev);
1804 * This function clears the request list as sequence numbers are passed.
1806 static void
1807 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1809 uint32_t seqno;
1810 int i;
1812 if (list_empty(&ring->request_list))
1813 return;
1815 WARN_ON(i915_verify_lists(ring->dev));
1817 seqno = ring->get_seqno(ring);
1819 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1820 if (seqno >= ring->sync_seqno[i])
1821 ring->sync_seqno[i] = 0;
1823 while (!list_empty(&ring->request_list)) {
1824 struct drm_i915_gem_request *request;
1826 request = list_first_entry(&ring->request_list,
1827 struct drm_i915_gem_request,
1828 list);
1830 if (!i915_seqno_passed(seqno, request->seqno))
1831 break;
1833 trace_i915_gem_request_retire(ring, request->seqno);
1835 list_del(&request->list);
1836 i915_gem_request_remove_from_client(request);
1837 kfree(request);
1840 /* Move any buffers on the active list that are no longer referenced
1841 * by the ringbuffer to the flushing/inactive lists as appropriate.
1843 while (!list_empty(&ring->active_list)) {
1844 struct drm_i915_gem_object *obj;
1846 obj = list_first_entry(&ring->active_list,
1847 struct drm_i915_gem_object,
1848 ring_list);
1850 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1851 break;
1853 if (obj->base.write_domain != 0)
1854 i915_gem_object_move_to_flushing(obj);
1855 else
1856 i915_gem_object_move_to_inactive(obj);
1859 if (unlikely(ring->trace_irq_seqno &&
1860 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1861 ring->irq_put(ring);
1862 ring->trace_irq_seqno = 0;
1865 WARN_ON(i915_verify_lists(ring->dev));
1868 void
1869 i915_gem_retire_requests(struct drm_device *dev)
1871 drm_i915_private_t *dev_priv = dev->dev_private;
1872 int i;
1874 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1875 struct drm_i915_gem_object *obj, *next;
1877 /* We must be careful that during unbind() we do not
1878 * accidentally infinitely recurse into retire requests.
1879 * Currently:
1880 * retire -> free -> unbind -> wait -> retire_ring
1882 list_for_each_entry_safe(obj, next,
1883 &dev_priv->mm.deferred_free_list,
1884 mm_list)
1885 i915_gem_free_object_tail(obj);
1888 for (i = 0; i < I915_NUM_RINGS; i++)
1889 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1892 static void
1893 i915_gem_retire_work_handler(struct work_struct *work)
1895 drm_i915_private_t *dev_priv;
1896 struct drm_device *dev;
1897 bool idle;
1898 int i;
1900 dev_priv = container_of(work, drm_i915_private_t,
1901 mm.retire_work.work);
1902 dev = dev_priv->dev;
1904 /* Come back later if the device is busy... */
1905 if (!mutex_trylock(&dev->struct_mutex)) {
1906 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1907 return;
1910 i915_gem_retire_requests(dev);
1912 /* Send a periodic flush down the ring so we don't hold onto GEM
1913 * objects indefinitely.
1915 idle = true;
1916 for (i = 0; i < I915_NUM_RINGS; i++) {
1917 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1919 if (!list_empty(&ring->gpu_write_list)) {
1920 struct drm_i915_gem_request *request;
1921 int ret;
1923 ret = i915_gem_flush_ring(ring,
1924 0, I915_GEM_GPU_DOMAINS);
1925 request = kzalloc(sizeof(*request), GFP_KERNEL);
1926 if (ret || request == NULL ||
1927 i915_add_request(ring, NULL, request))
1928 kfree(request);
1931 idle &= list_empty(&ring->request_list);
1934 if (!dev_priv->mm.suspended && !idle)
1935 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1937 mutex_unlock(&dev->struct_mutex);
1941 * Waits for a sequence number to be signaled, and cleans up the
1942 * request and object lists appropriately for that event.
1945 i915_wait_request(struct intel_ring_buffer *ring,
1946 uint32_t seqno)
1948 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1949 u32 ier;
1950 int ret = 0;
1952 BUG_ON(seqno == 0);
1954 if (atomic_read(&dev_priv->mm.wedged)) {
1955 struct completion *x = &dev_priv->error_completion;
1956 bool recovery_complete;
1957 unsigned long flags;
1959 /* Give the error handler a chance to run. */
1960 spin_lock_irqsave(&x->wait.lock, flags);
1961 recovery_complete = x->done > 0;
1962 spin_unlock_irqrestore(&x->wait.lock, flags);
1964 return recovery_complete ? -EIO : -EAGAIN;
1967 if (seqno == ring->outstanding_lazy_request) {
1968 struct drm_i915_gem_request *request;
1970 request = kzalloc(sizeof(*request), GFP_KERNEL);
1971 if (request == NULL)
1972 return -ENOMEM;
1974 ret = i915_add_request(ring, NULL, request);
1975 if (ret) {
1976 kfree(request);
1977 return ret;
1980 seqno = request->seqno;
1983 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1984 if (HAS_PCH_SPLIT(ring->dev))
1985 ier = I915_READ(DEIER) | I915_READ(GTIER);
1986 else
1987 ier = I915_READ(IER);
1988 if (!ier) {
1989 DRM_ERROR("something (likely vbetool) disabled "
1990 "interrupts, re-enabling\n");
1991 ring->dev->driver->irq_preinstall(ring->dev);
1992 ring->dev->driver->irq_postinstall(ring->dev);
1995 trace_i915_gem_request_wait_begin(ring, seqno);
1997 ring->waiting_seqno = seqno;
1998 if (ring->irq_get(ring)) {
1999 if (dev_priv->mm.interruptible)
2000 ret = wait_event_interruptible(ring->irq_queue,
2001 i915_seqno_passed(ring->get_seqno(ring), seqno)
2002 || atomic_read(&dev_priv->mm.wedged));
2003 else
2004 wait_event(ring->irq_queue,
2005 i915_seqno_passed(ring->get_seqno(ring), seqno)
2006 || atomic_read(&dev_priv->mm.wedged));
2008 ring->irq_put(ring);
2009 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2010 seqno) ||
2011 atomic_read(&dev_priv->mm.wedged), 3000))
2012 ret = -EBUSY;
2013 ring->waiting_seqno = 0;
2015 trace_i915_gem_request_wait_end(ring, seqno);
2017 if (atomic_read(&dev_priv->mm.wedged))
2018 ret = -EAGAIN;
2020 if (ret && ret != -ERESTARTSYS)
2021 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2022 __func__, ret, seqno, ring->get_seqno(ring),
2023 dev_priv->next_seqno);
2025 /* Directly dispatch request retiring. While we have the work queue
2026 * to handle this, the waiter on a request often wants an associated
2027 * buffer to have made it to the inactive list, and we would need
2028 * a separate wait queue to handle that.
2030 if (ret == 0)
2031 i915_gem_retire_requests_ring(ring);
2033 return ret;
2037 * Ensures that all rendering to the object has completed and the object is
2038 * safe to unbind from the GTT or access from the CPU.
2041 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2043 int ret;
2045 /* This function only exists to support waiting for existing rendering,
2046 * not for emitting required flushes.
2048 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2050 /* If there is rendering queued on the buffer being evicted, wait for
2051 * it.
2053 if (obj->active) {
2054 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2055 if (ret)
2056 return ret;
2059 return 0;
2062 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2064 u32 old_write_domain, old_read_domains;
2066 /* Act a barrier for all accesses through the GTT */
2067 mb();
2069 /* Force a pagefault for domain tracking on next user access */
2070 i915_gem_release_mmap(obj);
2072 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2073 return;
2075 old_read_domains = obj->base.read_domains;
2076 old_write_domain = obj->base.write_domain;
2078 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2079 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2081 trace_i915_gem_object_change_domain(obj,
2082 old_read_domains,
2083 old_write_domain);
2087 * Unbinds an object from the GTT aperture.
2090 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2092 int ret = 0;
2094 if (obj->gtt_space == NULL)
2095 return 0;
2097 if (obj->pin_count != 0) {
2098 DRM_ERROR("Attempting to unbind pinned buffer\n");
2099 return -EINVAL;
2102 ret = i915_gem_object_finish_gpu(obj);
2103 if (ret == -ERESTARTSYS)
2104 return ret;
2105 /* Continue on if we fail due to EIO, the GPU is hung so we
2106 * should be safe and we need to cleanup or else we might
2107 * cause memory corruption through use-after-free.
2110 i915_gem_object_finish_gtt(obj);
2112 /* Move the object to the CPU domain to ensure that
2113 * any possible CPU writes while it's not in the GTT
2114 * are flushed when we go to remap it.
2116 if (ret == 0)
2117 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2118 if (ret == -ERESTARTSYS)
2119 return ret;
2120 if (ret) {
2121 /* In the event of a disaster, abandon all caches and
2122 * hope for the best.
2124 i915_gem_clflush_object(obj);
2125 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2128 /* release the fence reg _after_ flushing */
2129 ret = i915_gem_object_put_fence(obj);
2130 if (ret == -ERESTARTSYS)
2131 return ret;
2133 trace_i915_gem_object_unbind(obj);
2135 i915_gem_gtt_unbind_object(obj);
2136 i915_gem_object_put_pages_gtt(obj);
2138 list_del_init(&obj->gtt_list);
2139 list_del_init(&obj->mm_list);
2140 /* Avoid an unnecessary call to unbind on rebind. */
2141 obj->map_and_fenceable = true;
2143 drm_mm_put_block(obj->gtt_space);
2144 obj->gtt_space = NULL;
2145 obj->gtt_offset = 0;
2147 if (i915_gem_object_is_purgeable(obj))
2148 i915_gem_object_truncate(obj);
2150 return ret;
2154 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2155 uint32_t invalidate_domains,
2156 uint32_t flush_domains)
2158 int ret;
2160 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2161 return 0;
2163 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2165 ret = ring->flush(ring, invalidate_domains, flush_domains);
2166 if (ret)
2167 return ret;
2169 if (flush_domains & I915_GEM_GPU_DOMAINS)
2170 i915_gem_process_flushing_list(ring, flush_domains);
2172 return 0;
2175 static int i915_ring_idle(struct intel_ring_buffer *ring)
2177 int ret;
2179 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2180 return 0;
2182 if (!list_empty(&ring->gpu_write_list)) {
2183 ret = i915_gem_flush_ring(ring,
2184 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2185 if (ret)
2186 return ret;
2189 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2193 i915_gpu_idle(struct drm_device *dev)
2195 drm_i915_private_t *dev_priv = dev->dev_private;
2196 int ret, i;
2198 /* Flush everything onto the inactive list. */
2199 for (i = 0; i < I915_NUM_RINGS; i++) {
2200 ret = i915_ring_idle(&dev_priv->ring[i]);
2201 if (ret)
2202 return ret;
2205 return 0;
2208 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2209 struct intel_ring_buffer *pipelined)
2211 struct drm_device *dev = obj->base.dev;
2212 drm_i915_private_t *dev_priv = dev->dev_private;
2213 u32 size = obj->gtt_space->size;
2214 int regnum = obj->fence_reg;
2215 uint64_t val;
2217 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2218 0xfffff000) << 32;
2219 val |= obj->gtt_offset & 0xfffff000;
2220 val |= (uint64_t)((obj->stride / 128) - 1) <<
2221 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2223 if (obj->tiling_mode == I915_TILING_Y)
2224 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2225 val |= I965_FENCE_REG_VALID;
2227 if (pipelined) {
2228 int ret = intel_ring_begin(pipelined, 6);
2229 if (ret)
2230 return ret;
2232 intel_ring_emit(pipelined, MI_NOOP);
2233 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2234 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2235 intel_ring_emit(pipelined, (u32)val);
2236 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2237 intel_ring_emit(pipelined, (u32)(val >> 32));
2238 intel_ring_advance(pipelined);
2239 } else
2240 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2242 return 0;
2245 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2246 struct intel_ring_buffer *pipelined)
2248 struct drm_device *dev = obj->base.dev;
2249 drm_i915_private_t *dev_priv = dev->dev_private;
2250 u32 size = obj->gtt_space->size;
2251 int regnum = obj->fence_reg;
2252 uint64_t val;
2254 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2255 0xfffff000) << 32;
2256 val |= obj->gtt_offset & 0xfffff000;
2257 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2258 if (obj->tiling_mode == I915_TILING_Y)
2259 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2260 val |= I965_FENCE_REG_VALID;
2262 if (pipelined) {
2263 int ret = intel_ring_begin(pipelined, 6);
2264 if (ret)
2265 return ret;
2267 intel_ring_emit(pipelined, MI_NOOP);
2268 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2269 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2270 intel_ring_emit(pipelined, (u32)val);
2271 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2272 intel_ring_emit(pipelined, (u32)(val >> 32));
2273 intel_ring_advance(pipelined);
2274 } else
2275 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2277 return 0;
2280 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2281 struct intel_ring_buffer *pipelined)
2283 struct drm_device *dev = obj->base.dev;
2284 drm_i915_private_t *dev_priv = dev->dev_private;
2285 u32 size = obj->gtt_space->size;
2286 u32 fence_reg, val, pitch_val;
2287 int tile_width;
2289 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2290 (size & -size) != size ||
2291 (obj->gtt_offset & (size - 1)),
2292 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2293 obj->gtt_offset, obj->map_and_fenceable, size))
2294 return -EINVAL;
2296 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2297 tile_width = 128;
2298 else
2299 tile_width = 512;
2301 /* Note: pitch better be a power of two tile widths */
2302 pitch_val = obj->stride / tile_width;
2303 pitch_val = ffs(pitch_val) - 1;
2305 val = obj->gtt_offset;
2306 if (obj->tiling_mode == I915_TILING_Y)
2307 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2308 val |= I915_FENCE_SIZE_BITS(size);
2309 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2310 val |= I830_FENCE_REG_VALID;
2312 fence_reg = obj->fence_reg;
2313 if (fence_reg < 8)
2314 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2315 else
2316 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2318 if (pipelined) {
2319 int ret = intel_ring_begin(pipelined, 4);
2320 if (ret)
2321 return ret;
2323 intel_ring_emit(pipelined, MI_NOOP);
2324 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2325 intel_ring_emit(pipelined, fence_reg);
2326 intel_ring_emit(pipelined, val);
2327 intel_ring_advance(pipelined);
2328 } else
2329 I915_WRITE(fence_reg, val);
2331 return 0;
2334 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2335 struct intel_ring_buffer *pipelined)
2337 struct drm_device *dev = obj->base.dev;
2338 drm_i915_private_t *dev_priv = dev->dev_private;
2339 u32 size = obj->gtt_space->size;
2340 int regnum = obj->fence_reg;
2341 uint32_t val;
2342 uint32_t pitch_val;
2344 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2345 (size & -size) != size ||
2346 (obj->gtt_offset & (size - 1)),
2347 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2348 obj->gtt_offset, size))
2349 return -EINVAL;
2351 pitch_val = obj->stride / 128;
2352 pitch_val = ffs(pitch_val) - 1;
2354 val = obj->gtt_offset;
2355 if (obj->tiling_mode == I915_TILING_Y)
2356 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2357 val |= I830_FENCE_SIZE_BITS(size);
2358 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2359 val |= I830_FENCE_REG_VALID;
2361 if (pipelined) {
2362 int ret = intel_ring_begin(pipelined, 4);
2363 if (ret)
2364 return ret;
2366 intel_ring_emit(pipelined, MI_NOOP);
2367 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2368 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2369 intel_ring_emit(pipelined, val);
2370 intel_ring_advance(pipelined);
2371 } else
2372 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2374 return 0;
2377 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2379 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2382 static int
2383 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2384 struct intel_ring_buffer *pipelined)
2386 int ret;
2388 if (obj->fenced_gpu_access) {
2389 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2390 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2391 0, obj->base.write_domain);
2392 if (ret)
2393 return ret;
2396 obj->fenced_gpu_access = false;
2399 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2400 if (!ring_passed_seqno(obj->last_fenced_ring,
2401 obj->last_fenced_seqno)) {
2402 ret = i915_wait_request(obj->last_fenced_ring,
2403 obj->last_fenced_seqno);
2404 if (ret)
2405 return ret;
2408 obj->last_fenced_seqno = 0;
2409 obj->last_fenced_ring = NULL;
2412 /* Ensure that all CPU reads are completed before installing a fence
2413 * and all writes before removing the fence.
2415 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2416 mb();
2418 return 0;
2422 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2424 int ret;
2426 if (obj->tiling_mode)
2427 i915_gem_release_mmap(obj);
2429 ret = i915_gem_object_flush_fence(obj, NULL);
2430 if (ret)
2431 return ret;
2433 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2434 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2435 i915_gem_clear_fence_reg(obj->base.dev,
2436 &dev_priv->fence_regs[obj->fence_reg]);
2438 obj->fence_reg = I915_FENCE_REG_NONE;
2441 return 0;
2444 static struct drm_i915_fence_reg *
2445 i915_find_fence_reg(struct drm_device *dev,
2446 struct intel_ring_buffer *pipelined)
2448 struct drm_i915_private *dev_priv = dev->dev_private;
2449 struct drm_i915_fence_reg *reg, *first, *avail;
2450 int i;
2452 /* First try to find a free reg */
2453 avail = NULL;
2454 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2455 reg = &dev_priv->fence_regs[i];
2456 if (!reg->obj)
2457 return reg;
2459 if (!reg->obj->pin_count)
2460 avail = reg;
2463 if (avail == NULL)
2464 return NULL;
2466 /* None available, try to steal one or wait for a user to finish */
2467 avail = first = NULL;
2468 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2469 if (reg->obj->pin_count)
2470 continue;
2472 if (first == NULL)
2473 first = reg;
2475 if (!pipelined ||
2476 !reg->obj->last_fenced_ring ||
2477 reg->obj->last_fenced_ring == pipelined) {
2478 avail = reg;
2479 break;
2483 if (avail == NULL)
2484 avail = first;
2486 return avail;
2490 * i915_gem_object_get_fence - set up a fence reg for an object
2491 * @obj: object to map through a fence reg
2492 * @pipelined: ring on which to queue the change, or NULL for CPU access
2493 * @interruptible: must we wait uninterruptibly for the register to retire?
2495 * When mapping objects through the GTT, userspace wants to be able to write
2496 * to them without having to worry about swizzling if the object is tiled.
2498 * This function walks the fence regs looking for a free one for @obj,
2499 * stealing one if it can't find any.
2501 * It then sets up the reg based on the object's properties: address, pitch
2502 * and tiling format.
2505 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2506 struct intel_ring_buffer *pipelined)
2508 struct drm_device *dev = obj->base.dev;
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 struct drm_i915_fence_reg *reg;
2511 int ret;
2513 /* XXX disable pipelining. There are bugs. Shocking. */
2514 pipelined = NULL;
2516 /* Just update our place in the LRU if our fence is getting reused. */
2517 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2518 reg = &dev_priv->fence_regs[obj->fence_reg];
2519 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2521 if (obj->tiling_changed) {
2522 ret = i915_gem_object_flush_fence(obj, pipelined);
2523 if (ret)
2524 return ret;
2526 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2527 pipelined = NULL;
2529 if (pipelined) {
2530 reg->setup_seqno =
2531 i915_gem_next_request_seqno(pipelined);
2532 obj->last_fenced_seqno = reg->setup_seqno;
2533 obj->last_fenced_ring = pipelined;
2536 goto update;
2539 if (!pipelined) {
2540 if (reg->setup_seqno) {
2541 if (!ring_passed_seqno(obj->last_fenced_ring,
2542 reg->setup_seqno)) {
2543 ret = i915_wait_request(obj->last_fenced_ring,
2544 reg->setup_seqno);
2545 if (ret)
2546 return ret;
2549 reg->setup_seqno = 0;
2551 } else if (obj->last_fenced_ring &&
2552 obj->last_fenced_ring != pipelined) {
2553 ret = i915_gem_object_flush_fence(obj, pipelined);
2554 if (ret)
2555 return ret;
2558 return 0;
2561 reg = i915_find_fence_reg(dev, pipelined);
2562 if (reg == NULL)
2563 return -ENOSPC;
2565 ret = i915_gem_object_flush_fence(obj, pipelined);
2566 if (ret)
2567 return ret;
2569 if (reg->obj) {
2570 struct drm_i915_gem_object *old = reg->obj;
2572 drm_gem_object_reference(&old->base);
2574 if (old->tiling_mode)
2575 i915_gem_release_mmap(old);
2577 ret = i915_gem_object_flush_fence(old, pipelined);
2578 if (ret) {
2579 drm_gem_object_unreference(&old->base);
2580 return ret;
2583 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2584 pipelined = NULL;
2586 old->fence_reg = I915_FENCE_REG_NONE;
2587 old->last_fenced_ring = pipelined;
2588 old->last_fenced_seqno =
2589 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2591 drm_gem_object_unreference(&old->base);
2592 } else if (obj->last_fenced_seqno == 0)
2593 pipelined = NULL;
2595 reg->obj = obj;
2596 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2597 obj->fence_reg = reg - dev_priv->fence_regs;
2598 obj->last_fenced_ring = pipelined;
2600 reg->setup_seqno =
2601 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2602 obj->last_fenced_seqno = reg->setup_seqno;
2604 update:
2605 obj->tiling_changed = false;
2606 switch (INTEL_INFO(dev)->gen) {
2607 case 7:
2608 case 6:
2609 ret = sandybridge_write_fence_reg(obj, pipelined);
2610 break;
2611 case 5:
2612 case 4:
2613 ret = i965_write_fence_reg(obj, pipelined);
2614 break;
2615 case 3:
2616 ret = i915_write_fence_reg(obj, pipelined);
2617 break;
2618 case 2:
2619 ret = i830_write_fence_reg(obj, pipelined);
2620 break;
2623 return ret;
2627 * i915_gem_clear_fence_reg - clear out fence register info
2628 * @obj: object to clear
2630 * Zeroes out the fence register itself and clears out the associated
2631 * data structures in dev_priv and obj.
2633 static void
2634 i915_gem_clear_fence_reg(struct drm_device *dev,
2635 struct drm_i915_fence_reg *reg)
2637 drm_i915_private_t *dev_priv = dev->dev_private;
2638 uint32_t fence_reg = reg - dev_priv->fence_regs;
2640 switch (INTEL_INFO(dev)->gen) {
2641 case 7:
2642 case 6:
2643 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2644 break;
2645 case 5:
2646 case 4:
2647 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2648 break;
2649 case 3:
2650 if (fence_reg >= 8)
2651 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2652 else
2653 case 2:
2654 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2656 I915_WRITE(fence_reg, 0);
2657 break;
2660 list_del_init(&reg->lru_list);
2661 reg->obj = NULL;
2662 reg->setup_seqno = 0;
2666 * Finds free space in the GTT aperture and binds the object there.
2668 static int
2669 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2670 unsigned alignment,
2671 bool map_and_fenceable)
2673 struct drm_device *dev = obj->base.dev;
2674 drm_i915_private_t *dev_priv = dev->dev_private;
2675 struct drm_mm_node *free_space;
2676 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2677 u32 size, fence_size, fence_alignment, unfenced_alignment;
2678 bool mappable, fenceable;
2679 int ret;
2681 if (obj->madv != I915_MADV_WILLNEED) {
2682 DRM_ERROR("Attempting to bind a purgeable object\n");
2683 return -EINVAL;
2686 fence_size = i915_gem_get_gtt_size(dev,
2687 obj->base.size,
2688 obj->tiling_mode);
2689 fence_alignment = i915_gem_get_gtt_alignment(dev,
2690 obj->base.size,
2691 obj->tiling_mode);
2692 unfenced_alignment =
2693 i915_gem_get_unfenced_gtt_alignment(dev,
2694 obj->base.size,
2695 obj->tiling_mode);
2697 if (alignment == 0)
2698 alignment = map_and_fenceable ? fence_alignment :
2699 unfenced_alignment;
2700 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2701 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2702 return -EINVAL;
2705 size = map_and_fenceable ? fence_size : obj->base.size;
2707 /* If the object is bigger than the entire aperture, reject it early
2708 * before evicting everything in a vain attempt to find space.
2710 if (obj->base.size >
2711 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2712 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2713 return -E2BIG;
2716 search_free:
2717 if (map_and_fenceable)
2718 free_space =
2719 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2720 size, alignment, 0,
2721 dev_priv->mm.gtt_mappable_end,
2723 else
2724 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2725 size, alignment, 0);
2727 if (free_space != NULL) {
2728 if (map_and_fenceable)
2729 obj->gtt_space =
2730 drm_mm_get_block_range_generic(free_space,
2731 size, alignment, 0,
2732 dev_priv->mm.gtt_mappable_end,
2734 else
2735 obj->gtt_space =
2736 drm_mm_get_block(free_space, size, alignment);
2738 if (obj->gtt_space == NULL) {
2739 /* If the gtt is empty and we're still having trouble
2740 * fitting our object in, we're out of memory.
2742 ret = i915_gem_evict_something(dev, size, alignment,
2743 map_and_fenceable);
2744 if (ret)
2745 return ret;
2747 goto search_free;
2750 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2751 if (ret) {
2752 drm_mm_put_block(obj->gtt_space);
2753 obj->gtt_space = NULL;
2755 if (ret == -ENOMEM) {
2756 /* first try to reclaim some memory by clearing the GTT */
2757 ret = i915_gem_evict_everything(dev, false);
2758 if (ret) {
2759 /* now try to shrink everyone else */
2760 if (gfpmask) {
2761 gfpmask = 0;
2762 goto search_free;
2765 return -ENOMEM;
2768 goto search_free;
2771 return ret;
2774 ret = i915_gem_gtt_bind_object(obj);
2775 if (ret) {
2776 i915_gem_object_put_pages_gtt(obj);
2777 drm_mm_put_block(obj->gtt_space);
2778 obj->gtt_space = NULL;
2780 if (i915_gem_evict_everything(dev, false))
2781 return ret;
2783 goto search_free;
2786 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2787 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2789 /* Assert that the object is not currently in any GPU domain. As it
2790 * wasn't in the GTT, there shouldn't be any way it could have been in
2791 * a GPU cache
2793 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2794 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2796 obj->gtt_offset = obj->gtt_space->start;
2798 fenceable =
2799 obj->gtt_space->size == fence_size &&
2800 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2802 mappable =
2803 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2805 obj->map_and_fenceable = mappable && fenceable;
2807 trace_i915_gem_object_bind(obj, map_and_fenceable);
2808 return 0;
2811 void
2812 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2814 /* If we don't have a page list set up, then we're not pinned
2815 * to GPU, and we can ignore the cache flush because it'll happen
2816 * again at bind time.
2818 if (obj->pages == NULL)
2819 return;
2821 /* If the GPU is snooping the contents of the CPU cache,
2822 * we do not need to manually clear the CPU cache lines. However,
2823 * the caches are only snooped when the render cache is
2824 * flushed/invalidated. As we always have to emit invalidations
2825 * and flushes when moving into and out of the RENDER domain, correct
2826 * snooping behaviour occurs naturally as the result of our domain
2827 * tracking.
2829 if (obj->cache_level != I915_CACHE_NONE)
2830 return;
2832 trace_i915_gem_object_clflush(obj);
2834 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2837 /** Flushes any GPU write domain for the object if it's dirty. */
2838 static int
2839 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2841 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2842 return 0;
2844 /* Queue the GPU write cache flushing we need. */
2845 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2848 /** Flushes the GTT write domain for the object if it's dirty. */
2849 static void
2850 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2852 uint32_t old_write_domain;
2854 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2855 return;
2857 /* No actual flushing is required for the GTT write domain. Writes
2858 * to it immediately go to main memory as far as we know, so there's
2859 * no chipset flush. It also doesn't land in render cache.
2861 * However, we do have to enforce the order so that all writes through
2862 * the GTT land before any writes to the device, such as updates to
2863 * the GATT itself.
2865 wmb();
2867 old_write_domain = obj->base.write_domain;
2868 obj->base.write_domain = 0;
2870 trace_i915_gem_object_change_domain(obj,
2871 obj->base.read_domains,
2872 old_write_domain);
2875 /** Flushes the CPU write domain for the object if it's dirty. */
2876 static void
2877 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2879 uint32_t old_write_domain;
2881 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2882 return;
2884 i915_gem_clflush_object(obj);
2885 intel_gtt_chipset_flush();
2886 old_write_domain = obj->base.write_domain;
2887 obj->base.write_domain = 0;
2889 trace_i915_gem_object_change_domain(obj,
2890 obj->base.read_domains,
2891 old_write_domain);
2895 * Moves a single object to the GTT read, and possibly write domain.
2897 * This function returns when the move is complete, including waiting on
2898 * flushes to occur.
2901 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2903 uint32_t old_write_domain, old_read_domains;
2904 int ret;
2906 /* Not valid to be called on unbound objects. */
2907 if (obj->gtt_space == NULL)
2908 return -EINVAL;
2910 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2911 return 0;
2913 ret = i915_gem_object_flush_gpu_write_domain(obj);
2914 if (ret)
2915 return ret;
2917 if (obj->pending_gpu_write || write) {
2918 ret = i915_gem_object_wait_rendering(obj);
2919 if (ret)
2920 return ret;
2923 i915_gem_object_flush_cpu_write_domain(obj);
2925 old_write_domain = obj->base.write_domain;
2926 old_read_domains = obj->base.read_domains;
2928 /* It should now be out of any other write domains, and we can update
2929 * the domain values for our changes.
2931 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2932 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2933 if (write) {
2934 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2935 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2936 obj->dirty = 1;
2939 trace_i915_gem_object_change_domain(obj,
2940 old_read_domains,
2941 old_write_domain);
2943 return 0;
2946 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2947 enum i915_cache_level cache_level)
2949 int ret;
2951 if (obj->cache_level == cache_level)
2952 return 0;
2954 if (obj->pin_count) {
2955 DRM_DEBUG("can not change the cache level of pinned objects\n");
2956 return -EBUSY;
2959 if (obj->gtt_space) {
2960 ret = i915_gem_object_finish_gpu(obj);
2961 if (ret)
2962 return ret;
2964 i915_gem_object_finish_gtt(obj);
2966 /* Before SandyBridge, you could not use tiling or fence
2967 * registers with snooped memory, so relinquish any fences
2968 * currently pointing to our region in the aperture.
2970 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2971 ret = i915_gem_object_put_fence(obj);
2972 if (ret)
2973 return ret;
2976 i915_gem_gtt_rebind_object(obj, cache_level);
2979 if (cache_level == I915_CACHE_NONE) {
2980 u32 old_read_domains, old_write_domain;
2982 /* If we're coming from LLC cached, then we haven't
2983 * actually been tracking whether the data is in the
2984 * CPU cache or not, since we only allow one bit set
2985 * in obj->write_domain and have been skipping the clflushes.
2986 * Just set it to the CPU cache for now.
2988 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2989 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2991 old_read_domains = obj->base.read_domains;
2992 old_write_domain = obj->base.write_domain;
2994 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2995 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2997 trace_i915_gem_object_change_domain(obj,
2998 old_read_domains,
2999 old_write_domain);
3002 obj->cache_level = cache_level;
3003 return 0;
3007 * Prepare buffer for display plane (scanout, cursors, etc).
3008 * Can be called from an uninterruptible phase (modesetting) and allows
3009 * any flushes to be pipelined (for pageflips).
3011 * For the display plane, we want to be in the GTT but out of any write
3012 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3013 * ability to pipeline the waits, pinning and any additional subtleties
3014 * that may differentiate the display plane from ordinary buffers.
3017 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3018 u32 alignment,
3019 struct intel_ring_buffer *pipelined)
3021 u32 old_read_domains, old_write_domain;
3022 int ret;
3024 ret = i915_gem_object_flush_gpu_write_domain(obj);
3025 if (ret)
3026 return ret;
3028 if (pipelined != obj->ring) {
3029 ret = i915_gem_object_wait_rendering(obj);
3030 if (ret == -ERESTARTSYS)
3031 return ret;
3034 /* The display engine is not coherent with the LLC cache on gen6. As
3035 * a result, we make sure that the pinning that is about to occur is
3036 * done with uncached PTEs. This is lowest common denominator for all
3037 * chipsets.
3039 * However for gen6+, we could do better by using the GFDT bit instead
3040 * of uncaching, which would allow us to flush all the LLC-cached data
3041 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3043 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3044 if (ret)
3045 return ret;
3047 /* As the user may map the buffer once pinned in the display plane
3048 * (e.g. libkms for the bootup splash), we have to ensure that we
3049 * always use map_and_fenceable for all scanout buffers.
3051 ret = i915_gem_object_pin(obj, alignment, true);
3052 if (ret)
3053 return ret;
3055 i915_gem_object_flush_cpu_write_domain(obj);
3057 old_write_domain = obj->base.write_domain;
3058 old_read_domains = obj->base.read_domains;
3060 /* It should now be out of any other write domains, and we can update
3061 * the domain values for our changes.
3063 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3064 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3066 trace_i915_gem_object_change_domain(obj,
3067 old_read_domains,
3068 old_write_domain);
3070 return 0;
3074 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3076 int ret;
3078 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3079 return 0;
3081 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3082 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3083 if (ret)
3084 return ret;
3087 /* Ensure that we invalidate the GPU's caches and TLBs. */
3088 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3090 return i915_gem_object_wait_rendering(obj);
3094 * Moves a single object to the CPU read, and possibly write domain.
3096 * This function returns when the move is complete, including waiting on
3097 * flushes to occur.
3099 static int
3100 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3102 uint32_t old_write_domain, old_read_domains;
3103 int ret;
3105 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3106 return 0;
3108 ret = i915_gem_object_flush_gpu_write_domain(obj);
3109 if (ret)
3110 return ret;
3112 ret = i915_gem_object_wait_rendering(obj);
3113 if (ret)
3114 return ret;
3116 i915_gem_object_flush_gtt_write_domain(obj);
3118 /* If we have a partially-valid cache of the object in the CPU,
3119 * finish invalidating it and free the per-page flags.
3121 i915_gem_object_set_to_full_cpu_read_domain(obj);
3123 old_write_domain = obj->base.write_domain;
3124 old_read_domains = obj->base.read_domains;
3126 /* Flush the CPU cache if it's still invalid. */
3127 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3128 i915_gem_clflush_object(obj);
3130 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3133 /* It should now be out of any other write domains, and we can update
3134 * the domain values for our changes.
3136 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3138 /* If we're writing through the CPU, then the GPU read domains will
3139 * need to be invalidated at next use.
3141 if (write) {
3142 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3143 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3146 trace_i915_gem_object_change_domain(obj,
3147 old_read_domains,
3148 old_write_domain);
3150 return 0;
3154 * Moves the object from a partially CPU read to a full one.
3156 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3157 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3159 static void
3160 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3162 if (!obj->page_cpu_valid)
3163 return;
3165 /* If we're partially in the CPU read domain, finish moving it in.
3167 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3168 int i;
3170 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3171 if (obj->page_cpu_valid[i])
3172 continue;
3173 drm_clflush_pages(obj->pages + i, 1);
3177 /* Free the page_cpu_valid mappings which are now stale, whether
3178 * or not we've got I915_GEM_DOMAIN_CPU.
3180 kfree(obj->page_cpu_valid);
3181 obj->page_cpu_valid = NULL;
3185 * Set the CPU read domain on a range of the object.
3187 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3188 * not entirely valid. The page_cpu_valid member of the object flags which
3189 * pages have been flushed, and will be respected by
3190 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3191 * of the whole object.
3193 * This function returns when the move is complete, including waiting on
3194 * flushes to occur.
3196 static int
3197 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3198 uint64_t offset, uint64_t size)
3200 uint32_t old_read_domains;
3201 int i, ret;
3203 if (offset == 0 && size == obj->base.size)
3204 return i915_gem_object_set_to_cpu_domain(obj, 0);
3206 ret = i915_gem_object_flush_gpu_write_domain(obj);
3207 if (ret)
3208 return ret;
3210 ret = i915_gem_object_wait_rendering(obj);
3211 if (ret)
3212 return ret;
3214 i915_gem_object_flush_gtt_write_domain(obj);
3216 /* If we're already fully in the CPU read domain, we're done. */
3217 if (obj->page_cpu_valid == NULL &&
3218 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3219 return 0;
3221 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3222 * newly adding I915_GEM_DOMAIN_CPU
3224 if (obj->page_cpu_valid == NULL) {
3225 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3226 GFP_KERNEL);
3227 if (obj->page_cpu_valid == NULL)
3228 return -ENOMEM;
3229 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3230 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3232 /* Flush the cache on any pages that are still invalid from the CPU's
3233 * perspective.
3235 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3236 i++) {
3237 if (obj->page_cpu_valid[i])
3238 continue;
3240 drm_clflush_pages(obj->pages + i, 1);
3242 obj->page_cpu_valid[i] = 1;
3245 /* It should now be out of any other write domains, and we can update
3246 * the domain values for our changes.
3248 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3250 old_read_domains = obj->base.read_domains;
3251 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3253 trace_i915_gem_object_change_domain(obj,
3254 old_read_domains,
3255 obj->base.write_domain);
3257 return 0;
3260 /* Throttle our rendering by waiting until the ring has completed our requests
3261 * emitted over 20 msec ago.
3263 * Note that if we were to use the current jiffies each time around the loop,
3264 * we wouldn't escape the function with any frames outstanding if the time to
3265 * render a frame was over 20ms.
3267 * This should get us reasonable parallelism between CPU and GPU but also
3268 * relatively low latency when blocking on a particular request to finish.
3270 static int
3271 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274 struct drm_i915_file_private *file_priv = file->driver_priv;
3275 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3276 struct drm_i915_gem_request *request;
3277 struct intel_ring_buffer *ring = NULL;
3278 u32 seqno = 0;
3279 int ret;
3281 if (atomic_read(&dev_priv->mm.wedged))
3282 return -EIO;
3284 spin_lock(&file_priv->mm.lock);
3285 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3286 if (time_after_eq(request->emitted_jiffies, recent_enough))
3287 break;
3289 ring = request->ring;
3290 seqno = request->seqno;
3292 spin_unlock(&file_priv->mm.lock);
3294 if (seqno == 0)
3295 return 0;
3297 ret = 0;
3298 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3299 /* And wait for the seqno passing without holding any locks and
3300 * causing extra latency for others. This is safe as the irq
3301 * generation is designed to be run atomically and so is
3302 * lockless.
3304 if (ring->irq_get(ring)) {
3305 ret = wait_event_interruptible(ring->irq_queue,
3306 i915_seqno_passed(ring->get_seqno(ring), seqno)
3307 || atomic_read(&dev_priv->mm.wedged));
3308 ring->irq_put(ring);
3310 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3311 ret = -EIO;
3315 if (ret == 0)
3316 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3318 return ret;
3322 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3323 uint32_t alignment,
3324 bool map_and_fenceable)
3326 struct drm_device *dev = obj->base.dev;
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328 int ret;
3330 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3331 WARN_ON(i915_verify_lists(dev));
3333 if (obj->gtt_space != NULL) {
3334 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3335 (map_and_fenceable && !obj->map_and_fenceable)) {
3336 WARN(obj->pin_count,
3337 "bo is already pinned with incorrect alignment:"
3338 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3339 " obj->map_and_fenceable=%d\n",
3340 obj->gtt_offset, alignment,
3341 map_and_fenceable,
3342 obj->map_and_fenceable);
3343 ret = i915_gem_object_unbind(obj);
3344 if (ret)
3345 return ret;
3349 if (obj->gtt_space == NULL) {
3350 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3351 map_and_fenceable);
3352 if (ret)
3353 return ret;
3356 if (obj->pin_count++ == 0) {
3357 if (!obj->active)
3358 list_move_tail(&obj->mm_list,
3359 &dev_priv->mm.pinned_list);
3361 obj->pin_mappable |= map_and_fenceable;
3363 WARN_ON(i915_verify_lists(dev));
3364 return 0;
3367 void
3368 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3370 struct drm_device *dev = obj->base.dev;
3371 drm_i915_private_t *dev_priv = dev->dev_private;
3373 WARN_ON(i915_verify_lists(dev));
3374 BUG_ON(obj->pin_count == 0);
3375 BUG_ON(obj->gtt_space == NULL);
3377 if (--obj->pin_count == 0) {
3378 if (!obj->active)
3379 list_move_tail(&obj->mm_list,
3380 &dev_priv->mm.inactive_list);
3381 obj->pin_mappable = false;
3383 WARN_ON(i915_verify_lists(dev));
3387 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3388 struct drm_file *file)
3390 struct drm_i915_gem_pin *args = data;
3391 struct drm_i915_gem_object *obj;
3392 int ret;
3394 ret = i915_mutex_lock_interruptible(dev);
3395 if (ret)
3396 return ret;
3398 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3399 if (&obj->base == NULL) {
3400 ret = -ENOENT;
3401 goto unlock;
3404 if (obj->madv != I915_MADV_WILLNEED) {
3405 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3406 ret = -EINVAL;
3407 goto out;
3410 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3411 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3412 args->handle);
3413 ret = -EINVAL;
3414 goto out;
3417 obj->user_pin_count++;
3418 obj->pin_filp = file;
3419 if (obj->user_pin_count == 1) {
3420 ret = i915_gem_object_pin(obj, args->alignment, true);
3421 if (ret)
3422 goto out;
3425 /* XXX - flush the CPU caches for pinned objects
3426 * as the X server doesn't manage domains yet
3428 i915_gem_object_flush_cpu_write_domain(obj);
3429 args->offset = obj->gtt_offset;
3430 out:
3431 drm_gem_object_unreference(&obj->base);
3432 unlock:
3433 mutex_unlock(&dev->struct_mutex);
3434 return ret;
3438 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3439 struct drm_file *file)
3441 struct drm_i915_gem_pin *args = data;
3442 struct drm_i915_gem_object *obj;
3443 int ret;
3445 ret = i915_mutex_lock_interruptible(dev);
3446 if (ret)
3447 return ret;
3449 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3450 if (&obj->base == NULL) {
3451 ret = -ENOENT;
3452 goto unlock;
3455 if (obj->pin_filp != file) {
3456 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3457 args->handle);
3458 ret = -EINVAL;
3459 goto out;
3461 obj->user_pin_count--;
3462 if (obj->user_pin_count == 0) {
3463 obj->pin_filp = NULL;
3464 i915_gem_object_unpin(obj);
3467 out:
3468 drm_gem_object_unreference(&obj->base);
3469 unlock:
3470 mutex_unlock(&dev->struct_mutex);
3471 return ret;
3475 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3476 struct drm_file *file)
3478 struct drm_i915_gem_busy *args = data;
3479 struct drm_i915_gem_object *obj;
3480 int ret;
3482 ret = i915_mutex_lock_interruptible(dev);
3483 if (ret)
3484 return ret;
3486 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3487 if (&obj->base == NULL) {
3488 ret = -ENOENT;
3489 goto unlock;
3492 /* Count all active objects as busy, even if they are currently not used
3493 * by the gpu. Users of this interface expect objects to eventually
3494 * become non-busy without any further actions, therefore emit any
3495 * necessary flushes here.
3497 args->busy = obj->active;
3498 if (args->busy) {
3499 /* Unconditionally flush objects, even when the gpu still uses this
3500 * object. Userspace calling this function indicates that it wants to
3501 * use this buffer rather sooner than later, so issuing the required
3502 * flush earlier is beneficial.
3504 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3505 ret = i915_gem_flush_ring(obj->ring,
3506 0, obj->base.write_domain);
3507 } else if (obj->ring->outstanding_lazy_request ==
3508 obj->last_rendering_seqno) {
3509 struct drm_i915_gem_request *request;
3511 /* This ring is not being cleared by active usage,
3512 * so emit a request to do so.
3514 request = kzalloc(sizeof(*request), GFP_KERNEL);
3515 if (request) {
3516 ret = i915_add_request(obj->ring, NULL, request);
3517 if (ret)
3518 kfree(request);
3519 } else
3520 ret = -ENOMEM;
3523 /* Update the active list for the hardware's current position.
3524 * Otherwise this only updates on a delayed timer or when irqs
3525 * are actually unmasked, and our working set ends up being
3526 * larger than required.
3528 i915_gem_retire_requests_ring(obj->ring);
3530 args->busy = obj->active;
3533 drm_gem_object_unreference(&obj->base);
3534 unlock:
3535 mutex_unlock(&dev->struct_mutex);
3536 return ret;
3540 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3541 struct drm_file *file_priv)
3543 return i915_gem_ring_throttle(dev, file_priv);
3547 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3548 struct drm_file *file_priv)
3550 struct drm_i915_gem_madvise *args = data;
3551 struct drm_i915_gem_object *obj;
3552 int ret;
3554 switch (args->madv) {
3555 case I915_MADV_DONTNEED:
3556 case I915_MADV_WILLNEED:
3557 break;
3558 default:
3559 return -EINVAL;
3562 ret = i915_mutex_lock_interruptible(dev);
3563 if (ret)
3564 return ret;
3566 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3567 if (&obj->base == NULL) {
3568 ret = -ENOENT;
3569 goto unlock;
3572 if (obj->pin_count) {
3573 ret = -EINVAL;
3574 goto out;
3577 if (obj->madv != __I915_MADV_PURGED)
3578 obj->madv = args->madv;
3580 /* if the object is no longer bound, discard its backing storage */
3581 if (i915_gem_object_is_purgeable(obj) &&
3582 obj->gtt_space == NULL)
3583 i915_gem_object_truncate(obj);
3585 args->retained = obj->madv != __I915_MADV_PURGED;
3587 out:
3588 drm_gem_object_unreference(&obj->base);
3589 unlock:
3590 mutex_unlock(&dev->struct_mutex);
3591 return ret;
3594 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3595 size_t size)
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 struct drm_i915_gem_object *obj;
3599 struct address_space *mapping;
3601 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3602 if (obj == NULL)
3603 return NULL;
3605 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3606 kfree(obj);
3607 return NULL;
3610 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3611 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3613 i915_gem_info_add_obj(dev_priv, size);
3615 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3616 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3618 if (IS_GEN6(dev) || IS_GEN7(dev)) {
3619 /* On Gen6, we can have the GPU use the LLC (the CPU
3620 * cache) for about a 10% performance improvement
3621 * compared to uncached. Graphics requests other than
3622 * display scanout are coherent with the CPU in
3623 * accessing this cache. This means in this mode we
3624 * don't need to clflush on the CPU side, and on the
3625 * GPU side we only need to flush internal caches to
3626 * get data visible to the CPU.
3628 * However, we maintain the display planes as UC, and so
3629 * need to rebind when first used as such.
3631 obj->cache_level = I915_CACHE_LLC;
3632 } else
3633 obj->cache_level = I915_CACHE_NONE;
3635 obj->base.driver_private = NULL;
3636 obj->fence_reg = I915_FENCE_REG_NONE;
3637 INIT_LIST_HEAD(&obj->mm_list);
3638 INIT_LIST_HEAD(&obj->gtt_list);
3639 INIT_LIST_HEAD(&obj->ring_list);
3640 INIT_LIST_HEAD(&obj->exec_list);
3641 INIT_LIST_HEAD(&obj->gpu_write_list);
3642 obj->madv = I915_MADV_WILLNEED;
3643 /* Avoid an unnecessary call to unbind on the first bind. */
3644 obj->map_and_fenceable = true;
3646 return obj;
3649 int i915_gem_init_object(struct drm_gem_object *obj)
3651 BUG();
3653 return 0;
3656 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3658 struct drm_device *dev = obj->base.dev;
3659 drm_i915_private_t *dev_priv = dev->dev_private;
3660 int ret;
3662 ret = i915_gem_object_unbind(obj);
3663 if (ret == -ERESTARTSYS) {
3664 list_move(&obj->mm_list,
3665 &dev_priv->mm.deferred_free_list);
3666 return;
3669 trace_i915_gem_object_destroy(obj);
3671 if (obj->base.map_list.map)
3672 drm_gem_free_mmap_offset(&obj->base);
3674 drm_gem_object_release(&obj->base);
3675 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3677 kfree(obj->page_cpu_valid);
3678 kfree(obj->bit_17);
3679 kfree(obj);
3682 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3684 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3685 struct drm_device *dev = obj->base.dev;
3687 while (obj->pin_count > 0)
3688 i915_gem_object_unpin(obj);
3690 if (obj->phys_obj)
3691 i915_gem_detach_phys_object(dev, obj);
3693 i915_gem_free_object_tail(obj);
3697 i915_gem_idle(struct drm_device *dev)
3699 drm_i915_private_t *dev_priv = dev->dev_private;
3700 int ret;
3702 mutex_lock(&dev->struct_mutex);
3704 if (dev_priv->mm.suspended) {
3705 mutex_unlock(&dev->struct_mutex);
3706 return 0;
3709 ret = i915_gpu_idle(dev);
3710 if (ret) {
3711 mutex_unlock(&dev->struct_mutex);
3712 return ret;
3715 /* Under UMS, be paranoid and evict. */
3716 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3717 ret = i915_gem_evict_inactive(dev, false);
3718 if (ret) {
3719 mutex_unlock(&dev->struct_mutex);
3720 return ret;
3724 i915_gem_reset_fences(dev);
3726 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3727 * We need to replace this with a semaphore, or something.
3728 * And not confound mm.suspended!
3730 dev_priv->mm.suspended = 1;
3731 del_timer_sync(&dev_priv->hangcheck_timer);
3733 i915_kernel_lost_context(dev);
3734 i915_gem_cleanup_ringbuffer(dev);
3736 mutex_unlock(&dev->struct_mutex);
3738 /* Cancel the retire work handler, which should be idle now. */
3739 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3741 return 0;
3745 i915_gem_init_ringbuffer(struct drm_device *dev)
3747 drm_i915_private_t *dev_priv = dev->dev_private;
3748 int ret;
3750 ret = intel_init_render_ring_buffer(dev);
3751 if (ret)
3752 return ret;
3754 if (HAS_BSD(dev)) {
3755 ret = intel_init_bsd_ring_buffer(dev);
3756 if (ret)
3757 goto cleanup_render_ring;
3760 if (HAS_BLT(dev)) {
3761 ret = intel_init_blt_ring_buffer(dev);
3762 if (ret)
3763 goto cleanup_bsd_ring;
3766 dev_priv->next_seqno = 1;
3768 return 0;
3770 cleanup_bsd_ring:
3771 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3772 cleanup_render_ring:
3773 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3774 return ret;
3777 void
3778 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3780 drm_i915_private_t *dev_priv = dev->dev_private;
3781 int i;
3783 for (i = 0; i < I915_NUM_RINGS; i++)
3784 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3788 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3789 struct drm_file *file_priv)
3791 drm_i915_private_t *dev_priv = dev->dev_private;
3792 int ret, i;
3794 if (drm_core_check_feature(dev, DRIVER_MODESET))
3795 return 0;
3797 if (atomic_read(&dev_priv->mm.wedged)) {
3798 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3799 atomic_set(&dev_priv->mm.wedged, 0);
3802 mutex_lock(&dev->struct_mutex);
3803 dev_priv->mm.suspended = 0;
3805 ret = i915_gem_init_ringbuffer(dev);
3806 if (ret != 0) {
3807 mutex_unlock(&dev->struct_mutex);
3808 return ret;
3811 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3812 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3813 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3814 for (i = 0; i < I915_NUM_RINGS; i++) {
3815 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3816 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3818 mutex_unlock(&dev->struct_mutex);
3820 ret = drm_irq_install(dev);
3821 if (ret)
3822 goto cleanup_ringbuffer;
3824 return 0;
3826 cleanup_ringbuffer:
3827 mutex_lock(&dev->struct_mutex);
3828 i915_gem_cleanup_ringbuffer(dev);
3829 dev_priv->mm.suspended = 1;
3830 mutex_unlock(&dev->struct_mutex);
3832 return ret;
3836 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3837 struct drm_file *file_priv)
3839 if (drm_core_check_feature(dev, DRIVER_MODESET))
3840 return 0;
3842 drm_irq_uninstall(dev);
3843 return i915_gem_idle(dev);
3846 void
3847 i915_gem_lastclose(struct drm_device *dev)
3849 int ret;
3851 if (drm_core_check_feature(dev, DRIVER_MODESET))
3852 return;
3854 ret = i915_gem_idle(dev);
3855 if (ret)
3856 DRM_ERROR("failed to idle hardware: %d\n", ret);
3859 static void
3860 init_ring_lists(struct intel_ring_buffer *ring)
3862 INIT_LIST_HEAD(&ring->active_list);
3863 INIT_LIST_HEAD(&ring->request_list);
3864 INIT_LIST_HEAD(&ring->gpu_write_list);
3867 void
3868 i915_gem_load(struct drm_device *dev)
3870 int i;
3871 drm_i915_private_t *dev_priv = dev->dev_private;
3873 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3874 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3875 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3876 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3877 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3878 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3879 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3880 for (i = 0; i < I915_NUM_RINGS; i++)
3881 init_ring_lists(&dev_priv->ring[i]);
3882 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3883 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3884 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3885 i915_gem_retire_work_handler);
3886 init_completion(&dev_priv->error_completion);
3888 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3889 if (IS_GEN3(dev)) {
3890 u32 tmp = I915_READ(MI_ARB_STATE);
3891 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3892 /* arb state is a masked write, so set bit + bit in mask */
3893 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3894 I915_WRITE(MI_ARB_STATE, tmp);
3898 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3900 /* Old X drivers will take 0-2 for front, back, depth buffers */
3901 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3902 dev_priv->fence_reg_start = 3;
3904 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3905 dev_priv->num_fence_regs = 16;
3906 else
3907 dev_priv->num_fence_regs = 8;
3909 /* Initialize fence registers to zero */
3910 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3911 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3914 i915_gem_detect_bit_6_swizzle(dev);
3915 init_waitqueue_head(&dev_priv->pending_flip_queue);
3917 dev_priv->mm.interruptible = true;
3919 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3920 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3921 register_shrinker(&dev_priv->mm.inactive_shrinker);
3925 * Create a physically contiguous memory object for this object
3926 * e.g. for cursor + overlay regs
3928 static int i915_gem_init_phys_object(struct drm_device *dev,
3929 int id, int size, int align)
3931 drm_i915_private_t *dev_priv = dev->dev_private;
3932 struct drm_i915_gem_phys_object *phys_obj;
3933 int ret;
3935 if (dev_priv->mm.phys_objs[id - 1] || !size)
3936 return 0;
3938 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3939 if (!phys_obj)
3940 return -ENOMEM;
3942 phys_obj->id = id;
3944 phys_obj->handle = drm_pci_alloc(dev, size, align);
3945 if (!phys_obj->handle) {
3946 ret = -ENOMEM;
3947 goto kfree_obj;
3949 #ifdef CONFIG_X86
3950 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3951 #endif
3953 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3955 return 0;
3956 kfree_obj:
3957 kfree(phys_obj);
3958 return ret;
3961 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3963 drm_i915_private_t *dev_priv = dev->dev_private;
3964 struct drm_i915_gem_phys_object *phys_obj;
3966 if (!dev_priv->mm.phys_objs[id - 1])
3967 return;
3969 phys_obj = dev_priv->mm.phys_objs[id - 1];
3970 if (phys_obj->cur_obj) {
3971 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3974 #ifdef CONFIG_X86
3975 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3976 #endif
3977 drm_pci_free(dev, phys_obj->handle);
3978 kfree(phys_obj);
3979 dev_priv->mm.phys_objs[id - 1] = NULL;
3982 void i915_gem_free_all_phys_object(struct drm_device *dev)
3984 int i;
3986 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3987 i915_gem_free_phys_object(dev, i);
3990 void i915_gem_detach_phys_object(struct drm_device *dev,
3991 struct drm_i915_gem_object *obj)
3993 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3994 char *vaddr;
3995 int i;
3996 int page_count;
3998 if (!obj->phys_obj)
3999 return;
4000 vaddr = obj->phys_obj->handle->vaddr;
4002 page_count = obj->base.size / PAGE_SIZE;
4003 for (i = 0; i < page_count; i++) {
4004 struct page *page = shmem_read_mapping_page(mapping, i);
4005 if (!IS_ERR(page)) {
4006 char *dst = kmap_atomic(page);
4007 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4008 kunmap_atomic(dst);
4010 drm_clflush_pages(&page, 1);
4012 set_page_dirty(page);
4013 mark_page_accessed(page);
4014 page_cache_release(page);
4017 intel_gtt_chipset_flush();
4019 obj->phys_obj->cur_obj = NULL;
4020 obj->phys_obj = NULL;
4024 i915_gem_attach_phys_object(struct drm_device *dev,
4025 struct drm_i915_gem_object *obj,
4026 int id,
4027 int align)
4029 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4030 drm_i915_private_t *dev_priv = dev->dev_private;
4031 int ret = 0;
4032 int page_count;
4033 int i;
4035 if (id > I915_MAX_PHYS_OBJECT)
4036 return -EINVAL;
4038 if (obj->phys_obj) {
4039 if (obj->phys_obj->id == id)
4040 return 0;
4041 i915_gem_detach_phys_object(dev, obj);
4044 /* create a new object */
4045 if (!dev_priv->mm.phys_objs[id - 1]) {
4046 ret = i915_gem_init_phys_object(dev, id,
4047 obj->base.size, align);
4048 if (ret) {
4049 DRM_ERROR("failed to init phys object %d size: %zu\n",
4050 id, obj->base.size);
4051 return ret;
4055 /* bind to the object */
4056 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4057 obj->phys_obj->cur_obj = obj;
4059 page_count = obj->base.size / PAGE_SIZE;
4061 for (i = 0; i < page_count; i++) {
4062 struct page *page;
4063 char *dst, *src;
4065 page = shmem_read_mapping_page(mapping, i);
4066 if (IS_ERR(page))
4067 return PTR_ERR(page);
4069 src = kmap_atomic(page);
4070 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4071 memcpy(dst, src, PAGE_SIZE);
4072 kunmap_atomic(src);
4074 mark_page_accessed(page);
4075 page_cache_release(page);
4078 return 0;
4081 static int
4082 i915_gem_phys_pwrite(struct drm_device *dev,
4083 struct drm_i915_gem_object *obj,
4084 struct drm_i915_gem_pwrite *args,
4085 struct drm_file *file_priv)
4087 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4088 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4090 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4091 unsigned long unwritten;
4093 /* The physical object once assigned is fixed for the lifetime
4094 * of the obj, so we can safely drop the lock and continue
4095 * to access vaddr.
4097 mutex_unlock(&dev->struct_mutex);
4098 unwritten = copy_from_user(vaddr, user_data, args->size);
4099 mutex_lock(&dev->struct_mutex);
4100 if (unwritten)
4101 return -EFAULT;
4104 intel_gtt_chipset_flush();
4105 return 0;
4108 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4110 struct drm_i915_file_private *file_priv = file->driver_priv;
4112 /* Clean up our request list when the client is going away, so that
4113 * later retire_requests won't dereference our soon-to-be-gone
4114 * file_priv.
4116 spin_lock(&file_priv->mm.lock);
4117 while (!list_empty(&file_priv->mm.request_list)) {
4118 struct drm_i915_gem_request *request;
4120 request = list_first_entry(&file_priv->mm.request_list,
4121 struct drm_i915_gem_request,
4122 client_list);
4123 list_del(&request->client_list);
4124 request->file_priv = NULL;
4126 spin_unlock(&file_priv->mm.lock);
4129 static int
4130 i915_gpu_is_active(struct drm_device *dev)
4132 drm_i915_private_t *dev_priv = dev->dev_private;
4133 int lists_empty;
4135 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4136 list_empty(&dev_priv->mm.active_list);
4138 return !lists_empty;
4141 static int
4142 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4144 struct drm_i915_private *dev_priv =
4145 container_of(shrinker,
4146 struct drm_i915_private,
4147 mm.inactive_shrinker);
4148 struct drm_device *dev = dev_priv->dev;
4149 struct drm_i915_gem_object *obj, *next;
4150 int nr_to_scan = sc->nr_to_scan;
4151 int cnt;
4153 if (!mutex_trylock(&dev->struct_mutex))
4154 return 0;
4156 /* "fast-path" to count number of available objects */
4157 if (nr_to_scan == 0) {
4158 cnt = 0;
4159 list_for_each_entry(obj,
4160 &dev_priv->mm.inactive_list,
4161 mm_list)
4162 cnt++;
4163 mutex_unlock(&dev->struct_mutex);
4164 return cnt / 100 * sysctl_vfs_cache_pressure;
4167 rescan:
4168 /* first scan for clean buffers */
4169 i915_gem_retire_requests(dev);
4171 list_for_each_entry_safe(obj, next,
4172 &dev_priv->mm.inactive_list,
4173 mm_list) {
4174 if (i915_gem_object_is_purgeable(obj)) {
4175 if (i915_gem_object_unbind(obj) == 0 &&
4176 --nr_to_scan == 0)
4177 break;
4181 /* second pass, evict/count anything still on the inactive list */
4182 cnt = 0;
4183 list_for_each_entry_safe(obj, next,
4184 &dev_priv->mm.inactive_list,
4185 mm_list) {
4186 if (nr_to_scan &&
4187 i915_gem_object_unbind(obj) == 0)
4188 nr_to_scan--;
4189 else
4190 cnt++;
4193 if (nr_to_scan && i915_gpu_is_active(dev)) {
4195 * We are desperate for pages, so as a last resort, wait
4196 * for the GPU to finish and discard whatever we can.
4197 * This has a dramatic impact to reduce the number of
4198 * OOM-killer events whilst running the GPU aggressively.
4200 if (i915_gpu_idle(dev) == 0)
4201 goto rescan;
4203 mutex_unlock(&dev->struct_mutex);
4204 return cnt / 100 * sysctl_vfs_cache_pressure;