4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_CGROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 struct cgroup_subsys_state css
;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity
**se
;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq
**cfs_rq
;
253 unsigned long shares
;
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity
**rt_se
;
258 struct rt_rq
**rt_rq
;
260 struct rt_bandwidth rt_bandwidth
;
264 struct list_head list
;
266 struct task_group
*parent
;
267 struct list_head siblings
;
268 struct list_head children
;
271 #define root_task_group init_task_group
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
276 static DEFINE_SPINLOCK(task_group_lock
);
278 #ifdef CONFIG_FAIR_GROUP_SCHED
281 static int root_task_group_empty(void)
283 return list_empty(&root_task_group
.children
);
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
298 #define MAX_SHARES (1UL << 18)
300 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
306 struct task_group init_task_group
;
308 /* return group to which a task belongs */
309 static inline struct task_group
*task_group(struct task_struct
*p
)
311 struct task_group
*tg
;
313 #ifdef CONFIG_CGROUP_SCHED
314 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
315 struct task_group
, css
);
317 tg
= &init_task_group
;
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
327 p
->se
.parent
= task_group(p
)->se
[cpu
];
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
332 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
338 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
339 static inline struct task_group
*task_group(struct task_struct
*p
)
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
348 struct load_weight load
;
349 unsigned long nr_running
;
354 struct rb_root tasks_timeline
;
355 struct rb_node
*rb_leftmost
;
357 struct list_head tasks
;
358 struct list_head
*balance_iterator
;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity
*curr
, *next
, *last
;
366 unsigned int nr_spread_over
;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
379 struct list_head leaf_cfs_rq_list
;
380 struct task_group
*tg
; /* group that "owns" this runqueue */
384 * the part of load.weight contributed by tasks
386 unsigned long task_weight
;
389 * h_load = weight * f(tg)
391 * Where f(tg) is the recursive weight fraction assigned to
394 unsigned long h_load
;
397 * this cpu's part of tg->shares
399 unsigned long shares
;
402 * load.weight at the time we set shares
404 unsigned long rq_weight
;
409 /* Real-Time classes' related field in a runqueue: */
411 struct rt_prio_array active
;
412 unsigned long rt_nr_running
;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 int curr
; /* highest queued rt task prio */
417 int next
; /* next highest */
422 unsigned long rt_nr_migratory
;
423 unsigned long rt_nr_total
;
425 struct plist_head pushable_tasks
;
430 /* Nests inside the rq lock: */
431 spinlock_t rt_runtime_lock
;
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted
;
437 struct list_head leaf_rt_rq_list
;
438 struct task_group
*tg
;
439 struct sched_rt_entity
*rt_se
;
446 * We add the notion of a root-domain which will be used to define per-domain
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
449 * exclusive cpuset is created, we also create and attach a new root-domain
456 cpumask_var_t online
;
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
462 cpumask_var_t rto_mask
;
465 struct cpupri cpupri
;
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
473 static struct root_domain def_root_domain
;
478 * This is the main, per-CPU runqueue data structure.
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
492 unsigned long nr_running
;
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
496 unsigned long last_tick_seen
;
497 unsigned char in_nohz_recently
;
499 /* capture load from *all* tasks on this cpu: */
500 struct load_weight load
;
501 unsigned long nr_load_updates
;
507 #ifdef CONFIG_FAIR_GROUP_SCHED
508 /* list of leaf cfs_rq on this cpu: */
509 struct list_head leaf_cfs_rq_list
;
511 #ifdef CONFIG_RT_GROUP_SCHED
512 struct list_head leaf_rt_rq_list
;
516 * This is part of a global counter where only the total sum
517 * over all CPUs matters. A task can increase this counter on
518 * one CPU and if it got migrated afterwards it may decrease
519 * it on another CPU. Always updated under the runqueue lock:
521 unsigned long nr_uninterruptible
;
523 struct task_struct
*curr
, *idle
;
524 unsigned long next_balance
;
525 struct mm_struct
*prev_mm
;
533 struct root_domain
*rd
;
534 struct sched_domain
*sd
;
536 unsigned long cpu_power
;
538 unsigned char idle_at_tick
;
539 /* For active balancing */
543 /* cpu of this runqueue: */
547 unsigned long avg_load_per_task
;
549 struct task_struct
*migration_thread
;
550 struct list_head migration_queue
;
558 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
562 /* calc_load related fields */
563 unsigned long calc_load_update
;
564 long calc_load_active
;
566 #ifdef CONFIG_SCHED_HRTICK
568 int hrtick_csd_pending
;
569 struct call_single_data hrtick_csd
;
571 struct hrtimer hrtick_timer
;
574 #ifdef CONFIG_SCHEDSTATS
576 struct sched_info rq_sched_info
;
577 unsigned long long rq_cpu_time
;
578 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
580 /* sys_sched_yield() stats */
581 unsigned int yld_count
;
583 /* schedule() stats */
584 unsigned int sched_switch
;
585 unsigned int sched_count
;
586 unsigned int sched_goidle
;
588 /* try_to_wake_up() stats */
589 unsigned int ttwu_count
;
590 unsigned int ttwu_local
;
593 unsigned int bkl_count
;
597 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
599 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
601 static inline int cpu_of(struct rq
*rq
)
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details.
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626 static u64
irq_time_cpu(int cpu
);
627 static void sched_irq_time_avg_update(struct rq
*rq
, u64 irq_time
);
629 inline void update_rq_clock(struct rq
*rq
)
631 int cpu
= cpu_of(rq
);
634 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
635 irq_time
= irq_time_cpu(cpu
);
636 if (rq
->clock
- irq_time
> rq
->clock_task
)
637 rq
->clock_task
= rq
->clock
- irq_time
;
639 sched_irq_time_avg_update(rq
, irq_time
);
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
648 # define const_debug static const
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu
)
661 return spin_is_locked(&cpu_rq(cpu
)->lock
);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
672 #include "sched_features.h"
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug
unsigned int sysctl_sched_features
=
681 #include "sched_features.h"
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
690 static __read_mostly
char *sched_feat_names
[] = {
691 #include "sched_features.h"
697 static int sched_feat_show(struct seq_file
*m
, void *v
)
701 for (i
= 0; sched_feat_names
[i
]; i
++) {
702 if (!(sysctl_sched_features
& (1UL << i
)))
704 seq_printf(m
, "%s ", sched_feat_names
[i
]);
712 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
713 size_t cnt
, loff_t
*ppos
)
723 if (copy_from_user(&buf
, ubuf
, cnt
))
729 if (strncmp(buf
, "NO_", 3) == 0) {
734 for (i
= 0; sched_feat_names
[i
]; i
++) {
735 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
737 sysctl_sched_features
&= ~(1UL << i
);
739 sysctl_sched_features
|= (1UL << i
);
744 if (!sched_feat_names
[i
])
752 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
754 return single_open(filp
, sched_feat_show
, NULL
);
757 static const struct file_operations sched_feat_fops
= {
758 .open
= sched_feat_open
,
759 .write
= sched_feat_write
,
762 .release
= single_release
,
765 static __init
int sched_init_debug(void)
767 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
772 late_initcall(sched_init_debug
);
776 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
779 * Number of tasks to iterate in a single balance run.
780 * Limited because this is done with IRQs disabled.
782 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
785 * ratelimit for updating the group shares.
788 unsigned int sysctl_sched_shares_ratelimit
= 250000;
789 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
792 * Inject some fuzzyness into changing the per-cpu group shares
793 * this avoids remote rq-locks at the expense of fairness.
796 unsigned int sysctl_sched_shares_thresh
= 4;
799 * period over which we average the RT time consumption, measured
804 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
807 * period over which we measure -rt task cpu usage in us.
810 unsigned int sysctl_sched_rt_period
= 1000000;
812 static __read_mostly
int scheduler_running
;
815 * part of the period that we allow rt tasks to run in us.
818 int sysctl_sched_rt_runtime
= 950000;
820 static inline u64
global_rt_period(void)
822 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
825 static inline u64
global_rt_runtime(void)
827 if (sysctl_sched_rt_runtime
< 0)
830 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
833 #ifndef prepare_arch_switch
834 # define prepare_arch_switch(next) do { } while (0)
836 #ifndef finish_arch_switch
837 # define finish_arch_switch(prev) do { } while (0)
840 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
842 return rq
->curr
== p
;
845 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
846 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
848 return task_current(rq
, p
);
851 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
855 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
857 #ifdef CONFIG_DEBUG_SPINLOCK
858 /* this is a valid case when another task releases the spinlock */
859 rq
->lock
.owner
= current
;
862 * If we are tracking spinlock dependencies then we have to
863 * fix up the runqueue lock - which gets 'carried over' from
866 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
868 spin_unlock_irq(&rq
->lock
);
871 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
872 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
877 return task_current(rq
, p
);
881 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
885 * We can optimise this out completely for !SMP, because the
886 * SMP rebalancing from interrupt is the only thing that cares
891 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
892 spin_unlock_irq(&rq
->lock
);
894 spin_unlock(&rq
->lock
);
898 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
902 * After ->oncpu is cleared, the task can be moved to a different CPU.
903 * We must ensure this doesn't happen until the switch is completely
909 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
916 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
919 static inline int task_is_waking(struct task_struct
*p
)
921 return unlikely(p
->state
== TASK_WAKING
);
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
928 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
935 spin_lock(&rq
->lock
);
936 if (likely(rq
== task_rq(p
)))
938 spin_unlock(&rq
->lock
);
943 * task_rq_lock - lock the runqueue a given task resides on and disable
944 * interrupts. Note the ordering: we can safely lookup the task_rq without
945 * explicitly disabling preemption.
947 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
953 local_irq_save(*flags
);
955 spin_lock(&rq
->lock
);
956 if (likely(rq
== task_rq(p
)))
958 spin_unlock_irqrestore(&rq
->lock
, *flags
);
962 void task_rq_unlock_wait(struct task_struct
*p
)
964 struct rq
*rq
= task_rq(p
);
966 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
967 spin_unlock_wait(&rq
->lock
);
970 static void __task_rq_unlock(struct rq
*rq
)
973 spin_unlock(&rq
->lock
);
976 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
979 spin_unlock_irqrestore(&rq
->lock
, *flags
);
983 * this_rq_lock - lock this runqueue and disable interrupts.
985 static struct rq
*this_rq_lock(void)
992 spin_lock(&rq
->lock
);
997 #ifdef CONFIG_SCHED_HRTICK
999 * Use HR-timers to deliver accurate preemption points.
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * - enabled by features
1012 * - hrtimer is actually high res
1014 static inline int hrtick_enabled(struct rq
*rq
)
1016 if (!sched_feat(HRTICK
))
1018 if (!cpu_active(cpu_of(rq
)))
1020 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1023 static void hrtick_clear(struct rq
*rq
)
1025 if (hrtimer_active(&rq
->hrtick_timer
))
1026 hrtimer_cancel(&rq
->hrtick_timer
);
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1033 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1035 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1037 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1039 spin_lock(&rq
->lock
);
1040 update_rq_clock(rq
);
1041 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1042 spin_unlock(&rq
->lock
);
1044 return HRTIMER_NORESTART
;
1049 * called from hardirq (IPI) context
1051 static void __hrtick_start(void *arg
)
1053 struct rq
*rq
= arg
;
1055 spin_lock(&rq
->lock
);
1056 hrtimer_restart(&rq
->hrtick_timer
);
1057 rq
->hrtick_csd_pending
= 0;
1058 spin_unlock(&rq
->lock
);
1062 * Called to set the hrtick timer state.
1064 * called with rq->lock held and irqs disabled
1066 static void hrtick_start(struct rq
*rq
, u64 delay
)
1068 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1069 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1071 hrtimer_set_expires(timer
, time
);
1073 if (rq
== this_rq()) {
1074 hrtimer_restart(timer
);
1075 } else if (!rq
->hrtick_csd_pending
) {
1076 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1077 rq
->hrtick_csd_pending
= 1;
1082 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1084 int cpu
= (int)(long)hcpu
;
1087 case CPU_UP_CANCELED
:
1088 case CPU_UP_CANCELED_FROZEN
:
1089 case CPU_DOWN_PREPARE
:
1090 case CPU_DOWN_PREPARE_FROZEN
:
1092 case CPU_DEAD_FROZEN
:
1093 hrtick_clear(cpu_rq(cpu
));
1100 static __init
void init_hrtick(void)
1102 hotcpu_notifier(hotplug_hrtick
, 0);
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq
*rq
, u64 delay
)
1112 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1113 HRTIMER_MODE_REL_PINNED
, 0);
1116 static inline void init_hrtick(void)
1119 #endif /* CONFIG_SMP */
1121 static void init_rq_hrtick(struct rq
*rq
)
1124 rq
->hrtick_csd_pending
= 0;
1126 rq
->hrtick_csd
.flags
= 0;
1127 rq
->hrtick_csd
.func
= __hrtick_start
;
1128 rq
->hrtick_csd
.info
= rq
;
1131 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1132 rq
->hrtick_timer
.function
= hrtick
;
1134 #else /* CONFIG_SCHED_HRTICK */
1135 static inline void hrtick_clear(struct rq
*rq
)
1139 static inline void init_rq_hrtick(struct rq
*rq
)
1143 static inline void init_hrtick(void)
1146 #endif /* CONFIG_SCHED_HRTICK */
1149 * resched_task - mark a task 'to be rescheduled now'.
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1157 #ifndef tsk_is_polling
1158 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 static void resched_task(struct task_struct
*p
)
1165 assert_spin_locked(&task_rq(p
)->lock
);
1167 if (test_tsk_need_resched(p
))
1170 set_tsk_need_resched(p
);
1173 if (cpu
== smp_processor_id())
1176 /* NEED_RESCHED must be visible before we test polling */
1178 if (!tsk_is_polling(p
))
1179 smp_send_reschedule(cpu
);
1182 static void resched_cpu(int cpu
)
1184 struct rq
*rq
= cpu_rq(cpu
);
1185 unsigned long flags
;
1187 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1189 resched_task(cpu_curr(cpu
));
1190 spin_unlock_irqrestore(&rq
->lock
, flags
);
1195 * When add_timer_on() enqueues a timer into the timer wheel of an
1196 * idle CPU then this timer might expire before the next timer event
1197 * which is scheduled to wake up that CPU. In case of a completely
1198 * idle system the next event might even be infinite time into the
1199 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1200 * leaves the inner idle loop so the newly added timer is taken into
1201 * account when the CPU goes back to idle and evaluates the timer
1202 * wheel for the next timer event.
1204 void wake_up_idle_cpu(int cpu
)
1206 struct rq
*rq
= cpu_rq(cpu
);
1208 if (cpu
== smp_processor_id())
1212 * This is safe, as this function is called with the timer
1213 * wheel base lock of (cpu) held. When the CPU is on the way
1214 * to idle and has not yet set rq->curr to idle then it will
1215 * be serialized on the timer wheel base lock and take the new
1216 * timer into account automatically.
1218 if (rq
->curr
!= rq
->idle
)
1222 * We can set TIF_RESCHED on the idle task of the other CPU
1223 * lockless. The worst case is that the other CPU runs the
1224 * idle task through an additional NOOP schedule()
1226 set_tsk_need_resched(rq
->idle
);
1228 /* NEED_RESCHED must be visible before we test polling */
1230 if (!tsk_is_polling(rq
->idle
))
1231 smp_send_reschedule(cpu
);
1233 #endif /* CONFIG_NO_HZ */
1235 static u64
sched_avg_period(void)
1237 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1240 static void sched_avg_update(struct rq
*rq
)
1242 s64 period
= sched_avg_period();
1244 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1246 * Inline assembly required to prevent the compiler
1247 * optimising this loop into a divmod call.
1248 * See __iter_div_u64_rem() for another example of this.
1250 asm("" : "+rm" (rq
->age_stamp
));
1251 rq
->age_stamp
+= period
;
1256 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1258 rq
->rt_avg
+= rt_delta
;
1259 sched_avg_update(rq
);
1262 #else /* !CONFIG_SMP */
1263 static void resched_task(struct task_struct
*p
)
1265 assert_spin_locked(&task_rq(p
)->lock
);
1266 set_tsk_need_resched(p
);
1269 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1273 static void sched_avg_update(struct rq
*rq
)
1276 #endif /* CONFIG_SMP */
1278 #if BITS_PER_LONG == 32
1279 # define WMULT_CONST (~0UL)
1281 # define WMULT_CONST (1UL << 32)
1284 #define WMULT_SHIFT 32
1287 * Shift right and round:
1289 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1292 * delta *= weight / lw
1294 static unsigned long
1295 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1296 struct load_weight
*lw
)
1300 if (!lw
->inv_weight
) {
1301 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1304 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1308 tmp
= (u64
)delta_exec
* weight
;
1310 * Check whether we'd overflow the 64-bit multiplication:
1312 if (unlikely(tmp
> WMULT_CONST
))
1313 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1316 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1318 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1321 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1327 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1334 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1335 * of tasks with abnormal "nice" values across CPUs the contribution that
1336 * each task makes to its run queue's load is weighted according to its
1337 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1338 * scaled version of the new time slice allocation that they receive on time
1342 #define WEIGHT_IDLEPRIO 3
1343 #define WMULT_IDLEPRIO 1431655765
1346 * Nice levels are multiplicative, with a gentle 10% change for every
1347 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1348 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1349 * that remained on nice 0.
1351 * The "10% effect" is relative and cumulative: from _any_ nice level,
1352 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1353 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1354 * If a task goes up by ~10% and another task goes down by ~10% then
1355 * the relative distance between them is ~25%.)
1357 static const int prio_to_weight
[40] = {
1358 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1359 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1360 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1361 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1362 /* 0 */ 1024, 820, 655, 526, 423,
1363 /* 5 */ 335, 272, 215, 172, 137,
1364 /* 10 */ 110, 87, 70, 56, 45,
1365 /* 15 */ 36, 29, 23, 18, 15,
1369 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 * In cases where the weight does not change often, we can use the
1372 * precalculated inverse to speed up arithmetics by turning divisions
1373 * into multiplications:
1375 static const u32 prio_to_wmult
[40] = {
1376 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1377 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1378 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1379 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1380 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1381 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1382 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1383 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1386 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1389 * runqueue iterator, to support SMP load-balancing between different
1390 * scheduling classes, without having to expose their internal data
1391 * structures to the load-balancing proper:
1393 struct rq_iterator
{
1395 struct task_struct
*(*start
)(void *);
1396 struct task_struct
*(*next
)(void *);
1400 static unsigned long
1401 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1402 unsigned long max_load_move
, struct sched_domain
*sd
,
1403 enum cpu_idle_type idle
, int *all_pinned
,
1404 int *this_best_prio
, struct rq_iterator
*iterator
);
1407 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1408 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1409 struct rq_iterator
*iterator
);
1412 /* Time spent by the tasks of the cpu accounting group executing in ... */
1413 enum cpuacct_stat_index
{
1414 CPUACCT_STAT_USER
, /* ... user mode */
1415 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1417 CPUACCT_STAT_NSTATS
,
1420 #ifdef CONFIG_CGROUP_CPUACCT
1421 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1422 static void cpuacct_update_stats(struct task_struct
*tsk
,
1423 enum cpuacct_stat_index idx
, cputime_t val
);
1425 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1426 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1427 enum cpuacct_stat_index idx
, cputime_t val
) {}
1430 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1432 update_load_add(&rq
->load
, load
);
1435 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1437 update_load_sub(&rq
->load
, load
);
1440 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1441 typedef int (*tg_visitor
)(struct task_group
*, void *);
1444 * Iterate the full tree, calling @down when first entering a node and @up when
1445 * leaving it for the final time.
1447 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1449 struct task_group
*parent
, *child
;
1453 parent
= &root_task_group
;
1455 ret
= (*down
)(parent
, data
);
1458 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1465 ret
= (*up
)(parent
, data
);
1470 parent
= parent
->parent
;
1479 static int tg_nop(struct task_group
*tg
, void *data
)
1486 /* Used instead of source_load when we know the type == 0 */
1487 static unsigned long weighted_cpuload(const int cpu
)
1489 return cpu_rq(cpu
)->load
.weight
;
1493 * Return a low guess at the load of a migration-source cpu weighted
1494 * according to the scheduling class and "nice" value.
1496 * We want to under-estimate the load of migration sources, to
1497 * balance conservatively.
1499 static unsigned long source_load(int cpu
, int type
)
1501 struct rq
*rq
= cpu_rq(cpu
);
1502 unsigned long total
= weighted_cpuload(cpu
);
1504 if (type
== 0 || !sched_feat(LB_BIAS
))
1507 return min(rq
->cpu_load
[type
-1], total
);
1511 * Return a high guess at the load of a migration-target cpu weighted
1512 * according to the scheduling class and "nice" value.
1514 static unsigned long target_load(int cpu
, int type
)
1516 struct rq
*rq
= cpu_rq(cpu
);
1517 unsigned long total
= weighted_cpuload(cpu
);
1519 if (type
== 0 || !sched_feat(LB_BIAS
))
1522 return max(rq
->cpu_load
[type
-1], total
);
1525 static unsigned long power_of(int cpu
)
1527 return cpu_rq(cpu
)->cpu_power
;
1530 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1532 static unsigned long cpu_avg_load_per_task(int cpu
)
1534 struct rq
*rq
= cpu_rq(cpu
);
1535 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1538 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1540 rq
->avg_load_per_task
= 0;
1542 return rq
->avg_load_per_task
;
1545 #ifdef CONFIG_FAIR_GROUP_SCHED
1547 static __read_mostly
unsigned long *update_shares_data
;
1549 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1552 * Calculate and set the cpu's group shares.
1554 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1555 unsigned long sd_shares
,
1556 unsigned long sd_rq_weight
,
1557 unsigned long *usd_rq_weight
)
1559 unsigned long shares
, rq_weight
;
1562 rq_weight
= usd_rq_weight
[cpu
];
1565 rq_weight
= NICE_0_LOAD
;
1569 * \Sum_j shares_j * rq_weight_i
1570 * shares_i = -----------------------------
1571 * \Sum_j rq_weight_j
1573 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1574 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1576 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1577 sysctl_sched_shares_thresh
) {
1578 struct rq
*rq
= cpu_rq(cpu
);
1579 unsigned long flags
;
1581 spin_lock_irqsave(&rq
->lock
, flags
);
1582 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1583 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1584 __set_se_shares(tg
->se
[cpu
], shares
);
1585 spin_unlock_irqrestore(&rq
->lock
, flags
);
1590 * Re-compute the task group their per cpu shares over the given domain.
1591 * This needs to be done in a bottom-up fashion because the rq weight of a
1592 * parent group depends on the shares of its child groups.
1594 static int tg_shares_up(struct task_group
*tg
, void *data
)
1596 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1597 unsigned long *usd_rq_weight
;
1598 struct sched_domain
*sd
= data
;
1599 unsigned long flags
;
1605 local_irq_save(flags
);
1606 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1608 for_each_cpu(i
, sched_domain_span(sd
)) {
1609 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1610 usd_rq_weight
[i
] = weight
;
1612 rq_weight
+= weight
;
1614 * If there are currently no tasks on the cpu pretend there
1615 * is one of average load so that when a new task gets to
1616 * run here it will not get delayed by group starvation.
1619 weight
= NICE_0_LOAD
;
1621 sum_weight
+= weight
;
1622 shares
+= tg
->cfs_rq
[i
]->shares
;
1626 rq_weight
= sum_weight
;
1628 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1629 shares
= tg
->shares
;
1631 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1632 shares
= tg
->shares
;
1634 for_each_cpu(i
, sched_domain_span(sd
))
1635 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1637 local_irq_restore(flags
);
1643 * Compute the cpu's hierarchical load factor for each task group.
1644 * This needs to be done in a top-down fashion because the load of a child
1645 * group is a fraction of its parents load.
1647 static int tg_load_down(struct task_group
*tg
, void *data
)
1650 long cpu
= (long)data
;
1653 load
= cpu_rq(cpu
)->load
.weight
;
1655 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1656 load
*= tg
->cfs_rq
[cpu
]->shares
;
1657 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1660 tg
->cfs_rq
[cpu
]->h_load
= load
;
1665 static void update_shares(struct sched_domain
*sd
)
1670 if (root_task_group_empty())
1673 now
= cpu_clock(raw_smp_processor_id());
1674 elapsed
= now
- sd
->last_update
;
1676 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1677 sd
->last_update
= now
;
1678 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1682 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1684 if (root_task_group_empty())
1687 spin_unlock(&rq
->lock
);
1689 spin_lock(&rq
->lock
);
1692 static void update_h_load(long cpu
)
1694 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1699 static inline void update_shares(struct sched_domain
*sd
)
1703 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1709 #ifdef CONFIG_PREEMPT
1711 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1714 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1715 * way at the expense of forcing extra atomic operations in all
1716 * invocations. This assures that the double_lock is acquired using the
1717 * same underlying policy as the spinlock_t on this architecture, which
1718 * reduces latency compared to the unfair variant below. However, it
1719 * also adds more overhead and therefore may reduce throughput.
1721 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1722 __releases(this_rq
->lock
)
1723 __acquires(busiest
->lock
)
1724 __acquires(this_rq
->lock
)
1726 spin_unlock(&this_rq
->lock
);
1727 double_rq_lock(this_rq
, busiest
);
1734 * Unfair double_lock_balance: Optimizes throughput at the expense of
1735 * latency by eliminating extra atomic operations when the locks are
1736 * already in proper order on entry. This favors lower cpu-ids and will
1737 * grant the double lock to lower cpus over higher ids under contention,
1738 * regardless of entry order into the function.
1740 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1741 __releases(this_rq
->lock
)
1742 __acquires(busiest
->lock
)
1743 __acquires(this_rq
->lock
)
1747 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1748 if (busiest
< this_rq
) {
1749 spin_unlock(&this_rq
->lock
);
1750 spin_lock(&busiest
->lock
);
1751 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1754 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1759 #endif /* CONFIG_PREEMPT */
1762 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1764 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1766 if (unlikely(!irqs_disabled())) {
1767 /* printk() doesn't work good under rq->lock */
1768 spin_unlock(&this_rq
->lock
);
1772 return _double_lock_balance(this_rq
, busiest
);
1775 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1776 __releases(busiest
->lock
)
1778 spin_unlock(&busiest
->lock
);
1779 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1783 #ifdef CONFIG_FAIR_GROUP_SCHED
1784 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1787 cfs_rq
->shares
= shares
;
1792 static void calc_load_account_active(struct rq
*this_rq
);
1793 static void update_sysctl(void);
1795 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1797 set_task_rq(p
, cpu
);
1800 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1801 * successfuly executed on another CPU. We must ensure that updates of
1802 * per-task data have been completed by this moment.
1805 task_thread_info(p
)->cpu
= cpu
;
1809 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1812 * There are no locks covering percpu hardirq/softirq time.
1813 * They are only modified in account_system_vtime, on corresponding CPU
1814 * with interrupts disabled. So, writes are safe.
1815 * They are read and saved off onto struct rq in update_rq_clock().
1816 * This may result in other CPU reading this CPU's irq time and can
1817 * race with irq/account_system_vtime on this CPU. We would either get old
1818 * or new value (or semi updated value on 32 bit) with a side effect of
1819 * accounting a slice of irq time to wrong task when irq is in progress
1820 * while we read rq->clock. That is a worthy compromise in place of having
1821 * locks on each irq in account_system_time.
1823 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1824 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1826 static DEFINE_PER_CPU(u64
, irq_start_time
);
1827 static int sched_clock_irqtime
;
1829 void enable_sched_clock_irqtime(void)
1831 sched_clock_irqtime
= 1;
1834 void disable_sched_clock_irqtime(void)
1836 sched_clock_irqtime
= 0;
1839 static u64
irq_time_cpu(int cpu
)
1841 if (!sched_clock_irqtime
)
1844 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1847 void account_system_vtime(struct task_struct
*curr
)
1849 unsigned long flags
;
1853 if (!sched_clock_irqtime
)
1856 local_irq_save(flags
);
1858 cpu
= smp_processor_id();
1859 now
= sched_clock_cpu(cpu
);
1860 delta
= now
- per_cpu(irq_start_time
, cpu
);
1861 per_cpu(irq_start_time
, cpu
) = now
;
1863 * We do not account for softirq time from ksoftirqd here.
1864 * We want to continue accounting softirq time to ksoftirqd thread
1865 * in that case, so as not to confuse scheduler with a special task
1866 * that do not consume any time, but still wants to run.
1868 if (hardirq_count())
1869 per_cpu(cpu_hardirq_time
, cpu
) += delta
;
1870 else if (in_serving_softirq() && !(curr
->flags
& PF_KSOFTIRQD
))
1871 per_cpu(cpu_softirq_time
, cpu
) += delta
;
1873 local_irq_restore(flags
);
1875 EXPORT_SYMBOL_GPL(account_system_vtime
);
1877 static void sched_irq_time_avg_update(struct rq
*rq
, u64 curr_irq_time
)
1879 if (sched_clock_irqtime
&& sched_feat(NONIRQ_POWER
)) {
1880 u64 delta_irq
= curr_irq_time
- rq
->prev_irq_time
;
1881 rq
->prev_irq_time
= curr_irq_time
;
1882 sched_rt_avg_update(rq
, delta_irq
);
1888 static u64
irq_time_cpu(int cpu
)
1893 static void sched_irq_time_avg_update(struct rq
*rq
, u64 curr_irq_time
) { }
1897 #include "sched_stats.h"
1898 #include "sched_idletask.c"
1899 #include "sched_fair.c"
1900 #include "sched_rt.c"
1901 #ifdef CONFIG_SCHED_DEBUG
1902 # include "sched_debug.c"
1905 #define sched_class_highest (&rt_sched_class)
1906 #define for_each_class(class) \
1907 for (class = sched_class_highest; class; class = class->next)
1909 static void inc_nr_running(struct rq
*rq
)
1914 static void dec_nr_running(struct rq
*rq
)
1919 static void set_load_weight(struct task_struct
*p
)
1921 if (task_has_rt_policy(p
)) {
1922 p
->se
.load
.weight
= 0;
1923 p
->se
.load
.inv_weight
= WMULT_CONST
;
1928 * SCHED_IDLE tasks get minimal weight:
1930 if (p
->policy
== SCHED_IDLE
) {
1931 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1932 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1936 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1937 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1940 static void update_avg(u64
*avg
, u64 sample
)
1942 s64 diff
= sample
- *avg
;
1947 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, bool head
)
1950 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1952 sched_info_queued(p
);
1953 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, head
);
1957 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1960 if (p
->se
.last_wakeup
) {
1961 update_avg(&p
->se
.avg_overlap
,
1962 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1963 p
->se
.last_wakeup
= 0;
1965 update_avg(&p
->se
.avg_wakeup
,
1966 sysctl_sched_wakeup_granularity
);
1970 sched_info_dequeued(p
);
1971 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1976 * __normal_prio - return the priority that is based on the static prio
1978 static inline int __normal_prio(struct task_struct
*p
)
1980 return p
->static_prio
;
1984 * Calculate the expected normal priority: i.e. priority
1985 * without taking RT-inheritance into account. Might be
1986 * boosted by interactivity modifiers. Changes upon fork,
1987 * setprio syscalls, and whenever the interactivity
1988 * estimator recalculates.
1990 static inline int normal_prio(struct task_struct
*p
)
1994 if (task_has_rt_policy(p
))
1995 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1997 prio
= __normal_prio(p
);
2002 * Calculate the current priority, i.e. the priority
2003 * taken into account by the scheduler. This value might
2004 * be boosted by RT tasks, or might be boosted by
2005 * interactivity modifiers. Will be RT if the task got
2006 * RT-boosted. If not then it returns p->normal_prio.
2008 static int effective_prio(struct task_struct
*p
)
2010 p
->normal_prio
= normal_prio(p
);
2012 * If we are RT tasks or we were boosted to RT priority,
2013 * keep the priority unchanged. Otherwise, update priority
2014 * to the normal priority:
2016 if (!rt_prio(p
->prio
))
2017 return p
->normal_prio
;
2022 * activate_task - move a task to the runqueue.
2024 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
2026 if (task_contributes_to_load(p
))
2027 rq
->nr_uninterruptible
--;
2029 enqueue_task(rq
, p
, wakeup
, false);
2034 * deactivate_task - remove a task from the runqueue.
2036 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
2038 if (task_contributes_to_load(p
))
2039 rq
->nr_uninterruptible
++;
2041 dequeue_task(rq
, p
, sleep
);
2046 * task_curr - is this task currently executing on a CPU?
2047 * @p: the task in question.
2049 inline int task_curr(const struct task_struct
*p
)
2051 return cpu_curr(task_cpu(p
)) == p
;
2054 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2055 const struct sched_class
*prev_class
,
2056 int oldprio
, int running
)
2058 if (prev_class
!= p
->sched_class
) {
2059 if (prev_class
->switched_from
)
2060 prev_class
->switched_from(rq
, p
, running
);
2061 p
->sched_class
->switched_to(rq
, p
, running
);
2063 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2067 * kthread_bind - bind a just-created kthread to a cpu.
2068 * @p: thread created by kthread_create().
2069 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2071 * Description: This function is equivalent to set_cpus_allowed(),
2072 * except that @cpu doesn't need to be online, and the thread must be
2073 * stopped (i.e., just returned from kthread_create()).
2075 * Function lives here instead of kthread.c because it messes with
2076 * scheduler internals which require locking.
2078 void kthread_bind(struct task_struct
*p
, unsigned int cpu
)
2080 /* Must have done schedule() in kthread() before we set_task_cpu */
2081 if (!wait_task_inactive(p
, TASK_UNINTERRUPTIBLE
)) {
2086 p
->cpus_allowed
= cpumask_of_cpu(cpu
);
2087 p
->rt
.nr_cpus_allowed
= 1;
2088 p
->flags
|= PF_THREAD_BOUND
;
2090 EXPORT_SYMBOL(kthread_bind
);
2094 * Is this task likely cache-hot:
2097 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2101 if (p
->sched_class
!= &fair_sched_class
)
2104 if (unlikely(p
->policy
== SCHED_IDLE
))
2108 * Buddy candidates are cache hot:
2110 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2111 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2112 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2115 if (sysctl_sched_migration_cost
== -1)
2117 if (sysctl_sched_migration_cost
== 0)
2120 delta
= now
- p
->se
.exec_start
;
2122 return delta
< (s64
)sysctl_sched_migration_cost
;
2126 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2128 int old_cpu
= task_cpu(p
);
2130 #ifdef CONFIG_SCHED_DEBUG
2132 * We should never call set_task_cpu() on a blocked task,
2133 * ttwu() will sort out the placement.
2135 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2136 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2139 trace_sched_migrate_task(p
, new_cpu
);
2141 if (old_cpu
!= new_cpu
) {
2142 p
->se
.nr_migrations
++;
2143 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
,
2147 __set_task_cpu(p
, new_cpu
);
2150 struct migration_req
{
2151 struct list_head list
;
2153 struct task_struct
*task
;
2156 struct completion done
;
2160 * The task's runqueue lock must be held.
2161 * Returns true if you have to wait for migration thread.
2164 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2166 struct rq
*rq
= task_rq(p
);
2169 * If the task is not on a runqueue (and not running), then
2170 * the next wake-up will properly place the task.
2172 if (!p
->se
.on_rq
&& !task_running(rq
, p
))
2175 init_completion(&req
->done
);
2177 req
->dest_cpu
= dest_cpu
;
2178 list_add(&req
->list
, &rq
->migration_queue
);
2184 * wait_task_context_switch - wait for a thread to complete at least one
2187 * @p must not be current.
2189 void wait_task_context_switch(struct task_struct
*p
)
2191 unsigned long nvcsw
, nivcsw
, flags
;
2199 * The runqueue is assigned before the actual context
2200 * switch. We need to take the runqueue lock.
2202 * We could check initially without the lock but it is
2203 * very likely that we need to take the lock in every
2206 rq
= task_rq_lock(p
, &flags
);
2207 running
= task_running(rq
, p
);
2208 task_rq_unlock(rq
, &flags
);
2210 if (likely(!running
))
2213 * The switch count is incremented before the actual
2214 * context switch. We thus wait for two switches to be
2215 * sure at least one completed.
2217 if ((p
->nvcsw
- nvcsw
) > 1)
2219 if ((p
->nivcsw
- nivcsw
) > 1)
2227 * wait_task_inactive - wait for a thread to unschedule.
2229 * If @match_state is nonzero, it's the @p->state value just checked and
2230 * not expected to change. If it changes, i.e. @p might have woken up,
2231 * then return zero. When we succeed in waiting for @p to be off its CPU,
2232 * we return a positive number (its total switch count). If a second call
2233 * a short while later returns the same number, the caller can be sure that
2234 * @p has remained unscheduled the whole time.
2236 * The caller must ensure that the task *will* unschedule sometime soon,
2237 * else this function might spin for a *long* time. This function can't
2238 * be called with interrupts off, or it may introduce deadlock with
2239 * smp_call_function() if an IPI is sent by the same process we are
2240 * waiting to become inactive.
2242 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2244 unsigned long flags
;
2251 * We do the initial early heuristics without holding
2252 * any task-queue locks at all. We'll only try to get
2253 * the runqueue lock when things look like they will
2259 * If the task is actively running on another CPU
2260 * still, just relax and busy-wait without holding
2263 * NOTE! Since we don't hold any locks, it's not
2264 * even sure that "rq" stays as the right runqueue!
2265 * But we don't care, since "task_running()" will
2266 * return false if the runqueue has changed and p
2267 * is actually now running somewhere else!
2269 while (task_running(rq
, p
)) {
2270 if (match_state
&& unlikely(p
->state
!= match_state
))
2276 * Ok, time to look more closely! We need the rq
2277 * lock now, to be *sure*. If we're wrong, we'll
2278 * just go back and repeat.
2280 rq
= task_rq_lock(p
, &flags
);
2281 trace_sched_wait_task(rq
, p
);
2282 running
= task_running(rq
, p
);
2283 on_rq
= p
->se
.on_rq
;
2285 if (!match_state
|| p
->state
== match_state
)
2286 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2287 task_rq_unlock(rq
, &flags
);
2290 * If it changed from the expected state, bail out now.
2292 if (unlikely(!ncsw
))
2296 * Was it really running after all now that we
2297 * checked with the proper locks actually held?
2299 * Oops. Go back and try again..
2301 if (unlikely(running
)) {
2307 * It's not enough that it's not actively running,
2308 * it must be off the runqueue _entirely_, and not
2311 * So if it was still runnable (but just not actively
2312 * running right now), it's preempted, and we should
2313 * yield - it could be a while.
2315 if (unlikely(on_rq
)) {
2316 schedule_timeout_uninterruptible(1);
2321 * Ahh, all good. It wasn't running, and it wasn't
2322 * runnable, which means that it will never become
2323 * running in the future either. We're all done!
2332 * kick_process - kick a running thread to enter/exit the kernel
2333 * @p: the to-be-kicked thread
2335 * Cause a process which is running on another CPU to enter
2336 * kernel-mode, without any delay. (to get signals handled.)
2338 * NOTE: this function doesnt have to take the runqueue lock,
2339 * because all it wants to ensure is that the remote task enters
2340 * the kernel. If the IPI races and the task has been migrated
2341 * to another CPU then no harm is done and the purpose has been
2344 void kick_process(struct task_struct
*p
)
2350 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2351 smp_send_reschedule(cpu
);
2354 EXPORT_SYMBOL_GPL(kick_process
);
2355 #endif /* CONFIG_SMP */
2358 * task_oncpu_function_call - call a function on the cpu on which a task runs
2359 * @p: the task to evaluate
2360 * @func: the function to be called
2361 * @info: the function call argument
2363 * Calls the function @func when the task is currently running. This might
2364 * be on the current CPU, which just calls the function directly
2366 void task_oncpu_function_call(struct task_struct
*p
,
2367 void (*func
) (void *info
), void *info
)
2374 smp_call_function_single(cpu
, func
, info
, 1);
2378 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2380 const struct sched_class
*class;
2382 if (p
->sched_class
== rq
->curr
->sched_class
) {
2383 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2385 for_each_class(class) {
2386 if (class == rq
->curr
->sched_class
)
2388 if (class == p
->sched_class
) {
2389 resched_task(rq
->curr
);
2398 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2400 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2403 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2405 /* Look for allowed, online CPU in same node. */
2406 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2407 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2410 /* Any allowed, online CPU? */
2411 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2412 if (dest_cpu
< nr_cpu_ids
)
2415 /* No more Mr. Nice Guy. */
2416 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2417 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2419 * Don't tell them about moving exiting tasks or
2420 * kernel threads (both mm NULL), since they never
2423 if (p
->mm
&& printk_ratelimit()) {
2424 printk(KERN_INFO
"process %d (%s) no "
2425 "longer affine to cpu%d\n",
2426 task_pid_nr(p
), p
->comm
, cpu
);
2434 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2437 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2439 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2442 * In order not to call set_task_cpu() on a blocking task we need
2443 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2446 * Since this is common to all placement strategies, this lives here.
2448 * [ this allows ->select_task() to simply return task_cpu(p) and
2449 * not worry about this generic constraint ]
2451 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2453 cpu
= select_fallback_rq(task_cpu(p
), p
);
2460 * try_to_wake_up - wake up a thread
2461 * @p: the to-be-woken-up thread
2462 * @state: the mask of task states that can be woken
2463 * @sync: do a synchronous wakeup?
2465 * Put it on the run-queue if it's not already there. The "current"
2466 * thread is always on the run-queue (except when the actual
2467 * re-schedule is in progress), and as such you're allowed to do
2468 * the simpler "current->state = TASK_RUNNING" to mark yourself
2469 * runnable without the overhead of this.
2471 * returns failure only if the task is already active.
2473 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2476 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2477 unsigned long flags
;
2478 struct rq
*rq
, *orig_rq
;
2480 if (!sched_feat(SYNC_WAKEUPS
))
2481 wake_flags
&= ~WF_SYNC
;
2483 this_cpu
= get_cpu();
2486 rq
= orig_rq
= task_rq_lock(p
, &flags
);
2487 update_rq_clock(rq
);
2488 if (!(p
->state
& state
))
2498 if (unlikely(task_running(rq
, p
)))
2502 * In order to handle concurrent wakeups and release the rq->lock
2503 * we put the task in TASK_WAKING state.
2505 * First fix up the nr_uninterruptible count:
2507 if (task_contributes_to_load(p
)) {
2508 if (likely(cpu_online(orig_cpu
)))
2509 rq
->nr_uninterruptible
--;
2511 this_rq()->nr_uninterruptible
--;
2513 p
->state
= TASK_WAKING
;
2515 if (p
->sched_class
->task_waking
)
2516 p
->sched_class
->task_waking(rq
, p
);
2518 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2519 if (cpu
!= orig_cpu
)
2520 set_task_cpu(p
, cpu
);
2521 __task_rq_unlock(rq
);
2524 spin_lock(&rq
->lock
);
2525 update_rq_clock(rq
);
2528 * We migrated the task without holding either rq->lock, however
2529 * since the task is not on the task list itself, nobody else
2530 * will try and migrate the task, hence the rq should match the
2531 * cpu we just moved it to.
2533 WARN_ON(task_cpu(p
) != cpu
);
2534 WARN_ON(p
->state
!= TASK_WAKING
);
2536 #ifdef CONFIG_SCHEDSTATS
2537 schedstat_inc(rq
, ttwu_count
);
2538 if (cpu
== this_cpu
)
2539 schedstat_inc(rq
, ttwu_local
);
2541 struct sched_domain
*sd
;
2542 for_each_domain(this_cpu
, sd
) {
2543 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2544 schedstat_inc(sd
, ttwu_wake_remote
);
2549 #endif /* CONFIG_SCHEDSTATS */
2552 #endif /* CONFIG_SMP */
2553 schedstat_inc(p
, se
.nr_wakeups
);
2554 if (wake_flags
& WF_SYNC
)
2555 schedstat_inc(p
, se
.nr_wakeups_sync
);
2556 if (orig_cpu
!= cpu
)
2557 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2558 if (cpu
== this_cpu
)
2559 schedstat_inc(p
, se
.nr_wakeups_local
);
2561 schedstat_inc(p
, se
.nr_wakeups_remote
);
2562 activate_task(rq
, p
, 1);
2566 * Only attribute actual wakeups done by this task.
2568 if (!in_interrupt()) {
2569 struct sched_entity
*se
= ¤t
->se
;
2570 u64 sample
= se
->sum_exec_runtime
;
2572 if (se
->last_wakeup
)
2573 sample
-= se
->last_wakeup
;
2575 sample
-= se
->start_runtime
;
2576 update_avg(&se
->avg_wakeup
, sample
);
2578 se
->last_wakeup
= se
->sum_exec_runtime
;
2582 trace_sched_wakeup(rq
, p
, success
);
2583 check_preempt_curr(rq
, p
, wake_flags
);
2585 p
->state
= TASK_RUNNING
;
2587 if (p
->sched_class
->task_woken
)
2588 p
->sched_class
->task_woken(rq
, p
);
2590 if (unlikely(rq
->idle_stamp
)) {
2591 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2592 u64 max
= 2*sysctl_sched_migration_cost
;
2597 update_avg(&rq
->avg_idle
, delta
);
2602 task_rq_unlock(rq
, &flags
);
2609 * wake_up_process - Wake up a specific process
2610 * @p: The process to be woken up.
2612 * Attempt to wake up the nominated process and move it to the set of runnable
2613 * processes. Returns 1 if the process was woken up, 0 if it was already
2616 * It may be assumed that this function implies a write memory barrier before
2617 * changing the task state if and only if any tasks are woken up.
2619 int wake_up_process(struct task_struct
*p
)
2621 return try_to_wake_up(p
, TASK_ALL
, 0);
2623 EXPORT_SYMBOL(wake_up_process
);
2625 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2627 return try_to_wake_up(p
, state
, 0);
2631 * Perform scheduler related setup for a newly forked process p.
2632 * p is forked by current.
2634 * __sched_fork() is basic setup used by init_idle() too:
2636 static void __sched_fork(struct task_struct
*p
)
2638 p
->se
.exec_start
= 0;
2639 p
->se
.sum_exec_runtime
= 0;
2640 p
->se
.prev_sum_exec_runtime
= 0;
2641 p
->se
.nr_migrations
= 0;
2642 p
->se
.last_wakeup
= 0;
2643 p
->se
.avg_overlap
= 0;
2644 p
->se
.start_runtime
= 0;
2645 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2646 p
->se
.avg_running
= 0;
2648 #ifdef CONFIG_SCHEDSTATS
2649 p
->se
.wait_start
= 0;
2651 p
->se
.wait_count
= 0;
2654 p
->se
.sleep_start
= 0;
2655 p
->se
.sleep_max
= 0;
2656 p
->se
.sum_sleep_runtime
= 0;
2658 p
->se
.block_start
= 0;
2659 p
->se
.block_max
= 0;
2661 p
->se
.slice_max
= 0;
2663 p
->se
.nr_migrations_cold
= 0;
2664 p
->se
.nr_failed_migrations_affine
= 0;
2665 p
->se
.nr_failed_migrations_running
= 0;
2666 p
->se
.nr_failed_migrations_hot
= 0;
2667 p
->se
.nr_forced_migrations
= 0;
2669 p
->se
.nr_wakeups
= 0;
2670 p
->se
.nr_wakeups_sync
= 0;
2671 p
->se
.nr_wakeups_migrate
= 0;
2672 p
->se
.nr_wakeups_local
= 0;
2673 p
->se
.nr_wakeups_remote
= 0;
2674 p
->se
.nr_wakeups_affine
= 0;
2675 p
->se
.nr_wakeups_affine_attempts
= 0;
2676 p
->se
.nr_wakeups_passive
= 0;
2677 p
->se
.nr_wakeups_idle
= 0;
2681 INIT_LIST_HEAD(&p
->rt
.run_list
);
2683 INIT_LIST_HEAD(&p
->se
.group_node
);
2685 #ifdef CONFIG_PREEMPT_NOTIFIERS
2686 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2691 * fork()/clone()-time setup:
2693 void sched_fork(struct task_struct
*p
, int clone_flags
)
2695 int cpu
= get_cpu();
2699 * We mark the process as running here. This guarantees that
2700 * nobody will actually run it, and a signal or other external
2701 * event cannot wake it up and insert it on the runqueue either.
2703 p
->state
= TASK_RUNNING
;
2706 * Revert to default priority/policy on fork if requested.
2708 if (unlikely(p
->sched_reset_on_fork
)) {
2709 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2710 p
->policy
= SCHED_NORMAL
;
2711 p
->normal_prio
= p
->static_prio
;
2714 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2715 p
->static_prio
= NICE_TO_PRIO(0);
2716 p
->normal_prio
= p
->static_prio
;
2721 * We don't need the reset flag anymore after the fork. It has
2722 * fulfilled its duty:
2724 p
->sched_reset_on_fork
= 0;
2728 * Make sure we do not leak PI boosting priority to the child.
2730 p
->prio
= current
->normal_prio
;
2732 if (!rt_prio(p
->prio
))
2733 p
->sched_class
= &fair_sched_class
;
2735 if (p
->sched_class
->task_fork
)
2736 p
->sched_class
->task_fork(p
);
2738 set_task_cpu(p
, cpu
);
2740 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2741 if (likely(sched_info_on()))
2742 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2744 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2747 #ifdef CONFIG_PREEMPT
2748 /* Want to start with kernel preemption disabled. */
2749 task_thread_info(p
)->preempt_count
= 1;
2751 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2757 * wake_up_new_task - wake up a newly created task for the first time.
2759 * This function will do some initial scheduler statistics housekeeping
2760 * that must be done for every newly created context, then puts the task
2761 * on the runqueue and wakes it.
2763 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2765 unsigned long flags
;
2767 int cpu
= get_cpu();
2770 rq
= task_rq_lock(p
, &flags
);
2771 p
->state
= TASK_WAKING
;
2774 * Fork balancing, do it here and not earlier because:
2775 * - cpus_allowed can change in the fork path
2776 * - any previously selected cpu might disappear through hotplug
2778 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2779 * without people poking at ->cpus_allowed.
2781 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2782 set_task_cpu(p
, cpu
);
2784 p
->state
= TASK_RUNNING
;
2785 task_rq_unlock(rq
, &flags
);
2788 rq
= task_rq_lock(p
, &flags
);
2789 update_rq_clock(rq
);
2790 activate_task(rq
, p
, 0);
2791 trace_sched_wakeup_new(rq
, p
, 1);
2792 check_preempt_curr(rq
, p
, WF_FORK
);
2794 if (p
->sched_class
->task_woken
)
2795 p
->sched_class
->task_woken(rq
, p
);
2797 task_rq_unlock(rq
, &flags
);
2801 #ifdef CONFIG_PREEMPT_NOTIFIERS
2804 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2805 * @notifier: notifier struct to register
2807 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2809 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2811 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2814 * preempt_notifier_unregister - no longer interested in preemption notifications
2815 * @notifier: notifier struct to unregister
2817 * This is safe to call from within a preemption notifier.
2819 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2821 hlist_del(¬ifier
->link
);
2823 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2825 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2827 struct preempt_notifier
*notifier
;
2828 struct hlist_node
*node
;
2830 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2831 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2835 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2836 struct task_struct
*next
)
2838 struct preempt_notifier
*notifier
;
2839 struct hlist_node
*node
;
2841 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2842 notifier
->ops
->sched_out(notifier
, next
);
2845 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2847 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2852 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2853 struct task_struct
*next
)
2857 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2860 * prepare_task_switch - prepare to switch tasks
2861 * @rq: the runqueue preparing to switch
2862 * @prev: the current task that is being switched out
2863 * @next: the task we are going to switch to.
2865 * This is called with the rq lock held and interrupts off. It must
2866 * be paired with a subsequent finish_task_switch after the context
2869 * prepare_task_switch sets up locking and calls architecture specific
2873 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2874 struct task_struct
*next
)
2876 fire_sched_out_preempt_notifiers(prev
, next
);
2877 prepare_lock_switch(rq
, next
);
2878 prepare_arch_switch(next
);
2882 * finish_task_switch - clean up after a task-switch
2883 * @rq: runqueue associated with task-switch
2884 * @prev: the thread we just switched away from.
2886 * finish_task_switch must be called after the context switch, paired
2887 * with a prepare_task_switch call before the context switch.
2888 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2889 * and do any other architecture-specific cleanup actions.
2891 * Note that we may have delayed dropping an mm in context_switch(). If
2892 * so, we finish that here outside of the runqueue lock. (Doing it
2893 * with the lock held can cause deadlocks; see schedule() for
2896 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2897 __releases(rq
->lock
)
2899 struct mm_struct
*mm
= rq
->prev_mm
;
2905 * A task struct has one reference for the use as "current".
2906 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2907 * schedule one last time. The schedule call will never return, and
2908 * the scheduled task must drop that reference.
2909 * The test for TASK_DEAD must occur while the runqueue locks are
2910 * still held, otherwise prev could be scheduled on another cpu, die
2911 * there before we look at prev->state, and then the reference would
2913 * Manfred Spraul <manfred@colorfullife.com>
2915 prev_state
= prev
->state
;
2916 finish_arch_switch(prev
);
2917 perf_event_task_sched_in(current
, cpu_of(rq
));
2918 finish_lock_switch(rq
, prev
);
2920 fire_sched_in_preempt_notifiers(current
);
2923 if (unlikely(prev_state
== TASK_DEAD
)) {
2925 * Remove function-return probe instances associated with this
2926 * task and put them back on the free list.
2928 kprobe_flush_task(prev
);
2929 put_task_struct(prev
);
2935 /* assumes rq->lock is held */
2936 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2938 if (prev
->sched_class
->pre_schedule
)
2939 prev
->sched_class
->pre_schedule(rq
, prev
);
2942 /* rq->lock is NOT held, but preemption is disabled */
2943 static inline void post_schedule(struct rq
*rq
)
2945 if (rq
->post_schedule
) {
2946 unsigned long flags
;
2948 spin_lock_irqsave(&rq
->lock
, flags
);
2949 if (rq
->curr
->sched_class
->post_schedule
)
2950 rq
->curr
->sched_class
->post_schedule(rq
);
2951 spin_unlock_irqrestore(&rq
->lock
, flags
);
2953 rq
->post_schedule
= 0;
2959 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2963 static inline void post_schedule(struct rq
*rq
)
2970 * schedule_tail - first thing a freshly forked thread must call.
2971 * @prev: the thread we just switched away from.
2973 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2974 __releases(rq
->lock
)
2976 struct rq
*rq
= this_rq();
2978 finish_task_switch(rq
, prev
);
2981 * FIXME: do we need to worry about rq being invalidated by the
2986 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2987 /* In this case, finish_task_switch does not reenable preemption */
2990 if (current
->set_child_tid
)
2991 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2995 * context_switch - switch to the new MM and the new
2996 * thread's register state.
2999 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3000 struct task_struct
*next
)
3002 struct mm_struct
*mm
, *oldmm
;
3004 prepare_task_switch(rq
, prev
, next
);
3005 trace_sched_switch(rq
, prev
, next
);
3007 oldmm
= prev
->active_mm
;
3009 * For paravirt, this is coupled with an exit in switch_to to
3010 * combine the page table reload and the switch backend into
3013 arch_start_context_switch(prev
);
3015 if (unlikely(!mm
)) {
3016 next
->active_mm
= oldmm
;
3017 atomic_inc(&oldmm
->mm_count
);
3018 enter_lazy_tlb(oldmm
, next
);
3020 switch_mm(oldmm
, mm
, next
);
3022 if (unlikely(!prev
->mm
)) {
3023 prev
->active_mm
= NULL
;
3024 rq
->prev_mm
= oldmm
;
3027 * Since the runqueue lock will be released by the next
3028 * task (which is an invalid locking op but in the case
3029 * of the scheduler it's an obvious special-case), so we
3030 * do an early lockdep release here:
3032 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3033 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3036 /* Here we just switch the register state and the stack. */
3037 switch_to(prev
, next
, prev
);
3041 * this_rq must be evaluated again because prev may have moved
3042 * CPUs since it called schedule(), thus the 'rq' on its stack
3043 * frame will be invalid.
3045 finish_task_switch(this_rq(), prev
);
3049 * nr_running, nr_uninterruptible and nr_context_switches:
3051 * externally visible scheduler statistics: current number of runnable
3052 * threads, current number of uninterruptible-sleeping threads, total
3053 * number of context switches performed since bootup.
3055 unsigned long nr_running(void)
3057 unsigned long i
, sum
= 0;
3059 for_each_online_cpu(i
)
3060 sum
+= cpu_rq(i
)->nr_running
;
3065 unsigned long nr_uninterruptible(void)
3067 unsigned long i
, sum
= 0;
3069 for_each_possible_cpu(i
)
3070 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3073 * Since we read the counters lockless, it might be slightly
3074 * inaccurate. Do not allow it to go below zero though:
3076 if (unlikely((long)sum
< 0))
3082 unsigned long long nr_context_switches(void)
3085 unsigned long long sum
= 0;
3087 for_each_possible_cpu(i
)
3088 sum
+= cpu_rq(i
)->nr_switches
;
3093 unsigned long nr_iowait(void)
3095 unsigned long i
, sum
= 0;
3097 for_each_possible_cpu(i
)
3098 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3103 unsigned long nr_iowait_cpu(void)
3105 struct rq
*this = this_rq();
3106 return atomic_read(&this->nr_iowait
);
3109 unsigned long this_cpu_load(void)
3111 struct rq
*this = this_rq();
3112 return this->cpu_load
[0];
3116 /* Variables and functions for calc_load */
3117 static atomic_long_t calc_load_tasks
;
3118 static unsigned long calc_load_update
;
3119 unsigned long avenrun
[3];
3120 EXPORT_SYMBOL(avenrun
);
3123 * get_avenrun - get the load average array
3124 * @loads: pointer to dest load array
3125 * @offset: offset to add
3126 * @shift: shift count to shift the result left
3128 * These values are estimates at best, so no need for locking.
3130 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3132 loads
[0] = (avenrun
[0] + offset
) << shift
;
3133 loads
[1] = (avenrun
[1] + offset
) << shift
;
3134 loads
[2] = (avenrun
[2] + offset
) << shift
;
3137 static unsigned long
3138 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3141 load
+= active
* (FIXED_1
- exp
);
3142 return load
>> FSHIFT
;
3146 * calc_load - update the avenrun load estimates 10 ticks after the
3147 * CPUs have updated calc_load_tasks.
3149 void calc_global_load(void)
3151 unsigned long upd
= calc_load_update
+ 10;
3154 if (time_before(jiffies
, upd
))
3157 active
= atomic_long_read(&calc_load_tasks
);
3158 active
= active
> 0 ? active
* FIXED_1
: 0;
3160 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3161 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3162 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3164 calc_load_update
+= LOAD_FREQ
;
3168 * Either called from update_cpu_load() or from a cpu going idle
3170 static void calc_load_account_active(struct rq
*this_rq
)
3172 long nr_active
, delta
;
3174 nr_active
= this_rq
->nr_running
;
3175 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3177 if (nr_active
!= this_rq
->calc_load_active
) {
3178 delta
= nr_active
- this_rq
->calc_load_active
;
3179 this_rq
->calc_load_active
= nr_active
;
3180 atomic_long_add(delta
, &calc_load_tasks
);
3185 * Update rq->cpu_load[] statistics. This function is usually called every
3186 * scheduler tick (TICK_NSEC).
3188 static void update_cpu_load(struct rq
*this_rq
)
3190 unsigned long this_load
= this_rq
->load
.weight
;
3193 this_rq
->nr_load_updates
++;
3195 /* Update our load: */
3196 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3197 unsigned long old_load
, new_load
;
3199 /* scale is effectively 1 << i now, and >> i divides by scale */
3201 old_load
= this_rq
->cpu_load
[i
];
3202 new_load
= this_load
;
3204 * Round up the averaging division if load is increasing. This
3205 * prevents us from getting stuck on 9 if the load is 10, for
3208 if (new_load
> old_load
)
3209 new_load
+= scale
-1;
3210 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3213 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3214 this_rq
->calc_load_update
+= LOAD_FREQ
;
3215 calc_load_account_active(this_rq
);
3218 sched_avg_update(this_rq
);
3224 * double_rq_lock - safely lock two runqueues
3226 * Note this does not disable interrupts like task_rq_lock,
3227 * you need to do so manually before calling.
3229 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3230 __acquires(rq1
->lock
)
3231 __acquires(rq2
->lock
)
3233 BUG_ON(!irqs_disabled());
3235 spin_lock(&rq1
->lock
);
3236 __acquire(rq2
->lock
); /* Fake it out ;) */
3239 spin_lock(&rq1
->lock
);
3240 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3242 spin_lock(&rq2
->lock
);
3243 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3246 update_rq_clock(rq1
);
3247 update_rq_clock(rq2
);
3251 * double_rq_unlock - safely unlock two runqueues
3253 * Note this does not restore interrupts like task_rq_unlock,
3254 * you need to do so manually after calling.
3256 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3257 __releases(rq1
->lock
)
3258 __releases(rq2
->lock
)
3260 spin_unlock(&rq1
->lock
);
3262 spin_unlock(&rq2
->lock
);
3264 __release(rq2
->lock
);
3268 * sched_exec - execve() is a valuable balancing opportunity, because at
3269 * this point the task has the smallest effective memory and cache footprint.
3271 void sched_exec(void)
3273 struct task_struct
*p
= current
;
3274 struct migration_req req
;
3275 unsigned long flags
;
3279 rq
= task_rq_lock(p
, &flags
);
3280 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3281 if (dest_cpu
== smp_processor_id())
3285 * select_task_rq() can race against ->cpus_allowed
3287 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3288 likely(cpu_active(dest_cpu
)) &&
3289 migrate_task(p
, dest_cpu
, &req
)) {
3290 /* Need to wait for migration thread (might exit: take ref). */
3291 struct task_struct
*mt
= rq
->migration_thread
;
3293 get_task_struct(mt
);
3294 task_rq_unlock(rq
, &flags
);
3295 wake_up_process(mt
);
3296 put_task_struct(mt
);
3297 wait_for_completion(&req
.done
);
3302 task_rq_unlock(rq
, &flags
);
3306 * pull_task - move a task from a remote runqueue to the local runqueue.
3307 * Both runqueues must be locked.
3309 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3310 struct rq
*this_rq
, int this_cpu
)
3312 deactivate_task(src_rq
, p
, 0);
3313 set_task_cpu(p
, this_cpu
);
3314 activate_task(this_rq
, p
, 0);
3315 check_preempt_curr(this_rq
, p
, 0);
3319 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3322 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3323 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3326 int tsk_cache_hot
= 0;
3328 * We do not migrate tasks that are:
3329 * 1) running (obviously), or
3330 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3331 * 3) are cache-hot on their current CPU.
3333 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3334 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3339 if (task_running(rq
, p
)) {
3340 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3345 * Aggressive migration if:
3346 * 1) task is cache cold, or
3347 * 2) too many balance attempts have failed.
3350 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
3351 if (!tsk_cache_hot
||
3352 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3353 #ifdef CONFIG_SCHEDSTATS
3354 if (tsk_cache_hot
) {
3355 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3356 schedstat_inc(p
, se
.nr_forced_migrations
);
3362 if (tsk_cache_hot
) {
3363 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3369 static unsigned long
3370 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3371 unsigned long max_load_move
, struct sched_domain
*sd
,
3372 enum cpu_idle_type idle
, int *all_pinned
,
3373 int *this_best_prio
, struct rq_iterator
*iterator
)
3375 int loops
= 0, pulled
= 0, pinned
= 0;
3376 struct task_struct
*p
;
3377 long rem_load_move
= max_load_move
;
3379 if (max_load_move
== 0)
3385 * Start the load-balancing iterator:
3387 p
= iterator
->start(iterator
->arg
);
3389 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3392 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3393 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3394 p
= iterator
->next(iterator
->arg
);
3398 pull_task(busiest
, p
, this_rq
, this_cpu
);
3400 rem_load_move
-= p
->se
.load
.weight
;
3402 #ifdef CONFIG_PREEMPT
3404 * NEWIDLE balancing is a source of latency, so preemptible kernels
3405 * will stop after the first task is pulled to minimize the critical
3408 if (idle
== CPU_NEWLY_IDLE
)
3413 * We only want to steal up to the prescribed amount of weighted load.
3415 if (rem_load_move
> 0) {
3416 if (p
->prio
< *this_best_prio
)
3417 *this_best_prio
= p
->prio
;
3418 p
= iterator
->next(iterator
->arg
);
3423 * Right now, this is one of only two places pull_task() is called,
3424 * so we can safely collect pull_task() stats here rather than
3425 * inside pull_task().
3427 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3430 *all_pinned
= pinned
;
3432 return max_load_move
- rem_load_move
;
3436 * move_tasks tries to move up to max_load_move weighted load from busiest to
3437 * this_rq, as part of a balancing operation within domain "sd".
3438 * Returns 1 if successful and 0 otherwise.
3440 * Called with both runqueues locked.
3442 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3443 unsigned long max_load_move
,
3444 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3447 const struct sched_class
*class = sched_class_highest
;
3448 unsigned long total_load_moved
= 0;
3449 int this_best_prio
= this_rq
->curr
->prio
;
3453 class->load_balance(this_rq
, this_cpu
, busiest
,
3454 max_load_move
- total_load_moved
,
3455 sd
, idle
, all_pinned
, &this_best_prio
);
3456 class = class->next
;
3458 #ifdef CONFIG_PREEMPT
3460 * NEWIDLE balancing is a source of latency, so preemptible
3461 * kernels will stop after the first task is pulled to minimize
3462 * the critical section.
3464 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3467 } while (class && max_load_move
> total_load_moved
);
3469 return total_load_moved
> 0;
3473 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3474 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3475 struct rq_iterator
*iterator
)
3477 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3481 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3482 pull_task(busiest
, p
, this_rq
, this_cpu
);
3484 * Right now, this is only the second place pull_task()
3485 * is called, so we can safely collect pull_task()
3486 * stats here rather than inside pull_task().
3488 schedstat_inc(sd
, lb_gained
[idle
]);
3492 p
= iterator
->next(iterator
->arg
);
3499 * move_one_task tries to move exactly one task from busiest to this_rq, as
3500 * part of active balancing operations within "domain".
3501 * Returns 1 if successful and 0 otherwise.
3503 * Called with both runqueues locked.
3505 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3506 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3508 const struct sched_class
*class;
3510 for_each_class(class) {
3511 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3517 /********** Helpers for find_busiest_group ************************/
3519 * sd_lb_stats - Structure to store the statistics of a sched_domain
3520 * during load balancing.
3522 struct sd_lb_stats
{
3523 struct sched_group
*busiest
; /* Busiest group in this sd */
3524 struct sched_group
*this; /* Local group in this sd */
3525 unsigned long total_load
; /* Total load of all groups in sd */
3526 unsigned long total_pwr
; /* Total power of all groups in sd */
3527 unsigned long avg_load
; /* Average load across all groups in sd */
3529 /** Statistics of this group */
3530 unsigned long this_load
;
3531 unsigned long this_load_per_task
;
3532 unsigned long this_nr_running
;
3533 unsigned long this_has_capacity
;
3534 unsigned int this_idle_cpus
;
3536 /* Statistics of the busiest group */
3537 unsigned int busiest_idle_cpus
;
3538 unsigned long max_load
;
3539 unsigned long busiest_load_per_task
;
3540 unsigned long busiest_nr_running
;
3541 unsigned long busiest_group_capacity
;
3542 unsigned long busiest_has_capacity
;
3543 unsigned int busiest_group_weight
;
3545 int group_imb
; /* Is there imbalance in this sd */
3546 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3547 int power_savings_balance
; /* Is powersave balance needed for this sd */
3548 struct sched_group
*group_min
; /* Least loaded group in sd */
3549 struct sched_group
*group_leader
; /* Group which relieves group_min */
3550 unsigned long min_load_per_task
; /* load_per_task in group_min */
3551 unsigned long leader_nr_running
; /* Nr running of group_leader */
3552 unsigned long min_nr_running
; /* Nr running of group_min */
3557 * sg_lb_stats - stats of a sched_group required for load_balancing
3559 struct sg_lb_stats
{
3560 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3561 unsigned long group_load
; /* Total load over the CPUs of the group */
3562 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3563 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3564 unsigned long group_capacity
;
3565 unsigned long idle_cpus
;
3566 unsigned long group_weight
;
3567 int group_imb
; /* Is there an imbalance in the group ? */
3568 int group_has_capacity
; /* Is there extra capacity in the group? */
3572 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3573 * @group: The group whose first cpu is to be returned.
3575 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3577 return cpumask_first(sched_group_cpus(group
));
3581 * get_sd_load_idx - Obtain the load index for a given sched domain.
3582 * @sd: The sched_domain whose load_idx is to be obtained.
3583 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3585 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3586 enum cpu_idle_type idle
)
3592 load_idx
= sd
->busy_idx
;
3595 case CPU_NEWLY_IDLE
:
3596 load_idx
= sd
->newidle_idx
;
3599 load_idx
= sd
->idle_idx
;
3607 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3609 * init_sd_power_savings_stats - Initialize power savings statistics for
3610 * the given sched_domain, during load balancing.
3612 * @sd: Sched domain whose power-savings statistics are to be initialized.
3613 * @sds: Variable containing the statistics for sd.
3614 * @idle: Idle status of the CPU at which we're performing load-balancing.
3616 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3617 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3620 * Busy processors will not participate in power savings
3623 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3624 sds
->power_savings_balance
= 0;
3626 sds
->power_savings_balance
= 1;
3627 sds
->min_nr_running
= ULONG_MAX
;
3628 sds
->leader_nr_running
= 0;
3633 * update_sd_power_savings_stats - Update the power saving stats for a
3634 * sched_domain while performing load balancing.
3636 * @group: sched_group belonging to the sched_domain under consideration.
3637 * @sds: Variable containing the statistics of the sched_domain
3638 * @local_group: Does group contain the CPU for which we're performing
3640 * @sgs: Variable containing the statistics of the group.
3642 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3643 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3646 if (!sds
->power_savings_balance
)
3650 * If the local group is idle or completely loaded
3651 * no need to do power savings balance at this domain
3653 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3654 !sds
->this_nr_running
))
3655 sds
->power_savings_balance
= 0;
3658 * If a group is already running at full capacity or idle,
3659 * don't include that group in power savings calculations
3661 if (!sds
->power_savings_balance
||
3662 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3663 !sgs
->sum_nr_running
)
3667 * Calculate the group which has the least non-idle load.
3668 * This is the group from where we need to pick up the load
3671 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3672 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3673 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3674 sds
->group_min
= group
;
3675 sds
->min_nr_running
= sgs
->sum_nr_running
;
3676 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3677 sgs
->sum_nr_running
;
3681 * Calculate the group which is almost near its
3682 * capacity but still has some space to pick up some load
3683 * from other group and save more power
3685 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3688 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3689 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3690 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3691 sds
->group_leader
= group
;
3692 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3697 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3698 * @sds: Variable containing the statistics of the sched_domain
3699 * under consideration.
3700 * @this_cpu: Cpu at which we're currently performing load-balancing.
3701 * @imbalance: Variable to store the imbalance.
3704 * Check if we have potential to perform some power-savings balance.
3705 * If yes, set the busiest group to be the least loaded group in the
3706 * sched_domain, so that it's CPUs can be put to idle.
3708 * Returns 1 if there is potential to perform power-savings balance.
3711 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3712 int this_cpu
, unsigned long *imbalance
)
3714 if (!sds
->power_savings_balance
)
3717 if (sds
->this != sds
->group_leader
||
3718 sds
->group_leader
== sds
->group_min
)
3721 *imbalance
= sds
->min_load_per_task
;
3722 sds
->busiest
= sds
->group_min
;
3727 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3728 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3729 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3734 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3735 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3740 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3741 int this_cpu
, unsigned long *imbalance
)
3745 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3748 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3750 return SCHED_LOAD_SCALE
;
3753 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3755 return default_scale_freq_power(sd
, cpu
);
3758 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3760 unsigned long weight
= sd
->span_weight
;
3761 unsigned long smt_gain
= sd
->smt_gain
;
3768 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3770 return default_scale_smt_power(sd
, cpu
);
3773 unsigned long scale_rt_power(int cpu
)
3775 struct rq
*rq
= cpu_rq(cpu
);
3776 u64 total
, available
;
3778 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3780 if (unlikely(total
< rq
->rt_avg
)) {
3781 /* Ensures that power won't end up being negative */
3784 available
= total
- rq
->rt_avg
;
3787 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
3788 total
= SCHED_LOAD_SCALE
;
3790 total
>>= SCHED_LOAD_SHIFT
;
3792 return div_u64(available
, total
);
3795 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3797 unsigned long weight
= sd
->span_weight
;
3798 unsigned long power
= SCHED_LOAD_SCALE
;
3799 struct sched_group
*sdg
= sd
->groups
;
3801 if (sched_feat(ARCH_POWER
))
3802 power
*= arch_scale_freq_power(sd
, cpu
);
3804 power
*= default_scale_freq_power(sd
, cpu
);
3806 power
>>= SCHED_LOAD_SHIFT
;
3808 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3809 if (sched_feat(ARCH_POWER
))
3810 power
*= arch_scale_smt_power(sd
, cpu
);
3812 power
*= default_scale_smt_power(sd
, cpu
);
3814 power
>>= SCHED_LOAD_SHIFT
;
3817 power
*= scale_rt_power(cpu
);
3818 power
>>= SCHED_LOAD_SHIFT
;
3823 cpu_rq(cpu
)->cpu_power
= power
;
3824 sdg
->cpu_power
= power
;
3827 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3829 struct sched_domain
*child
= sd
->child
;
3830 struct sched_group
*group
, *sdg
= sd
->groups
;
3831 unsigned long power
;
3834 update_cpu_power(sd
, cpu
);
3840 group
= child
->groups
;
3842 power
+= group
->cpu_power
;
3843 group
= group
->next
;
3844 } while (group
!= child
->groups
);
3846 sdg
->cpu_power
= power
;
3850 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3851 * @sd: The sched_domain whose statistics are to be updated.
3852 * @group: sched_group whose statistics are to be updated.
3853 * @this_cpu: Cpu for which load balance is currently performed.
3854 * @idle: Idle status of this_cpu
3855 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3856 * @sd_idle: Idle status of the sched_domain containing group.
3857 * @local_group: Does group contain this_cpu.
3858 * @cpus: Set of cpus considered for load balancing.
3859 * @balance: Should we balance.
3860 * @sgs: variable to hold the statistics for this group.
3862 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3863 struct sched_group
*group
, int this_cpu
,
3864 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3865 int local_group
, const struct cpumask
*cpus
,
3866 int *balance
, struct sg_lb_stats
*sgs
)
3868 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
3870 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3871 unsigned long avg_load_per_task
= 0;
3874 balance_cpu
= group_first_cpu(group
);
3875 if (balance_cpu
== this_cpu
)
3876 update_group_power(sd
, this_cpu
);
3879 /* Tally up the load of all CPUs in the group */
3881 min_cpu_load
= ~0UL;
3884 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3885 struct rq
*rq
= cpu_rq(i
);
3887 if (*sd_idle
&& rq
->nr_running
)
3890 /* Bias balancing toward cpus of our domain */
3892 if (idle_cpu(i
) && !first_idle_cpu
) {
3897 load
= target_load(i
, load_idx
);
3899 load
= source_load(i
, load_idx
);
3900 if (load
> max_cpu_load
) {
3901 max_cpu_load
= load
;
3902 max_nr_running
= rq
->nr_running
;
3904 if (min_cpu_load
> load
)
3905 min_cpu_load
= load
;
3908 sgs
->group_load
+= load
;
3909 sgs
->sum_nr_running
+= rq
->nr_running
;
3910 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3916 * First idle cpu or the first cpu(busiest) in this sched group
3917 * is eligible for doing load balancing at this and above
3918 * domains. In the newly idle case, we will allow all the cpu's
3919 * to do the newly idle load balance.
3921 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3922 balance_cpu
!= this_cpu
&& balance
) {
3927 /* Adjust by relative CPU power of the group */
3928 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
3931 * Consider the group unbalanced when the imbalance is larger
3932 * than the average weight of two tasks.
3934 * APZ: with cgroup the avg task weight can vary wildly and
3935 * might not be a suitable number - should we keep a
3936 * normalized nr_running number somewhere that negates
3939 if (sgs
->sum_nr_running
)
3940 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
3942 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
&& max_nr_running
> 1)
3945 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
3946 sgs
->group_weight
= group
->group_weight
;
3948 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
3949 sgs
->group_has_capacity
= 1;
3953 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3954 * @sd: sched_domain whose statistics are to be updated.
3955 * @this_cpu: Cpu for which load balance is currently performed.
3956 * @idle: Idle status of this_cpu
3957 * @sd_idle: Idle status of the sched_domain containing group.
3958 * @cpus: Set of cpus considered for load balancing.
3959 * @balance: Should we balance.
3960 * @sds: variable to hold the statistics for this sched_domain.
3962 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3963 enum cpu_idle_type idle
, int *sd_idle
,
3964 const struct cpumask
*cpus
, int *balance
,
3965 struct sd_lb_stats
*sds
)
3967 struct sched_domain
*child
= sd
->child
;
3968 struct sched_group
*group
= sd
->groups
;
3969 struct sg_lb_stats sgs
;
3970 int load_idx
, prefer_sibling
= 0;
3972 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3975 init_sd_power_savings_stats(sd
, sds
, idle
);
3976 load_idx
= get_sd_load_idx(sd
, idle
);
3981 local_group
= cpumask_test_cpu(this_cpu
,
3982 sched_group_cpus(group
));
3983 memset(&sgs
, 0, sizeof(sgs
));
3984 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
3985 local_group
, cpus
, balance
, &sgs
);
3987 if (local_group
&& balance
&& !(*balance
))
3990 sds
->total_load
+= sgs
.group_load
;
3991 sds
->total_pwr
+= group
->cpu_power
;
3994 * In case the child domain prefers tasks go to siblings
3995 * first, lower the group capacity to one so that we'll try
3996 * and move all the excess tasks away. We lower the capacity
3997 * of a group only if the local group has the capacity to fit
3998 * these excess tasks, i.e. nr_running < group_capacity. The
3999 * extra check prevents the case where you always pull from the
4000 * heaviest group when it is already under-utilized (possible
4001 * with a large weight task outweighs the tasks on the system).
4003 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
4004 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
4007 sds
->this_load
= sgs
.avg_load
;
4009 sds
->this_nr_running
= sgs
.sum_nr_running
;
4010 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
4011 sds
->this_has_capacity
= sgs
.group_has_capacity
;
4012 sds
->this_idle_cpus
= sgs
.idle_cpus
;
4013 } else if (sgs
.avg_load
> sds
->max_load
&&
4014 (sgs
.sum_nr_running
> sgs
.group_capacity
||
4016 sds
->max_load
= sgs
.avg_load
;
4017 sds
->busiest
= group
;
4018 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
4019 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
4020 sds
->busiest_group_capacity
= sgs
.group_capacity
;
4021 sds
->busiest_group_weight
= sgs
.group_weight
;
4022 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
4023 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
4024 sds
->group_imb
= sgs
.group_imb
;
4027 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
4028 group
= group
->next
;
4029 } while (group
!= sd
->groups
);
4033 * fix_small_imbalance - Calculate the minor imbalance that exists
4034 * amongst the groups of a sched_domain, during
4036 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4037 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4038 * @imbalance: Variable to store the imbalance.
4040 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
4041 int this_cpu
, unsigned long *imbalance
)
4043 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
4044 unsigned int imbn
= 2;
4045 unsigned long scaled_busy_load_per_task
;
4047 if (sds
->this_nr_running
) {
4048 sds
->this_load_per_task
/= sds
->this_nr_running
;
4049 if (sds
->busiest_load_per_task
>
4050 sds
->this_load_per_task
)
4053 sds
->this_load_per_task
=
4054 cpu_avg_load_per_task(this_cpu
);
4056 scaled_busy_load_per_task
= sds
->busiest_load_per_task
4058 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
4060 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
4061 (scaled_busy_load_per_task
* imbn
)) {
4062 *imbalance
= sds
->busiest_load_per_task
;
4067 * OK, we don't have enough imbalance to justify moving tasks,
4068 * however we may be able to increase total CPU power used by
4072 pwr_now
+= sds
->busiest
->cpu_power
*
4073 min(sds
->busiest_load_per_task
, sds
->max_load
);
4074 pwr_now
+= sds
->this->cpu_power
*
4075 min(sds
->this_load_per_task
, sds
->this_load
);
4076 pwr_now
/= SCHED_LOAD_SCALE
;
4078 /* Amount of load we'd subtract */
4079 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
4080 sds
->busiest
->cpu_power
;
4081 if (sds
->max_load
> tmp
)
4082 pwr_move
+= sds
->busiest
->cpu_power
*
4083 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
4085 /* Amount of load we'd add */
4086 if (sds
->max_load
* sds
->busiest
->cpu_power
<
4087 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
4088 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
4089 sds
->this->cpu_power
;
4091 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
4092 sds
->this->cpu_power
;
4093 pwr_move
+= sds
->this->cpu_power
*
4094 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
4095 pwr_move
/= SCHED_LOAD_SCALE
;
4097 /* Move if we gain throughput */
4098 if (pwr_move
> pwr_now
)
4099 *imbalance
= sds
->busiest_load_per_task
;
4103 * calculate_imbalance - Calculate the amount of imbalance present within the
4104 * groups of a given sched_domain during load balance.
4105 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4106 * @this_cpu: Cpu for which currently load balance is being performed.
4107 * @imbalance: The variable to store the imbalance.
4109 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
4110 unsigned long *imbalance
)
4112 unsigned long max_pull
, load_above_capacity
= ~0UL;
4114 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
4115 if (sds
->group_imb
) {
4116 sds
->busiest_load_per_task
=
4117 min(sds
->busiest_load_per_task
, sds
->avg_load
);
4121 * In the presence of smp nice balancing, certain scenarios can have
4122 * max load less than avg load(as we skip the groups at or below
4123 * its cpu_power, while calculating max_load..)
4125 if (sds
->max_load
< sds
->avg_load
) {
4127 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
4130 if (!sds
->group_imb
) {
4132 * Don't want to pull so many tasks that a group would go idle.
4134 load_above_capacity
= (sds
->busiest_nr_running
-
4135 sds
->busiest_group_capacity
);
4137 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
4139 load_above_capacity
/= sds
->busiest
->cpu_power
;
4143 * We're trying to get all the cpus to the average_load, so we don't
4144 * want to push ourselves above the average load, nor do we wish to
4145 * reduce the max loaded cpu below the average load. At the same time,
4146 * we also don't want to reduce the group load below the group capacity
4147 * (so that we can implement power-savings policies etc). Thus we look
4148 * for the minimum possible imbalance.
4149 * Be careful of negative numbers as they'll appear as very large values
4150 * with unsigned longs.
4152 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
4154 /* How much load to actually move to equalise the imbalance */
4155 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
4156 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
4160 * if *imbalance is less than the average load per runnable task
4161 * there is no gaurantee that any tasks will be moved so we'll have
4162 * a think about bumping its value to force at least one task to be
4165 if (*imbalance
< sds
->busiest_load_per_task
)
4166 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
4170 /******* find_busiest_group() helpers end here *********************/
4173 * find_busiest_group - Returns the busiest group within the sched_domain
4174 * if there is an imbalance. If there isn't an imbalance, and
4175 * the user has opted for power-savings, it returns a group whose
4176 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4177 * such a group exists.
4179 * Also calculates the amount of weighted load which should be moved
4180 * to restore balance.
4182 * @sd: The sched_domain whose busiest group is to be returned.
4183 * @this_cpu: The cpu for which load balancing is currently being performed.
4184 * @imbalance: Variable which stores amount of weighted load which should
4185 * be moved to restore balance/put a group to idle.
4186 * @idle: The idle status of this_cpu.
4187 * @sd_idle: The idleness of sd
4188 * @cpus: The set of CPUs under consideration for load-balancing.
4189 * @balance: Pointer to a variable indicating if this_cpu
4190 * is the appropriate cpu to perform load balancing at this_level.
4192 * Returns: - the busiest group if imbalance exists.
4193 * - If no imbalance and user has opted for power-savings balance,
4194 * return the least loaded group whose CPUs can be
4195 * put to idle by rebalancing its tasks onto our group.
4197 static struct sched_group
*
4198 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
4199 unsigned long *imbalance
, enum cpu_idle_type idle
,
4200 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
4202 struct sd_lb_stats sds
;
4204 memset(&sds
, 0, sizeof(sds
));
4207 * Compute the various statistics relavent for load balancing at
4210 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
4213 /* Cases where imbalance does not exist from POV of this_cpu */
4214 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4216 * 2) There is no busy sibling group to pull from.
4217 * 3) This group is the busiest group.
4218 * 4) This group is more busy than the avg busieness at this
4220 * 5) The imbalance is within the specified limit.
4222 * Note: when doing newidle balance, if the local group has excess
4223 * capacity (i.e. nr_running < group_capacity) and the busiest group
4224 * does not have any capacity, we force a load balance to pull tasks
4225 * to the local group. In this case, we skip past checks 3, 4 and 5.
4227 if (balance
&& !(*balance
))
4230 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
4233 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4234 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
4235 !sds
.busiest_has_capacity
)
4238 if (sds
.this_load
>= sds
.max_load
)
4241 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
4243 if (sds
.this_load
>= sds
.avg_load
)
4247 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
4248 * And to check for busy balance use !idle_cpu instead of
4249 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
4250 * even when they are idle.
4252 if (idle
== CPU_NEWLY_IDLE
|| !idle_cpu(this_cpu
)) {
4253 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
4257 * This cpu is idle. If the busiest group load doesn't
4258 * have more tasks than the number of available cpu's and
4259 * there is no imbalance between this and busiest group
4260 * wrt to idle cpu's, it is balanced.
4262 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
4263 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
4268 /* Looks like there is an imbalance. Compute it */
4269 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4274 * There is no obvious imbalance. But check if we can do some balancing
4277 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4285 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4288 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
4289 unsigned long imbalance
, const struct cpumask
*cpus
)
4291 struct rq
*busiest
= NULL
, *rq
;
4292 unsigned long max_load
= 0;
4295 for_each_cpu(i
, sched_group_cpus(group
)) {
4296 unsigned long power
= power_of(i
);
4297 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
4300 if (!cpumask_test_cpu(i
, cpus
))
4304 wl
= weighted_cpuload(i
);
4307 * When comparing with imbalance, use weighted_cpuload()
4308 * which is not scaled with the cpu power.
4310 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4314 * For the load comparisons with the other cpu's, consider
4315 * the weighted_cpuload() scaled with the cpu power, so that
4316 * the load can be moved away from the cpu that is potentially
4317 * running at a lower capacity.
4319 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
4321 if (wl
> max_load
) {
4331 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4332 * so long as it is large enough.
4334 #define MAX_PINNED_INTERVAL 512
4336 /* Working cpumask for load_balance and load_balance_newidle. */
4337 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4340 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4341 * tasks if there is an imbalance.
4343 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4344 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4347 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4348 struct sched_group
*group
;
4349 unsigned long imbalance
;
4351 unsigned long flags
;
4352 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4354 cpumask_copy(cpus
, cpu_active_mask
);
4357 * When power savings policy is enabled for the parent domain, idle
4358 * sibling can pick up load irrespective of busy siblings. In this case,
4359 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4360 * portraying it as CPU_NOT_IDLE.
4362 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4363 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4366 schedstat_inc(sd
, lb_count
[idle
]);
4370 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4377 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4381 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4383 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4387 BUG_ON(busiest
== this_rq
);
4389 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4392 if (busiest
->nr_running
> 1) {
4394 * Attempt to move tasks. If find_busiest_group has found
4395 * an imbalance but busiest->nr_running <= 1, the group is
4396 * still unbalanced. ld_moved simply stays zero, so it is
4397 * correctly treated as an imbalance.
4399 local_irq_save(flags
);
4400 double_rq_lock(this_rq
, busiest
);
4401 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4402 imbalance
, sd
, idle
, &all_pinned
);
4403 double_rq_unlock(this_rq
, busiest
);
4404 local_irq_restore(flags
);
4407 * some other cpu did the load balance for us.
4409 if (ld_moved
&& this_cpu
!= smp_processor_id())
4410 resched_cpu(this_cpu
);
4412 /* All tasks on this runqueue were pinned by CPU affinity */
4413 if (unlikely(all_pinned
)) {
4414 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4415 if (!cpumask_empty(cpus
))
4422 schedstat_inc(sd
, lb_failed
[idle
]);
4424 * Increment the failure counter only on periodic balance.
4425 * We do not want newidle balance, which can be very
4426 * frequent, pollute the failure counter causing
4427 * excessive cache_hot migrations and active balances.
4429 if (idle
!= CPU_NEWLY_IDLE
)
4430 sd
->nr_balance_failed
++;
4432 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4434 spin_lock_irqsave(&busiest
->lock
, flags
);
4436 /* don't kick the migration_thread, if the curr
4437 * task on busiest cpu can't be moved to this_cpu
4439 if (!cpumask_test_cpu(this_cpu
,
4440 &busiest
->curr
->cpus_allowed
)) {
4441 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4443 goto out_one_pinned
;
4446 if (!busiest
->active_balance
) {
4447 busiest
->active_balance
= 1;
4448 busiest
->push_cpu
= this_cpu
;
4451 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4453 wake_up_process(busiest
->migration_thread
);
4456 * We've kicked active balancing, reset the failure
4459 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4462 sd
->nr_balance_failed
= 0;
4464 if (likely(!active_balance
)) {
4465 /* We were unbalanced, so reset the balancing interval */
4466 sd
->balance_interval
= sd
->min_interval
;
4469 * If we've begun active balancing, start to back off. This
4470 * case may not be covered by the all_pinned logic if there
4471 * is only 1 task on the busy runqueue (because we don't call
4474 if (sd
->balance_interval
< sd
->max_interval
)
4475 sd
->balance_interval
*= 2;
4478 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4479 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4485 schedstat_inc(sd
, lb_balanced
[idle
]);
4487 sd
->nr_balance_failed
= 0;
4490 /* tune up the balancing interval */
4491 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4492 (sd
->balance_interval
< sd
->max_interval
))
4493 sd
->balance_interval
*= 2;
4495 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4496 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4507 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4508 * tasks if there is an imbalance.
4510 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4511 * this_rq is locked.
4514 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4516 struct sched_group
*group
;
4517 struct rq
*busiest
= NULL
;
4518 unsigned long imbalance
;
4522 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4524 cpumask_copy(cpus
, cpu_active_mask
);
4527 * When power savings policy is enabled for the parent domain, idle
4528 * sibling can pick up load irrespective of busy siblings. In this case,
4529 * let the state of idle sibling percolate up as IDLE, instead of
4530 * portraying it as CPU_NOT_IDLE.
4532 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4533 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4536 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4538 update_shares_locked(this_rq
, sd
);
4539 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4540 &sd_idle
, cpus
, NULL
);
4542 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4546 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4548 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4552 BUG_ON(busiest
== this_rq
);
4554 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4557 if (busiest
->nr_running
> 1) {
4558 /* Attempt to move tasks */
4559 double_lock_balance(this_rq
, busiest
);
4560 /* this_rq->clock is already updated */
4561 update_rq_clock(busiest
);
4562 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4563 imbalance
, sd
, CPU_NEWLY_IDLE
,
4565 double_unlock_balance(this_rq
, busiest
);
4567 if (unlikely(all_pinned
)) {
4568 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4569 if (!cpumask_empty(cpus
))
4575 int active_balance
= 0;
4577 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4578 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4579 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4582 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4585 if (sd
->nr_balance_failed
++ < 2)
4589 * The only task running in a non-idle cpu can be moved to this
4590 * cpu in an attempt to completely freeup the other CPU
4591 * package. The same method used to move task in load_balance()
4592 * have been extended for load_balance_newidle() to speedup
4593 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4595 * The package power saving logic comes from
4596 * find_busiest_group(). If there are no imbalance, then
4597 * f_b_g() will return NULL. However when sched_mc={1,2} then
4598 * f_b_g() will select a group from which a running task may be
4599 * pulled to this cpu in order to make the other package idle.
4600 * If there is no opportunity to make a package idle and if
4601 * there are no imbalance, then f_b_g() will return NULL and no
4602 * action will be taken in load_balance_newidle().
4604 * Under normal task pull operation due to imbalance, there
4605 * will be more than one task in the source run queue and
4606 * move_tasks() will succeed. ld_moved will be true and this
4607 * active balance code will not be triggered.
4610 /* Lock busiest in correct order while this_rq is held */
4611 double_lock_balance(this_rq
, busiest
);
4614 * don't kick the migration_thread, if the curr
4615 * task on busiest cpu can't be moved to this_cpu
4617 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4618 double_unlock_balance(this_rq
, busiest
);
4623 if (!busiest
->active_balance
) {
4624 busiest
->active_balance
= 1;
4625 busiest
->push_cpu
= this_cpu
;
4629 double_unlock_balance(this_rq
, busiest
);
4631 * Should not call ttwu while holding a rq->lock
4633 spin_unlock(&this_rq
->lock
);
4635 wake_up_process(busiest
->migration_thread
);
4636 spin_lock(&this_rq
->lock
);
4639 sd
->nr_balance_failed
= 0;
4641 update_shares_locked(this_rq
, sd
);
4645 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4646 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4647 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4649 sd
->nr_balance_failed
= 0;
4655 * idle_balance is called by schedule() if this_cpu is about to become
4656 * idle. Attempts to pull tasks from other CPUs.
4658 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4660 struct sched_domain
*sd
;
4661 int pulled_task
= 0;
4662 unsigned long next_balance
= jiffies
+ HZ
;
4664 this_rq
->idle_stamp
= this_rq
->clock
;
4666 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4669 for_each_domain(this_cpu
, sd
) {
4670 unsigned long interval
;
4672 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4675 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4676 /* If we've pulled tasks over stop searching: */
4677 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4680 interval
= msecs_to_jiffies(sd
->balance_interval
);
4681 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4682 next_balance
= sd
->last_balance
+ interval
;
4684 this_rq
->idle_stamp
= 0;
4688 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4690 * We are going idle. next_balance may be set based on
4691 * a busy processor. So reset next_balance.
4693 this_rq
->next_balance
= next_balance
;
4698 * active_load_balance is run by migration threads. It pushes running tasks
4699 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4700 * running on each physical CPU where possible, and avoids physical /
4701 * logical imbalances.
4703 * Called with busiest_rq locked.
4705 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4707 int target_cpu
= busiest_rq
->push_cpu
;
4708 struct sched_domain
*sd
;
4709 struct rq
*target_rq
;
4711 /* Is there any task to move? */
4712 if (busiest_rq
->nr_running
<= 1)
4715 target_rq
= cpu_rq(target_cpu
);
4718 * This condition is "impossible", if it occurs
4719 * we need to fix it. Originally reported by
4720 * Bjorn Helgaas on a 128-cpu setup.
4722 BUG_ON(busiest_rq
== target_rq
);
4724 /* move a task from busiest_rq to target_rq */
4725 double_lock_balance(busiest_rq
, target_rq
);
4726 update_rq_clock(busiest_rq
);
4727 update_rq_clock(target_rq
);
4729 /* Search for an sd spanning us and the target CPU. */
4730 for_each_domain(target_cpu
, sd
) {
4731 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4732 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4737 schedstat_inc(sd
, alb_count
);
4739 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4741 schedstat_inc(sd
, alb_pushed
);
4743 schedstat_inc(sd
, alb_failed
);
4745 double_unlock_balance(busiest_rq
, target_rq
);
4750 atomic_t load_balancer
;
4751 cpumask_var_t cpu_mask
;
4752 cpumask_var_t ilb_grp_nohz_mask
;
4753 } nohz ____cacheline_aligned
= {
4754 .load_balancer
= ATOMIC_INIT(-1),
4757 int get_nohz_load_balancer(void)
4759 return atomic_read(&nohz
.load_balancer
);
4762 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4764 * lowest_flag_domain - Return lowest sched_domain containing flag.
4765 * @cpu: The cpu whose lowest level of sched domain is to
4767 * @flag: The flag to check for the lowest sched_domain
4768 * for the given cpu.
4770 * Returns the lowest sched_domain of a cpu which contains the given flag.
4772 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4774 struct sched_domain
*sd
;
4776 for_each_domain(cpu
, sd
)
4777 if (sd
&& (sd
->flags
& flag
))
4784 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4785 * @cpu: The cpu whose domains we're iterating over.
4786 * @sd: variable holding the value of the power_savings_sd
4788 * @flag: The flag to filter the sched_domains to be iterated.
4790 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4791 * set, starting from the lowest sched_domain to the highest.
4793 #define for_each_flag_domain(cpu, sd, flag) \
4794 for (sd = lowest_flag_domain(cpu, flag); \
4795 (sd && (sd->flags & flag)); sd = sd->parent)
4798 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4799 * @ilb_group: group to be checked for semi-idleness
4801 * Returns: 1 if the group is semi-idle. 0 otherwise.
4803 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4804 * and atleast one non-idle CPU. This helper function checks if the given
4805 * sched_group is semi-idle or not.
4807 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4809 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4810 sched_group_cpus(ilb_group
));
4813 * A sched_group is semi-idle when it has atleast one busy cpu
4814 * and atleast one idle cpu.
4816 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4819 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4825 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4826 * @cpu: The cpu which is nominating a new idle_load_balancer.
4828 * Returns: Returns the id of the idle load balancer if it exists,
4829 * Else, returns >= nr_cpu_ids.
4831 * This algorithm picks the idle load balancer such that it belongs to a
4832 * semi-idle powersavings sched_domain. The idea is to try and avoid
4833 * completely idle packages/cores just for the purpose of idle load balancing
4834 * when there are other idle cpu's which are better suited for that job.
4836 static int find_new_ilb(int cpu
)
4838 struct sched_domain
*sd
;
4839 struct sched_group
*ilb_group
;
4842 * Have idle load balancer selection from semi-idle packages only
4843 * when power-aware load balancing is enabled
4845 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4849 * Optimize for the case when we have no idle CPUs or only one
4850 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4852 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4855 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4856 ilb_group
= sd
->groups
;
4859 if (is_semi_idle_group(ilb_group
))
4860 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4862 ilb_group
= ilb_group
->next
;
4864 } while (ilb_group
!= sd
->groups
);
4868 return cpumask_first(nohz
.cpu_mask
);
4870 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4871 static inline int find_new_ilb(int call_cpu
)
4873 return cpumask_first(nohz
.cpu_mask
);
4878 * This routine will try to nominate the ilb (idle load balancing)
4879 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4880 * load balancing on behalf of all those cpus. If all the cpus in the system
4881 * go into this tickless mode, then there will be no ilb owner (as there is
4882 * no need for one) and all the cpus will sleep till the next wakeup event
4885 * For the ilb owner, tick is not stopped. And this tick will be used
4886 * for idle load balancing. ilb owner will still be part of
4889 * While stopping the tick, this cpu will become the ilb owner if there
4890 * is no other owner. And will be the owner till that cpu becomes busy
4891 * or if all cpus in the system stop their ticks at which point
4892 * there is no need for ilb owner.
4894 * When the ilb owner becomes busy, it nominates another owner, during the
4895 * next busy scheduler_tick()
4897 int select_nohz_load_balancer(int stop_tick
)
4899 int cpu
= smp_processor_id();
4902 cpu_rq(cpu
)->in_nohz_recently
= 1;
4904 if (!cpu_active(cpu
)) {
4905 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4909 * If we are going offline and still the leader,
4912 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4918 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4920 /* time for ilb owner also to sleep */
4921 if (cpumask_weight(nohz
.cpu_mask
) == num_active_cpus()) {
4922 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4923 atomic_set(&nohz
.load_balancer
, -1);
4927 if (atomic_read(&nohz
.load_balancer
) == -1) {
4928 /* make me the ilb owner */
4929 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4931 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4934 if (!(sched_smt_power_savings
||
4935 sched_mc_power_savings
))
4938 * Check to see if there is a more power-efficient
4941 new_ilb
= find_new_ilb(cpu
);
4942 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4943 atomic_set(&nohz
.load_balancer
, -1);
4944 resched_cpu(new_ilb
);
4950 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4953 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4955 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4956 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4963 static DEFINE_SPINLOCK(balancing
);
4966 * It checks each scheduling domain to see if it is due to be balanced,
4967 * and initiates a balancing operation if so.
4969 * Balancing parameters are set up in arch_init_sched_domains.
4971 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4974 struct rq
*rq
= cpu_rq(cpu
);
4975 unsigned long interval
;
4976 struct sched_domain
*sd
;
4977 /* Earliest time when we have to do rebalance again */
4978 unsigned long next_balance
= jiffies
+ 60*HZ
;
4979 int update_next_balance
= 0;
4982 for_each_domain(cpu
, sd
) {
4983 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4986 interval
= sd
->balance_interval
;
4987 if (idle
!= CPU_IDLE
)
4988 interval
*= sd
->busy_factor
;
4990 /* scale ms to jiffies */
4991 interval
= msecs_to_jiffies(interval
);
4992 if (unlikely(!interval
))
4994 if (interval
> HZ
*NR_CPUS
/10)
4995 interval
= HZ
*NR_CPUS
/10;
4997 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4999 if (need_serialize
) {
5000 if (!spin_trylock(&balancing
))
5004 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
5005 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
5007 * We've pulled tasks over so either we're no
5008 * longer idle, or one of our SMT siblings is
5011 idle
= CPU_NOT_IDLE
;
5013 sd
->last_balance
= jiffies
;
5016 spin_unlock(&balancing
);
5018 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
5019 next_balance
= sd
->last_balance
+ interval
;
5020 update_next_balance
= 1;
5024 * Stop the load balance at this level. There is another
5025 * CPU in our sched group which is doing load balancing more
5033 * next_balance will be updated only when there is a need.
5034 * When the cpu is attached to null domain for ex, it will not be
5037 if (likely(update_next_balance
))
5038 rq
->next_balance
= next_balance
;
5042 * run_rebalance_domains is triggered when needed from the scheduler tick.
5043 * In CONFIG_NO_HZ case, the idle load balance owner will do the
5044 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5046 static void run_rebalance_domains(struct softirq_action
*h
)
5048 int this_cpu
= smp_processor_id();
5049 struct rq
*this_rq
= cpu_rq(this_cpu
);
5050 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
5051 CPU_IDLE
: CPU_NOT_IDLE
;
5053 rebalance_domains(this_cpu
, idle
);
5057 * If this cpu is the owner for idle load balancing, then do the
5058 * balancing on behalf of the other idle cpus whose ticks are
5061 if (this_rq
->idle_at_tick
&&
5062 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
5066 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
5067 if (balance_cpu
== this_cpu
)
5071 * If this cpu gets work to do, stop the load balancing
5072 * work being done for other cpus. Next load
5073 * balancing owner will pick it up.
5078 rebalance_domains(balance_cpu
, CPU_IDLE
);
5080 rq
= cpu_rq(balance_cpu
);
5081 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
5082 this_rq
->next_balance
= rq
->next_balance
;
5088 static inline int on_null_domain(int cpu
)
5090 return !rcu_dereference(cpu_rq(cpu
)->sd
);
5094 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5096 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
5097 * idle load balancing owner or decide to stop the periodic load balancing,
5098 * if the whole system is idle.
5100 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
5104 * If we were in the nohz mode recently and busy at the current
5105 * scheduler tick, then check if we need to nominate new idle
5108 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
5109 rq
->in_nohz_recently
= 0;
5111 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
5112 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
5113 atomic_set(&nohz
.load_balancer
, -1);
5116 if (atomic_read(&nohz
.load_balancer
) == -1) {
5117 int ilb
= find_new_ilb(cpu
);
5119 if (ilb
< nr_cpu_ids
)
5125 * If this cpu is idle and doing idle load balancing for all the
5126 * cpus with ticks stopped, is it time for that to stop?
5128 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
5129 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
5135 * If this cpu is idle and the idle load balancing is done by
5136 * someone else, then no need raise the SCHED_SOFTIRQ
5138 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
5139 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
5142 /* Don't need to rebalance while attached to NULL domain */
5143 if (time_after_eq(jiffies
, rq
->next_balance
) &&
5144 likely(!on_null_domain(cpu
)))
5145 raise_softirq(SCHED_SOFTIRQ
);
5148 #else /* CONFIG_SMP */
5151 * on UP we do not need to balance between CPUs:
5153 static inline void idle_balance(int cpu
, struct rq
*rq
)
5159 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
5161 EXPORT_PER_CPU_SYMBOL(kstat
);
5164 * Return any ns on the sched_clock that have not yet been accounted in
5165 * @p in case that task is currently running.
5167 * Called with task_rq_lock() held on @rq.
5169 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
5173 if (task_current(rq
, p
)) {
5174 update_rq_clock(rq
);
5175 ns
= rq
->clock_task
- p
->se
.exec_start
;
5183 unsigned long long task_delta_exec(struct task_struct
*p
)
5185 unsigned long flags
;
5189 rq
= task_rq_lock(p
, &flags
);
5190 ns
= do_task_delta_exec(p
, rq
);
5191 task_rq_unlock(rq
, &flags
);
5197 * Return accounted runtime for the task.
5198 * In case the task is currently running, return the runtime plus current's
5199 * pending runtime that have not been accounted yet.
5201 unsigned long long task_sched_runtime(struct task_struct
*p
)
5203 unsigned long flags
;
5207 rq
= task_rq_lock(p
, &flags
);
5208 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5209 task_rq_unlock(rq
, &flags
);
5215 * Return sum_exec_runtime for the thread group.
5216 * In case the task is currently running, return the sum plus current's
5217 * pending runtime that have not been accounted yet.
5219 * Note that the thread group might have other running tasks as well,
5220 * so the return value not includes other pending runtime that other
5221 * running tasks might have.
5223 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
5225 struct task_cputime totals
;
5226 unsigned long flags
;
5230 rq
= task_rq_lock(p
, &flags
);
5231 thread_group_cputime(p
, &totals
);
5232 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5233 task_rq_unlock(rq
, &flags
);
5239 * Account user cpu time to a process.
5240 * @p: the process that the cpu time gets accounted to
5241 * @cputime: the cpu time spent in user space since the last update
5242 * @cputime_scaled: cputime scaled by cpu frequency
5244 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
5245 cputime_t cputime_scaled
)
5247 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5250 /* Add user time to process. */
5251 p
->utime
= cputime_add(p
->utime
, cputime
);
5252 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5253 account_group_user_time(p
, cputime
);
5255 /* Add user time to cpustat. */
5256 tmp
= cputime_to_cputime64(cputime
);
5257 if (TASK_NICE(p
) > 0)
5258 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5260 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5262 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
5263 /* Account for user time used */
5264 acct_update_integrals(p
);
5268 * Account guest cpu time to a process.
5269 * @p: the process that the cpu time gets accounted to
5270 * @cputime: the cpu time spent in virtual machine since the last update
5271 * @cputime_scaled: cputime scaled by cpu frequency
5273 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
5274 cputime_t cputime_scaled
)
5277 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5279 tmp
= cputime_to_cputime64(cputime
);
5281 /* Add guest time to process. */
5282 p
->utime
= cputime_add(p
->utime
, cputime
);
5283 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5284 account_group_user_time(p
, cputime
);
5285 p
->gtime
= cputime_add(p
->gtime
, cputime
);
5287 /* Add guest time to cpustat. */
5288 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5289 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
5293 * Account system cpu time to a process.
5294 * @p: the process that the cpu time gets accounted to
5295 * @hardirq_offset: the offset to subtract from hardirq_count()
5296 * @cputime: the cpu time spent in kernel space since the last update
5297 * @cputime_scaled: cputime scaled by cpu frequency
5299 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
5300 cputime_t cputime
, cputime_t cputime_scaled
)
5302 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5305 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
5306 account_guest_time(p
, cputime
, cputime_scaled
);
5310 /* Add system time to process. */
5311 p
->stime
= cputime_add(p
->stime
, cputime
);
5312 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
5313 account_group_system_time(p
, cputime
);
5315 /* Add system time to cpustat. */
5316 tmp
= cputime_to_cputime64(cputime
);
5317 if (hardirq_count() - hardirq_offset
)
5318 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
5319 else if (in_serving_softirq())
5320 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
5322 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
5324 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
5326 /* Account for system time used */
5327 acct_update_integrals(p
);
5331 * Account for involuntary wait time.
5332 * @steal: the cpu time spent in involuntary wait
5334 void account_steal_time(cputime_t cputime
)
5336 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5337 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5339 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
5343 * Account for idle time.
5344 * @cputime: the cpu time spent in idle wait
5346 void account_idle_time(cputime_t cputime
)
5348 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5349 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5350 struct rq
*rq
= this_rq();
5352 if (atomic_read(&rq
->nr_iowait
) > 0)
5353 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
5355 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5358 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5361 * Account a single tick of cpu time.
5362 * @p: the process that the cpu time gets accounted to
5363 * @user_tick: indicates if the tick is a user or a system tick
5365 void account_process_tick(struct task_struct
*p
, int user_tick
)
5367 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
5368 struct rq
*rq
= this_rq();
5371 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
5372 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5373 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
5376 account_idle_time(cputime_one_jiffy
);
5380 * Account multiple ticks of steal time.
5381 * @p: the process from which the cpu time has been stolen
5382 * @ticks: number of stolen ticks
5384 void account_steal_ticks(unsigned long ticks
)
5386 account_steal_time(jiffies_to_cputime(ticks
));
5390 * Account multiple ticks of idle time.
5391 * @ticks: number of stolen ticks
5393 void account_idle_ticks(unsigned long ticks
)
5395 account_idle_time(jiffies_to_cputime(ticks
));
5401 * Use precise platform statistics if available:
5403 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5404 cputime_t
task_utime(struct task_struct
*p
)
5409 cputime_t
task_stime(struct task_struct
*p
)
5414 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5416 struct task_cputime cputime
;
5418 thread_group_cputime(p
, &cputime
);
5420 *ut
= cputime
.utime
;
5421 *st
= cputime
.stime
;
5425 #ifndef nsecs_to_cputime
5426 # define nsecs_to_cputime(__nsecs) \
5427 msecs_to_cputime(div_u64((__nsecs), NSEC_PER_MSEC))
5430 cputime_t
task_utime(struct task_struct
*p
)
5432 cputime_t utime
= p
->utime
, total
= utime
+ p
->stime
;
5436 * Use CFS's precise accounting:
5438 temp
= (u64
)nsecs_to_cputime(p
->se
.sum_exec_runtime
);
5442 do_div(temp
, total
);
5444 utime
= (cputime_t
)temp
;
5446 p
->prev_utime
= max(p
->prev_utime
, utime
);
5447 return p
->prev_utime
;
5450 cputime_t
task_stime(struct task_struct
*p
)
5455 * Use CFS's precise accounting. (we subtract utime from
5456 * the total, to make sure the total observed by userspace
5457 * grows monotonically - apps rely on that):
5459 stime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
) - task_utime(p
);
5462 p
->prev_stime
= max(p
->prev_stime
, stime
);
5464 return p
->prev_stime
;
5468 * Must be called with siglock held.
5470 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5472 struct signal_struct
*sig
= p
->signal
;
5473 struct task_cputime cputime
;
5474 cputime_t rtime
, utime
, total
;
5476 thread_group_cputime(p
, &cputime
);
5478 total
= cputime_add(cputime
.utime
, cputime
.stime
);
5479 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
5484 temp
*= cputime
.utime
;
5485 do_div(temp
, total
);
5486 utime
= (cputime_t
)temp
;
5490 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
5491 sig
->prev_stime
= max(sig
->prev_stime
,
5492 cputime_sub(rtime
, sig
->prev_utime
));
5494 *ut
= sig
->prev_utime
;
5495 *st
= sig
->prev_stime
;
5499 inline cputime_t
task_gtime(struct task_struct
*p
)
5505 * This function gets called by the timer code, with HZ frequency.
5506 * We call it with interrupts disabled.
5508 * It also gets called by the fork code, when changing the parent's
5511 void scheduler_tick(void)
5513 int cpu
= smp_processor_id();
5514 struct rq
*rq
= cpu_rq(cpu
);
5515 struct task_struct
*curr
= rq
->curr
;
5519 spin_lock(&rq
->lock
);
5520 update_rq_clock(rq
);
5521 update_cpu_load(rq
);
5522 curr
->sched_class
->task_tick(rq
, curr
, 0);
5523 spin_unlock(&rq
->lock
);
5525 perf_event_task_tick(curr
, cpu
);
5528 rq
->idle_at_tick
= idle_cpu(cpu
);
5529 trigger_load_balance(rq
, cpu
);
5533 notrace
unsigned long get_parent_ip(unsigned long addr
)
5535 if (in_lock_functions(addr
)) {
5536 addr
= CALLER_ADDR2
;
5537 if (in_lock_functions(addr
))
5538 addr
= CALLER_ADDR3
;
5543 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5544 defined(CONFIG_PREEMPT_TRACER))
5546 void __kprobes
add_preempt_count(int val
)
5548 #ifdef CONFIG_DEBUG_PREEMPT
5552 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5555 preempt_count() += val
;
5556 #ifdef CONFIG_DEBUG_PREEMPT
5558 * Spinlock count overflowing soon?
5560 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5563 if (preempt_count() == val
)
5564 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5566 EXPORT_SYMBOL(add_preempt_count
);
5568 void __kprobes
sub_preempt_count(int val
)
5570 #ifdef CONFIG_DEBUG_PREEMPT
5574 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5577 * Is the spinlock portion underflowing?
5579 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5580 !(preempt_count() & PREEMPT_MASK
)))
5584 if (preempt_count() == val
)
5585 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5586 preempt_count() -= val
;
5588 EXPORT_SYMBOL(sub_preempt_count
);
5593 * Print scheduling while atomic bug:
5595 static noinline
void __schedule_bug(struct task_struct
*prev
)
5597 struct pt_regs
*regs
= get_irq_regs();
5599 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5600 prev
->comm
, prev
->pid
, preempt_count());
5602 debug_show_held_locks(prev
);
5604 if (irqs_disabled())
5605 print_irqtrace_events(prev
);
5614 * Various schedule()-time debugging checks and statistics:
5616 static inline void schedule_debug(struct task_struct
*prev
)
5619 * Test if we are atomic. Since do_exit() needs to call into
5620 * schedule() atomically, we ignore that path for now.
5621 * Otherwise, whine if we are scheduling when we should not be.
5623 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5624 __schedule_bug(prev
);
5626 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5628 schedstat_inc(this_rq(), sched_count
);
5629 #ifdef CONFIG_SCHEDSTATS
5630 if (unlikely(prev
->lock_depth
>= 0)) {
5631 schedstat_inc(this_rq(), bkl_count
);
5632 schedstat_inc(prev
, sched_info
.bkl_count
);
5637 static void put_prev_task(struct rq
*rq
, struct task_struct
*p
)
5639 u64 runtime
= p
->se
.sum_exec_runtime
- p
->se
.prev_sum_exec_runtime
;
5641 update_avg(&p
->se
.avg_running
, runtime
);
5643 if (p
->state
== TASK_RUNNING
) {
5645 * In order to avoid avg_overlap growing stale when we are
5646 * indeed overlapping and hence not getting put to sleep, grow
5647 * the avg_overlap on preemption.
5649 * We use the average preemption runtime because that
5650 * correlates to the amount of cache footprint a task can
5653 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5654 update_avg(&p
->se
.avg_overlap
, runtime
);
5656 update_avg(&p
->se
.avg_running
, 0);
5658 p
->sched_class
->put_prev_task(rq
, p
);
5662 * Pick up the highest-prio task:
5664 static inline struct task_struct
*
5665 pick_next_task(struct rq
*rq
)
5667 const struct sched_class
*class;
5668 struct task_struct
*p
;
5671 * Optimization: we know that if all tasks are in
5672 * the fair class we can call that function directly:
5674 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5675 p
= fair_sched_class
.pick_next_task(rq
);
5680 class = sched_class_highest
;
5682 p
= class->pick_next_task(rq
);
5686 * Will never be NULL as the idle class always
5687 * returns a non-NULL p:
5689 class = class->next
;
5694 * schedule() is the main scheduler function.
5696 asmlinkage
void __sched
schedule(void)
5698 struct task_struct
*prev
, *next
;
5699 unsigned long *switch_count
;
5705 cpu
= smp_processor_id();
5709 switch_count
= &prev
->nivcsw
;
5711 release_kernel_lock(prev
);
5712 need_resched_nonpreemptible
:
5714 schedule_debug(prev
);
5716 if (sched_feat(HRTICK
))
5719 spin_lock_irq(&rq
->lock
);
5720 update_rq_clock(rq
);
5721 clear_tsk_need_resched(prev
);
5723 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5724 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5725 prev
->state
= TASK_RUNNING
;
5727 deactivate_task(rq
, prev
, 1);
5728 switch_count
= &prev
->nvcsw
;
5731 pre_schedule(rq
, prev
);
5733 if (unlikely(!rq
->nr_running
))
5734 idle_balance(cpu
, rq
);
5736 put_prev_task(rq
, prev
);
5737 next
= pick_next_task(rq
);
5739 if (likely(prev
!= next
)) {
5740 sched_info_switch(prev
, next
);
5741 perf_event_task_sched_out(prev
, next
, cpu
);
5747 context_switch(rq
, prev
, next
); /* unlocks the rq */
5749 * the context switch might have flipped the stack from under
5750 * us, hence refresh the local variables.
5752 cpu
= smp_processor_id();
5755 spin_unlock_irq(&rq
->lock
);
5759 if (unlikely(reacquire_kernel_lock(current
) < 0))
5760 goto need_resched_nonpreemptible
;
5762 preempt_enable_no_resched();
5766 EXPORT_SYMBOL(schedule
);
5770 * Look out! "owner" is an entirely speculative pointer
5771 * access and not reliable.
5773 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5778 if (!sched_feat(OWNER_SPIN
))
5781 #ifdef CONFIG_DEBUG_PAGEALLOC
5783 * Need to access the cpu field knowing that
5784 * DEBUG_PAGEALLOC could have unmapped it if
5785 * the mutex owner just released it and exited.
5787 if (probe_kernel_address(&owner
->cpu
, cpu
))
5794 * Even if the access succeeded (likely case),
5795 * the cpu field may no longer be valid.
5797 if (cpu
>= nr_cpumask_bits
)
5801 * We need to validate that we can do a
5802 * get_cpu() and that we have the percpu area.
5804 if (!cpu_online(cpu
))
5811 * Owner changed, break to re-assess state.
5813 if (lock
->owner
!= owner
)
5817 * Is that owner really running on that cpu?
5819 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5829 #ifdef CONFIG_PREEMPT
5831 * this is the entry point to schedule() from in-kernel preemption
5832 * off of preempt_enable. Kernel preemptions off return from interrupt
5833 * occur there and call schedule directly.
5835 asmlinkage
void __sched
preempt_schedule(void)
5837 struct thread_info
*ti
= current_thread_info();
5840 * If there is a non-zero preempt_count or interrupts are disabled,
5841 * we do not want to preempt the current task. Just return..
5843 if (likely(ti
->preempt_count
|| irqs_disabled()))
5847 add_preempt_count(PREEMPT_ACTIVE
);
5849 sub_preempt_count(PREEMPT_ACTIVE
);
5852 * Check again in case we missed a preemption opportunity
5853 * between schedule and now.
5856 } while (need_resched());
5858 EXPORT_SYMBOL(preempt_schedule
);
5861 * this is the entry point to schedule() from kernel preemption
5862 * off of irq context.
5863 * Note, that this is called and return with irqs disabled. This will
5864 * protect us against recursive calling from irq.
5866 asmlinkage
void __sched
preempt_schedule_irq(void)
5868 struct thread_info
*ti
= current_thread_info();
5870 /* Catch callers which need to be fixed */
5871 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5874 add_preempt_count(PREEMPT_ACTIVE
);
5877 local_irq_disable();
5878 sub_preempt_count(PREEMPT_ACTIVE
);
5881 * Check again in case we missed a preemption opportunity
5882 * between schedule and now.
5885 } while (need_resched());
5888 #endif /* CONFIG_PREEMPT */
5890 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
5893 return try_to_wake_up(curr
->private, mode
, wake_flags
);
5895 EXPORT_SYMBOL(default_wake_function
);
5898 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5899 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5900 * number) then we wake all the non-exclusive tasks and one exclusive task.
5902 * There are circumstances in which we can try to wake a task which has already
5903 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5904 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5906 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5907 int nr_exclusive
, int wake_flags
, void *key
)
5909 wait_queue_t
*curr
, *next
;
5911 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5912 unsigned flags
= curr
->flags
;
5914 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
5915 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5921 * __wake_up - wake up threads blocked on a waitqueue.
5923 * @mode: which threads
5924 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5925 * @key: is directly passed to the wakeup function
5927 * It may be assumed that this function implies a write memory barrier before
5928 * changing the task state if and only if any tasks are woken up.
5930 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5931 int nr_exclusive
, void *key
)
5933 unsigned long flags
;
5935 spin_lock_irqsave(&q
->lock
, flags
);
5936 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5937 spin_unlock_irqrestore(&q
->lock
, flags
);
5939 EXPORT_SYMBOL(__wake_up
);
5942 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5944 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5946 __wake_up_common(q
, mode
, 1, 0, NULL
);
5949 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5951 __wake_up_common(q
, mode
, 1, 0, key
);
5955 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5957 * @mode: which threads
5958 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5959 * @key: opaque value to be passed to wakeup targets
5961 * The sync wakeup differs that the waker knows that it will schedule
5962 * away soon, so while the target thread will be woken up, it will not
5963 * be migrated to another CPU - ie. the two threads are 'synchronized'
5964 * with each other. This can prevent needless bouncing between CPUs.
5966 * On UP it can prevent extra preemption.
5968 * It may be assumed that this function implies a write memory barrier before
5969 * changing the task state if and only if any tasks are woken up.
5971 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5972 int nr_exclusive
, void *key
)
5974 unsigned long flags
;
5975 int wake_flags
= WF_SYNC
;
5980 if (unlikely(!nr_exclusive
))
5983 spin_lock_irqsave(&q
->lock
, flags
);
5984 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
5985 spin_unlock_irqrestore(&q
->lock
, flags
);
5987 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5990 * __wake_up_sync - see __wake_up_sync_key()
5992 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5994 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5996 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5999 * complete: - signals a single thread waiting on this completion
6000 * @x: holds the state of this particular completion
6002 * This will wake up a single thread waiting on this completion. Threads will be
6003 * awakened in the same order in which they were queued.
6005 * See also complete_all(), wait_for_completion() and related routines.
6007 * It may be assumed that this function implies a write memory barrier before
6008 * changing the task state if and only if any tasks are woken up.
6010 void complete(struct completion
*x
)
6012 unsigned long flags
;
6014 spin_lock_irqsave(&x
->wait
.lock
, flags
);
6016 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
6017 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
6019 EXPORT_SYMBOL(complete
);
6022 * complete_all: - signals all threads waiting on this completion
6023 * @x: holds the state of this particular completion
6025 * This will wake up all threads waiting on this particular completion event.
6027 * It may be assumed that this function implies a write memory barrier before
6028 * changing the task state if and only if any tasks are woken up.
6030 void complete_all(struct completion
*x
)
6032 unsigned long flags
;
6034 spin_lock_irqsave(&x
->wait
.lock
, flags
);
6035 x
->done
+= UINT_MAX
/2;
6036 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
6037 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
6039 EXPORT_SYMBOL(complete_all
);
6041 static inline long __sched
6042 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
6045 DECLARE_WAITQUEUE(wait
, current
);
6047 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
6048 __add_wait_queue_tail(&x
->wait
, &wait
);
6050 if (signal_pending_state(state
, current
)) {
6051 timeout
= -ERESTARTSYS
;
6054 __set_current_state(state
);
6055 spin_unlock_irq(&x
->wait
.lock
);
6056 timeout
= schedule_timeout(timeout
);
6057 spin_lock_irq(&x
->wait
.lock
);
6058 } while (!x
->done
&& timeout
);
6059 __remove_wait_queue(&x
->wait
, &wait
);
6064 return timeout
?: 1;
6068 wait_for_common(struct completion
*x
, long timeout
, int state
)
6072 spin_lock_irq(&x
->wait
.lock
);
6073 timeout
= do_wait_for_common(x
, timeout
, state
);
6074 spin_unlock_irq(&x
->wait
.lock
);
6079 * wait_for_completion: - waits for completion of a task
6080 * @x: holds the state of this particular completion
6082 * This waits to be signaled for completion of a specific task. It is NOT
6083 * interruptible and there is no timeout.
6085 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
6086 * and interrupt capability. Also see complete().
6088 void __sched
wait_for_completion(struct completion
*x
)
6090 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
6092 EXPORT_SYMBOL(wait_for_completion
);
6095 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
6096 * @x: holds the state of this particular completion
6097 * @timeout: timeout value in jiffies
6099 * This waits for either a completion of a specific task to be signaled or for a
6100 * specified timeout to expire. The timeout is in jiffies. It is not
6103 unsigned long __sched
6104 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
6106 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
6108 EXPORT_SYMBOL(wait_for_completion_timeout
);
6111 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
6112 * @x: holds the state of this particular completion
6114 * This waits for completion of a specific task to be signaled. It is
6117 int __sched
wait_for_completion_interruptible(struct completion
*x
)
6119 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
6120 if (t
== -ERESTARTSYS
)
6124 EXPORT_SYMBOL(wait_for_completion_interruptible
);
6127 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
6128 * @x: holds the state of this particular completion
6129 * @timeout: timeout value in jiffies
6131 * This waits for either a completion of a specific task to be signaled or for a
6132 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
6134 unsigned long __sched
6135 wait_for_completion_interruptible_timeout(struct completion
*x
,
6136 unsigned long timeout
)
6138 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
6140 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
6143 * wait_for_completion_killable: - waits for completion of a task (killable)
6144 * @x: holds the state of this particular completion
6146 * This waits to be signaled for completion of a specific task. It can be
6147 * interrupted by a kill signal.
6149 int __sched
wait_for_completion_killable(struct completion
*x
)
6151 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
6152 if (t
== -ERESTARTSYS
)
6156 EXPORT_SYMBOL(wait_for_completion_killable
);
6159 * try_wait_for_completion - try to decrement a completion without blocking
6160 * @x: completion structure
6162 * Returns: 0 if a decrement cannot be done without blocking
6163 * 1 if a decrement succeeded.
6165 * If a completion is being used as a counting completion,
6166 * attempt to decrement the counter without blocking. This
6167 * enables us to avoid waiting if the resource the completion
6168 * is protecting is not available.
6170 bool try_wait_for_completion(struct completion
*x
)
6172 unsigned long flags
;
6175 spin_lock_irqsave(&x
->wait
.lock
, flags
);
6180 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
6183 EXPORT_SYMBOL(try_wait_for_completion
);
6186 * completion_done - Test to see if a completion has any waiters
6187 * @x: completion structure
6189 * Returns: 0 if there are waiters (wait_for_completion() in progress)
6190 * 1 if there are no waiters.
6193 bool completion_done(struct completion
*x
)
6195 unsigned long flags
;
6198 spin_lock_irqsave(&x
->wait
.lock
, flags
);
6201 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
6204 EXPORT_SYMBOL(completion_done
);
6207 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
6209 unsigned long flags
;
6212 init_waitqueue_entry(&wait
, current
);
6214 __set_current_state(state
);
6216 spin_lock_irqsave(&q
->lock
, flags
);
6217 __add_wait_queue(q
, &wait
);
6218 spin_unlock(&q
->lock
);
6219 timeout
= schedule_timeout(timeout
);
6220 spin_lock_irq(&q
->lock
);
6221 __remove_wait_queue(q
, &wait
);
6222 spin_unlock_irqrestore(&q
->lock
, flags
);
6227 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
6229 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
6231 EXPORT_SYMBOL(interruptible_sleep_on
);
6234 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6236 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
6238 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
6240 void __sched
sleep_on(wait_queue_head_t
*q
)
6242 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
6244 EXPORT_SYMBOL(sleep_on
);
6246 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6248 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
6250 EXPORT_SYMBOL(sleep_on_timeout
);
6252 #ifdef CONFIG_RT_MUTEXES
6255 * rt_mutex_setprio - set the current priority of a task
6257 * @prio: prio value (kernel-internal form)
6259 * This function changes the 'effective' priority of a task. It does
6260 * not touch ->normal_prio like __setscheduler().
6262 * Used by the rt_mutex code to implement priority inheritance logic.
6264 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
6266 unsigned long flags
;
6267 int oldprio
, on_rq
, running
;
6269 const struct sched_class
*prev_class
;
6271 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
6273 rq
= task_rq_lock(p
, &flags
);
6274 update_rq_clock(rq
);
6277 prev_class
= p
->sched_class
;
6278 on_rq
= p
->se
.on_rq
;
6279 running
= task_current(rq
, p
);
6281 dequeue_task(rq
, p
, 0);
6283 p
->sched_class
->put_prev_task(rq
, p
);
6286 p
->sched_class
= &rt_sched_class
;
6288 p
->sched_class
= &fair_sched_class
;
6293 p
->sched_class
->set_curr_task(rq
);
6295 enqueue_task(rq
, p
, 0, oldprio
< prio
);
6297 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6299 task_rq_unlock(rq
, &flags
);
6304 void set_user_nice(struct task_struct
*p
, long nice
)
6306 int old_prio
, delta
, on_rq
;
6307 unsigned long flags
;
6310 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
6313 * We have to be careful, if called from sys_setpriority(),
6314 * the task might be in the middle of scheduling on another CPU.
6316 rq
= task_rq_lock(p
, &flags
);
6317 update_rq_clock(rq
);
6319 * The RT priorities are set via sched_setscheduler(), but we still
6320 * allow the 'normal' nice value to be set - but as expected
6321 * it wont have any effect on scheduling until the task is
6322 * SCHED_FIFO/SCHED_RR:
6324 if (task_has_rt_policy(p
)) {
6325 p
->static_prio
= NICE_TO_PRIO(nice
);
6328 on_rq
= p
->se
.on_rq
;
6330 dequeue_task(rq
, p
, 0);
6332 p
->static_prio
= NICE_TO_PRIO(nice
);
6335 p
->prio
= effective_prio(p
);
6336 delta
= p
->prio
- old_prio
;
6339 enqueue_task(rq
, p
, 0, false);
6341 * If the task increased its priority or is running and
6342 * lowered its priority, then reschedule its CPU:
6344 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
6345 resched_task(rq
->curr
);
6348 task_rq_unlock(rq
, &flags
);
6350 EXPORT_SYMBOL(set_user_nice
);
6353 * can_nice - check if a task can reduce its nice value
6357 int can_nice(const struct task_struct
*p
, const int nice
)
6359 /* convert nice value [19,-20] to rlimit style value [1,40] */
6360 int nice_rlim
= 20 - nice
;
6362 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
6363 capable(CAP_SYS_NICE
));
6366 #ifdef __ARCH_WANT_SYS_NICE
6369 * sys_nice - change the priority of the current process.
6370 * @increment: priority increment
6372 * sys_setpriority is a more generic, but much slower function that
6373 * does similar things.
6375 SYSCALL_DEFINE1(nice
, int, increment
)
6380 * Setpriority might change our priority at the same moment.
6381 * We don't have to worry. Conceptually one call occurs first
6382 * and we have a single winner.
6384 if (increment
< -40)
6389 nice
= TASK_NICE(current
) + increment
;
6395 if (increment
< 0 && !can_nice(current
, nice
))
6398 retval
= security_task_setnice(current
, nice
);
6402 set_user_nice(current
, nice
);
6409 * task_prio - return the priority value of a given task.
6410 * @p: the task in question.
6412 * This is the priority value as seen by users in /proc.
6413 * RT tasks are offset by -200. Normal tasks are centered
6414 * around 0, value goes from -16 to +15.
6416 int task_prio(const struct task_struct
*p
)
6418 return p
->prio
- MAX_RT_PRIO
;
6422 * task_nice - return the nice value of a given task.
6423 * @p: the task in question.
6425 int task_nice(const struct task_struct
*p
)
6427 return TASK_NICE(p
);
6429 EXPORT_SYMBOL(task_nice
);
6432 * idle_cpu - is a given cpu idle currently?
6433 * @cpu: the processor in question.
6435 int idle_cpu(int cpu
)
6437 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6441 * idle_task - return the idle task for a given cpu.
6442 * @cpu: the processor in question.
6444 struct task_struct
*idle_task(int cpu
)
6446 return cpu_rq(cpu
)->idle
;
6450 * find_process_by_pid - find a process with a matching PID value.
6451 * @pid: the pid in question.
6453 static struct task_struct
*find_process_by_pid(pid_t pid
)
6455 return pid
? find_task_by_vpid(pid
) : current
;
6458 /* Actually do priority change: must hold rq lock. */
6460 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6462 BUG_ON(p
->se
.on_rq
);
6465 switch (p
->policy
) {
6469 p
->sched_class
= &fair_sched_class
;
6473 p
->sched_class
= &rt_sched_class
;
6477 p
->rt_priority
= prio
;
6478 p
->normal_prio
= normal_prio(p
);
6479 /* we are holding p->pi_lock already */
6480 p
->prio
= rt_mutex_getprio(p
);
6485 * check the target process has a UID that matches the current process's
6487 static bool check_same_owner(struct task_struct
*p
)
6489 const struct cred
*cred
= current_cred(), *pcred
;
6493 pcred
= __task_cred(p
);
6494 match
= (cred
->euid
== pcred
->euid
||
6495 cred
->euid
== pcred
->uid
);
6500 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6501 struct sched_param
*param
, bool user
)
6503 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6504 unsigned long flags
;
6505 const struct sched_class
*prev_class
;
6509 /* may grab non-irq protected spin_locks */
6510 BUG_ON(in_interrupt());
6512 /* double check policy once rq lock held */
6514 reset_on_fork
= p
->sched_reset_on_fork
;
6515 policy
= oldpolicy
= p
->policy
;
6517 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
6518 policy
&= ~SCHED_RESET_ON_FORK
;
6520 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6521 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6522 policy
!= SCHED_IDLE
)
6527 * Valid priorities for SCHED_FIFO and SCHED_RR are
6528 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6529 * SCHED_BATCH and SCHED_IDLE is 0.
6531 if (param
->sched_priority
< 0 ||
6532 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6533 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6535 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6539 * Allow unprivileged RT tasks to decrease priority:
6541 if (user
&& !capable(CAP_SYS_NICE
)) {
6542 if (rt_policy(policy
)) {
6543 unsigned long rlim_rtprio
;
6545 if (!lock_task_sighand(p
, &flags
))
6547 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6548 unlock_task_sighand(p
, &flags
);
6550 /* can't set/change the rt policy */
6551 if (policy
!= p
->policy
&& !rlim_rtprio
)
6554 /* can't increase priority */
6555 if (param
->sched_priority
> p
->rt_priority
&&
6556 param
->sched_priority
> rlim_rtprio
)
6560 * Like positive nice levels, dont allow tasks to
6561 * move out of SCHED_IDLE either:
6563 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6566 /* can't change other user's priorities */
6567 if (!check_same_owner(p
))
6570 /* Normal users shall not reset the sched_reset_on_fork flag */
6571 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
6576 #ifdef CONFIG_RT_GROUP_SCHED
6578 * Do not allow realtime tasks into groups that have no runtime
6581 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6582 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6586 retval
= security_task_setscheduler(p
, policy
, param
);
6592 * make sure no PI-waiters arrive (or leave) while we are
6593 * changing the priority of the task:
6595 spin_lock_irqsave(&p
->pi_lock
, flags
);
6597 * To be able to change p->policy safely, the apropriate
6598 * runqueue lock must be held.
6600 rq
= __task_rq_lock(p
);
6601 /* recheck policy now with rq lock held */
6602 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6603 policy
= oldpolicy
= -1;
6604 __task_rq_unlock(rq
);
6605 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6608 update_rq_clock(rq
);
6609 on_rq
= p
->se
.on_rq
;
6610 running
= task_current(rq
, p
);
6612 deactivate_task(rq
, p
, 0);
6614 p
->sched_class
->put_prev_task(rq
, p
);
6616 p
->sched_reset_on_fork
= reset_on_fork
;
6619 prev_class
= p
->sched_class
;
6620 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6623 p
->sched_class
->set_curr_task(rq
);
6625 activate_task(rq
, p
, 0);
6627 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6629 __task_rq_unlock(rq
);
6630 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6632 rt_mutex_adjust_pi(p
);
6638 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6639 * @p: the task in question.
6640 * @policy: new policy.
6641 * @param: structure containing the new RT priority.
6643 * NOTE that the task may be already dead.
6645 int sched_setscheduler(struct task_struct
*p
, int policy
,
6646 struct sched_param
*param
)
6648 return __sched_setscheduler(p
, policy
, param
, true);
6650 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6653 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6654 * @p: the task in question.
6655 * @policy: new policy.
6656 * @param: structure containing the new RT priority.
6658 * Just like sched_setscheduler, only don't bother checking if the
6659 * current context has permission. For example, this is needed in
6660 * stop_machine(): we create temporary high priority worker threads,
6661 * but our caller might not have that capability.
6663 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6664 struct sched_param
*param
)
6666 return __sched_setscheduler(p
, policy
, param
, false);
6670 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6672 struct sched_param lparam
;
6673 struct task_struct
*p
;
6676 if (!param
|| pid
< 0)
6678 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6683 p
= find_process_by_pid(pid
);
6685 retval
= sched_setscheduler(p
, policy
, &lparam
);
6692 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6693 * @pid: the pid in question.
6694 * @policy: new policy.
6695 * @param: structure containing the new RT priority.
6697 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6698 struct sched_param __user
*, param
)
6700 /* negative values for policy are not valid */
6704 return do_sched_setscheduler(pid
, policy
, param
);
6708 * sys_sched_setparam - set/change the RT priority of a thread
6709 * @pid: the pid in question.
6710 * @param: structure containing the new RT priority.
6712 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6714 return do_sched_setscheduler(pid
, -1, param
);
6718 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6719 * @pid: the pid in question.
6721 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6723 struct task_struct
*p
;
6731 p
= find_process_by_pid(pid
);
6733 retval
= security_task_getscheduler(p
);
6736 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
6743 * sys_sched_getparam - get the RT priority of a thread
6744 * @pid: the pid in question.
6745 * @param: structure containing the RT priority.
6747 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6749 struct sched_param lp
;
6750 struct task_struct
*p
;
6753 if (!param
|| pid
< 0)
6757 p
= find_process_by_pid(pid
);
6762 retval
= security_task_getscheduler(p
);
6766 lp
.sched_priority
= p
->rt_priority
;
6770 * This one might sleep, we cannot do it with a spinlock held ...
6772 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6781 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6783 cpumask_var_t cpus_allowed
, new_mask
;
6784 struct task_struct
*p
;
6790 p
= find_process_by_pid(pid
);
6797 /* Prevent p going away */
6801 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6805 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6807 goto out_free_cpus_allowed
;
6810 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6813 retval
= security_task_setscheduler(p
, 0, NULL
);
6817 cpuset_cpus_allowed(p
, cpus_allowed
);
6818 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6820 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6823 cpuset_cpus_allowed(p
, cpus_allowed
);
6824 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6826 * We must have raced with a concurrent cpuset
6827 * update. Just reset the cpus_allowed to the
6828 * cpuset's cpus_allowed
6830 cpumask_copy(new_mask
, cpus_allowed
);
6835 free_cpumask_var(new_mask
);
6836 out_free_cpus_allowed
:
6837 free_cpumask_var(cpus_allowed
);
6844 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6845 struct cpumask
*new_mask
)
6847 if (len
< cpumask_size())
6848 cpumask_clear(new_mask
);
6849 else if (len
> cpumask_size())
6850 len
= cpumask_size();
6852 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6856 * sys_sched_setaffinity - set the cpu affinity of a process
6857 * @pid: pid of the process
6858 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6859 * @user_mask_ptr: user-space pointer to the new cpu mask
6861 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6862 unsigned long __user
*, user_mask_ptr
)
6864 cpumask_var_t new_mask
;
6867 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6870 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6872 retval
= sched_setaffinity(pid
, new_mask
);
6873 free_cpumask_var(new_mask
);
6877 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6879 struct task_struct
*p
;
6880 unsigned long flags
;
6888 p
= find_process_by_pid(pid
);
6892 retval
= security_task_getscheduler(p
);
6896 rq
= task_rq_lock(p
, &flags
);
6897 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6898 task_rq_unlock(rq
, &flags
);
6908 * sys_sched_getaffinity - get the cpu affinity of a process
6909 * @pid: pid of the process
6910 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6911 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6913 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6914 unsigned long __user
*, user_mask_ptr
)
6919 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
6921 if (len
& (sizeof(unsigned long)-1))
6924 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6927 ret
= sched_getaffinity(pid
, mask
);
6929 size_t retlen
= min_t(size_t, len
, cpumask_size());
6931 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
6936 free_cpumask_var(mask
);
6942 * sys_sched_yield - yield the current processor to other threads.
6944 * This function yields the current CPU to other tasks. If there are no
6945 * other threads running on this CPU then this function will return.
6947 SYSCALL_DEFINE0(sched_yield
)
6949 struct rq
*rq
= this_rq_lock();
6951 schedstat_inc(rq
, yld_count
);
6952 current
->sched_class
->yield_task(rq
);
6955 * Since we are going to call schedule() anyway, there's
6956 * no need to preempt or enable interrupts:
6958 __release(rq
->lock
);
6959 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6960 _raw_spin_unlock(&rq
->lock
);
6961 preempt_enable_no_resched();
6968 static inline int should_resched(void)
6970 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
6973 static void __cond_resched(void)
6975 add_preempt_count(PREEMPT_ACTIVE
);
6977 sub_preempt_count(PREEMPT_ACTIVE
);
6980 int __sched
_cond_resched(void)
6982 if (should_resched()) {
6988 EXPORT_SYMBOL(_cond_resched
);
6991 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6992 * call schedule, and on return reacquire the lock.
6994 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6995 * operations here to prevent schedule() from being called twice (once via
6996 * spin_unlock(), once by hand).
6998 int __cond_resched_lock(spinlock_t
*lock
)
7000 int resched
= should_resched();
7003 lockdep_assert_held(lock
);
7005 if (spin_needbreak(lock
) || resched
) {
7016 EXPORT_SYMBOL(__cond_resched_lock
);
7018 int __sched
__cond_resched_softirq(void)
7020 BUG_ON(!in_softirq());
7022 if (should_resched()) {
7030 EXPORT_SYMBOL(__cond_resched_softirq
);
7033 * yield - yield the current processor to other threads.
7035 * This is a shortcut for kernel-space yielding - it marks the
7036 * thread runnable and calls sys_sched_yield().
7038 void __sched
yield(void)
7040 set_current_state(TASK_RUNNING
);
7043 EXPORT_SYMBOL(yield
);
7046 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7047 * that process accounting knows that this is a task in IO wait state.
7049 void __sched
io_schedule(void)
7051 struct rq
*rq
= raw_rq();
7053 delayacct_blkio_start();
7054 atomic_inc(&rq
->nr_iowait
);
7055 current
->in_iowait
= 1;
7057 current
->in_iowait
= 0;
7058 atomic_dec(&rq
->nr_iowait
);
7059 delayacct_blkio_end();
7061 EXPORT_SYMBOL(io_schedule
);
7063 long __sched
io_schedule_timeout(long timeout
)
7065 struct rq
*rq
= raw_rq();
7068 delayacct_blkio_start();
7069 atomic_inc(&rq
->nr_iowait
);
7070 current
->in_iowait
= 1;
7071 ret
= schedule_timeout(timeout
);
7072 current
->in_iowait
= 0;
7073 atomic_dec(&rq
->nr_iowait
);
7074 delayacct_blkio_end();
7079 * sys_sched_get_priority_max - return maximum RT priority.
7080 * @policy: scheduling class.
7082 * this syscall returns the maximum rt_priority that can be used
7083 * by a given scheduling class.
7085 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
7092 ret
= MAX_USER_RT_PRIO
-1;
7104 * sys_sched_get_priority_min - return minimum RT priority.
7105 * @policy: scheduling class.
7107 * this syscall returns the minimum rt_priority that can be used
7108 * by a given scheduling class.
7110 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
7128 * sys_sched_rr_get_interval - return the default timeslice of a process.
7129 * @pid: pid of the process.
7130 * @interval: userspace pointer to the timeslice value.
7132 * this syscall writes the default timeslice value of a given process
7133 * into the user-space timespec buffer. A value of '0' means infinity.
7135 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
7136 struct timespec __user
*, interval
)
7138 struct task_struct
*p
;
7139 unsigned int time_slice
;
7140 unsigned long flags
;
7150 p
= find_process_by_pid(pid
);
7154 retval
= security_task_getscheduler(p
);
7158 rq
= task_rq_lock(p
, &flags
);
7159 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
7160 task_rq_unlock(rq
, &flags
);
7163 jiffies_to_timespec(time_slice
, &t
);
7164 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
7172 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
7174 void sched_show_task(struct task_struct
*p
)
7176 unsigned long free
= 0;
7179 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
7180 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
7181 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
7182 #if BITS_PER_LONG == 32
7183 if (state
== TASK_RUNNING
)
7184 printk(KERN_CONT
" running ");
7186 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
7188 if (state
== TASK_RUNNING
)
7189 printk(KERN_CONT
" running task ");
7191 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
7193 #ifdef CONFIG_DEBUG_STACK_USAGE
7194 free
= stack_not_used(p
);
7196 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
7197 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
7198 (unsigned long)task_thread_info(p
)->flags
);
7200 show_stack(p
, NULL
);
7203 void show_state_filter(unsigned long state_filter
)
7205 struct task_struct
*g
, *p
;
7207 #if BITS_PER_LONG == 32
7209 " task PC stack pid father\n");
7212 " task PC stack pid father\n");
7214 read_lock(&tasklist_lock
);
7215 do_each_thread(g
, p
) {
7217 * reset the NMI-timeout, listing all files on a slow
7218 * console might take alot of time:
7220 touch_nmi_watchdog();
7221 if (!state_filter
|| (p
->state
& state_filter
))
7223 } while_each_thread(g
, p
);
7225 touch_all_softlockup_watchdogs();
7227 #ifdef CONFIG_SCHED_DEBUG
7228 sysrq_sched_debug_show();
7230 read_unlock(&tasklist_lock
);
7232 * Only show locks if all tasks are dumped:
7234 if (state_filter
== -1)
7235 debug_show_all_locks();
7238 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
7240 idle
->sched_class
= &idle_sched_class
;
7244 * init_idle - set up an idle thread for a given CPU
7245 * @idle: task in question
7246 * @cpu: cpu the idle task belongs to
7248 * NOTE: this function does not set the idle thread's NEED_RESCHED
7249 * flag, to make booting more robust.
7251 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
7253 struct rq
*rq
= cpu_rq(cpu
);
7254 unsigned long flags
;
7256 spin_lock_irqsave(&rq
->lock
, flags
);
7259 idle
->state
= TASK_RUNNING
;
7260 idle
->se
.exec_start
= sched_clock();
7262 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
7264 * We're having a chicken and egg problem, even though we are
7265 * holding rq->lock, the cpu isn't yet set to this cpu so the
7266 * lockdep check in task_group() will fail.
7268 * Similar case to sched_fork(). / Alternatively we could
7269 * use task_rq_lock() here and obtain the other rq->lock.
7274 __set_task_cpu(idle
, cpu
);
7277 rq
->curr
= rq
->idle
= idle
;
7278 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7281 spin_unlock_irqrestore(&rq
->lock
, flags
);
7283 /* Set the preempt count _outside_ the spinlocks! */
7284 #if defined(CONFIG_PREEMPT)
7285 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
7287 task_thread_info(idle
)->preempt_count
= 0;
7290 * The idle tasks have their own, simple scheduling class:
7292 idle
->sched_class
= &idle_sched_class
;
7293 ftrace_graph_init_idle_task(idle
, cpu
);
7297 * In a system that switches off the HZ timer nohz_cpu_mask
7298 * indicates which cpus entered this state. This is used
7299 * in the rcu update to wait only for active cpus. For system
7300 * which do not switch off the HZ timer nohz_cpu_mask should
7301 * always be CPU_BITS_NONE.
7303 cpumask_var_t nohz_cpu_mask
;
7306 * Increase the granularity value when there are more CPUs,
7307 * because with more CPUs the 'effective latency' as visible
7308 * to users decreases. But the relationship is not linear,
7309 * so pick a second-best guess by going with the log2 of the
7312 * This idea comes from the SD scheduler of Con Kolivas:
7314 static void update_sysctl(void)
7316 unsigned int cpus
= min(num_online_cpus(), 8U);
7317 unsigned int factor
= 1 + ilog2(cpus
);
7319 #define SET_SYSCTL(name) \
7320 (sysctl_##name = (factor) * normalized_sysctl_##name)
7321 SET_SYSCTL(sched_min_granularity
);
7322 SET_SYSCTL(sched_latency
);
7323 SET_SYSCTL(sched_wakeup_granularity
);
7324 SET_SYSCTL(sched_shares_ratelimit
);
7328 static inline void sched_init_granularity(void)
7335 * This is how migration works:
7337 * 1) we queue a struct migration_req structure in the source CPU's
7338 * runqueue and wake up that CPU's migration thread.
7339 * 2) we down() the locked semaphore => thread blocks.
7340 * 3) migration thread wakes up (implicitly it forces the migrated
7341 * thread off the CPU)
7342 * 4) it gets the migration request and checks whether the migrated
7343 * task is still in the wrong runqueue.
7344 * 5) if it's in the wrong runqueue then the migration thread removes
7345 * it and puts it into the right queue.
7346 * 6) migration thread up()s the semaphore.
7347 * 7) we wake up and the migration is done.
7351 * Change a given task's CPU affinity. Migrate the thread to a
7352 * proper CPU and schedule it away if the CPU it's executing on
7353 * is removed from the allowed bitmask.
7355 * NOTE: the caller must have a valid reference to the task, the
7356 * task must not exit() & deallocate itself prematurely. The
7357 * call is not atomic; no spinlocks may be held.
7359 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
7361 struct migration_req req
;
7362 unsigned long flags
;
7367 * Serialize against TASK_WAKING so that ttwu() and wunt() can
7368 * drop the rq->lock and still rely on ->cpus_allowed.
7371 while (task_is_waking(p
))
7373 rq
= task_rq_lock(p
, &flags
);
7374 if (task_is_waking(p
)) {
7375 task_rq_unlock(rq
, &flags
);
7379 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
7384 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
7385 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
7390 if (p
->sched_class
->set_cpus_allowed
)
7391 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
7393 cpumask_copy(&p
->cpus_allowed
, new_mask
);
7394 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
7397 /* Can the task run on the task's current CPU? If so, we're done */
7398 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
7401 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
7402 /* Need help from migration thread: drop lock and wait. */
7403 struct task_struct
*mt
= rq
->migration_thread
;
7405 get_task_struct(mt
);
7406 task_rq_unlock(rq
, &flags
);
7407 wake_up_process(mt
);
7408 put_task_struct(mt
);
7409 wait_for_completion(&req
.done
);
7410 tlb_migrate_finish(p
->mm
);
7414 task_rq_unlock(rq
, &flags
);
7418 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
7421 * Move (not current) task off this cpu, onto dest cpu. We're doing
7422 * this because either it can't run here any more (set_cpus_allowed()
7423 * away from this CPU, or CPU going down), or because we're
7424 * attempting to rebalance this task on exec (sched_exec).
7426 * So we race with normal scheduler movements, but that's OK, as long
7427 * as the task is no longer on this CPU.
7429 * Returns non-zero if task was successfully migrated.
7431 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7433 struct rq
*rq_dest
, *rq_src
;
7436 if (unlikely(!cpu_active(dest_cpu
)))
7439 rq_src
= cpu_rq(src_cpu
);
7440 rq_dest
= cpu_rq(dest_cpu
);
7442 double_rq_lock(rq_src
, rq_dest
);
7443 /* Already moved. */
7444 if (task_cpu(p
) != src_cpu
)
7446 /* Affinity changed (again). */
7447 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7451 * If we're not on a rq, the next wake-up will ensure we're
7455 deactivate_task(rq_src
, p
, 0);
7456 set_task_cpu(p
, dest_cpu
);
7457 activate_task(rq_dest
, p
, 0);
7458 check_preempt_curr(rq_dest
, p
, 0);
7463 double_rq_unlock(rq_src
, rq_dest
);
7467 #define RCU_MIGRATION_IDLE 0
7468 #define RCU_MIGRATION_NEED_QS 1
7469 #define RCU_MIGRATION_GOT_QS 2
7470 #define RCU_MIGRATION_MUST_SYNC 3
7473 * migration_thread - this is a highprio system thread that performs
7474 * thread migration by bumping thread off CPU then 'pushing' onto
7477 static int migration_thread(void *data
)
7480 int cpu
= (long)data
;
7484 BUG_ON(rq
->migration_thread
!= current
);
7486 set_current_state(TASK_INTERRUPTIBLE
);
7487 while (!kthread_should_stop()) {
7488 struct migration_req
*req
;
7489 struct list_head
*head
;
7491 spin_lock_irq(&rq
->lock
);
7493 if (cpu_is_offline(cpu
)) {
7494 spin_unlock_irq(&rq
->lock
);
7498 if (rq
->active_balance
) {
7499 active_load_balance(rq
, cpu
);
7500 rq
->active_balance
= 0;
7503 head
= &rq
->migration_queue
;
7505 if (list_empty(head
)) {
7506 spin_unlock_irq(&rq
->lock
);
7508 set_current_state(TASK_INTERRUPTIBLE
);
7511 req
= list_entry(head
->next
, struct migration_req
, list
);
7512 list_del_init(head
->next
);
7514 if (req
->task
!= NULL
) {
7515 spin_unlock(&rq
->lock
);
7516 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7517 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
7518 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
7519 spin_unlock(&rq
->lock
);
7521 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
7522 spin_unlock(&rq
->lock
);
7523 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
7527 complete(&req
->done
);
7529 __set_current_state(TASK_RUNNING
);
7534 #ifdef CONFIG_HOTPLUG_CPU
7536 * Figure out where task on dead CPU should go, use force if necessary.
7538 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7540 struct rq
*rq
= cpu_rq(dead_cpu
);
7541 int needs_cpu
, uninitialized_var(dest_cpu
);
7542 unsigned long flags
;
7544 local_irq_save(flags
);
7546 spin_lock(&rq
->lock
);
7547 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
7549 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
7550 spin_unlock(&rq
->lock
);
7552 * It can only fail if we race with set_cpus_allowed(),
7553 * in the racer should migrate the task anyway.
7556 __migrate_task(p
, dead_cpu
, dest_cpu
);
7557 local_irq_restore(flags
);
7561 * While a dead CPU has no uninterruptible tasks queued at this point,
7562 * it might still have a nonzero ->nr_uninterruptible counter, because
7563 * for performance reasons the counter is not stricly tracking tasks to
7564 * their home CPUs. So we just add the counter to another CPU's counter,
7565 * to keep the global sum constant after CPU-down:
7567 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7569 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
7570 unsigned long flags
;
7572 local_irq_save(flags
);
7573 double_rq_lock(rq_src
, rq_dest
);
7574 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7575 rq_src
->nr_uninterruptible
= 0;
7576 double_rq_unlock(rq_src
, rq_dest
);
7577 local_irq_restore(flags
);
7580 /* Run through task list and migrate tasks from the dead cpu. */
7581 static void migrate_live_tasks(int src_cpu
)
7583 struct task_struct
*p
, *t
;
7585 read_lock(&tasklist_lock
);
7587 do_each_thread(t
, p
) {
7591 if (task_cpu(p
) == src_cpu
)
7592 move_task_off_dead_cpu(src_cpu
, p
);
7593 } while_each_thread(t
, p
);
7595 read_unlock(&tasklist_lock
);
7599 * Schedules idle task to be the next runnable task on current CPU.
7600 * It does so by boosting its priority to highest possible.
7601 * Used by CPU offline code.
7603 void sched_idle_next(void)
7605 int this_cpu
= smp_processor_id();
7606 struct rq
*rq
= cpu_rq(this_cpu
);
7607 struct task_struct
*p
= rq
->idle
;
7608 unsigned long flags
;
7610 /* cpu has to be offline */
7611 BUG_ON(cpu_online(this_cpu
));
7614 * Strictly not necessary since rest of the CPUs are stopped by now
7615 * and interrupts disabled on the current cpu.
7617 spin_lock_irqsave(&rq
->lock
, flags
);
7619 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7621 update_rq_clock(rq
);
7622 activate_task(rq
, p
, 0);
7624 spin_unlock_irqrestore(&rq
->lock
, flags
);
7628 * Ensures that the idle task is using init_mm right before its cpu goes
7631 void idle_task_exit(void)
7633 struct mm_struct
*mm
= current
->active_mm
;
7635 BUG_ON(cpu_online(smp_processor_id()));
7638 switch_mm(mm
, &init_mm
, current
);
7642 /* called under rq->lock with disabled interrupts */
7643 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7645 struct rq
*rq
= cpu_rq(dead_cpu
);
7647 /* Must be exiting, otherwise would be on tasklist. */
7648 BUG_ON(!p
->exit_state
);
7650 /* Cannot have done final schedule yet: would have vanished. */
7651 BUG_ON(p
->state
== TASK_DEAD
);
7656 * Drop lock around migration; if someone else moves it,
7657 * that's OK. No task can be added to this CPU, so iteration is
7660 spin_unlock_irq(&rq
->lock
);
7661 move_task_off_dead_cpu(dead_cpu
, p
);
7662 spin_lock_irq(&rq
->lock
);
7667 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7668 static void migrate_dead_tasks(unsigned int dead_cpu
)
7670 struct rq
*rq
= cpu_rq(dead_cpu
);
7671 struct task_struct
*next
;
7674 if (!rq
->nr_running
)
7676 update_rq_clock(rq
);
7677 next
= pick_next_task(rq
);
7680 next
->sched_class
->put_prev_task(rq
, next
);
7681 migrate_dead(dead_cpu
, next
);
7687 * remove the tasks which were accounted by rq from calc_load_tasks.
7689 static void calc_global_load_remove(struct rq
*rq
)
7691 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7692 rq
->calc_load_active
= 0;
7694 #endif /* CONFIG_HOTPLUG_CPU */
7696 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7698 static struct ctl_table sd_ctl_dir
[] = {
7700 .procname
= "sched_domain",
7706 static struct ctl_table sd_ctl_root
[] = {
7708 .ctl_name
= CTL_KERN
,
7709 .procname
= "kernel",
7711 .child
= sd_ctl_dir
,
7716 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7718 struct ctl_table
*entry
=
7719 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7724 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7726 struct ctl_table
*entry
;
7729 * In the intermediate directories, both the child directory and
7730 * procname are dynamically allocated and could fail but the mode
7731 * will always be set. In the lowest directory the names are
7732 * static strings and all have proc handlers.
7734 for (entry
= *tablep
; entry
->mode
; entry
++) {
7736 sd_free_ctl_entry(&entry
->child
);
7737 if (entry
->proc_handler
== NULL
)
7738 kfree(entry
->procname
);
7746 set_table_entry(struct ctl_table
*entry
,
7747 const char *procname
, void *data
, int maxlen
,
7748 mode_t mode
, proc_handler
*proc_handler
)
7750 entry
->procname
= procname
;
7752 entry
->maxlen
= maxlen
;
7754 entry
->proc_handler
= proc_handler
;
7757 static struct ctl_table
*
7758 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7760 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7765 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7766 sizeof(long), 0644, proc_doulongvec_minmax
);
7767 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7768 sizeof(long), 0644, proc_doulongvec_minmax
);
7769 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7770 sizeof(int), 0644, proc_dointvec_minmax
);
7771 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7772 sizeof(int), 0644, proc_dointvec_minmax
);
7773 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7774 sizeof(int), 0644, proc_dointvec_minmax
);
7775 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7776 sizeof(int), 0644, proc_dointvec_minmax
);
7777 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7778 sizeof(int), 0644, proc_dointvec_minmax
);
7779 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7780 sizeof(int), 0644, proc_dointvec_minmax
);
7781 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7782 sizeof(int), 0644, proc_dointvec_minmax
);
7783 set_table_entry(&table
[9], "cache_nice_tries",
7784 &sd
->cache_nice_tries
,
7785 sizeof(int), 0644, proc_dointvec_minmax
);
7786 set_table_entry(&table
[10], "flags", &sd
->flags
,
7787 sizeof(int), 0644, proc_dointvec_minmax
);
7788 set_table_entry(&table
[11], "name", sd
->name
,
7789 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7790 /* &table[12] is terminator */
7795 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7797 struct ctl_table
*entry
, *table
;
7798 struct sched_domain
*sd
;
7799 int domain_num
= 0, i
;
7802 for_each_domain(cpu
, sd
)
7804 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7809 for_each_domain(cpu
, sd
) {
7810 snprintf(buf
, 32, "domain%d", i
);
7811 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7813 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7820 static struct ctl_table_header
*sd_sysctl_header
;
7821 static void register_sched_domain_sysctl(void)
7823 int i
, cpu_num
= num_possible_cpus();
7824 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7827 WARN_ON(sd_ctl_dir
[0].child
);
7828 sd_ctl_dir
[0].child
= entry
;
7833 for_each_possible_cpu(i
) {
7834 snprintf(buf
, 32, "cpu%d", i
);
7835 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7837 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7841 WARN_ON(sd_sysctl_header
);
7842 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7845 /* may be called multiple times per register */
7846 static void unregister_sched_domain_sysctl(void)
7848 if (sd_sysctl_header
)
7849 unregister_sysctl_table(sd_sysctl_header
);
7850 sd_sysctl_header
= NULL
;
7851 if (sd_ctl_dir
[0].child
)
7852 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7855 static void register_sched_domain_sysctl(void)
7858 static void unregister_sched_domain_sysctl(void)
7863 static void set_rq_online(struct rq
*rq
)
7866 const struct sched_class
*class;
7868 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7871 for_each_class(class) {
7872 if (class->rq_online
)
7873 class->rq_online(rq
);
7878 static void set_rq_offline(struct rq
*rq
)
7881 const struct sched_class
*class;
7883 for_each_class(class) {
7884 if (class->rq_offline
)
7885 class->rq_offline(rq
);
7888 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7894 * migration_call - callback that gets triggered when a CPU is added.
7895 * Here we can start up the necessary migration thread for the new CPU.
7897 static int __cpuinit
7898 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7900 struct task_struct
*p
;
7901 int cpu
= (long)hcpu
;
7902 unsigned long flags
;
7905 switch (action
& ~CPU_TASKS_FROZEN
) {
7907 case CPU_UP_PREPARE
:
7908 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7911 kthread_bind(p
, cpu
);
7912 /* Must be high prio: stop_machine expects to yield to it. */
7913 rq
= task_rq_lock(p
, &flags
);
7914 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7915 task_rq_unlock(rq
, &flags
);
7917 cpu_rq(cpu
)->migration_thread
= p
;
7918 rq
->calc_load_update
= calc_load_update
;
7922 /* Strictly unnecessary, as first user will wake it. */
7923 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7925 /* Update our root-domain */
7927 spin_lock_irqsave(&rq
->lock
, flags
);
7929 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7933 spin_unlock_irqrestore(&rq
->lock
, flags
);
7936 #ifdef CONFIG_HOTPLUG_CPU
7937 case CPU_UP_CANCELED
:
7938 if (!cpu_rq(cpu
)->migration_thread
)
7940 /* Unbind it from offline cpu so it can run. Fall thru. */
7941 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7942 cpumask_any(cpu_online_mask
));
7943 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7944 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7945 cpu_rq(cpu
)->migration_thread
= NULL
;
7950 * Bring the migration thread down in CPU_POST_DEAD event,
7951 * since the timers should have got migrated by now and thus
7952 * we should not see a deadlock between trying to kill the
7953 * migration thread and the sched_rt_period_timer.
7956 kthread_stop(rq
->migration_thread
);
7957 put_task_struct(rq
->migration_thread
);
7958 rq
->migration_thread
= NULL
;
7962 migrate_live_tasks(cpu
);
7964 /* Idle task back to normal (off runqueue, low prio) */
7965 spin_lock_irq(&rq
->lock
);
7966 update_rq_clock(rq
);
7967 deactivate_task(rq
, rq
->idle
, 0);
7968 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7969 rq
->idle
->sched_class
= &idle_sched_class
;
7970 migrate_dead_tasks(cpu
);
7971 spin_unlock_irq(&rq
->lock
);
7972 migrate_nr_uninterruptible(rq
);
7973 BUG_ON(rq
->nr_running
!= 0);
7974 calc_global_load_remove(rq
);
7976 * No need to migrate the tasks: it was best-effort if
7977 * they didn't take sched_hotcpu_mutex. Just wake up
7980 spin_lock_irq(&rq
->lock
);
7981 while (!list_empty(&rq
->migration_queue
)) {
7982 struct migration_req
*req
;
7984 req
= list_entry(rq
->migration_queue
.next
,
7985 struct migration_req
, list
);
7986 list_del_init(&req
->list
);
7987 spin_unlock_irq(&rq
->lock
);
7988 complete(&req
->done
);
7989 spin_lock_irq(&rq
->lock
);
7991 spin_unlock_irq(&rq
->lock
);
7995 /* Update our root-domain */
7997 spin_lock_irqsave(&rq
->lock
, flags
);
7999 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
8002 spin_unlock_irqrestore(&rq
->lock
, flags
);
8010 * Register at high priority so that task migration (migrate_all_tasks)
8011 * happens before everything else. This has to be lower priority than
8012 * the notifier in the perf_event subsystem, though.
8014 static struct notifier_block __cpuinitdata migration_notifier
= {
8015 .notifier_call
= migration_call
,
8019 static int __init
migration_init(void)
8021 void *cpu
= (void *)(long)smp_processor_id();
8024 /* Start one for the boot CPU: */
8025 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
8026 BUG_ON(err
== NOTIFY_BAD
);
8027 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
8028 register_cpu_notifier(&migration_notifier
);
8032 early_initcall(migration_init
);
8037 #ifdef CONFIG_SCHED_DEBUG
8039 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
8040 struct cpumask
*groupmask
)
8042 struct sched_group
*group
= sd
->groups
;
8045 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
8046 cpumask_clear(groupmask
);
8048 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
8050 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
8051 printk("does not load-balance\n");
8053 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
8058 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
8060 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
8061 printk(KERN_ERR
"ERROR: domain->span does not contain "
8064 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
8065 printk(KERN_ERR
"ERROR: domain->groups does not contain"
8069 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
8073 printk(KERN_ERR
"ERROR: group is NULL\n");
8077 if (!group
->cpu_power
) {
8078 printk(KERN_CONT
"\n");
8079 printk(KERN_ERR
"ERROR: domain->cpu_power not "
8084 if (!cpumask_weight(sched_group_cpus(group
))) {
8085 printk(KERN_CONT
"\n");
8086 printk(KERN_ERR
"ERROR: empty group\n");
8090 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
8091 printk(KERN_CONT
"\n");
8092 printk(KERN_ERR
"ERROR: repeated CPUs\n");
8096 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
8098 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
8100 printk(KERN_CONT
" %s", str
);
8101 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
8102 printk(KERN_CONT
" (cpu_power = %d)",
8106 group
= group
->next
;
8107 } while (group
!= sd
->groups
);
8108 printk(KERN_CONT
"\n");
8110 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
8111 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
8114 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
8115 printk(KERN_ERR
"ERROR: parent span is not a superset "
8116 "of domain->span\n");
8120 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
8122 cpumask_var_t groupmask
;
8126 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
8130 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
8132 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
8133 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
8138 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
8145 free_cpumask_var(groupmask
);
8147 #else /* !CONFIG_SCHED_DEBUG */
8148 # define sched_domain_debug(sd, cpu) do { } while (0)
8149 #endif /* CONFIG_SCHED_DEBUG */
8151 static int sd_degenerate(struct sched_domain
*sd
)
8153 if (cpumask_weight(sched_domain_span(sd
)) == 1)
8156 /* Following flags need at least 2 groups */
8157 if (sd
->flags
& (SD_LOAD_BALANCE
|
8158 SD_BALANCE_NEWIDLE
|
8162 SD_SHARE_PKG_RESOURCES
)) {
8163 if (sd
->groups
!= sd
->groups
->next
)
8167 /* Following flags don't use groups */
8168 if (sd
->flags
& (SD_WAKE_AFFINE
))
8175 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
8177 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
8179 if (sd_degenerate(parent
))
8182 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
8185 /* Flags needing groups don't count if only 1 group in parent */
8186 if (parent
->groups
== parent
->groups
->next
) {
8187 pflags
&= ~(SD_LOAD_BALANCE
|
8188 SD_BALANCE_NEWIDLE
|
8192 SD_SHARE_PKG_RESOURCES
);
8193 if (nr_node_ids
== 1)
8194 pflags
&= ~SD_SERIALIZE
;
8196 if (~cflags
& pflags
)
8202 static void free_rootdomain(struct root_domain
*rd
)
8204 synchronize_sched();
8206 cpupri_cleanup(&rd
->cpupri
);
8208 free_cpumask_var(rd
->rto_mask
);
8209 free_cpumask_var(rd
->online
);
8210 free_cpumask_var(rd
->span
);
8214 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
8216 struct root_domain
*old_rd
= NULL
;
8217 unsigned long flags
;
8219 spin_lock_irqsave(&rq
->lock
, flags
);
8224 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
8227 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
8230 * If we dont want to free the old_rt yet then
8231 * set old_rd to NULL to skip the freeing later
8234 if (!atomic_dec_and_test(&old_rd
->refcount
))
8238 atomic_inc(&rd
->refcount
);
8241 cpumask_set_cpu(rq
->cpu
, rd
->span
);
8242 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
8245 spin_unlock_irqrestore(&rq
->lock
, flags
);
8248 free_rootdomain(old_rd
);
8251 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
8253 gfp_t gfp
= GFP_KERNEL
;
8255 memset(rd
, 0, sizeof(*rd
));
8260 if (!alloc_cpumask_var(&rd
->span
, gfp
))
8262 if (!alloc_cpumask_var(&rd
->online
, gfp
))
8264 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
8267 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
8272 free_cpumask_var(rd
->rto_mask
);
8274 free_cpumask_var(rd
->online
);
8276 free_cpumask_var(rd
->span
);
8281 static void init_defrootdomain(void)
8283 init_rootdomain(&def_root_domain
, true);
8285 atomic_set(&def_root_domain
.refcount
, 1);
8288 static struct root_domain
*alloc_rootdomain(void)
8290 struct root_domain
*rd
;
8292 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
8296 if (init_rootdomain(rd
, false) != 0) {
8305 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8306 * hold the hotplug lock.
8309 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
8311 struct rq
*rq
= cpu_rq(cpu
);
8312 struct sched_domain
*tmp
;
8314 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
8315 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
8317 /* Remove the sched domains which do not contribute to scheduling. */
8318 for (tmp
= sd
; tmp
; ) {
8319 struct sched_domain
*parent
= tmp
->parent
;
8323 if (sd_parent_degenerate(tmp
, parent
)) {
8324 tmp
->parent
= parent
->parent
;
8326 parent
->parent
->child
= tmp
;
8331 if (sd
&& sd_degenerate(sd
)) {
8337 sched_domain_debug(sd
, cpu
);
8339 rq_attach_root(rq
, rd
);
8340 rcu_assign_pointer(rq
->sd
, sd
);
8343 /* cpus with isolated domains */
8344 static cpumask_var_t cpu_isolated_map
;
8346 /* Setup the mask of cpus configured for isolated domains */
8347 static int __init
isolated_cpu_setup(char *str
)
8349 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8350 cpulist_parse(str
, cpu_isolated_map
);
8354 __setup("isolcpus=", isolated_cpu_setup
);
8357 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8358 * to a function which identifies what group(along with sched group) a CPU
8359 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8360 * (due to the fact that we keep track of groups covered with a struct cpumask).
8362 * init_sched_build_groups will build a circular linked list of the groups
8363 * covered by the given span, and will set each group's ->cpumask correctly,
8364 * and ->cpu_power to 0.
8367 init_sched_build_groups(const struct cpumask
*span
,
8368 const struct cpumask
*cpu_map
,
8369 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
8370 struct sched_group
**sg
,
8371 struct cpumask
*tmpmask
),
8372 struct cpumask
*covered
, struct cpumask
*tmpmask
)
8374 struct sched_group
*first
= NULL
, *last
= NULL
;
8377 cpumask_clear(covered
);
8379 for_each_cpu(i
, span
) {
8380 struct sched_group
*sg
;
8381 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
8384 if (cpumask_test_cpu(i
, covered
))
8387 cpumask_clear(sched_group_cpus(sg
));
8390 for_each_cpu(j
, span
) {
8391 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
8394 cpumask_set_cpu(j
, covered
);
8395 cpumask_set_cpu(j
, sched_group_cpus(sg
));
8406 #define SD_NODES_PER_DOMAIN 16
8411 * find_next_best_node - find the next node to include in a sched_domain
8412 * @node: node whose sched_domain we're building
8413 * @used_nodes: nodes already in the sched_domain
8415 * Find the next node to include in a given scheduling domain. Simply
8416 * finds the closest node not already in the @used_nodes map.
8418 * Should use nodemask_t.
8420 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
8422 int i
, n
, val
, min_val
, best_node
= 0;
8426 for (i
= 0; i
< nr_node_ids
; i
++) {
8427 /* Start at @node */
8428 n
= (node
+ i
) % nr_node_ids
;
8430 if (!nr_cpus_node(n
))
8433 /* Skip already used nodes */
8434 if (node_isset(n
, *used_nodes
))
8437 /* Simple min distance search */
8438 val
= node_distance(node
, n
);
8440 if (val
< min_val
) {
8446 node_set(best_node
, *used_nodes
);
8451 * sched_domain_node_span - get a cpumask for a node's sched_domain
8452 * @node: node whose cpumask we're constructing
8453 * @span: resulting cpumask
8455 * Given a node, construct a good cpumask for its sched_domain to span. It
8456 * should be one that prevents unnecessary balancing, but also spreads tasks
8459 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8461 nodemask_t used_nodes
;
8464 cpumask_clear(span
);
8465 nodes_clear(used_nodes
);
8467 cpumask_or(span
, span
, cpumask_of_node(node
));
8468 node_set(node
, used_nodes
);
8470 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8471 int next_node
= find_next_best_node(node
, &used_nodes
);
8473 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8476 #endif /* CONFIG_NUMA */
8478 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8481 * The cpus mask in sched_group and sched_domain hangs off the end.
8483 * ( See the the comments in include/linux/sched.h:struct sched_group
8484 * and struct sched_domain. )
8486 struct static_sched_group
{
8487 struct sched_group sg
;
8488 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8491 struct static_sched_domain
{
8492 struct sched_domain sd
;
8493 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8499 cpumask_var_t domainspan
;
8500 cpumask_var_t covered
;
8501 cpumask_var_t notcovered
;
8503 cpumask_var_t nodemask
;
8504 cpumask_var_t this_sibling_map
;
8505 cpumask_var_t this_core_map
;
8506 cpumask_var_t send_covered
;
8507 cpumask_var_t tmpmask
;
8508 struct sched_group
**sched_group_nodes
;
8509 struct root_domain
*rd
;
8513 sa_sched_groups
= 0,
8518 sa_this_sibling_map
,
8520 sa_sched_group_nodes
,
8530 * SMT sched-domains:
8532 #ifdef CONFIG_SCHED_SMT
8533 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8534 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
8537 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8538 struct sched_group
**sg
, struct cpumask
*unused
)
8541 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
8544 #endif /* CONFIG_SCHED_SMT */
8547 * multi-core sched-domains:
8549 #ifdef CONFIG_SCHED_MC
8550 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8551 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8552 #endif /* CONFIG_SCHED_MC */
8554 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8556 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8557 struct sched_group
**sg
, struct cpumask
*mask
)
8561 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8562 group
= cpumask_first(mask
);
8564 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8567 #elif defined(CONFIG_SCHED_MC)
8569 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8570 struct sched_group
**sg
, struct cpumask
*unused
)
8573 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8578 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8579 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8582 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8583 struct sched_group
**sg
, struct cpumask
*mask
)
8586 #ifdef CONFIG_SCHED_MC
8587 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8588 group
= cpumask_first(mask
);
8589 #elif defined(CONFIG_SCHED_SMT)
8590 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8591 group
= cpumask_first(mask
);
8596 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8602 * The init_sched_build_groups can't handle what we want to do with node
8603 * groups, so roll our own. Now each node has its own list of groups which
8604 * gets dynamically allocated.
8606 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8607 static struct sched_group
***sched_group_nodes_bycpu
;
8609 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8610 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8612 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8613 struct sched_group
**sg
,
8614 struct cpumask
*nodemask
)
8618 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8619 group
= cpumask_first(nodemask
);
8622 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8626 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8628 struct sched_group
*sg
= group_head
;
8634 for_each_cpu(j
, sched_group_cpus(sg
)) {
8635 struct sched_domain
*sd
;
8637 sd
= &per_cpu(phys_domains
, j
).sd
;
8638 if (j
!= group_first_cpu(sd
->groups
)) {
8640 * Only add "power" once for each
8646 sg
->cpu_power
+= sd
->groups
->cpu_power
;
8649 } while (sg
!= group_head
);
8652 static int build_numa_sched_groups(struct s_data
*d
,
8653 const struct cpumask
*cpu_map
, int num
)
8655 struct sched_domain
*sd
;
8656 struct sched_group
*sg
, *prev
;
8659 cpumask_clear(d
->covered
);
8660 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
8661 if (cpumask_empty(d
->nodemask
)) {
8662 d
->sched_group_nodes
[num
] = NULL
;
8666 sched_domain_node_span(num
, d
->domainspan
);
8667 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
8669 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8672 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
8676 d
->sched_group_nodes
[num
] = sg
;
8678 for_each_cpu(j
, d
->nodemask
) {
8679 sd
= &per_cpu(node_domains
, j
).sd
;
8684 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
8686 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
8689 for (j
= 0; j
< nr_node_ids
; j
++) {
8690 n
= (num
+ j
) % nr_node_ids
;
8691 cpumask_complement(d
->notcovered
, d
->covered
);
8692 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
8693 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
8694 if (cpumask_empty(d
->tmpmask
))
8696 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
8697 if (cpumask_empty(d
->tmpmask
))
8699 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8703 "Can not alloc domain group for node %d\n", j
);
8707 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
8708 sg
->next
= prev
->next
;
8709 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
8716 #endif /* CONFIG_NUMA */
8719 /* Free memory allocated for various sched_group structures */
8720 static void free_sched_groups(const struct cpumask
*cpu_map
,
8721 struct cpumask
*nodemask
)
8725 for_each_cpu(cpu
, cpu_map
) {
8726 struct sched_group
**sched_group_nodes
8727 = sched_group_nodes_bycpu
[cpu
];
8729 if (!sched_group_nodes
)
8732 for (i
= 0; i
< nr_node_ids
; i
++) {
8733 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8735 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8736 if (cpumask_empty(nodemask
))
8746 if (oldsg
!= sched_group_nodes
[i
])
8749 kfree(sched_group_nodes
);
8750 sched_group_nodes_bycpu
[cpu
] = NULL
;
8753 #else /* !CONFIG_NUMA */
8754 static void free_sched_groups(const struct cpumask
*cpu_map
,
8755 struct cpumask
*nodemask
)
8758 #endif /* CONFIG_NUMA */
8761 * Initialize sched groups cpu_power.
8763 * cpu_power indicates the capacity of sched group, which is used while
8764 * distributing the load between different sched groups in a sched domain.
8765 * Typically cpu_power for all the groups in a sched domain will be same unless
8766 * there are asymmetries in the topology. If there are asymmetries, group
8767 * having more cpu_power will pickup more load compared to the group having
8770 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8772 struct sched_domain
*child
;
8773 struct sched_group
*group
;
8777 WARN_ON(!sd
|| !sd
->groups
);
8779 if (cpu
!= group_first_cpu(sd
->groups
))
8782 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
8786 sd
->groups
->cpu_power
= 0;
8789 power
= SCHED_LOAD_SCALE
;
8790 weight
= cpumask_weight(sched_domain_span(sd
));
8792 * SMT siblings share the power of a single core.
8793 * Usually multiple threads get a better yield out of
8794 * that one core than a single thread would have,
8795 * reflect that in sd->smt_gain.
8797 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
8798 power
*= sd
->smt_gain
;
8800 power
>>= SCHED_LOAD_SHIFT
;
8802 sd
->groups
->cpu_power
+= power
;
8807 * Add cpu_power of each child group to this groups cpu_power.
8809 group
= child
->groups
;
8811 sd
->groups
->cpu_power
+= group
->cpu_power
;
8812 group
= group
->next
;
8813 } while (group
!= child
->groups
);
8817 * Initializers for schedule domains
8818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8821 #ifdef CONFIG_SCHED_DEBUG
8822 # define SD_INIT_NAME(sd, type) sd->name = #type
8824 # define SD_INIT_NAME(sd, type) do { } while (0)
8827 #define SD_INIT(sd, type) sd_init_##type(sd)
8829 #define SD_INIT_FUNC(type) \
8830 static noinline void sd_init_##type(struct sched_domain *sd) \
8832 memset(sd, 0, sizeof(*sd)); \
8833 *sd = SD_##type##_INIT; \
8834 sd->level = SD_LV_##type; \
8835 SD_INIT_NAME(sd, type); \
8840 SD_INIT_FUNC(ALLNODES
)
8843 #ifdef CONFIG_SCHED_SMT
8844 SD_INIT_FUNC(SIBLING
)
8846 #ifdef CONFIG_SCHED_MC
8850 static int default_relax_domain_level
= -1;
8852 static int __init
setup_relax_domain_level(char *str
)
8856 val
= simple_strtoul(str
, NULL
, 0);
8857 if (val
< SD_LV_MAX
)
8858 default_relax_domain_level
= val
;
8862 __setup("relax_domain_level=", setup_relax_domain_level
);
8864 static void set_domain_attribute(struct sched_domain
*sd
,
8865 struct sched_domain_attr
*attr
)
8869 if (!attr
|| attr
->relax_domain_level
< 0) {
8870 if (default_relax_domain_level
< 0)
8873 request
= default_relax_domain_level
;
8875 request
= attr
->relax_domain_level
;
8876 if (request
< sd
->level
) {
8877 /* turn off idle balance on this domain */
8878 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8880 /* turn on idle balance on this domain */
8881 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8885 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
8886 const struct cpumask
*cpu_map
)
8889 case sa_sched_groups
:
8890 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
8891 d
->sched_group_nodes
= NULL
;
8893 free_rootdomain(d
->rd
); /* fall through */
8895 free_cpumask_var(d
->tmpmask
); /* fall through */
8896 case sa_send_covered
:
8897 free_cpumask_var(d
->send_covered
); /* fall through */
8898 case sa_this_core_map
:
8899 free_cpumask_var(d
->this_core_map
); /* fall through */
8900 case sa_this_sibling_map
:
8901 free_cpumask_var(d
->this_sibling_map
); /* fall through */
8903 free_cpumask_var(d
->nodemask
); /* fall through */
8904 case sa_sched_group_nodes
:
8906 kfree(d
->sched_group_nodes
); /* fall through */
8908 free_cpumask_var(d
->notcovered
); /* fall through */
8910 free_cpumask_var(d
->covered
); /* fall through */
8912 free_cpumask_var(d
->domainspan
); /* fall through */
8919 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
8920 const struct cpumask
*cpu_map
)
8923 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
8925 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
8926 return sa_domainspan
;
8927 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
8929 /* Allocate the per-node list of sched groups */
8930 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
8931 sizeof(struct sched_group
*), GFP_KERNEL
);
8932 if (!d
->sched_group_nodes
) {
8933 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8934 return sa_notcovered
;
8936 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
8938 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
8939 return sa_sched_group_nodes
;
8940 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
8942 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
8943 return sa_this_sibling_map
;
8944 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
8945 return sa_this_core_map
;
8946 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
8947 return sa_send_covered
;
8948 d
->rd
= alloc_rootdomain();
8950 printk(KERN_WARNING
"Cannot alloc root domain\n");
8953 return sa_rootdomain
;
8956 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
8957 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
8959 struct sched_domain
*sd
= NULL
;
8961 struct sched_domain
*parent
;
8964 if (cpumask_weight(cpu_map
) >
8965 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
8966 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8967 SD_INIT(sd
, ALLNODES
);
8968 set_domain_attribute(sd
, attr
);
8969 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8970 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8975 sd
= &per_cpu(node_domains
, i
).sd
;
8977 set_domain_attribute(sd
, attr
);
8978 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8979 sd
->parent
= parent
;
8982 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
8987 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
8988 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8989 struct sched_domain
*parent
, int i
)
8991 struct sched_domain
*sd
;
8992 sd
= &per_cpu(phys_domains
, i
).sd
;
8994 set_domain_attribute(sd
, attr
);
8995 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
8996 sd
->parent
= parent
;
8999 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
9003 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
9004 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
9005 struct sched_domain
*parent
, int i
)
9007 struct sched_domain
*sd
= parent
;
9008 #ifdef CONFIG_SCHED_MC
9009 sd
= &per_cpu(core_domains
, i
).sd
;
9011 set_domain_attribute(sd
, attr
);
9012 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
9013 sd
->parent
= parent
;
9015 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
9020 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
9021 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
9022 struct sched_domain
*parent
, int i
)
9024 struct sched_domain
*sd
= parent
;
9025 #ifdef CONFIG_SCHED_SMT
9026 sd
= &per_cpu(cpu_domains
, i
).sd
;
9027 SD_INIT(sd
, SIBLING
);
9028 set_domain_attribute(sd
, attr
);
9029 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
9030 sd
->parent
= parent
;
9032 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
9037 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
9038 const struct cpumask
*cpu_map
, int cpu
)
9041 #ifdef CONFIG_SCHED_SMT
9042 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
9043 cpumask_and(d
->this_sibling_map
, cpu_map
,
9044 topology_thread_cpumask(cpu
));
9045 if (cpu
== cpumask_first(d
->this_sibling_map
))
9046 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
9048 d
->send_covered
, d
->tmpmask
);
9051 #ifdef CONFIG_SCHED_MC
9052 case SD_LV_MC
: /* set up multi-core groups */
9053 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
9054 if (cpu
== cpumask_first(d
->this_core_map
))
9055 init_sched_build_groups(d
->this_core_map
, cpu_map
,
9057 d
->send_covered
, d
->tmpmask
);
9060 case SD_LV_CPU
: /* set up physical groups */
9061 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
9062 if (!cpumask_empty(d
->nodemask
))
9063 init_sched_build_groups(d
->nodemask
, cpu_map
,
9065 d
->send_covered
, d
->tmpmask
);
9068 case SD_LV_ALLNODES
:
9069 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
9070 d
->send_covered
, d
->tmpmask
);
9079 * Build sched domains for a given set of cpus and attach the sched domains
9080 * to the individual cpus
9082 static int __build_sched_domains(const struct cpumask
*cpu_map
,
9083 struct sched_domain_attr
*attr
)
9085 enum s_alloc alloc_state
= sa_none
;
9087 struct sched_domain
*sd
;
9093 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
9094 if (alloc_state
!= sa_rootdomain
)
9096 alloc_state
= sa_sched_groups
;
9099 * Set up domains for cpus specified by the cpu_map.
9101 for_each_cpu(i
, cpu_map
) {
9102 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
9105 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
9106 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
9107 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
9108 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
9111 for_each_cpu(i
, cpu_map
) {
9112 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
9113 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
9116 /* Set up physical groups */
9117 for (i
= 0; i
< nr_node_ids
; i
++)
9118 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
9121 /* Set up node groups */
9123 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
9125 for (i
= 0; i
< nr_node_ids
; i
++)
9126 if (build_numa_sched_groups(&d
, cpu_map
, i
))
9130 /* Calculate CPU power for physical packages and nodes */
9131 #ifdef CONFIG_SCHED_SMT
9132 for_each_cpu(i
, cpu_map
) {
9133 sd
= &per_cpu(cpu_domains
, i
).sd
;
9134 init_sched_groups_power(i
, sd
);
9137 #ifdef CONFIG_SCHED_MC
9138 for_each_cpu(i
, cpu_map
) {
9139 sd
= &per_cpu(core_domains
, i
).sd
;
9140 init_sched_groups_power(i
, sd
);
9144 for_each_cpu(i
, cpu_map
) {
9145 sd
= &per_cpu(phys_domains
, i
).sd
;
9146 init_sched_groups_power(i
, sd
);
9150 for (i
= 0; i
< nr_node_ids
; i
++)
9151 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
9153 if (d
.sd_allnodes
) {
9154 struct sched_group
*sg
;
9156 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
9158 init_numa_sched_groups_power(sg
);
9162 /* Attach the domains */
9163 for_each_cpu(i
, cpu_map
) {
9164 #ifdef CONFIG_SCHED_SMT
9165 sd
= &per_cpu(cpu_domains
, i
).sd
;
9166 #elif defined(CONFIG_SCHED_MC)
9167 sd
= &per_cpu(core_domains
, i
).sd
;
9169 sd
= &per_cpu(phys_domains
, i
).sd
;
9171 cpu_attach_domain(sd
, d
.rd
, i
);
9174 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
9175 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
9179 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
9183 static int build_sched_domains(const struct cpumask
*cpu_map
)
9185 return __build_sched_domains(cpu_map
, NULL
);
9188 static struct cpumask
*doms_cur
; /* current sched domains */
9189 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
9190 static struct sched_domain_attr
*dattr_cur
;
9191 /* attribues of custom domains in 'doms_cur' */
9194 * Special case: If a kmalloc of a doms_cur partition (array of
9195 * cpumask) fails, then fallback to a single sched domain,
9196 * as determined by the single cpumask fallback_doms.
9198 static cpumask_var_t fallback_doms
;
9201 * arch_update_cpu_topology lets virtualized architectures update the
9202 * cpu core maps. It is supposed to return 1 if the topology changed
9203 * or 0 if it stayed the same.
9205 int __attribute__((weak
)) arch_update_cpu_topology(void)
9211 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9212 * For now this just excludes isolated cpus, but could be used to
9213 * exclude other special cases in the future.
9215 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
9219 arch_update_cpu_topology();
9221 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
9223 doms_cur
= fallback_doms
;
9224 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
9226 err
= build_sched_domains(doms_cur
);
9227 register_sched_domain_sysctl();
9232 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
9233 struct cpumask
*tmpmask
)
9235 free_sched_groups(cpu_map
, tmpmask
);
9239 * Detach sched domains from a group of cpus specified in cpu_map
9240 * These cpus will now be attached to the NULL domain
9242 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
9244 /* Save because hotplug lock held. */
9245 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
9248 for_each_cpu(i
, cpu_map
)
9249 cpu_attach_domain(NULL
, &def_root_domain
, i
);
9250 synchronize_sched();
9251 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
9254 /* handle null as "default" */
9255 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
9256 struct sched_domain_attr
*new, int idx_new
)
9258 struct sched_domain_attr tmp
;
9265 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
9266 new ? (new + idx_new
) : &tmp
,
9267 sizeof(struct sched_domain_attr
));
9271 * Partition sched domains as specified by the 'ndoms_new'
9272 * cpumasks in the array doms_new[] of cpumasks. This compares
9273 * doms_new[] to the current sched domain partitioning, doms_cur[].
9274 * It destroys each deleted domain and builds each new domain.
9276 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9277 * The masks don't intersect (don't overlap.) We should setup one
9278 * sched domain for each mask. CPUs not in any of the cpumasks will
9279 * not be load balanced. If the same cpumask appears both in the
9280 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9283 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9284 * ownership of it and will kfree it when done with it. If the caller
9285 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9286 * ndoms_new == 1, and partition_sched_domains() will fallback to
9287 * the single partition 'fallback_doms', it also forces the domains
9290 * If doms_new == NULL it will be replaced with cpu_online_mask.
9291 * ndoms_new == 0 is a special case for destroying existing domains,
9292 * and it will not create the default domain.
9294 * Call with hotplug lock held
9296 /* FIXME: Change to struct cpumask *doms_new[] */
9297 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
9298 struct sched_domain_attr
*dattr_new
)
9303 mutex_lock(&sched_domains_mutex
);
9305 /* always unregister in case we don't destroy any domains */
9306 unregister_sched_domain_sysctl();
9308 /* Let architecture update cpu core mappings. */
9309 new_topology
= arch_update_cpu_topology();
9311 n
= doms_new
? ndoms_new
: 0;
9313 /* Destroy deleted domains */
9314 for (i
= 0; i
< ndoms_cur
; i
++) {
9315 for (j
= 0; j
< n
&& !new_topology
; j
++) {
9316 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
9317 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
9320 /* no match - a current sched domain not in new doms_new[] */
9321 detach_destroy_domains(doms_cur
+ i
);
9326 if (doms_new
== NULL
) {
9328 doms_new
= fallback_doms
;
9329 cpumask_andnot(&doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
9330 WARN_ON_ONCE(dattr_new
);
9333 /* Build new domains */
9334 for (i
= 0; i
< ndoms_new
; i
++) {
9335 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
9336 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
9337 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
9340 /* no match - add a new doms_new */
9341 __build_sched_domains(doms_new
+ i
,
9342 dattr_new
? dattr_new
+ i
: NULL
);
9347 /* Remember the new sched domains */
9348 if (doms_cur
!= fallback_doms
)
9350 kfree(dattr_cur
); /* kfree(NULL) is safe */
9351 doms_cur
= doms_new
;
9352 dattr_cur
= dattr_new
;
9353 ndoms_cur
= ndoms_new
;
9355 register_sched_domain_sysctl();
9357 mutex_unlock(&sched_domains_mutex
);
9360 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9361 static void arch_reinit_sched_domains(void)
9365 /* Destroy domains first to force the rebuild */
9366 partition_sched_domains(0, NULL
, NULL
);
9368 rebuild_sched_domains();
9372 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
9374 unsigned int level
= 0;
9376 if (sscanf(buf
, "%u", &level
) != 1)
9380 * level is always be positive so don't check for
9381 * level < POWERSAVINGS_BALANCE_NONE which is 0
9382 * What happens on 0 or 1 byte write,
9383 * need to check for count as well?
9386 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
9390 sched_smt_power_savings
= level
;
9392 sched_mc_power_savings
= level
;
9394 arch_reinit_sched_domains();
9399 #ifdef CONFIG_SCHED_MC
9400 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
9403 return sprintf(page
, "%u\n", sched_mc_power_savings
);
9405 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
9406 const char *buf
, size_t count
)
9408 return sched_power_savings_store(buf
, count
, 0);
9410 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
9411 sched_mc_power_savings_show
,
9412 sched_mc_power_savings_store
);
9415 #ifdef CONFIG_SCHED_SMT
9416 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
9419 return sprintf(page
, "%u\n", sched_smt_power_savings
);
9421 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
9422 const char *buf
, size_t count
)
9424 return sched_power_savings_store(buf
, count
, 1);
9426 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
9427 sched_smt_power_savings_show
,
9428 sched_smt_power_savings_store
);
9431 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
9435 #ifdef CONFIG_SCHED_SMT
9437 err
= sysfs_create_file(&cls
->kset
.kobj
,
9438 &attr_sched_smt_power_savings
.attr
);
9440 #ifdef CONFIG_SCHED_MC
9441 if (!err
&& mc_capable())
9442 err
= sysfs_create_file(&cls
->kset
.kobj
,
9443 &attr_sched_mc_power_savings
.attr
);
9447 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9449 #ifndef CONFIG_CPUSETS
9451 * Add online and remove offline CPUs from the scheduler domains.
9452 * When cpusets are enabled they take over this function.
9454 static int update_sched_domains(struct notifier_block
*nfb
,
9455 unsigned long action
, void *hcpu
)
9459 case CPU_ONLINE_FROZEN
:
9460 case CPU_DOWN_PREPARE
:
9461 case CPU_DOWN_PREPARE_FROZEN
:
9462 case CPU_DOWN_FAILED
:
9463 case CPU_DOWN_FAILED_FROZEN
:
9464 partition_sched_domains(1, NULL
, NULL
);
9473 static int update_runtime(struct notifier_block
*nfb
,
9474 unsigned long action
, void *hcpu
)
9476 int cpu
= (int)(long)hcpu
;
9479 case CPU_DOWN_PREPARE
:
9480 case CPU_DOWN_PREPARE_FROZEN
:
9481 disable_runtime(cpu_rq(cpu
));
9484 case CPU_DOWN_FAILED
:
9485 case CPU_DOWN_FAILED_FROZEN
:
9487 case CPU_ONLINE_FROZEN
:
9488 enable_runtime(cpu_rq(cpu
));
9496 void __init
sched_init_smp(void)
9498 cpumask_var_t non_isolated_cpus
;
9500 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
9501 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9503 #if defined(CONFIG_NUMA)
9504 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
9506 BUG_ON(sched_group_nodes_bycpu
== NULL
);
9509 mutex_lock(&sched_domains_mutex
);
9510 arch_init_sched_domains(cpu_active_mask
);
9511 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9512 if (cpumask_empty(non_isolated_cpus
))
9513 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9514 mutex_unlock(&sched_domains_mutex
);
9517 #ifndef CONFIG_CPUSETS
9518 /* XXX: Theoretical race here - CPU may be hotplugged now */
9519 hotcpu_notifier(update_sched_domains
, 0);
9522 /* RT runtime code needs to handle some hotplug events */
9523 hotcpu_notifier(update_runtime
, 0);
9527 /* Move init over to a non-isolated CPU */
9528 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9530 sched_init_granularity();
9531 free_cpumask_var(non_isolated_cpus
);
9533 init_sched_rt_class();
9536 void __init
sched_init_smp(void)
9538 sched_init_granularity();
9540 #endif /* CONFIG_SMP */
9542 const_debug
unsigned int sysctl_timer_migration
= 1;
9544 int in_sched_functions(unsigned long addr
)
9546 return in_lock_functions(addr
) ||
9547 (addr
>= (unsigned long)__sched_text_start
9548 && addr
< (unsigned long)__sched_text_end
);
9551 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9553 cfs_rq
->tasks_timeline
= RB_ROOT
;
9554 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9555 #ifdef CONFIG_FAIR_GROUP_SCHED
9558 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9561 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9563 struct rt_prio_array
*array
;
9566 array
= &rt_rq
->active
;
9567 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9568 INIT_LIST_HEAD(array
->queue
+ i
);
9569 __clear_bit(i
, array
->bitmap
);
9571 /* delimiter for bitsearch: */
9572 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9574 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9575 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9577 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9581 rt_rq
->rt_nr_migratory
= 0;
9582 rt_rq
->overloaded
= 0;
9583 plist_head_init(&rt_rq
->pushable_tasks
, &rq
->lock
);
9587 rt_rq
->rt_throttled
= 0;
9588 rt_rq
->rt_runtime
= 0;
9589 spin_lock_init(&rt_rq
->rt_runtime_lock
);
9591 #ifdef CONFIG_RT_GROUP_SCHED
9592 rt_rq
->rt_nr_boosted
= 0;
9597 #ifdef CONFIG_FAIR_GROUP_SCHED
9598 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9599 struct sched_entity
*se
, int cpu
, int add
,
9600 struct sched_entity
*parent
)
9602 struct rq
*rq
= cpu_rq(cpu
);
9603 tg
->cfs_rq
[cpu
] = cfs_rq
;
9604 init_cfs_rq(cfs_rq
, rq
);
9607 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9610 /* se could be NULL for init_task_group */
9615 se
->cfs_rq
= &rq
->cfs
;
9617 se
->cfs_rq
= parent
->my_q
;
9620 se
->load
.weight
= tg
->shares
;
9621 se
->load
.inv_weight
= 0;
9622 se
->parent
= parent
;
9626 #ifdef CONFIG_RT_GROUP_SCHED
9627 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9628 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9629 struct sched_rt_entity
*parent
)
9631 struct rq
*rq
= cpu_rq(cpu
);
9633 tg
->rt_rq
[cpu
] = rt_rq
;
9634 init_rt_rq(rt_rq
, rq
);
9636 rt_rq
->rt_se
= rt_se
;
9637 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9639 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9641 tg
->rt_se
[cpu
] = rt_se
;
9646 rt_se
->rt_rq
= &rq
->rt
;
9648 rt_se
->rt_rq
= parent
->my_q
;
9650 rt_se
->my_q
= rt_rq
;
9651 rt_se
->parent
= parent
;
9652 INIT_LIST_HEAD(&rt_se
->run_list
);
9656 void __init
sched_init(void)
9659 unsigned long alloc_size
= 0, ptr
;
9661 #ifdef CONFIG_FAIR_GROUP_SCHED
9662 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9664 #ifdef CONFIG_RT_GROUP_SCHED
9665 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9667 #ifdef CONFIG_CPUMASK_OFFSTACK
9668 alloc_size
+= num_possible_cpus() * cpumask_size();
9671 * As sched_init() is called before page_alloc is setup,
9672 * we use alloc_bootmem().
9675 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9677 #ifdef CONFIG_FAIR_GROUP_SCHED
9678 init_task_group
.se
= (struct sched_entity
**)ptr
;
9679 ptr
+= nr_cpu_ids
* sizeof(void **);
9681 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9682 ptr
+= nr_cpu_ids
* sizeof(void **);
9684 #endif /* CONFIG_FAIR_GROUP_SCHED */
9685 #ifdef CONFIG_RT_GROUP_SCHED
9686 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9687 ptr
+= nr_cpu_ids
* sizeof(void **);
9689 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9690 ptr
+= nr_cpu_ids
* sizeof(void **);
9692 #endif /* CONFIG_RT_GROUP_SCHED */
9693 #ifdef CONFIG_CPUMASK_OFFSTACK
9694 for_each_possible_cpu(i
) {
9695 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9696 ptr
+= cpumask_size();
9698 #endif /* CONFIG_CPUMASK_OFFSTACK */
9702 init_defrootdomain();
9705 init_rt_bandwidth(&def_rt_bandwidth
,
9706 global_rt_period(), global_rt_runtime());
9708 #ifdef CONFIG_RT_GROUP_SCHED
9709 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9710 global_rt_period(), global_rt_runtime());
9711 #endif /* CONFIG_RT_GROUP_SCHED */
9713 #ifdef CONFIG_CGROUP_SCHED
9714 list_add(&init_task_group
.list
, &task_groups
);
9715 INIT_LIST_HEAD(&init_task_group
.children
);
9717 #endif /* CONFIG_CGROUP_SCHED */
9719 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9720 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
9721 __alignof__(unsigned long));
9723 for_each_possible_cpu(i
) {
9727 spin_lock_init(&rq
->lock
);
9729 rq
->calc_load_active
= 0;
9730 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9731 init_cfs_rq(&rq
->cfs
, rq
);
9732 init_rt_rq(&rq
->rt
, rq
);
9733 #ifdef CONFIG_FAIR_GROUP_SCHED
9734 init_task_group
.shares
= init_task_group_load
;
9735 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9736 #ifdef CONFIG_CGROUP_SCHED
9738 * How much cpu bandwidth does init_task_group get?
9740 * In case of task-groups formed thr' the cgroup filesystem, it
9741 * gets 100% of the cpu resources in the system. This overall
9742 * system cpu resource is divided among the tasks of
9743 * init_task_group and its child task-groups in a fair manner,
9744 * based on each entity's (task or task-group's) weight
9745 * (se->load.weight).
9747 * In other words, if init_task_group has 10 tasks of weight
9748 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9749 * then A0's share of the cpu resource is:
9751 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9753 * We achieve this by letting init_task_group's tasks sit
9754 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9756 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9758 #endif /* CONFIG_FAIR_GROUP_SCHED */
9760 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9761 #ifdef CONFIG_RT_GROUP_SCHED
9762 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9763 #ifdef CONFIG_CGROUP_SCHED
9764 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9765 #elif defined CONFIG_USER_SCHED
9766 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9767 init_tg_rt_entry(&init_task_group
,
9768 &per_cpu(init_rt_rq
, i
),
9769 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9770 root_task_group
.rt_se
[i
]);
9774 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9775 rq
->cpu_load
[j
] = 0;
9779 rq
->cpu_power
= SCHED_LOAD_SCALE
;
9780 rq
->post_schedule
= 0;
9781 rq
->active_balance
= 0;
9782 rq
->next_balance
= jiffies
;
9786 rq
->migration_thread
= NULL
;
9788 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
9789 INIT_LIST_HEAD(&rq
->migration_queue
);
9790 rq_attach_root(rq
, &def_root_domain
);
9793 atomic_set(&rq
->nr_iowait
, 0);
9796 set_load_weight(&init_task
);
9798 #ifdef CONFIG_PREEMPT_NOTIFIERS
9799 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9803 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9806 #ifdef CONFIG_RT_MUTEXES
9807 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9811 * The boot idle thread does lazy MMU switching as well:
9813 atomic_inc(&init_mm
.mm_count
);
9814 enter_lazy_tlb(&init_mm
, current
);
9817 * Make us the idle thread. Technically, schedule() should not be
9818 * called from this thread, however somewhere below it might be,
9819 * but because we are the idle thread, we just pick up running again
9820 * when this runqueue becomes "idle".
9822 init_idle(current
, smp_processor_id());
9824 calc_load_update
= jiffies
+ LOAD_FREQ
;
9827 * During early bootup we pretend to be a normal task:
9829 current
->sched_class
= &fair_sched_class
;
9831 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9832 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9835 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9836 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9838 /* May be allocated at isolcpus cmdline parse time */
9839 if (cpu_isolated_map
== NULL
)
9840 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9845 scheduler_running
= 1;
9848 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9849 static inline int preempt_count_equals(int preempt_offset
)
9851 int nested
= preempt_count() & ~PREEMPT_ACTIVE
;
9853 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
9856 void __might_sleep(char *file
, int line
, int preempt_offset
)
9859 static unsigned long prev_jiffy
; /* ratelimiting */
9861 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
9862 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9864 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9866 prev_jiffy
= jiffies
;
9869 "BUG: sleeping function called from invalid context at %s:%d\n",
9872 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9873 in_atomic(), irqs_disabled(),
9874 current
->pid
, current
->comm
);
9876 debug_show_held_locks(current
);
9877 if (irqs_disabled())
9878 print_irqtrace_events(current
);
9882 EXPORT_SYMBOL(__might_sleep
);
9885 #ifdef CONFIG_MAGIC_SYSRQ
9886 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9890 update_rq_clock(rq
);
9891 on_rq
= p
->se
.on_rq
;
9893 deactivate_task(rq
, p
, 0);
9894 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9896 activate_task(rq
, p
, 0);
9897 resched_task(rq
->curr
);
9901 void normalize_rt_tasks(void)
9903 struct task_struct
*g
, *p
;
9904 unsigned long flags
;
9907 read_lock_irqsave(&tasklist_lock
, flags
);
9908 do_each_thread(g
, p
) {
9910 * Only normalize user tasks:
9915 p
->se
.exec_start
= 0;
9916 #ifdef CONFIG_SCHEDSTATS
9917 p
->se
.wait_start
= 0;
9918 p
->se
.sleep_start
= 0;
9919 p
->se
.block_start
= 0;
9924 * Renice negative nice level userspace
9927 if (TASK_NICE(p
) < 0 && p
->mm
)
9928 set_user_nice(p
, 0);
9932 spin_lock(&p
->pi_lock
);
9933 rq
= __task_rq_lock(p
);
9935 normalize_task(rq
, p
);
9937 __task_rq_unlock(rq
);
9938 spin_unlock(&p
->pi_lock
);
9939 } while_each_thread(g
, p
);
9941 read_unlock_irqrestore(&tasklist_lock
, flags
);
9944 #endif /* CONFIG_MAGIC_SYSRQ */
9948 * These functions are only useful for the IA64 MCA handling.
9950 * They can only be called when the whole system has been
9951 * stopped - every CPU needs to be quiescent, and no scheduling
9952 * activity can take place. Using them for anything else would
9953 * be a serious bug, and as a result, they aren't even visible
9954 * under any other configuration.
9958 * curr_task - return the current task for a given cpu.
9959 * @cpu: the processor in question.
9961 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9963 struct task_struct
*curr_task(int cpu
)
9965 return cpu_curr(cpu
);
9969 * set_curr_task - set the current task for a given cpu.
9970 * @cpu: the processor in question.
9971 * @p: the task pointer to set.
9973 * Description: This function must only be used when non-maskable interrupts
9974 * are serviced on a separate stack. It allows the architecture to switch the
9975 * notion of the current task on a cpu in a non-blocking manner. This function
9976 * must be called with all CPU's synchronized, and interrupts disabled, the
9977 * and caller must save the original value of the current task (see
9978 * curr_task() above) and restore that value before reenabling interrupts and
9979 * re-starting the system.
9981 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9983 void set_curr_task(int cpu
, struct task_struct
*p
)
9990 #ifdef CONFIG_FAIR_GROUP_SCHED
9991 static void free_fair_sched_group(struct task_group
*tg
)
9995 for_each_possible_cpu(i
) {
9997 kfree(tg
->cfs_rq
[i
]);
10007 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10009 struct cfs_rq
*cfs_rq
;
10010 struct sched_entity
*se
;
10014 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
10017 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
10021 tg
->shares
= NICE_0_LOAD
;
10023 for_each_possible_cpu(i
) {
10026 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
10027 GFP_KERNEL
, cpu_to_node(i
));
10031 se
= kzalloc_node(sizeof(struct sched_entity
),
10032 GFP_KERNEL
, cpu_to_node(i
));
10036 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
10045 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
10047 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
10048 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
10051 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
10053 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
10055 #else /* !CONFG_FAIR_GROUP_SCHED */
10056 static inline void free_fair_sched_group(struct task_group
*tg
)
10061 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10066 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
10070 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
10073 #endif /* CONFIG_FAIR_GROUP_SCHED */
10075 #ifdef CONFIG_RT_GROUP_SCHED
10076 static void free_rt_sched_group(struct task_group
*tg
)
10080 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
10082 for_each_possible_cpu(i
) {
10084 kfree(tg
->rt_rq
[i
]);
10086 kfree(tg
->rt_se
[i
]);
10094 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10096 struct rt_rq
*rt_rq
;
10097 struct sched_rt_entity
*rt_se
;
10101 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
10104 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
10108 init_rt_bandwidth(&tg
->rt_bandwidth
,
10109 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
10111 for_each_possible_cpu(i
) {
10114 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
10115 GFP_KERNEL
, cpu_to_node(i
));
10119 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
10120 GFP_KERNEL
, cpu_to_node(i
));
10124 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
10133 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
10135 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
10136 &cpu_rq(cpu
)->leaf_rt_rq_list
);
10139 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
10141 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
10143 #else /* !CONFIG_RT_GROUP_SCHED */
10144 static inline void free_rt_sched_group(struct task_group
*tg
)
10149 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10154 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
10158 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
10161 #endif /* CONFIG_RT_GROUP_SCHED */
10163 #ifdef CONFIG_CGROUP_SCHED
10164 static void free_sched_group(struct task_group
*tg
)
10166 free_fair_sched_group(tg
);
10167 free_rt_sched_group(tg
);
10171 /* allocate runqueue etc for a new task group */
10172 struct task_group
*sched_create_group(struct task_group
*parent
)
10174 struct task_group
*tg
;
10175 unsigned long flags
;
10178 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
10180 return ERR_PTR(-ENOMEM
);
10182 if (!alloc_fair_sched_group(tg
, parent
))
10185 if (!alloc_rt_sched_group(tg
, parent
))
10188 spin_lock_irqsave(&task_group_lock
, flags
);
10189 for_each_possible_cpu(i
) {
10190 register_fair_sched_group(tg
, i
);
10191 register_rt_sched_group(tg
, i
);
10193 list_add_rcu(&tg
->list
, &task_groups
);
10195 WARN_ON(!parent
); /* root should already exist */
10197 tg
->parent
= parent
;
10198 INIT_LIST_HEAD(&tg
->children
);
10199 list_add_rcu(&tg
->siblings
, &parent
->children
);
10200 spin_unlock_irqrestore(&task_group_lock
, flags
);
10205 free_sched_group(tg
);
10206 return ERR_PTR(-ENOMEM
);
10209 /* rcu callback to free various structures associated with a task group */
10210 static void free_sched_group_rcu(struct rcu_head
*rhp
)
10212 /* now it should be safe to free those cfs_rqs */
10213 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
10216 /* Destroy runqueue etc associated with a task group */
10217 void sched_destroy_group(struct task_group
*tg
)
10219 unsigned long flags
;
10222 spin_lock_irqsave(&task_group_lock
, flags
);
10223 for_each_possible_cpu(i
) {
10224 unregister_fair_sched_group(tg
, i
);
10225 unregister_rt_sched_group(tg
, i
);
10227 list_del_rcu(&tg
->list
);
10228 list_del_rcu(&tg
->siblings
);
10229 spin_unlock_irqrestore(&task_group_lock
, flags
);
10231 /* wait for possible concurrent references to cfs_rqs complete */
10232 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
10235 /* change task's runqueue when it moves between groups.
10236 * The caller of this function should have put the task in its new group
10237 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10238 * reflect its new group.
10240 void sched_move_task(struct task_struct
*tsk
)
10242 int on_rq
, running
;
10243 unsigned long flags
;
10246 rq
= task_rq_lock(tsk
, &flags
);
10248 update_rq_clock(rq
);
10250 running
= task_current(rq
, tsk
);
10251 on_rq
= tsk
->se
.on_rq
;
10254 dequeue_task(rq
, tsk
, 0);
10255 if (unlikely(running
))
10256 tsk
->sched_class
->put_prev_task(rq
, tsk
);
10258 #ifdef CONFIG_FAIR_GROUP_SCHED
10259 if (tsk
->sched_class
->task_move_group
)
10260 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
10263 set_task_rq(tsk
, task_cpu(tsk
));
10265 if (unlikely(running
))
10266 tsk
->sched_class
->set_curr_task(rq
);
10268 enqueue_task(rq
, tsk
, 0, false);
10270 task_rq_unlock(rq
, &flags
);
10272 #endif /* CONFIG_CGROUP_SCHED */
10274 #ifdef CONFIG_FAIR_GROUP_SCHED
10275 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10277 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10282 dequeue_entity(cfs_rq
, se
, 0);
10284 se
->load
.weight
= shares
;
10285 se
->load
.inv_weight
= 0;
10288 enqueue_entity(cfs_rq
, se
, 0);
10291 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10293 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10294 struct rq
*rq
= cfs_rq
->rq
;
10295 unsigned long flags
;
10297 spin_lock_irqsave(&rq
->lock
, flags
);
10298 __set_se_shares(se
, shares
);
10299 spin_unlock_irqrestore(&rq
->lock
, flags
);
10302 static DEFINE_MUTEX(shares_mutex
);
10304 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10307 unsigned long flags
;
10310 * We can't change the weight of the root cgroup.
10315 if (shares
< MIN_SHARES
)
10316 shares
= MIN_SHARES
;
10317 else if (shares
> MAX_SHARES
)
10318 shares
= MAX_SHARES
;
10320 mutex_lock(&shares_mutex
);
10321 if (tg
->shares
== shares
)
10324 spin_lock_irqsave(&task_group_lock
, flags
);
10325 for_each_possible_cpu(i
)
10326 unregister_fair_sched_group(tg
, i
);
10327 list_del_rcu(&tg
->siblings
);
10328 spin_unlock_irqrestore(&task_group_lock
, flags
);
10330 /* wait for any ongoing reference to this group to finish */
10331 synchronize_sched();
10334 * Now we are free to modify the group's share on each cpu
10335 * w/o tripping rebalance_share or load_balance_fair.
10337 tg
->shares
= shares
;
10338 for_each_possible_cpu(i
) {
10340 * force a rebalance
10342 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
10343 set_se_shares(tg
->se
[i
], shares
);
10347 * Enable load balance activity on this group, by inserting it back on
10348 * each cpu's rq->leaf_cfs_rq_list.
10350 spin_lock_irqsave(&task_group_lock
, flags
);
10351 for_each_possible_cpu(i
)
10352 register_fair_sched_group(tg
, i
);
10353 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
10354 spin_unlock_irqrestore(&task_group_lock
, flags
);
10356 mutex_unlock(&shares_mutex
);
10360 unsigned long sched_group_shares(struct task_group
*tg
)
10366 #ifdef CONFIG_RT_GROUP_SCHED
10368 * Ensure that the real time constraints are schedulable.
10370 static DEFINE_MUTEX(rt_constraints_mutex
);
10372 static unsigned long to_ratio(u64 period
, u64 runtime
)
10374 if (runtime
== RUNTIME_INF
)
10377 return div64_u64(runtime
<< 20, period
);
10380 /* Must be called with tasklist_lock held */
10381 static inline int tg_has_rt_tasks(struct task_group
*tg
)
10383 struct task_struct
*g
, *p
;
10385 do_each_thread(g
, p
) {
10386 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
10388 } while_each_thread(g
, p
);
10393 struct rt_schedulable_data
{
10394 struct task_group
*tg
;
10399 static int tg_schedulable(struct task_group
*tg
, void *data
)
10401 struct rt_schedulable_data
*d
= data
;
10402 struct task_group
*child
;
10403 unsigned long total
, sum
= 0;
10404 u64 period
, runtime
;
10406 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10407 runtime
= tg
->rt_bandwidth
.rt_runtime
;
10410 period
= d
->rt_period
;
10411 runtime
= d
->rt_runtime
;
10415 * Cannot have more runtime than the period.
10417 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10421 * Ensure we don't starve existing RT tasks.
10423 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
10426 total
= to_ratio(period
, runtime
);
10429 * Nobody can have more than the global setting allows.
10431 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
10435 * The sum of our children's runtime should not exceed our own.
10437 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
10438 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
10439 runtime
= child
->rt_bandwidth
.rt_runtime
;
10441 if (child
== d
->tg
) {
10442 period
= d
->rt_period
;
10443 runtime
= d
->rt_runtime
;
10446 sum
+= to_ratio(period
, runtime
);
10455 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
10457 struct rt_schedulable_data data
= {
10459 .rt_period
= period
,
10460 .rt_runtime
= runtime
,
10463 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
10466 static int tg_set_bandwidth(struct task_group
*tg
,
10467 u64 rt_period
, u64 rt_runtime
)
10471 mutex_lock(&rt_constraints_mutex
);
10472 read_lock(&tasklist_lock
);
10473 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10477 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10478 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10479 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10481 for_each_possible_cpu(i
) {
10482 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10484 spin_lock(&rt_rq
->rt_runtime_lock
);
10485 rt_rq
->rt_runtime
= rt_runtime
;
10486 spin_unlock(&rt_rq
->rt_runtime_lock
);
10488 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10490 read_unlock(&tasklist_lock
);
10491 mutex_unlock(&rt_constraints_mutex
);
10496 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10498 u64 rt_runtime
, rt_period
;
10500 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10501 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10502 if (rt_runtime_us
< 0)
10503 rt_runtime
= RUNTIME_INF
;
10505 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10508 long sched_group_rt_runtime(struct task_group
*tg
)
10512 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10515 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10516 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10517 return rt_runtime_us
;
10520 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10522 u64 rt_runtime
, rt_period
;
10524 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10525 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10527 if (rt_period
== 0)
10530 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10533 long sched_group_rt_period(struct task_group
*tg
)
10537 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10538 do_div(rt_period_us
, NSEC_PER_USEC
);
10539 return rt_period_us
;
10542 static int sched_rt_global_constraints(void)
10544 u64 runtime
, period
;
10547 if (sysctl_sched_rt_period
<= 0)
10550 runtime
= global_rt_runtime();
10551 period
= global_rt_period();
10554 * Sanity check on the sysctl variables.
10556 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10559 mutex_lock(&rt_constraints_mutex
);
10560 read_lock(&tasklist_lock
);
10561 ret
= __rt_schedulable(NULL
, 0, 0);
10562 read_unlock(&tasklist_lock
);
10563 mutex_unlock(&rt_constraints_mutex
);
10568 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10570 /* Don't accept realtime tasks when there is no way for them to run */
10571 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10577 #else /* !CONFIG_RT_GROUP_SCHED */
10578 static int sched_rt_global_constraints(void)
10580 unsigned long flags
;
10583 if (sysctl_sched_rt_period
<= 0)
10587 * There's always some RT tasks in the root group
10588 * -- migration, kstopmachine etc..
10590 if (sysctl_sched_rt_runtime
== 0)
10593 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10594 for_each_possible_cpu(i
) {
10595 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10597 spin_lock(&rt_rq
->rt_runtime_lock
);
10598 rt_rq
->rt_runtime
= global_rt_runtime();
10599 spin_unlock(&rt_rq
->rt_runtime_lock
);
10601 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10605 #endif /* CONFIG_RT_GROUP_SCHED */
10607 int sched_rt_handler(struct ctl_table
*table
, int write
,
10608 void __user
*buffer
, size_t *lenp
,
10612 int old_period
, old_runtime
;
10613 static DEFINE_MUTEX(mutex
);
10615 mutex_lock(&mutex
);
10616 old_period
= sysctl_sched_rt_period
;
10617 old_runtime
= sysctl_sched_rt_runtime
;
10619 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
10621 if (!ret
&& write
) {
10622 ret
= sched_rt_global_constraints();
10624 sysctl_sched_rt_period
= old_period
;
10625 sysctl_sched_rt_runtime
= old_runtime
;
10627 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10628 def_rt_bandwidth
.rt_period
=
10629 ns_to_ktime(global_rt_period());
10632 mutex_unlock(&mutex
);
10637 #ifdef CONFIG_CGROUP_SCHED
10639 /* return corresponding task_group object of a cgroup */
10640 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10642 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10643 struct task_group
, css
);
10646 static struct cgroup_subsys_state
*
10647 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10649 struct task_group
*tg
, *parent
;
10651 if (!cgrp
->parent
) {
10652 /* This is early initialization for the top cgroup */
10653 return &init_task_group
.css
;
10656 parent
= cgroup_tg(cgrp
->parent
);
10657 tg
= sched_create_group(parent
);
10659 return ERR_PTR(-ENOMEM
);
10665 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10667 struct task_group
*tg
= cgroup_tg(cgrp
);
10669 sched_destroy_group(tg
);
10673 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
10675 #ifdef CONFIG_RT_GROUP_SCHED
10676 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10679 /* We don't support RT-tasks being in separate groups */
10680 if (tsk
->sched_class
!= &fair_sched_class
)
10687 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10688 struct task_struct
*tsk
, bool threadgroup
)
10690 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
10694 struct task_struct
*c
;
10696 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10697 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
10709 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10710 struct cgroup
*old_cont
, struct task_struct
*tsk
,
10713 sched_move_task(tsk
);
10715 struct task_struct
*c
;
10717 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10718 sched_move_task(c
);
10724 #ifdef CONFIG_FAIR_GROUP_SCHED
10725 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10728 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10731 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10733 struct task_group
*tg
= cgroup_tg(cgrp
);
10735 return (u64
) tg
->shares
;
10737 #endif /* CONFIG_FAIR_GROUP_SCHED */
10739 #ifdef CONFIG_RT_GROUP_SCHED
10740 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10743 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10746 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10748 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10751 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10754 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10757 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10759 return sched_group_rt_period(cgroup_tg(cgrp
));
10761 #endif /* CONFIG_RT_GROUP_SCHED */
10763 static struct cftype cpu_files
[] = {
10764 #ifdef CONFIG_FAIR_GROUP_SCHED
10767 .read_u64
= cpu_shares_read_u64
,
10768 .write_u64
= cpu_shares_write_u64
,
10771 #ifdef CONFIG_RT_GROUP_SCHED
10773 .name
= "rt_runtime_us",
10774 .read_s64
= cpu_rt_runtime_read
,
10775 .write_s64
= cpu_rt_runtime_write
,
10778 .name
= "rt_period_us",
10779 .read_u64
= cpu_rt_period_read_uint
,
10780 .write_u64
= cpu_rt_period_write_uint
,
10785 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10787 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10790 struct cgroup_subsys cpu_cgroup_subsys
= {
10792 .create
= cpu_cgroup_create
,
10793 .destroy
= cpu_cgroup_destroy
,
10794 .can_attach
= cpu_cgroup_can_attach
,
10795 .attach
= cpu_cgroup_attach
,
10796 .populate
= cpu_cgroup_populate
,
10797 .subsys_id
= cpu_cgroup_subsys_id
,
10801 #endif /* CONFIG_CGROUP_SCHED */
10803 #ifdef CONFIG_CGROUP_CPUACCT
10806 * CPU accounting code for task groups.
10808 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10809 * (balbir@in.ibm.com).
10812 /* track cpu usage of a group of tasks and its child groups */
10814 struct cgroup_subsys_state css
;
10815 /* cpuusage holds pointer to a u64-type object on every cpu */
10817 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10818 struct cpuacct
*parent
;
10821 struct cgroup_subsys cpuacct_subsys
;
10823 /* return cpu accounting group corresponding to this container */
10824 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10826 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10827 struct cpuacct
, css
);
10830 /* return cpu accounting group to which this task belongs */
10831 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10833 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10834 struct cpuacct
, css
);
10837 /* create a new cpu accounting group */
10838 static struct cgroup_subsys_state
*cpuacct_create(
10839 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10841 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10847 ca
->cpuusage
= alloc_percpu(u64
);
10851 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10852 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10853 goto out_free_counters
;
10856 ca
->parent
= cgroup_ca(cgrp
->parent
);
10862 percpu_counter_destroy(&ca
->cpustat
[i
]);
10863 free_percpu(ca
->cpuusage
);
10867 return ERR_PTR(-ENOMEM
);
10870 /* destroy an existing cpu accounting group */
10872 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10874 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10877 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10878 percpu_counter_destroy(&ca
->cpustat
[i
]);
10879 free_percpu(ca
->cpuusage
);
10883 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10885 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10888 #ifndef CONFIG_64BIT
10890 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10892 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10894 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10902 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10904 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10906 #ifndef CONFIG_64BIT
10908 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10910 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10912 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10918 /* return total cpu usage (in nanoseconds) of a group */
10919 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10921 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10922 u64 totalcpuusage
= 0;
10925 for_each_present_cpu(i
)
10926 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10928 return totalcpuusage
;
10931 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10934 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10943 for_each_present_cpu(i
)
10944 cpuacct_cpuusage_write(ca
, i
, 0);
10950 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10951 struct seq_file
*m
)
10953 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10957 for_each_present_cpu(i
) {
10958 percpu
= cpuacct_cpuusage_read(ca
, i
);
10959 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10961 seq_printf(m
, "\n");
10965 static const char *cpuacct_stat_desc
[] = {
10966 [CPUACCT_STAT_USER
] = "user",
10967 [CPUACCT_STAT_SYSTEM
] = "system",
10970 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10971 struct cgroup_map_cb
*cb
)
10973 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10976 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10977 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10978 val
= cputime64_to_clock_t(val
);
10979 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10984 static struct cftype files
[] = {
10987 .read_u64
= cpuusage_read
,
10988 .write_u64
= cpuusage_write
,
10991 .name
= "usage_percpu",
10992 .read_seq_string
= cpuacct_percpu_seq_read
,
10996 .read_map
= cpuacct_stats_show
,
11000 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
11002 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
11006 * charge this task's execution time to its accounting group.
11008 * called with rq->lock held.
11010 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
11012 struct cpuacct
*ca
;
11015 if (unlikely(!cpuacct_subsys
.active
))
11018 cpu
= task_cpu(tsk
);
11024 for (; ca
; ca
= ca
->parent
) {
11025 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
11026 *cpuusage
+= cputime
;
11033 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
11034 * in cputime_t units. As a result, cpuacct_update_stats calls
11035 * percpu_counter_add with values large enough to always overflow the
11036 * per cpu batch limit causing bad SMP scalability.
11038 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
11039 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
11040 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
11043 #define CPUACCT_BATCH \
11044 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
11046 #define CPUACCT_BATCH 0
11050 * Charge the system/user time to the task's accounting group.
11052 static void cpuacct_update_stats(struct task_struct
*tsk
,
11053 enum cpuacct_stat_index idx
, cputime_t val
)
11055 struct cpuacct
*ca
;
11056 int batch
= CPUACCT_BATCH
;
11058 if (unlikely(!cpuacct_subsys
.active
))
11065 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
11071 struct cgroup_subsys cpuacct_subsys
= {
11073 .create
= cpuacct_create
,
11074 .destroy
= cpuacct_destroy
,
11075 .populate
= cpuacct_populate
,
11076 .subsys_id
= cpuacct_subsys_id
,
11078 #endif /* CONFIG_CGROUP_CPUACCT */
11082 int rcu_expedited_torture_stats(char *page
)
11086 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
11088 void synchronize_sched_expedited(void)
11091 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
11093 #else /* #ifndef CONFIG_SMP */
11095 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
11096 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
11098 #define RCU_EXPEDITED_STATE_POST -2
11099 #define RCU_EXPEDITED_STATE_IDLE -1
11101 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
11103 int rcu_expedited_torture_stats(char *page
)
11108 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
11109 for_each_online_cpu(cpu
) {
11110 cnt
+= sprintf(&page
[cnt
], " %d:%d",
11111 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
11113 cnt
+= sprintf(&page
[cnt
], "\n");
11116 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
11118 static long synchronize_sched_expedited_count
;
11121 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
11122 * approach to force grace period to end quickly. This consumes
11123 * significant time on all CPUs, and is thus not recommended for
11124 * any sort of common-case code.
11126 * Note that it is illegal to call this function while holding any
11127 * lock that is acquired by a CPU-hotplug notifier. Failing to
11128 * observe this restriction will result in deadlock.
11130 void synchronize_sched_expedited(void)
11133 unsigned long flags
;
11134 bool need_full_sync
= 0;
11136 struct migration_req
*req
;
11140 smp_mb(); /* ensure prior mod happens before capturing snap. */
11141 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
11143 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
11145 if (trycount
++ < 10)
11146 udelay(trycount
* num_online_cpus());
11148 synchronize_sched();
11151 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
11152 smp_mb(); /* ensure test happens before caller kfree */
11157 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
11158 for_each_online_cpu(cpu
) {
11160 req
= &per_cpu(rcu_migration_req
, cpu
);
11161 init_completion(&req
->done
);
11163 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
11164 spin_lock_irqsave(&rq
->lock
, flags
);
11165 list_add(&req
->list
, &rq
->migration_queue
);
11166 spin_unlock_irqrestore(&rq
->lock
, flags
);
11167 wake_up_process(rq
->migration_thread
);
11169 for_each_online_cpu(cpu
) {
11170 rcu_expedited_state
= cpu
;
11171 req
= &per_cpu(rcu_migration_req
, cpu
);
11173 wait_for_completion(&req
->done
);
11174 spin_lock_irqsave(&rq
->lock
, flags
);
11175 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
11176 need_full_sync
= 1;
11177 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
11178 spin_unlock_irqrestore(&rq
->lock
, flags
);
11180 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
11181 mutex_unlock(&rcu_sched_expedited_mutex
);
11183 if (need_full_sync
)
11184 synchronize_sched();
11186 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
11188 #endif /* #else #ifndef CONFIG_SMP */