ARM: 6832/1: mmci: support for ST-Ericsson db8500v2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / clocksource / sh_tmu.c
blob17296288a2052ef757a5e22b6a0d3e52d37036ee
1 /*
2 * SuperH Timer Support - TMU
4 * Copyright (C) 2009 Magnus Damm
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/irq.h>
30 #include <linux/err.h>
31 #include <linux/clocksource.h>
32 #include <linux/clockchips.h>
33 #include <linux/sh_timer.h>
34 #include <linux/slab.h>
36 struct sh_tmu_priv {
37 void __iomem *mapbase;
38 struct clk *clk;
39 struct irqaction irqaction;
40 struct platform_device *pdev;
41 unsigned long rate;
42 unsigned long periodic;
43 struct clock_event_device ced;
44 struct clocksource cs;
47 static DEFINE_SPINLOCK(sh_tmu_lock);
49 #define TSTR -1 /* shared register */
50 #define TCOR 0 /* channel register */
51 #define TCNT 1 /* channel register */
52 #define TCR 2 /* channel register */
54 static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
56 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
57 void __iomem *base = p->mapbase;
58 unsigned long offs;
60 if (reg_nr == TSTR)
61 return ioread8(base - cfg->channel_offset);
63 offs = reg_nr << 2;
65 if (reg_nr == TCR)
66 return ioread16(base + offs);
67 else
68 return ioread32(base + offs);
71 static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
72 unsigned long value)
74 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
75 void __iomem *base = p->mapbase;
76 unsigned long offs;
78 if (reg_nr == TSTR) {
79 iowrite8(value, base - cfg->channel_offset);
80 return;
83 offs = reg_nr << 2;
85 if (reg_nr == TCR)
86 iowrite16(value, base + offs);
87 else
88 iowrite32(value, base + offs);
91 static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
93 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
94 unsigned long flags, value;
96 /* start stop register shared by multiple timer channels */
97 spin_lock_irqsave(&sh_tmu_lock, flags);
98 value = sh_tmu_read(p, TSTR);
100 if (start)
101 value |= 1 << cfg->timer_bit;
102 else
103 value &= ~(1 << cfg->timer_bit);
105 sh_tmu_write(p, TSTR, value);
106 spin_unlock_irqrestore(&sh_tmu_lock, flags);
109 static int sh_tmu_enable(struct sh_tmu_priv *p)
111 int ret;
113 /* wake up device and enable clock */
114 pm_runtime_get_sync(&p->pdev->dev);
115 ret = clk_enable(p->clk);
116 if (ret) {
117 dev_err(&p->pdev->dev, "cannot enable clock\n");
118 pm_runtime_put_sync(&p->pdev->dev);
119 return ret;
122 /* make sure channel is disabled */
123 sh_tmu_start_stop_ch(p, 0);
125 /* maximum timeout */
126 sh_tmu_write(p, TCOR, 0xffffffff);
127 sh_tmu_write(p, TCNT, 0xffffffff);
129 /* configure channel to parent clock / 4, irq off */
130 p->rate = clk_get_rate(p->clk) / 4;
131 sh_tmu_write(p, TCR, 0x0000);
133 /* enable channel */
134 sh_tmu_start_stop_ch(p, 1);
136 return 0;
139 static void sh_tmu_disable(struct sh_tmu_priv *p)
141 /* disable channel */
142 sh_tmu_start_stop_ch(p, 0);
144 /* disable interrupts in TMU block */
145 sh_tmu_write(p, TCR, 0x0000);
147 /* stop clock and mark device as idle */
148 clk_disable(p->clk);
149 pm_runtime_put_sync(&p->pdev->dev);
152 static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
153 int periodic)
155 /* stop timer */
156 sh_tmu_start_stop_ch(p, 0);
158 /* acknowledge interrupt */
159 sh_tmu_read(p, TCR);
161 /* enable interrupt */
162 sh_tmu_write(p, TCR, 0x0020);
164 /* reload delta value in case of periodic timer */
165 if (periodic)
166 sh_tmu_write(p, TCOR, delta);
167 else
168 sh_tmu_write(p, TCOR, 0xffffffff);
170 sh_tmu_write(p, TCNT, delta);
172 /* start timer */
173 sh_tmu_start_stop_ch(p, 1);
176 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
178 struct sh_tmu_priv *p = dev_id;
180 /* disable or acknowledge interrupt */
181 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
182 sh_tmu_write(p, TCR, 0x0000);
183 else
184 sh_tmu_write(p, TCR, 0x0020);
186 /* notify clockevent layer */
187 p->ced.event_handler(&p->ced);
188 return IRQ_HANDLED;
191 static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
193 return container_of(cs, struct sh_tmu_priv, cs);
196 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
198 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
200 return sh_tmu_read(p, TCNT) ^ 0xffffffff;
203 static int sh_tmu_clocksource_enable(struct clocksource *cs)
205 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
206 int ret;
208 ret = sh_tmu_enable(p);
209 if (!ret)
210 __clocksource_updatefreq_hz(cs, p->rate);
211 return ret;
214 static void sh_tmu_clocksource_disable(struct clocksource *cs)
216 sh_tmu_disable(cs_to_sh_tmu(cs));
219 static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
220 char *name, unsigned long rating)
222 struct clocksource *cs = &p->cs;
224 cs->name = name;
225 cs->rating = rating;
226 cs->read = sh_tmu_clocksource_read;
227 cs->enable = sh_tmu_clocksource_enable;
228 cs->disable = sh_tmu_clocksource_disable;
229 cs->mask = CLOCKSOURCE_MASK(32);
230 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
232 dev_info(&p->pdev->dev, "used as clock source\n");
234 /* Register with dummy 1 Hz value, gets updated in ->enable() */
235 clocksource_register_hz(cs, 1);
236 return 0;
239 static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
241 return container_of(ced, struct sh_tmu_priv, ced);
244 static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
246 struct clock_event_device *ced = &p->ced;
248 sh_tmu_enable(p);
250 /* TODO: calculate good shift from rate and counter bit width */
252 ced->shift = 32;
253 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
254 ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
255 ced->min_delta_ns = 5000;
257 if (periodic) {
258 p->periodic = (p->rate + HZ/2) / HZ;
259 sh_tmu_set_next(p, p->periodic, 1);
263 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
264 struct clock_event_device *ced)
266 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
267 int disabled = 0;
269 /* deal with old setting first */
270 switch (ced->mode) {
271 case CLOCK_EVT_MODE_PERIODIC:
272 case CLOCK_EVT_MODE_ONESHOT:
273 sh_tmu_disable(p);
274 disabled = 1;
275 break;
276 default:
277 break;
280 switch (mode) {
281 case CLOCK_EVT_MODE_PERIODIC:
282 dev_info(&p->pdev->dev, "used for periodic clock events\n");
283 sh_tmu_clock_event_start(p, 1);
284 break;
285 case CLOCK_EVT_MODE_ONESHOT:
286 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
287 sh_tmu_clock_event_start(p, 0);
288 break;
289 case CLOCK_EVT_MODE_UNUSED:
290 if (!disabled)
291 sh_tmu_disable(p);
292 break;
293 case CLOCK_EVT_MODE_SHUTDOWN:
294 default:
295 break;
299 static int sh_tmu_clock_event_next(unsigned long delta,
300 struct clock_event_device *ced)
302 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
304 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
306 /* program new delta value */
307 sh_tmu_set_next(p, delta, 0);
308 return 0;
311 static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
312 char *name, unsigned long rating)
314 struct clock_event_device *ced = &p->ced;
315 int ret;
317 memset(ced, 0, sizeof(*ced));
319 ced->name = name;
320 ced->features = CLOCK_EVT_FEAT_PERIODIC;
321 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
322 ced->rating = rating;
323 ced->cpumask = cpumask_of(0);
324 ced->set_next_event = sh_tmu_clock_event_next;
325 ced->set_mode = sh_tmu_clock_event_mode;
327 dev_info(&p->pdev->dev, "used for clock events\n");
328 clockevents_register_device(ced);
330 ret = setup_irq(p->irqaction.irq, &p->irqaction);
331 if (ret) {
332 dev_err(&p->pdev->dev, "failed to request irq %d\n",
333 p->irqaction.irq);
334 return;
338 static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
339 unsigned long clockevent_rating,
340 unsigned long clocksource_rating)
342 if (clockevent_rating)
343 sh_tmu_register_clockevent(p, name, clockevent_rating);
344 else if (clocksource_rating)
345 sh_tmu_register_clocksource(p, name, clocksource_rating);
347 return 0;
350 static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
352 struct sh_timer_config *cfg = pdev->dev.platform_data;
353 struct resource *res;
354 int irq, ret;
355 ret = -ENXIO;
357 memset(p, 0, sizeof(*p));
358 p->pdev = pdev;
360 if (!cfg) {
361 dev_err(&p->pdev->dev, "missing platform data\n");
362 goto err0;
365 platform_set_drvdata(pdev, p);
367 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
368 if (!res) {
369 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
370 goto err0;
373 irq = platform_get_irq(p->pdev, 0);
374 if (irq < 0) {
375 dev_err(&p->pdev->dev, "failed to get irq\n");
376 goto err0;
379 /* map memory, let mapbase point to our channel */
380 p->mapbase = ioremap_nocache(res->start, resource_size(res));
381 if (p->mapbase == NULL) {
382 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
383 goto err0;
386 /* setup data for setup_irq() (too early for request_irq()) */
387 p->irqaction.name = dev_name(&p->pdev->dev);
388 p->irqaction.handler = sh_tmu_interrupt;
389 p->irqaction.dev_id = p;
390 p->irqaction.irq = irq;
391 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
392 IRQF_IRQPOLL | IRQF_NOBALANCING;
394 /* get hold of clock */
395 p->clk = clk_get(&p->pdev->dev, "tmu_fck");
396 if (IS_ERR(p->clk)) {
397 dev_err(&p->pdev->dev, "cannot get clock\n");
398 ret = PTR_ERR(p->clk);
399 goto err1;
402 return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
403 cfg->clockevent_rating,
404 cfg->clocksource_rating);
405 err1:
406 iounmap(p->mapbase);
407 err0:
408 return ret;
411 static int __devinit sh_tmu_probe(struct platform_device *pdev)
413 struct sh_tmu_priv *p = platform_get_drvdata(pdev);
414 int ret;
416 if (p) {
417 dev_info(&pdev->dev, "kept as earlytimer\n");
418 pm_runtime_enable(&pdev->dev);
419 return 0;
422 p = kmalloc(sizeof(*p), GFP_KERNEL);
423 if (p == NULL) {
424 dev_err(&pdev->dev, "failed to allocate driver data\n");
425 return -ENOMEM;
428 ret = sh_tmu_setup(p, pdev);
429 if (ret) {
430 kfree(p);
431 platform_set_drvdata(pdev, NULL);
434 if (!is_early_platform_device(pdev))
435 pm_runtime_enable(&pdev->dev);
436 return ret;
439 static int __devexit sh_tmu_remove(struct platform_device *pdev)
441 return -EBUSY; /* cannot unregister clockevent and clocksource */
444 static struct platform_driver sh_tmu_device_driver = {
445 .probe = sh_tmu_probe,
446 .remove = __devexit_p(sh_tmu_remove),
447 .driver = {
448 .name = "sh_tmu",
452 static int __init sh_tmu_init(void)
454 return platform_driver_register(&sh_tmu_device_driver);
457 static void __exit sh_tmu_exit(void)
459 platform_driver_unregister(&sh_tmu_device_driver);
462 early_platform_init("earlytimer", &sh_tmu_device_driver);
463 module_init(sh_tmu_init);
464 module_exit(sh_tmu_exit);
466 MODULE_AUTHOR("Magnus Damm");
467 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
468 MODULE_LICENSE("GPL v2");