x86/amd-iommu: Fix boot crash with hidden PCI devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / amd_iommu.c
blobe7115c818ba9e24ee4589e7450b46564aeaf4897
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/pci.h>
21 #include <linux/bitmap.h>
22 #include <linux/slab.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/iommu-helper.h>
27 #include <linux/iommu.h>
28 #include <asm/proto.h>
29 #include <asm/iommu.h>
30 #include <asm/gart.h>
31 #include <asm/dma.h>
32 #include <asm/amd_iommu_proto.h>
33 #include <asm/amd_iommu_types.h>
34 #include <asm/amd_iommu.h>
36 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
38 #define EXIT_LOOP_COUNT 10000000
40 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
42 /* A list of preallocated protection domains */
43 static LIST_HEAD(iommu_pd_list);
44 static DEFINE_SPINLOCK(iommu_pd_list_lock);
47 * Domain for untranslated devices - only allocated
48 * if iommu=pt passed on kernel cmd line.
50 static struct protection_domain *pt_domain;
52 static struct iommu_ops amd_iommu_ops;
55 * general struct to manage commands send to an IOMMU
57 struct iommu_cmd {
58 u32 data[4];
61 static void reset_iommu_command_buffer(struct amd_iommu *iommu);
62 static void update_domain(struct protection_domain *domain);
64 /****************************************************************************
66 * Helper functions
68 ****************************************************************************/
70 static inline u16 get_device_id(struct device *dev)
72 struct pci_dev *pdev = to_pci_dev(dev);
74 return calc_devid(pdev->bus->number, pdev->devfn);
77 static struct iommu_dev_data *get_dev_data(struct device *dev)
79 return dev->archdata.iommu;
83 * In this function the list of preallocated protection domains is traversed to
84 * find the domain for a specific device
86 static struct dma_ops_domain *find_protection_domain(u16 devid)
88 struct dma_ops_domain *entry, *ret = NULL;
89 unsigned long flags;
90 u16 alias = amd_iommu_alias_table[devid];
92 if (list_empty(&iommu_pd_list))
93 return NULL;
95 spin_lock_irqsave(&iommu_pd_list_lock, flags);
97 list_for_each_entry(entry, &iommu_pd_list, list) {
98 if (entry->target_dev == devid ||
99 entry->target_dev == alias) {
100 ret = entry;
101 break;
105 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
107 return ret;
111 * This function checks if the driver got a valid device from the caller to
112 * avoid dereferencing invalid pointers.
114 static bool check_device(struct device *dev)
116 u16 devid;
118 if (!dev || !dev->dma_mask)
119 return false;
121 /* No device or no PCI device */
122 if (dev->bus != &pci_bus_type)
123 return false;
125 devid = get_device_id(dev);
127 /* Out of our scope? */
128 if (devid > amd_iommu_last_bdf)
129 return false;
131 if (amd_iommu_rlookup_table[devid] == NULL)
132 return false;
134 return true;
137 static int iommu_init_device(struct device *dev)
139 struct iommu_dev_data *dev_data;
140 struct pci_dev *pdev;
141 u16 devid, alias;
143 if (dev->archdata.iommu)
144 return 0;
146 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
147 if (!dev_data)
148 return -ENOMEM;
150 dev_data->dev = dev;
152 devid = get_device_id(dev);
153 alias = amd_iommu_alias_table[devid];
154 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
155 if (pdev)
156 dev_data->alias = &pdev->dev;
157 else {
158 kfree(dev_data);
159 return -ENOTSUPP;
162 atomic_set(&dev_data->bind, 0);
164 dev->archdata.iommu = dev_data;
167 return 0;
170 static void iommu_ignore_device(struct device *dev)
172 u16 devid, alias;
174 devid = get_device_id(dev);
175 alias = amd_iommu_alias_table[devid];
177 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
178 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
180 amd_iommu_rlookup_table[devid] = NULL;
181 amd_iommu_rlookup_table[alias] = NULL;
184 static void iommu_uninit_device(struct device *dev)
186 kfree(dev->archdata.iommu);
189 void __init amd_iommu_uninit_devices(void)
191 struct pci_dev *pdev = NULL;
193 for_each_pci_dev(pdev) {
195 if (!check_device(&pdev->dev))
196 continue;
198 iommu_uninit_device(&pdev->dev);
202 int __init amd_iommu_init_devices(void)
204 struct pci_dev *pdev = NULL;
205 int ret = 0;
207 for_each_pci_dev(pdev) {
209 if (!check_device(&pdev->dev))
210 continue;
212 ret = iommu_init_device(&pdev->dev);
213 if (ret == -ENOTSUPP)
214 iommu_ignore_device(&pdev->dev);
215 else if (ret)
216 goto out_free;
219 return 0;
221 out_free:
223 amd_iommu_uninit_devices();
225 return ret;
227 #ifdef CONFIG_AMD_IOMMU_STATS
230 * Initialization code for statistics collection
233 DECLARE_STATS_COUNTER(compl_wait);
234 DECLARE_STATS_COUNTER(cnt_map_single);
235 DECLARE_STATS_COUNTER(cnt_unmap_single);
236 DECLARE_STATS_COUNTER(cnt_map_sg);
237 DECLARE_STATS_COUNTER(cnt_unmap_sg);
238 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
239 DECLARE_STATS_COUNTER(cnt_free_coherent);
240 DECLARE_STATS_COUNTER(cross_page);
241 DECLARE_STATS_COUNTER(domain_flush_single);
242 DECLARE_STATS_COUNTER(domain_flush_all);
243 DECLARE_STATS_COUNTER(alloced_io_mem);
244 DECLARE_STATS_COUNTER(total_map_requests);
246 static struct dentry *stats_dir;
247 static struct dentry *de_fflush;
249 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
251 if (stats_dir == NULL)
252 return;
254 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
255 &cnt->value);
258 static void amd_iommu_stats_init(void)
260 stats_dir = debugfs_create_dir("amd-iommu", NULL);
261 if (stats_dir == NULL)
262 return;
264 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
265 (u32 *)&amd_iommu_unmap_flush);
267 amd_iommu_stats_add(&compl_wait);
268 amd_iommu_stats_add(&cnt_map_single);
269 amd_iommu_stats_add(&cnt_unmap_single);
270 amd_iommu_stats_add(&cnt_map_sg);
271 amd_iommu_stats_add(&cnt_unmap_sg);
272 amd_iommu_stats_add(&cnt_alloc_coherent);
273 amd_iommu_stats_add(&cnt_free_coherent);
274 amd_iommu_stats_add(&cross_page);
275 amd_iommu_stats_add(&domain_flush_single);
276 amd_iommu_stats_add(&domain_flush_all);
277 amd_iommu_stats_add(&alloced_io_mem);
278 amd_iommu_stats_add(&total_map_requests);
281 #endif
283 /****************************************************************************
285 * Interrupt handling functions
287 ****************************************************************************/
289 static void dump_dte_entry(u16 devid)
291 int i;
293 for (i = 0; i < 8; ++i)
294 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
295 amd_iommu_dev_table[devid].data[i]);
298 static void dump_command(unsigned long phys_addr)
300 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
301 int i;
303 for (i = 0; i < 4; ++i)
304 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
307 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
309 u32 *event = __evt;
310 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
311 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
312 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
313 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
314 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
316 printk(KERN_ERR "AMD-Vi: Event logged [");
318 switch (type) {
319 case EVENT_TYPE_ILL_DEV:
320 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
321 "address=0x%016llx flags=0x%04x]\n",
322 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
323 address, flags);
324 dump_dte_entry(devid);
325 break;
326 case EVENT_TYPE_IO_FAULT:
327 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
328 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
329 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
330 domid, address, flags);
331 break;
332 case EVENT_TYPE_DEV_TAB_ERR:
333 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
334 "address=0x%016llx flags=0x%04x]\n",
335 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
336 address, flags);
337 break;
338 case EVENT_TYPE_PAGE_TAB_ERR:
339 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
340 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
341 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
342 domid, address, flags);
343 break;
344 case EVENT_TYPE_ILL_CMD:
345 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
346 iommu->reset_in_progress = true;
347 reset_iommu_command_buffer(iommu);
348 dump_command(address);
349 break;
350 case EVENT_TYPE_CMD_HARD_ERR:
351 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
352 "flags=0x%04x]\n", address, flags);
353 break;
354 case EVENT_TYPE_IOTLB_INV_TO:
355 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
356 "address=0x%016llx]\n",
357 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
358 address);
359 break;
360 case EVENT_TYPE_INV_DEV_REQ:
361 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
362 "address=0x%016llx flags=0x%04x]\n",
363 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
364 address, flags);
365 break;
366 default:
367 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
371 static void iommu_poll_events(struct amd_iommu *iommu)
373 u32 head, tail;
374 unsigned long flags;
376 spin_lock_irqsave(&iommu->lock, flags);
378 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
379 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
381 while (head != tail) {
382 iommu_print_event(iommu, iommu->evt_buf + head);
383 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
386 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
388 spin_unlock_irqrestore(&iommu->lock, flags);
391 irqreturn_t amd_iommu_int_handler(int irq, void *data)
393 struct amd_iommu *iommu;
395 for_each_iommu(iommu)
396 iommu_poll_events(iommu);
398 return IRQ_HANDLED;
401 /****************************************************************************
403 * IOMMU command queuing functions
405 ****************************************************************************/
408 * Writes the command to the IOMMUs command buffer and informs the
409 * hardware about the new command. Must be called with iommu->lock held.
411 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
413 u32 tail, head;
414 u8 *target;
416 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
417 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
418 target = iommu->cmd_buf + tail;
419 memcpy_toio(target, cmd, sizeof(*cmd));
420 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
421 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
422 if (tail == head)
423 return -ENOMEM;
424 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
426 return 0;
430 * General queuing function for commands. Takes iommu->lock and calls
431 * __iommu_queue_command().
433 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
435 unsigned long flags;
436 int ret;
438 spin_lock_irqsave(&iommu->lock, flags);
439 ret = __iommu_queue_command(iommu, cmd);
440 if (!ret)
441 iommu->need_sync = true;
442 spin_unlock_irqrestore(&iommu->lock, flags);
444 return ret;
448 * This function waits until an IOMMU has completed a completion
449 * wait command
451 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
453 int ready = 0;
454 unsigned status = 0;
455 unsigned long i = 0;
457 INC_STATS_COUNTER(compl_wait);
459 while (!ready && (i < EXIT_LOOP_COUNT)) {
460 ++i;
461 /* wait for the bit to become one */
462 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
463 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
466 /* set bit back to zero */
467 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
468 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
470 if (unlikely(i == EXIT_LOOP_COUNT))
471 iommu->reset_in_progress = true;
475 * This function queues a completion wait command into the command
476 * buffer of an IOMMU
478 static int __iommu_completion_wait(struct amd_iommu *iommu)
480 struct iommu_cmd cmd;
482 memset(&cmd, 0, sizeof(cmd));
483 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
484 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
486 return __iommu_queue_command(iommu, &cmd);
490 * This function is called whenever we need to ensure that the IOMMU has
491 * completed execution of all commands we sent. It sends a
492 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
493 * us about that by writing a value to a physical address we pass with
494 * the command.
496 static int iommu_completion_wait(struct amd_iommu *iommu)
498 int ret = 0;
499 unsigned long flags;
501 spin_lock_irqsave(&iommu->lock, flags);
503 if (!iommu->need_sync)
504 goto out;
506 ret = __iommu_completion_wait(iommu);
508 iommu->need_sync = false;
510 if (ret)
511 goto out;
513 __iommu_wait_for_completion(iommu);
515 out:
516 spin_unlock_irqrestore(&iommu->lock, flags);
518 if (iommu->reset_in_progress)
519 reset_iommu_command_buffer(iommu);
521 return 0;
524 static void iommu_flush_complete(struct protection_domain *domain)
526 int i;
528 for (i = 0; i < amd_iommus_present; ++i) {
529 if (!domain->dev_iommu[i])
530 continue;
533 * Devices of this domain are behind this IOMMU
534 * We need to wait for completion of all commands.
536 iommu_completion_wait(amd_iommus[i]);
541 * Command send function for invalidating a device table entry
543 static int iommu_flush_device(struct device *dev)
545 struct amd_iommu *iommu;
546 struct iommu_cmd cmd;
547 u16 devid;
549 devid = get_device_id(dev);
550 iommu = amd_iommu_rlookup_table[devid];
552 /* Build command */
553 memset(&cmd, 0, sizeof(cmd));
554 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
555 cmd.data[0] = devid;
557 return iommu_queue_command(iommu, &cmd);
560 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
561 u16 domid, int pde, int s)
563 memset(cmd, 0, sizeof(*cmd));
564 address &= PAGE_MASK;
565 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
566 cmd->data[1] |= domid;
567 cmd->data[2] = lower_32_bits(address);
568 cmd->data[3] = upper_32_bits(address);
569 if (s) /* size bit - we flush more than one 4kb page */
570 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
571 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
572 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
576 * Generic command send function for invalidaing TLB entries
578 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
579 u64 address, u16 domid, int pde, int s)
581 struct iommu_cmd cmd;
582 int ret;
584 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
586 ret = iommu_queue_command(iommu, &cmd);
588 return ret;
592 * TLB invalidation function which is called from the mapping functions.
593 * It invalidates a single PTE if the range to flush is within a single
594 * page. Otherwise it flushes the whole TLB of the IOMMU.
596 static void __iommu_flush_pages(struct protection_domain *domain,
597 u64 address, size_t size, int pde)
599 int s = 0, i;
600 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
602 address &= PAGE_MASK;
604 if (pages > 1) {
606 * If we have to flush more than one page, flush all
607 * TLB entries for this domain
609 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
610 s = 1;
614 for (i = 0; i < amd_iommus_present; ++i) {
615 if (!domain->dev_iommu[i])
616 continue;
619 * Devices of this domain are behind this IOMMU
620 * We need a TLB flush
622 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
623 domain->id, pde, s);
626 return;
629 static void iommu_flush_pages(struct protection_domain *domain,
630 u64 address, size_t size)
632 __iommu_flush_pages(domain, address, size, 0);
635 /* Flush the whole IO/TLB for a given protection domain */
636 static void iommu_flush_tlb(struct protection_domain *domain)
638 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
641 /* Flush the whole IO/TLB for a given protection domain - including PDE */
642 static void iommu_flush_tlb_pde(struct protection_domain *domain)
644 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
649 * This function flushes the DTEs for all devices in domain
651 static void iommu_flush_domain_devices(struct protection_domain *domain)
653 struct iommu_dev_data *dev_data;
654 unsigned long flags;
656 spin_lock_irqsave(&domain->lock, flags);
658 list_for_each_entry(dev_data, &domain->dev_list, list)
659 iommu_flush_device(dev_data->dev);
661 spin_unlock_irqrestore(&domain->lock, flags);
664 static void iommu_flush_all_domain_devices(void)
666 struct protection_domain *domain;
667 unsigned long flags;
669 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
671 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
672 iommu_flush_domain_devices(domain);
673 iommu_flush_complete(domain);
676 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
679 void amd_iommu_flush_all_devices(void)
681 iommu_flush_all_domain_devices();
685 * This function uses heavy locking and may disable irqs for some time. But
686 * this is no issue because it is only called during resume.
688 void amd_iommu_flush_all_domains(void)
690 struct protection_domain *domain;
691 unsigned long flags;
693 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
695 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
696 spin_lock(&domain->lock);
697 iommu_flush_tlb_pde(domain);
698 iommu_flush_complete(domain);
699 spin_unlock(&domain->lock);
702 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
705 static void reset_iommu_command_buffer(struct amd_iommu *iommu)
707 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
709 if (iommu->reset_in_progress)
710 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
712 amd_iommu_reset_cmd_buffer(iommu);
713 amd_iommu_flush_all_devices();
714 amd_iommu_flush_all_domains();
716 iommu->reset_in_progress = false;
719 /****************************************************************************
721 * The functions below are used the create the page table mappings for
722 * unity mapped regions.
724 ****************************************************************************/
727 * This function is used to add another level to an IO page table. Adding
728 * another level increases the size of the address space by 9 bits to a size up
729 * to 64 bits.
731 static bool increase_address_space(struct protection_domain *domain,
732 gfp_t gfp)
734 u64 *pte;
736 if (domain->mode == PAGE_MODE_6_LEVEL)
737 /* address space already 64 bit large */
738 return false;
740 pte = (void *)get_zeroed_page(gfp);
741 if (!pte)
742 return false;
744 *pte = PM_LEVEL_PDE(domain->mode,
745 virt_to_phys(domain->pt_root));
746 domain->pt_root = pte;
747 domain->mode += 1;
748 domain->updated = true;
750 return true;
753 static u64 *alloc_pte(struct protection_domain *domain,
754 unsigned long address,
755 unsigned long page_size,
756 u64 **pte_page,
757 gfp_t gfp)
759 int level, end_lvl;
760 u64 *pte, *page;
762 BUG_ON(!is_power_of_2(page_size));
764 while (address > PM_LEVEL_SIZE(domain->mode))
765 increase_address_space(domain, gfp);
767 level = domain->mode - 1;
768 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
769 address = PAGE_SIZE_ALIGN(address, page_size);
770 end_lvl = PAGE_SIZE_LEVEL(page_size);
772 while (level > end_lvl) {
773 if (!IOMMU_PTE_PRESENT(*pte)) {
774 page = (u64 *)get_zeroed_page(gfp);
775 if (!page)
776 return NULL;
777 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
780 /* No level skipping support yet */
781 if (PM_PTE_LEVEL(*pte) != level)
782 return NULL;
784 level -= 1;
786 pte = IOMMU_PTE_PAGE(*pte);
788 if (pte_page && level == end_lvl)
789 *pte_page = pte;
791 pte = &pte[PM_LEVEL_INDEX(level, address)];
794 return pte;
798 * This function checks if there is a PTE for a given dma address. If
799 * there is one, it returns the pointer to it.
801 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
803 int level;
804 u64 *pte;
806 if (address > PM_LEVEL_SIZE(domain->mode))
807 return NULL;
809 level = domain->mode - 1;
810 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
812 while (level > 0) {
814 /* Not Present */
815 if (!IOMMU_PTE_PRESENT(*pte))
816 return NULL;
818 /* Large PTE */
819 if (PM_PTE_LEVEL(*pte) == 0x07) {
820 unsigned long pte_mask, __pte;
823 * If we have a series of large PTEs, make
824 * sure to return a pointer to the first one.
826 pte_mask = PTE_PAGE_SIZE(*pte);
827 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
828 __pte = ((unsigned long)pte) & pte_mask;
830 return (u64 *)__pte;
833 /* No level skipping support yet */
834 if (PM_PTE_LEVEL(*pte) != level)
835 return NULL;
837 level -= 1;
839 /* Walk to the next level */
840 pte = IOMMU_PTE_PAGE(*pte);
841 pte = &pte[PM_LEVEL_INDEX(level, address)];
844 return pte;
848 * Generic mapping functions. It maps a physical address into a DMA
849 * address space. It allocates the page table pages if necessary.
850 * In the future it can be extended to a generic mapping function
851 * supporting all features of AMD IOMMU page tables like level skipping
852 * and full 64 bit address spaces.
854 static int iommu_map_page(struct protection_domain *dom,
855 unsigned long bus_addr,
856 unsigned long phys_addr,
857 int prot,
858 unsigned long page_size)
860 u64 __pte, *pte;
861 int i, count;
863 if (!(prot & IOMMU_PROT_MASK))
864 return -EINVAL;
866 bus_addr = PAGE_ALIGN(bus_addr);
867 phys_addr = PAGE_ALIGN(phys_addr);
868 count = PAGE_SIZE_PTE_COUNT(page_size);
869 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
871 for (i = 0; i < count; ++i)
872 if (IOMMU_PTE_PRESENT(pte[i]))
873 return -EBUSY;
875 if (page_size > PAGE_SIZE) {
876 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
877 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
878 } else
879 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
881 if (prot & IOMMU_PROT_IR)
882 __pte |= IOMMU_PTE_IR;
883 if (prot & IOMMU_PROT_IW)
884 __pte |= IOMMU_PTE_IW;
886 for (i = 0; i < count; ++i)
887 pte[i] = __pte;
889 update_domain(dom);
891 return 0;
894 static unsigned long iommu_unmap_page(struct protection_domain *dom,
895 unsigned long bus_addr,
896 unsigned long page_size)
898 unsigned long long unmap_size, unmapped;
899 u64 *pte;
901 BUG_ON(!is_power_of_2(page_size));
903 unmapped = 0;
905 while (unmapped < page_size) {
907 pte = fetch_pte(dom, bus_addr);
909 if (!pte) {
911 * No PTE for this address
912 * move forward in 4kb steps
914 unmap_size = PAGE_SIZE;
915 } else if (PM_PTE_LEVEL(*pte) == 0) {
916 /* 4kb PTE found for this address */
917 unmap_size = PAGE_SIZE;
918 *pte = 0ULL;
919 } else {
920 int count, i;
922 /* Large PTE found which maps this address */
923 unmap_size = PTE_PAGE_SIZE(*pte);
924 count = PAGE_SIZE_PTE_COUNT(unmap_size);
925 for (i = 0; i < count; i++)
926 pte[i] = 0ULL;
929 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
930 unmapped += unmap_size;
933 BUG_ON(!is_power_of_2(unmapped));
935 return unmapped;
939 * This function checks if a specific unity mapping entry is needed for
940 * this specific IOMMU.
942 static int iommu_for_unity_map(struct amd_iommu *iommu,
943 struct unity_map_entry *entry)
945 u16 bdf, i;
947 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
948 bdf = amd_iommu_alias_table[i];
949 if (amd_iommu_rlookup_table[bdf] == iommu)
950 return 1;
953 return 0;
957 * This function actually applies the mapping to the page table of the
958 * dma_ops domain.
960 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
961 struct unity_map_entry *e)
963 u64 addr;
964 int ret;
966 for (addr = e->address_start; addr < e->address_end;
967 addr += PAGE_SIZE) {
968 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
969 PAGE_SIZE);
970 if (ret)
971 return ret;
973 * if unity mapping is in aperture range mark the page
974 * as allocated in the aperture
976 if (addr < dma_dom->aperture_size)
977 __set_bit(addr >> PAGE_SHIFT,
978 dma_dom->aperture[0]->bitmap);
981 return 0;
985 * Init the unity mappings for a specific IOMMU in the system
987 * Basically iterates over all unity mapping entries and applies them to
988 * the default domain DMA of that IOMMU if necessary.
990 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
992 struct unity_map_entry *entry;
993 int ret;
995 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
996 if (!iommu_for_unity_map(iommu, entry))
997 continue;
998 ret = dma_ops_unity_map(iommu->default_dom, entry);
999 if (ret)
1000 return ret;
1003 return 0;
1007 * Inits the unity mappings required for a specific device
1009 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1010 u16 devid)
1012 struct unity_map_entry *e;
1013 int ret;
1015 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1016 if (!(devid >= e->devid_start && devid <= e->devid_end))
1017 continue;
1018 ret = dma_ops_unity_map(dma_dom, e);
1019 if (ret)
1020 return ret;
1023 return 0;
1026 /****************************************************************************
1028 * The next functions belong to the address allocator for the dma_ops
1029 * interface functions. They work like the allocators in the other IOMMU
1030 * drivers. Its basically a bitmap which marks the allocated pages in
1031 * the aperture. Maybe it could be enhanced in the future to a more
1032 * efficient allocator.
1034 ****************************************************************************/
1037 * The address allocator core functions.
1039 * called with domain->lock held
1043 * Used to reserve address ranges in the aperture (e.g. for exclusion
1044 * ranges.
1046 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1047 unsigned long start_page,
1048 unsigned int pages)
1050 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1052 if (start_page + pages > last_page)
1053 pages = last_page - start_page;
1055 for (i = start_page; i < start_page + pages; ++i) {
1056 int index = i / APERTURE_RANGE_PAGES;
1057 int page = i % APERTURE_RANGE_PAGES;
1058 __set_bit(page, dom->aperture[index]->bitmap);
1063 * This function is used to add a new aperture range to an existing
1064 * aperture in case of dma_ops domain allocation or address allocation
1065 * failure.
1067 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1068 bool populate, gfp_t gfp)
1070 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1071 struct amd_iommu *iommu;
1072 unsigned long i;
1074 #ifdef CONFIG_IOMMU_STRESS
1075 populate = false;
1076 #endif
1078 if (index >= APERTURE_MAX_RANGES)
1079 return -ENOMEM;
1081 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1082 if (!dma_dom->aperture[index])
1083 return -ENOMEM;
1085 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1086 if (!dma_dom->aperture[index]->bitmap)
1087 goto out_free;
1089 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1091 if (populate) {
1092 unsigned long address = dma_dom->aperture_size;
1093 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1094 u64 *pte, *pte_page;
1096 for (i = 0; i < num_ptes; ++i) {
1097 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1098 &pte_page, gfp);
1099 if (!pte)
1100 goto out_free;
1102 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1104 address += APERTURE_RANGE_SIZE / 64;
1108 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1110 /* Initialize the exclusion range if necessary */
1111 for_each_iommu(iommu) {
1112 if (iommu->exclusion_start &&
1113 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1114 && iommu->exclusion_start < dma_dom->aperture_size) {
1115 unsigned long startpage;
1116 int pages = iommu_num_pages(iommu->exclusion_start,
1117 iommu->exclusion_length,
1118 PAGE_SIZE);
1119 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1120 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1125 * Check for areas already mapped as present in the new aperture
1126 * range and mark those pages as reserved in the allocator. Such
1127 * mappings may already exist as a result of requested unity
1128 * mappings for devices.
1130 for (i = dma_dom->aperture[index]->offset;
1131 i < dma_dom->aperture_size;
1132 i += PAGE_SIZE) {
1133 u64 *pte = fetch_pte(&dma_dom->domain, i);
1134 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1135 continue;
1137 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1140 update_domain(&dma_dom->domain);
1142 return 0;
1144 out_free:
1145 update_domain(&dma_dom->domain);
1147 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1149 kfree(dma_dom->aperture[index]);
1150 dma_dom->aperture[index] = NULL;
1152 return -ENOMEM;
1155 static unsigned long dma_ops_area_alloc(struct device *dev,
1156 struct dma_ops_domain *dom,
1157 unsigned int pages,
1158 unsigned long align_mask,
1159 u64 dma_mask,
1160 unsigned long start)
1162 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1163 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1164 int i = start >> APERTURE_RANGE_SHIFT;
1165 unsigned long boundary_size;
1166 unsigned long address = -1;
1167 unsigned long limit;
1169 next_bit >>= PAGE_SHIFT;
1171 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1172 PAGE_SIZE) >> PAGE_SHIFT;
1174 for (;i < max_index; ++i) {
1175 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1177 if (dom->aperture[i]->offset >= dma_mask)
1178 break;
1180 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1181 dma_mask >> PAGE_SHIFT);
1183 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1184 limit, next_bit, pages, 0,
1185 boundary_size, align_mask);
1186 if (address != -1) {
1187 address = dom->aperture[i]->offset +
1188 (address << PAGE_SHIFT);
1189 dom->next_address = address + (pages << PAGE_SHIFT);
1190 break;
1193 next_bit = 0;
1196 return address;
1199 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1200 struct dma_ops_domain *dom,
1201 unsigned int pages,
1202 unsigned long align_mask,
1203 u64 dma_mask)
1205 unsigned long address;
1207 #ifdef CONFIG_IOMMU_STRESS
1208 dom->next_address = 0;
1209 dom->need_flush = true;
1210 #endif
1212 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1213 dma_mask, dom->next_address);
1215 if (address == -1) {
1216 dom->next_address = 0;
1217 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1218 dma_mask, 0);
1219 dom->need_flush = true;
1222 if (unlikely(address == -1))
1223 address = DMA_ERROR_CODE;
1225 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1227 return address;
1231 * The address free function.
1233 * called with domain->lock held
1235 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1236 unsigned long address,
1237 unsigned int pages)
1239 unsigned i = address >> APERTURE_RANGE_SHIFT;
1240 struct aperture_range *range = dom->aperture[i];
1242 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1244 #ifdef CONFIG_IOMMU_STRESS
1245 if (i < 4)
1246 return;
1247 #endif
1249 if (address >= dom->next_address)
1250 dom->need_flush = true;
1252 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1254 bitmap_clear(range->bitmap, address, pages);
1258 /****************************************************************************
1260 * The next functions belong to the domain allocation. A domain is
1261 * allocated for every IOMMU as the default domain. If device isolation
1262 * is enabled, every device get its own domain. The most important thing
1263 * about domains is the page table mapping the DMA address space they
1264 * contain.
1266 ****************************************************************************/
1269 * This function adds a protection domain to the global protection domain list
1271 static void add_domain_to_list(struct protection_domain *domain)
1273 unsigned long flags;
1275 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1276 list_add(&domain->list, &amd_iommu_pd_list);
1277 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1281 * This function removes a protection domain to the global
1282 * protection domain list
1284 static void del_domain_from_list(struct protection_domain *domain)
1286 unsigned long flags;
1288 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1289 list_del(&domain->list);
1290 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1293 static u16 domain_id_alloc(void)
1295 unsigned long flags;
1296 int id;
1298 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1299 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1300 BUG_ON(id == 0);
1301 if (id > 0 && id < MAX_DOMAIN_ID)
1302 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1303 else
1304 id = 0;
1305 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1307 return id;
1310 static void domain_id_free(int id)
1312 unsigned long flags;
1314 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1315 if (id > 0 && id < MAX_DOMAIN_ID)
1316 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1317 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1320 static void free_pagetable(struct protection_domain *domain)
1322 int i, j;
1323 u64 *p1, *p2, *p3;
1325 p1 = domain->pt_root;
1327 if (!p1)
1328 return;
1330 for (i = 0; i < 512; ++i) {
1331 if (!IOMMU_PTE_PRESENT(p1[i]))
1332 continue;
1334 p2 = IOMMU_PTE_PAGE(p1[i]);
1335 for (j = 0; j < 512; ++j) {
1336 if (!IOMMU_PTE_PRESENT(p2[j]))
1337 continue;
1338 p3 = IOMMU_PTE_PAGE(p2[j]);
1339 free_page((unsigned long)p3);
1342 free_page((unsigned long)p2);
1345 free_page((unsigned long)p1);
1347 domain->pt_root = NULL;
1351 * Free a domain, only used if something went wrong in the
1352 * allocation path and we need to free an already allocated page table
1354 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1356 int i;
1358 if (!dom)
1359 return;
1361 del_domain_from_list(&dom->domain);
1363 free_pagetable(&dom->domain);
1365 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1366 if (!dom->aperture[i])
1367 continue;
1368 free_page((unsigned long)dom->aperture[i]->bitmap);
1369 kfree(dom->aperture[i]);
1372 kfree(dom);
1376 * Allocates a new protection domain usable for the dma_ops functions.
1377 * It also initializes the page table and the address allocator data
1378 * structures required for the dma_ops interface
1380 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1382 struct dma_ops_domain *dma_dom;
1384 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1385 if (!dma_dom)
1386 return NULL;
1388 spin_lock_init(&dma_dom->domain.lock);
1390 dma_dom->domain.id = domain_id_alloc();
1391 if (dma_dom->domain.id == 0)
1392 goto free_dma_dom;
1393 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1394 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1395 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1396 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1397 dma_dom->domain.priv = dma_dom;
1398 if (!dma_dom->domain.pt_root)
1399 goto free_dma_dom;
1401 dma_dom->need_flush = false;
1402 dma_dom->target_dev = 0xffff;
1404 add_domain_to_list(&dma_dom->domain);
1406 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1407 goto free_dma_dom;
1410 * mark the first page as allocated so we never return 0 as
1411 * a valid dma-address. So we can use 0 as error value
1413 dma_dom->aperture[0]->bitmap[0] = 1;
1414 dma_dom->next_address = 0;
1417 return dma_dom;
1419 free_dma_dom:
1420 dma_ops_domain_free(dma_dom);
1422 return NULL;
1426 * little helper function to check whether a given protection domain is a
1427 * dma_ops domain
1429 static bool dma_ops_domain(struct protection_domain *domain)
1431 return domain->flags & PD_DMA_OPS_MASK;
1434 static void set_dte_entry(u16 devid, struct protection_domain *domain)
1436 u64 pte_root = virt_to_phys(domain->pt_root);
1438 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1439 << DEV_ENTRY_MODE_SHIFT;
1440 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1442 amd_iommu_dev_table[devid].data[2] = domain->id;
1443 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1444 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1447 static void clear_dte_entry(u16 devid)
1449 /* remove entry from the device table seen by the hardware */
1450 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1451 amd_iommu_dev_table[devid].data[1] = 0;
1452 amd_iommu_dev_table[devid].data[2] = 0;
1454 amd_iommu_apply_erratum_63(devid);
1457 static void do_attach(struct device *dev, struct protection_domain *domain)
1459 struct iommu_dev_data *dev_data;
1460 struct amd_iommu *iommu;
1461 u16 devid;
1463 devid = get_device_id(dev);
1464 iommu = amd_iommu_rlookup_table[devid];
1465 dev_data = get_dev_data(dev);
1467 /* Update data structures */
1468 dev_data->domain = domain;
1469 list_add(&dev_data->list, &domain->dev_list);
1470 set_dte_entry(devid, domain);
1472 /* Do reference counting */
1473 domain->dev_iommu[iommu->index] += 1;
1474 domain->dev_cnt += 1;
1476 /* Flush the DTE entry */
1477 iommu_flush_device(dev);
1480 static void do_detach(struct device *dev)
1482 struct iommu_dev_data *dev_data;
1483 struct amd_iommu *iommu;
1484 u16 devid;
1486 devid = get_device_id(dev);
1487 iommu = amd_iommu_rlookup_table[devid];
1488 dev_data = get_dev_data(dev);
1490 /* decrease reference counters */
1491 dev_data->domain->dev_iommu[iommu->index] -= 1;
1492 dev_data->domain->dev_cnt -= 1;
1494 /* Update data structures */
1495 dev_data->domain = NULL;
1496 list_del(&dev_data->list);
1497 clear_dte_entry(devid);
1499 /* Flush the DTE entry */
1500 iommu_flush_device(dev);
1504 * If a device is not yet associated with a domain, this function does
1505 * assigns it visible for the hardware
1507 static int __attach_device(struct device *dev,
1508 struct protection_domain *domain)
1510 struct iommu_dev_data *dev_data, *alias_data;
1511 int ret;
1513 dev_data = get_dev_data(dev);
1514 alias_data = get_dev_data(dev_data->alias);
1516 if (!alias_data)
1517 return -EINVAL;
1519 /* lock domain */
1520 spin_lock(&domain->lock);
1522 /* Some sanity checks */
1523 ret = -EBUSY;
1524 if (alias_data->domain != NULL &&
1525 alias_data->domain != domain)
1526 goto out_unlock;
1528 if (dev_data->domain != NULL &&
1529 dev_data->domain != domain)
1530 goto out_unlock;
1532 /* Do real assignment */
1533 if (dev_data->alias != dev) {
1534 alias_data = get_dev_data(dev_data->alias);
1535 if (alias_data->domain == NULL)
1536 do_attach(dev_data->alias, domain);
1538 atomic_inc(&alias_data->bind);
1541 if (dev_data->domain == NULL)
1542 do_attach(dev, domain);
1544 atomic_inc(&dev_data->bind);
1546 ret = 0;
1548 out_unlock:
1550 /* ready */
1551 spin_unlock(&domain->lock);
1553 return ret;
1557 * If a device is not yet associated with a domain, this function does
1558 * assigns it visible for the hardware
1560 static int attach_device(struct device *dev,
1561 struct protection_domain *domain)
1563 unsigned long flags;
1564 int ret;
1566 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1567 ret = __attach_device(dev, domain);
1568 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1571 * We might boot into a crash-kernel here. The crashed kernel
1572 * left the caches in the IOMMU dirty. So we have to flush
1573 * here to evict all dirty stuff.
1575 iommu_flush_tlb_pde(domain);
1577 return ret;
1581 * Removes a device from a protection domain (unlocked)
1583 static void __detach_device(struct device *dev)
1585 struct iommu_dev_data *dev_data = get_dev_data(dev);
1586 struct iommu_dev_data *alias_data;
1587 struct protection_domain *domain;
1588 unsigned long flags;
1590 BUG_ON(!dev_data->domain);
1592 domain = dev_data->domain;
1594 spin_lock_irqsave(&domain->lock, flags);
1596 if (dev_data->alias != dev) {
1597 alias_data = get_dev_data(dev_data->alias);
1598 if (atomic_dec_and_test(&alias_data->bind))
1599 do_detach(dev_data->alias);
1602 if (atomic_dec_and_test(&dev_data->bind))
1603 do_detach(dev);
1605 spin_unlock_irqrestore(&domain->lock, flags);
1608 * If we run in passthrough mode the device must be assigned to the
1609 * passthrough domain if it is detached from any other domain.
1610 * Make sure we can deassign from the pt_domain itself.
1612 if (iommu_pass_through &&
1613 (dev_data->domain == NULL && domain != pt_domain))
1614 __attach_device(dev, pt_domain);
1618 * Removes a device from a protection domain (with devtable_lock held)
1620 static void detach_device(struct device *dev)
1622 unsigned long flags;
1624 /* lock device table */
1625 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1626 __detach_device(dev);
1627 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1631 * Find out the protection domain structure for a given PCI device. This
1632 * will give us the pointer to the page table root for example.
1634 static struct protection_domain *domain_for_device(struct device *dev)
1636 struct protection_domain *dom;
1637 struct iommu_dev_data *dev_data, *alias_data;
1638 unsigned long flags;
1639 u16 devid, alias;
1641 devid = get_device_id(dev);
1642 alias = amd_iommu_alias_table[devid];
1643 dev_data = get_dev_data(dev);
1644 alias_data = get_dev_data(dev_data->alias);
1645 if (!alias_data)
1646 return NULL;
1648 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1649 dom = dev_data->domain;
1650 if (dom == NULL &&
1651 alias_data->domain != NULL) {
1652 __attach_device(dev, alias_data->domain);
1653 dom = alias_data->domain;
1656 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1658 return dom;
1661 static int device_change_notifier(struct notifier_block *nb,
1662 unsigned long action, void *data)
1664 struct device *dev = data;
1665 u16 devid;
1666 struct protection_domain *domain;
1667 struct dma_ops_domain *dma_domain;
1668 struct amd_iommu *iommu;
1669 unsigned long flags;
1671 if (!check_device(dev))
1672 return 0;
1674 devid = get_device_id(dev);
1675 iommu = amd_iommu_rlookup_table[devid];
1677 switch (action) {
1678 case BUS_NOTIFY_UNBOUND_DRIVER:
1680 domain = domain_for_device(dev);
1682 if (!domain)
1683 goto out;
1684 if (iommu_pass_through)
1685 break;
1686 detach_device(dev);
1687 break;
1688 case BUS_NOTIFY_ADD_DEVICE:
1690 iommu_init_device(dev);
1692 domain = domain_for_device(dev);
1694 /* allocate a protection domain if a device is added */
1695 dma_domain = find_protection_domain(devid);
1696 if (dma_domain)
1697 goto out;
1698 dma_domain = dma_ops_domain_alloc();
1699 if (!dma_domain)
1700 goto out;
1701 dma_domain->target_dev = devid;
1703 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1704 list_add_tail(&dma_domain->list, &iommu_pd_list);
1705 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1707 break;
1708 case BUS_NOTIFY_DEL_DEVICE:
1710 iommu_uninit_device(dev);
1712 default:
1713 goto out;
1716 iommu_flush_device(dev);
1717 iommu_completion_wait(iommu);
1719 out:
1720 return 0;
1723 static struct notifier_block device_nb = {
1724 .notifier_call = device_change_notifier,
1727 void amd_iommu_init_notifier(void)
1729 bus_register_notifier(&pci_bus_type, &device_nb);
1732 /*****************************************************************************
1734 * The next functions belong to the dma_ops mapping/unmapping code.
1736 *****************************************************************************/
1739 * In the dma_ops path we only have the struct device. This function
1740 * finds the corresponding IOMMU, the protection domain and the
1741 * requestor id for a given device.
1742 * If the device is not yet associated with a domain this is also done
1743 * in this function.
1745 static struct protection_domain *get_domain(struct device *dev)
1747 struct protection_domain *domain;
1748 struct dma_ops_domain *dma_dom;
1749 u16 devid = get_device_id(dev);
1751 if (!check_device(dev))
1752 return ERR_PTR(-EINVAL);
1754 domain = domain_for_device(dev);
1755 if (domain != NULL && !dma_ops_domain(domain))
1756 return ERR_PTR(-EBUSY);
1758 if (domain != NULL)
1759 return domain;
1761 /* Device not bount yet - bind it */
1762 dma_dom = find_protection_domain(devid);
1763 if (!dma_dom)
1764 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1765 attach_device(dev, &dma_dom->domain);
1766 DUMP_printk("Using protection domain %d for device %s\n",
1767 dma_dom->domain.id, dev_name(dev));
1769 return &dma_dom->domain;
1772 static void update_device_table(struct protection_domain *domain)
1774 struct iommu_dev_data *dev_data;
1776 list_for_each_entry(dev_data, &domain->dev_list, list) {
1777 u16 devid = get_device_id(dev_data->dev);
1778 set_dte_entry(devid, domain);
1782 static void update_domain(struct protection_domain *domain)
1784 if (!domain->updated)
1785 return;
1787 update_device_table(domain);
1788 iommu_flush_domain_devices(domain);
1789 iommu_flush_tlb_pde(domain);
1791 domain->updated = false;
1795 * This function fetches the PTE for a given address in the aperture
1797 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1798 unsigned long address)
1800 struct aperture_range *aperture;
1801 u64 *pte, *pte_page;
1803 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1804 if (!aperture)
1805 return NULL;
1807 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1808 if (!pte) {
1809 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1810 GFP_ATOMIC);
1811 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1812 } else
1813 pte += PM_LEVEL_INDEX(0, address);
1815 update_domain(&dom->domain);
1817 return pte;
1821 * This is the generic map function. It maps one 4kb page at paddr to
1822 * the given address in the DMA address space for the domain.
1824 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1825 unsigned long address,
1826 phys_addr_t paddr,
1827 int direction)
1829 u64 *pte, __pte;
1831 WARN_ON(address > dom->aperture_size);
1833 paddr &= PAGE_MASK;
1835 pte = dma_ops_get_pte(dom, address);
1836 if (!pte)
1837 return DMA_ERROR_CODE;
1839 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1841 if (direction == DMA_TO_DEVICE)
1842 __pte |= IOMMU_PTE_IR;
1843 else if (direction == DMA_FROM_DEVICE)
1844 __pte |= IOMMU_PTE_IW;
1845 else if (direction == DMA_BIDIRECTIONAL)
1846 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1848 WARN_ON(*pte);
1850 *pte = __pte;
1852 return (dma_addr_t)address;
1856 * The generic unmapping function for on page in the DMA address space.
1858 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1859 unsigned long address)
1861 struct aperture_range *aperture;
1862 u64 *pte;
1864 if (address >= dom->aperture_size)
1865 return;
1867 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1868 if (!aperture)
1869 return;
1871 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1872 if (!pte)
1873 return;
1875 pte += PM_LEVEL_INDEX(0, address);
1877 WARN_ON(!*pte);
1879 *pte = 0ULL;
1883 * This function contains common code for mapping of a physically
1884 * contiguous memory region into DMA address space. It is used by all
1885 * mapping functions provided with this IOMMU driver.
1886 * Must be called with the domain lock held.
1888 static dma_addr_t __map_single(struct device *dev,
1889 struct dma_ops_domain *dma_dom,
1890 phys_addr_t paddr,
1891 size_t size,
1892 int dir,
1893 bool align,
1894 u64 dma_mask)
1896 dma_addr_t offset = paddr & ~PAGE_MASK;
1897 dma_addr_t address, start, ret;
1898 unsigned int pages;
1899 unsigned long align_mask = 0;
1900 int i;
1902 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1903 paddr &= PAGE_MASK;
1905 INC_STATS_COUNTER(total_map_requests);
1907 if (pages > 1)
1908 INC_STATS_COUNTER(cross_page);
1910 if (align)
1911 align_mask = (1UL << get_order(size)) - 1;
1913 retry:
1914 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1915 dma_mask);
1916 if (unlikely(address == DMA_ERROR_CODE)) {
1918 * setting next_address here will let the address
1919 * allocator only scan the new allocated range in the
1920 * first run. This is a small optimization.
1922 dma_dom->next_address = dma_dom->aperture_size;
1924 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1925 goto out;
1928 * aperture was successfully enlarged by 128 MB, try
1929 * allocation again
1931 goto retry;
1934 start = address;
1935 for (i = 0; i < pages; ++i) {
1936 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1937 if (ret == DMA_ERROR_CODE)
1938 goto out_unmap;
1940 paddr += PAGE_SIZE;
1941 start += PAGE_SIZE;
1943 address += offset;
1945 ADD_STATS_COUNTER(alloced_io_mem, size);
1947 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1948 iommu_flush_tlb(&dma_dom->domain);
1949 dma_dom->need_flush = false;
1950 } else if (unlikely(amd_iommu_np_cache))
1951 iommu_flush_pages(&dma_dom->domain, address, size);
1953 out:
1954 return address;
1956 out_unmap:
1958 for (--i; i >= 0; --i) {
1959 start -= PAGE_SIZE;
1960 dma_ops_domain_unmap(dma_dom, start);
1963 dma_ops_free_addresses(dma_dom, address, pages);
1965 return DMA_ERROR_CODE;
1969 * Does the reverse of the __map_single function. Must be called with
1970 * the domain lock held too
1972 static void __unmap_single(struct dma_ops_domain *dma_dom,
1973 dma_addr_t dma_addr,
1974 size_t size,
1975 int dir)
1977 dma_addr_t flush_addr;
1978 dma_addr_t i, start;
1979 unsigned int pages;
1981 if ((dma_addr == DMA_ERROR_CODE) ||
1982 (dma_addr + size > dma_dom->aperture_size))
1983 return;
1985 flush_addr = dma_addr;
1986 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1987 dma_addr &= PAGE_MASK;
1988 start = dma_addr;
1990 for (i = 0; i < pages; ++i) {
1991 dma_ops_domain_unmap(dma_dom, start);
1992 start += PAGE_SIZE;
1995 SUB_STATS_COUNTER(alloced_io_mem, size);
1997 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1999 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2000 iommu_flush_pages(&dma_dom->domain, flush_addr, size);
2001 dma_dom->need_flush = false;
2006 * The exported map_single function for dma_ops.
2008 static dma_addr_t map_page(struct device *dev, struct page *page,
2009 unsigned long offset, size_t size,
2010 enum dma_data_direction dir,
2011 struct dma_attrs *attrs)
2013 unsigned long flags;
2014 struct protection_domain *domain;
2015 dma_addr_t addr;
2016 u64 dma_mask;
2017 phys_addr_t paddr = page_to_phys(page) + offset;
2019 INC_STATS_COUNTER(cnt_map_single);
2021 domain = get_domain(dev);
2022 if (PTR_ERR(domain) == -EINVAL)
2023 return (dma_addr_t)paddr;
2024 else if (IS_ERR(domain))
2025 return DMA_ERROR_CODE;
2027 dma_mask = *dev->dma_mask;
2029 spin_lock_irqsave(&domain->lock, flags);
2031 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2032 dma_mask);
2033 if (addr == DMA_ERROR_CODE)
2034 goto out;
2036 iommu_flush_complete(domain);
2038 out:
2039 spin_unlock_irqrestore(&domain->lock, flags);
2041 return addr;
2045 * The exported unmap_single function for dma_ops.
2047 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2048 enum dma_data_direction dir, struct dma_attrs *attrs)
2050 unsigned long flags;
2051 struct protection_domain *domain;
2053 INC_STATS_COUNTER(cnt_unmap_single);
2055 domain = get_domain(dev);
2056 if (IS_ERR(domain))
2057 return;
2059 spin_lock_irqsave(&domain->lock, flags);
2061 __unmap_single(domain->priv, dma_addr, size, dir);
2063 iommu_flush_complete(domain);
2065 spin_unlock_irqrestore(&domain->lock, flags);
2069 * This is a special map_sg function which is used if we should map a
2070 * device which is not handled by an AMD IOMMU in the system.
2072 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2073 int nelems, int dir)
2075 struct scatterlist *s;
2076 int i;
2078 for_each_sg(sglist, s, nelems, i) {
2079 s->dma_address = (dma_addr_t)sg_phys(s);
2080 s->dma_length = s->length;
2083 return nelems;
2087 * The exported map_sg function for dma_ops (handles scatter-gather
2088 * lists).
2090 static int map_sg(struct device *dev, struct scatterlist *sglist,
2091 int nelems, enum dma_data_direction dir,
2092 struct dma_attrs *attrs)
2094 unsigned long flags;
2095 struct protection_domain *domain;
2096 int i;
2097 struct scatterlist *s;
2098 phys_addr_t paddr;
2099 int mapped_elems = 0;
2100 u64 dma_mask;
2102 INC_STATS_COUNTER(cnt_map_sg);
2104 domain = get_domain(dev);
2105 if (PTR_ERR(domain) == -EINVAL)
2106 return map_sg_no_iommu(dev, sglist, nelems, dir);
2107 else if (IS_ERR(domain))
2108 return 0;
2110 dma_mask = *dev->dma_mask;
2112 spin_lock_irqsave(&domain->lock, flags);
2114 for_each_sg(sglist, s, nelems, i) {
2115 paddr = sg_phys(s);
2117 s->dma_address = __map_single(dev, domain->priv,
2118 paddr, s->length, dir, false,
2119 dma_mask);
2121 if (s->dma_address) {
2122 s->dma_length = s->length;
2123 mapped_elems++;
2124 } else
2125 goto unmap;
2128 iommu_flush_complete(domain);
2130 out:
2131 spin_unlock_irqrestore(&domain->lock, flags);
2133 return mapped_elems;
2134 unmap:
2135 for_each_sg(sglist, s, mapped_elems, i) {
2136 if (s->dma_address)
2137 __unmap_single(domain->priv, s->dma_address,
2138 s->dma_length, dir);
2139 s->dma_address = s->dma_length = 0;
2142 mapped_elems = 0;
2144 goto out;
2148 * The exported map_sg function for dma_ops (handles scatter-gather
2149 * lists).
2151 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2152 int nelems, enum dma_data_direction dir,
2153 struct dma_attrs *attrs)
2155 unsigned long flags;
2156 struct protection_domain *domain;
2157 struct scatterlist *s;
2158 int i;
2160 INC_STATS_COUNTER(cnt_unmap_sg);
2162 domain = get_domain(dev);
2163 if (IS_ERR(domain))
2164 return;
2166 spin_lock_irqsave(&domain->lock, flags);
2168 for_each_sg(sglist, s, nelems, i) {
2169 __unmap_single(domain->priv, s->dma_address,
2170 s->dma_length, dir);
2171 s->dma_address = s->dma_length = 0;
2174 iommu_flush_complete(domain);
2176 spin_unlock_irqrestore(&domain->lock, flags);
2180 * The exported alloc_coherent function for dma_ops.
2182 static void *alloc_coherent(struct device *dev, size_t size,
2183 dma_addr_t *dma_addr, gfp_t flag)
2185 unsigned long flags;
2186 void *virt_addr;
2187 struct protection_domain *domain;
2188 phys_addr_t paddr;
2189 u64 dma_mask = dev->coherent_dma_mask;
2191 INC_STATS_COUNTER(cnt_alloc_coherent);
2193 domain = get_domain(dev);
2194 if (PTR_ERR(domain) == -EINVAL) {
2195 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2196 *dma_addr = __pa(virt_addr);
2197 return virt_addr;
2198 } else if (IS_ERR(domain))
2199 return NULL;
2201 dma_mask = dev->coherent_dma_mask;
2202 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2203 flag |= __GFP_ZERO;
2205 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2206 if (!virt_addr)
2207 return NULL;
2209 paddr = virt_to_phys(virt_addr);
2211 if (!dma_mask)
2212 dma_mask = *dev->dma_mask;
2214 spin_lock_irqsave(&domain->lock, flags);
2216 *dma_addr = __map_single(dev, domain->priv, paddr,
2217 size, DMA_BIDIRECTIONAL, true, dma_mask);
2219 if (*dma_addr == DMA_ERROR_CODE) {
2220 spin_unlock_irqrestore(&domain->lock, flags);
2221 goto out_free;
2224 iommu_flush_complete(domain);
2226 spin_unlock_irqrestore(&domain->lock, flags);
2228 return virt_addr;
2230 out_free:
2232 free_pages((unsigned long)virt_addr, get_order(size));
2234 return NULL;
2238 * The exported free_coherent function for dma_ops.
2240 static void free_coherent(struct device *dev, size_t size,
2241 void *virt_addr, dma_addr_t dma_addr)
2243 unsigned long flags;
2244 struct protection_domain *domain;
2246 INC_STATS_COUNTER(cnt_free_coherent);
2248 domain = get_domain(dev);
2249 if (IS_ERR(domain))
2250 goto free_mem;
2252 spin_lock_irqsave(&domain->lock, flags);
2254 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2256 iommu_flush_complete(domain);
2258 spin_unlock_irqrestore(&domain->lock, flags);
2260 free_mem:
2261 free_pages((unsigned long)virt_addr, get_order(size));
2265 * This function is called by the DMA layer to find out if we can handle a
2266 * particular device. It is part of the dma_ops.
2268 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2270 return check_device(dev);
2274 * The function for pre-allocating protection domains.
2276 * If the driver core informs the DMA layer if a driver grabs a device
2277 * we don't need to preallocate the protection domains anymore.
2278 * For now we have to.
2280 static void prealloc_protection_domains(void)
2282 struct pci_dev *dev = NULL;
2283 struct dma_ops_domain *dma_dom;
2284 u16 devid;
2286 for_each_pci_dev(dev) {
2288 /* Do we handle this device? */
2289 if (!check_device(&dev->dev))
2290 continue;
2292 /* Is there already any domain for it? */
2293 if (domain_for_device(&dev->dev))
2294 continue;
2296 devid = get_device_id(&dev->dev);
2298 dma_dom = dma_ops_domain_alloc();
2299 if (!dma_dom)
2300 continue;
2301 init_unity_mappings_for_device(dma_dom, devid);
2302 dma_dom->target_dev = devid;
2304 attach_device(&dev->dev, &dma_dom->domain);
2306 list_add_tail(&dma_dom->list, &iommu_pd_list);
2310 static struct dma_map_ops amd_iommu_dma_ops = {
2311 .alloc_coherent = alloc_coherent,
2312 .free_coherent = free_coherent,
2313 .map_page = map_page,
2314 .unmap_page = unmap_page,
2315 .map_sg = map_sg,
2316 .unmap_sg = unmap_sg,
2317 .dma_supported = amd_iommu_dma_supported,
2320 static unsigned device_dma_ops_init(void)
2322 struct pci_dev *pdev = NULL;
2323 unsigned unhandled = 0;
2325 for_each_pci_dev(pdev) {
2326 if (!check_device(&pdev->dev)) {
2327 unhandled += 1;
2328 continue;
2331 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2334 return unhandled;
2338 * The function which clues the AMD IOMMU driver into dma_ops.
2341 void __init amd_iommu_init_api(void)
2343 register_iommu(&amd_iommu_ops);
2346 int __init amd_iommu_init_dma_ops(void)
2348 struct amd_iommu *iommu;
2349 int ret, unhandled;
2352 * first allocate a default protection domain for every IOMMU we
2353 * found in the system. Devices not assigned to any other
2354 * protection domain will be assigned to the default one.
2356 for_each_iommu(iommu) {
2357 iommu->default_dom = dma_ops_domain_alloc();
2358 if (iommu->default_dom == NULL)
2359 return -ENOMEM;
2360 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2361 ret = iommu_init_unity_mappings(iommu);
2362 if (ret)
2363 goto free_domains;
2367 * Pre-allocate the protection domains for each device.
2369 prealloc_protection_domains();
2371 iommu_detected = 1;
2372 swiotlb = 0;
2374 /* Make the driver finally visible to the drivers */
2375 unhandled = device_dma_ops_init();
2376 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2377 /* There are unhandled devices - initialize swiotlb for them */
2378 swiotlb = 1;
2381 amd_iommu_stats_init();
2383 return 0;
2385 free_domains:
2387 for_each_iommu(iommu) {
2388 if (iommu->default_dom)
2389 dma_ops_domain_free(iommu->default_dom);
2392 return ret;
2395 /*****************************************************************************
2397 * The following functions belong to the exported interface of AMD IOMMU
2399 * This interface allows access to lower level functions of the IOMMU
2400 * like protection domain handling and assignement of devices to domains
2401 * which is not possible with the dma_ops interface.
2403 *****************************************************************************/
2405 static void cleanup_domain(struct protection_domain *domain)
2407 struct iommu_dev_data *dev_data, *next;
2408 unsigned long flags;
2410 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2412 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2413 struct device *dev = dev_data->dev;
2415 __detach_device(dev);
2416 atomic_set(&dev_data->bind, 0);
2419 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2422 static void protection_domain_free(struct protection_domain *domain)
2424 if (!domain)
2425 return;
2427 del_domain_from_list(domain);
2429 if (domain->id)
2430 domain_id_free(domain->id);
2432 kfree(domain);
2435 static struct protection_domain *protection_domain_alloc(void)
2437 struct protection_domain *domain;
2439 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2440 if (!domain)
2441 return NULL;
2443 spin_lock_init(&domain->lock);
2444 mutex_init(&domain->api_lock);
2445 domain->id = domain_id_alloc();
2446 if (!domain->id)
2447 goto out_err;
2448 INIT_LIST_HEAD(&domain->dev_list);
2450 add_domain_to_list(domain);
2452 return domain;
2454 out_err:
2455 kfree(domain);
2457 return NULL;
2460 static int amd_iommu_domain_init(struct iommu_domain *dom)
2462 struct protection_domain *domain;
2464 domain = protection_domain_alloc();
2465 if (!domain)
2466 goto out_free;
2468 domain->mode = PAGE_MODE_3_LEVEL;
2469 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2470 if (!domain->pt_root)
2471 goto out_free;
2473 dom->priv = domain;
2475 return 0;
2477 out_free:
2478 protection_domain_free(domain);
2480 return -ENOMEM;
2483 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2485 struct protection_domain *domain = dom->priv;
2487 if (!domain)
2488 return;
2490 if (domain->dev_cnt > 0)
2491 cleanup_domain(domain);
2493 BUG_ON(domain->dev_cnt != 0);
2495 free_pagetable(domain);
2497 protection_domain_free(domain);
2499 dom->priv = NULL;
2502 static void amd_iommu_detach_device(struct iommu_domain *dom,
2503 struct device *dev)
2505 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2506 struct amd_iommu *iommu;
2507 u16 devid;
2509 if (!check_device(dev))
2510 return;
2512 devid = get_device_id(dev);
2514 if (dev_data->domain != NULL)
2515 detach_device(dev);
2517 iommu = amd_iommu_rlookup_table[devid];
2518 if (!iommu)
2519 return;
2521 iommu_flush_device(dev);
2522 iommu_completion_wait(iommu);
2525 static int amd_iommu_attach_device(struct iommu_domain *dom,
2526 struct device *dev)
2528 struct protection_domain *domain = dom->priv;
2529 struct iommu_dev_data *dev_data;
2530 struct amd_iommu *iommu;
2531 int ret;
2532 u16 devid;
2534 if (!check_device(dev))
2535 return -EINVAL;
2537 dev_data = dev->archdata.iommu;
2539 devid = get_device_id(dev);
2541 iommu = amd_iommu_rlookup_table[devid];
2542 if (!iommu)
2543 return -EINVAL;
2545 if (dev_data->domain)
2546 detach_device(dev);
2548 ret = attach_device(dev, domain);
2550 iommu_completion_wait(iommu);
2552 return ret;
2555 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2556 phys_addr_t paddr, int gfp_order, int iommu_prot)
2558 unsigned long page_size = 0x1000UL << gfp_order;
2559 struct protection_domain *domain = dom->priv;
2560 int prot = 0;
2561 int ret;
2563 if (iommu_prot & IOMMU_READ)
2564 prot |= IOMMU_PROT_IR;
2565 if (iommu_prot & IOMMU_WRITE)
2566 prot |= IOMMU_PROT_IW;
2568 mutex_lock(&domain->api_lock);
2569 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2570 mutex_unlock(&domain->api_lock);
2572 return ret;
2575 static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2576 int gfp_order)
2578 struct protection_domain *domain = dom->priv;
2579 unsigned long page_size, unmap_size;
2581 page_size = 0x1000UL << gfp_order;
2583 mutex_lock(&domain->api_lock);
2584 unmap_size = iommu_unmap_page(domain, iova, page_size);
2585 mutex_unlock(&domain->api_lock);
2587 iommu_flush_tlb_pde(domain);
2589 return get_order(unmap_size);
2592 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2593 unsigned long iova)
2595 struct protection_domain *domain = dom->priv;
2596 unsigned long offset_mask;
2597 phys_addr_t paddr;
2598 u64 *pte, __pte;
2600 pte = fetch_pte(domain, iova);
2602 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2603 return 0;
2605 if (PM_PTE_LEVEL(*pte) == 0)
2606 offset_mask = PAGE_SIZE - 1;
2607 else
2608 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2610 __pte = *pte & PM_ADDR_MASK;
2611 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2613 return paddr;
2616 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2617 unsigned long cap)
2619 switch (cap) {
2620 case IOMMU_CAP_CACHE_COHERENCY:
2621 return 1;
2624 return 0;
2627 static struct iommu_ops amd_iommu_ops = {
2628 .domain_init = amd_iommu_domain_init,
2629 .domain_destroy = amd_iommu_domain_destroy,
2630 .attach_dev = amd_iommu_attach_device,
2631 .detach_dev = amd_iommu_detach_device,
2632 .map = amd_iommu_map,
2633 .unmap = amd_iommu_unmap,
2634 .iova_to_phys = amd_iommu_iova_to_phys,
2635 .domain_has_cap = amd_iommu_domain_has_cap,
2638 /*****************************************************************************
2640 * The next functions do a basic initialization of IOMMU for pass through
2641 * mode
2643 * In passthrough mode the IOMMU is initialized and enabled but not used for
2644 * DMA-API translation.
2646 *****************************************************************************/
2648 int __init amd_iommu_init_passthrough(void)
2650 struct amd_iommu *iommu;
2651 struct pci_dev *dev = NULL;
2652 u16 devid;
2654 /* allocate passthrough domain */
2655 pt_domain = protection_domain_alloc();
2656 if (!pt_domain)
2657 return -ENOMEM;
2659 pt_domain->mode |= PAGE_MODE_NONE;
2661 for_each_pci_dev(dev) {
2662 if (!check_device(&dev->dev))
2663 continue;
2665 devid = get_device_id(&dev->dev);
2667 iommu = amd_iommu_rlookup_table[devid];
2668 if (!iommu)
2669 continue;
2671 attach_device(&dev->dev, pt_domain);
2674 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2676 return 0;