2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t
*xfs_ifork_zone
;
57 kmem_zone_t
*xfs_inode_zone
;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
66 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
67 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
68 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec
;
85 for (i
= 0; i
< nrecs
; i
++) {
86 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
87 rec
.l0
= get_unaligned(&ep
->l0
);
88 rec
.l1
= get_unaligned(&ep
->l1
);
89 xfs_bmbt_get_all(&rec
, &irec
);
90 if (fmt
== XFS_EXTFMT_NOSTATE
)
91 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
114 for (i
= 0; i
< j
; i
++) {
115 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
116 i
* mp
->m_sb
.sb_inodesize
);
117 if (!dip
->di_next_unlinked
) {
118 xfs_fs_cmn_err(CE_ALERT
, mp
,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip
->di_next_unlinked
);
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
136 struct xfs_imap
*imap
,
146 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
147 (int)imap
->im_len
, buf_flags
, &bp
);
149 if (error
!= EAGAIN
) {
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error
, mp
->m_fsname
);
155 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
165 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
166 #else /* usual case */
170 for (i
= 0; i
< ni
; i
++) {
174 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
175 (i
<< mp
->m_sb
.sb_inodelog
));
176 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
177 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
178 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
179 XFS_ERRTAG_ITOBP_INOTOBP
,
180 XFS_RANDOM_ITOBP_INOTOBP
))) {
181 if (iget_flags
& XFS_IGET_BULKSTAT
) {
182 xfs_trans_brelse(tp
, bp
);
183 return XFS_ERROR(EINVAL
);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH
, mp
, dip
);
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
192 (unsigned long long)imap
->im_blkno
, i
,
193 be16_to_cpu(dip
->di_magic
));
195 xfs_trans_brelse(tp
, bp
);
196 return XFS_ERROR(EFSCORRUPTED
);
200 xfs_inobp_check(mp
, bp
);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
234 struct xfs_imap imap
;
239 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
243 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XFS_BUF_LOCK
, imap_flags
);
247 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
249 *offset
= imap
.im_boffset
;
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
264 * The inode is expected to already been mapped to its buffer and read
265 * in once, thus we can use the mapping information stored in the inode
266 * rather than calling xfs_imap(). This allows us to avoid the overhead
267 * of looking at the inode btree for small block file systems
282 ASSERT(ip
->i_imap
.im_blkno
!= 0);
284 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
289 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
295 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
301 * Move inode type and inode format specific information from the
302 * on-disk inode to the in-core inode. For fifos, devs, and sockets
303 * this means set if_rdev to the proper value. For files, directories,
304 * and symlinks this means to bring in the in-line data or extent
305 * pointers. For a file in B-tree format, only the root is immediately
306 * brought in-core. The rest will be in-lined in if_extents when it
307 * is first referenced (see xfs_iread_extents()).
314 xfs_attr_shortform_t
*atp
;
318 ip
->i_df
.if_ext_max
=
319 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
322 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
323 be16_to_cpu(dip
->di_anextents
) >
324 be64_to_cpu(dip
->di_nblocks
))) {
325 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
326 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
327 (unsigned long long)ip
->i_ino
,
328 (int)(be32_to_cpu(dip
->di_nextents
) +
329 be16_to_cpu(dip
->di_anextents
)),
331 be64_to_cpu(dip
->di_nblocks
));
332 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
334 return XFS_ERROR(EFSCORRUPTED
);
337 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
338 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
339 "corrupt dinode %Lu, forkoff = 0x%x.",
340 (unsigned long long)ip
->i_ino
,
342 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
344 return XFS_ERROR(EFSCORRUPTED
);
347 switch (ip
->i_d
.di_mode
& S_IFMT
) {
352 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
353 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
355 return XFS_ERROR(EFSCORRUPTED
);
359 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
365 switch (dip
->di_format
) {
366 case XFS_DINODE_FMT_LOCAL
:
368 * no local regular files yet
370 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
371 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
373 "(local format for regular file).",
374 (unsigned long long) ip
->i_ino
);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
378 return XFS_ERROR(EFSCORRUPTED
);
381 di_size
= be64_to_cpu(dip
->di_size
);
382 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
383 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
385 "(bad size %Ld for local inode).",
386 (unsigned long long) ip
->i_ino
,
387 (long long) di_size
);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 return XFS_ERROR(EFSCORRUPTED
);
395 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
397 case XFS_DINODE_FMT_EXTENTS
:
398 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
400 case XFS_DINODE_FMT_BTREE
:
401 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
406 return XFS_ERROR(EFSCORRUPTED
);
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
412 return XFS_ERROR(EFSCORRUPTED
);
417 if (!XFS_DFORK_Q(dip
))
419 ASSERT(ip
->i_afp
== NULL
);
420 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
421 ip
->i_afp
->if_ext_max
=
422 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
423 switch (dip
->di_aformat
) {
424 case XFS_DINODE_FMT_LOCAL
:
425 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
426 size
= be16_to_cpu(atp
->hdr
.totsize
);
428 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
429 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
431 "(bad attr fork size %Ld).",
432 (unsigned long long) ip
->i_ino
,
434 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
437 return XFS_ERROR(EFSCORRUPTED
);
440 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
442 case XFS_DINODE_FMT_EXTENTS
:
443 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
445 case XFS_DINODE_FMT_BTREE
:
446 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
449 error
= XFS_ERROR(EFSCORRUPTED
);
453 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
455 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
461 * The file is in-lined in the on-disk inode.
462 * If it fits into if_inline_data, then copy
463 * it there, otherwise allocate a buffer for it
464 * and copy the data there. Either way, set
465 * if_data to point at the data.
466 * If we allocate a buffer for the data, make
467 * sure that its size is a multiple of 4 and
468 * record the real size in i_real_bytes.
481 * If the size is unreasonable, then something
482 * is wrong and we just bail out rather than crash in
483 * kmem_alloc() or memcpy() below.
485 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
486 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
488 "(bad size %d for local fork, size = %d).",
489 (unsigned long long) ip
->i_ino
, size
,
490 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
491 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
493 return XFS_ERROR(EFSCORRUPTED
);
495 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
498 ifp
->if_u1
.if_data
= NULL
;
499 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
500 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
502 real_size
= roundup(size
, 4);
503 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
505 ifp
->if_bytes
= size
;
506 ifp
->if_real_bytes
= real_size
;
508 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
509 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
510 ifp
->if_flags
|= XFS_IFINLINE
;
515 * The file consists of a set of extents all
516 * of which fit into the on-disk inode.
517 * If there are few enough extents to fit into
518 * the if_inline_ext, then copy them there.
519 * Otherwise allocate a buffer for them and copy
520 * them into it. Either way, set if_extents
521 * to point at the extents.
535 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
536 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
537 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
540 * If the number of extents is unreasonable, then something
541 * is wrong and we just bail out rather than crash in
542 * kmem_alloc() or memcpy() below.
544 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
545 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
546 "corrupt inode %Lu ((a)extents = %d).",
547 (unsigned long long) ip
->i_ino
, nex
);
548 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
550 return XFS_ERROR(EFSCORRUPTED
);
553 ifp
->if_real_bytes
= 0;
555 ifp
->if_u1
.if_extents
= NULL
;
556 else if (nex
<= XFS_INLINE_EXTS
)
557 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
559 xfs_iext_add(ifp
, 0, nex
);
561 ifp
->if_bytes
= size
;
563 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
564 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
565 for (i
= 0; i
< nex
; i
++, dp
++) {
566 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
567 ep
->l0
= get_unaligned_be64(&dp
->l0
);
568 ep
->l1
= get_unaligned_be64(&dp
->l1
);
570 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
571 if (whichfork
!= XFS_DATA_FORK
||
572 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
573 if (unlikely(xfs_check_nostate_extents(
575 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
578 return XFS_ERROR(EFSCORRUPTED
);
581 ifp
->if_flags
|= XFS_IFEXTENTS
;
586 * The file has too many extents to fit into
587 * the inode, so they are in B-tree format.
588 * Allocate a buffer for the root of the B-tree
589 * and copy the root into it. The i_extents
590 * field will remain NULL until all of the
591 * extents are read in (when they are needed).
599 xfs_bmdr_block_t
*dfp
;
605 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
606 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
607 size
= XFS_BMAP_BROOT_SPACE(dfp
);
608 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
611 * blow out if -- fork has less extents than can fit in
612 * fork (fork shouldn't be a btree format), root btree
613 * block has more records than can fit into the fork,
614 * or the number of extents is greater than the number of
617 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
618 || XFS_BMDR_SPACE_CALC(nrecs
) >
619 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
620 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
621 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
622 "corrupt inode %Lu (btree).",
623 (unsigned long long) ip
->i_ino
);
624 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
626 return XFS_ERROR(EFSCORRUPTED
);
629 ifp
->if_broot_bytes
= size
;
630 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
631 ASSERT(ifp
->if_broot
!= NULL
);
633 * Copy and convert from the on-disk structure
634 * to the in-memory structure.
636 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
637 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
638 ifp
->if_broot
, size
);
639 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
640 ifp
->if_flags
|= XFS_IFBROOT
;
646 xfs_dinode_from_disk(
650 to
->di_magic
= be16_to_cpu(from
->di_magic
);
651 to
->di_mode
= be16_to_cpu(from
->di_mode
);
652 to
->di_version
= from
->di_version
;
653 to
->di_format
= from
->di_format
;
654 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
655 to
->di_uid
= be32_to_cpu(from
->di_uid
);
656 to
->di_gid
= be32_to_cpu(from
->di_gid
);
657 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
658 to
->di_projid
= be16_to_cpu(from
->di_projid
);
659 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
660 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
661 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
662 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
663 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
664 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
665 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
666 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
667 to
->di_size
= be64_to_cpu(from
->di_size
);
668 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
669 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
670 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
671 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
672 to
->di_forkoff
= from
->di_forkoff
;
673 to
->di_aformat
= from
->di_aformat
;
674 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
675 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
676 to
->di_flags
= be16_to_cpu(from
->di_flags
);
677 to
->di_gen
= be32_to_cpu(from
->di_gen
);
683 xfs_icdinode_t
*from
)
685 to
->di_magic
= cpu_to_be16(from
->di_magic
);
686 to
->di_mode
= cpu_to_be16(from
->di_mode
);
687 to
->di_version
= from
->di_version
;
688 to
->di_format
= from
->di_format
;
689 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
690 to
->di_uid
= cpu_to_be32(from
->di_uid
);
691 to
->di_gid
= cpu_to_be32(from
->di_gid
);
692 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
693 to
->di_projid
= cpu_to_be16(from
->di_projid
);
694 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
695 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
696 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
697 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
698 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
699 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
700 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
701 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
702 to
->di_size
= cpu_to_be64(from
->di_size
);
703 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
704 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
705 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
706 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
707 to
->di_forkoff
= from
->di_forkoff
;
708 to
->di_aformat
= from
->di_aformat
;
709 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
710 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
711 to
->di_flags
= cpu_to_be16(from
->di_flags
);
712 to
->di_gen
= cpu_to_be32(from
->di_gen
);
721 if (di_flags
& XFS_DIFLAG_ANY
) {
722 if (di_flags
& XFS_DIFLAG_REALTIME
)
723 flags
|= XFS_XFLAG_REALTIME
;
724 if (di_flags
& XFS_DIFLAG_PREALLOC
)
725 flags
|= XFS_XFLAG_PREALLOC
;
726 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
727 flags
|= XFS_XFLAG_IMMUTABLE
;
728 if (di_flags
& XFS_DIFLAG_APPEND
)
729 flags
|= XFS_XFLAG_APPEND
;
730 if (di_flags
& XFS_DIFLAG_SYNC
)
731 flags
|= XFS_XFLAG_SYNC
;
732 if (di_flags
& XFS_DIFLAG_NOATIME
)
733 flags
|= XFS_XFLAG_NOATIME
;
734 if (di_flags
& XFS_DIFLAG_NODUMP
)
735 flags
|= XFS_XFLAG_NODUMP
;
736 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
737 flags
|= XFS_XFLAG_RTINHERIT
;
738 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
739 flags
|= XFS_XFLAG_PROJINHERIT
;
740 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
741 flags
|= XFS_XFLAG_NOSYMLINKS
;
742 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
743 flags
|= XFS_XFLAG_EXTSIZE
;
744 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
745 flags
|= XFS_XFLAG_EXTSZINHERIT
;
746 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
747 flags
|= XFS_XFLAG_NODEFRAG
;
748 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
749 flags
|= XFS_XFLAG_FILESTREAM
;
759 xfs_icdinode_t
*dic
= &ip
->i_d
;
761 return _xfs_dic2xflags(dic
->di_flags
) |
762 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
769 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
770 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
774 * Read the disk inode attributes into the in-core inode structure.
789 * Fill in the location information in the in-core inode.
791 ip
->i_imap
.im_blkno
= bno
;
792 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
795 ASSERT(bno
== 0 || bno
== ip
->i_imap
.im_blkno
);
798 * Get pointers to the on-disk inode and the buffer containing it.
800 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
801 XFS_BUF_LOCK
, iget_flags
);
804 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
807 * If we got something that isn't an inode it means someone
808 * (nfs or dmi) has a stale handle.
810 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
812 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
813 "dip->di_magic (0x%x) != "
814 "XFS_DINODE_MAGIC (0x%x)",
815 be16_to_cpu(dip
->di_magic
),
818 error
= XFS_ERROR(EINVAL
);
823 * If the on-disk inode is already linked to a directory
824 * entry, copy all of the inode into the in-core inode.
825 * xfs_iformat() handles copying in the inode format
826 * specific information.
827 * Otherwise, just get the truly permanent information.
830 xfs_dinode_from_disk(&ip
->i_d
, dip
);
831 error
= xfs_iformat(ip
, dip
);
834 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
835 "xfs_iformat() returned error %d",
841 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
842 ip
->i_d
.di_version
= dip
->di_version
;
843 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
844 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
846 * Make sure to pull in the mode here as well in
847 * case the inode is released without being used.
848 * This ensures that xfs_inactive() will see that
849 * the inode is already free and not try to mess
850 * with the uninitialized part of it.
854 * Initialize the per-fork minima and maxima for a new
855 * inode here. xfs_iformat will do it for old inodes.
857 ip
->i_df
.if_ext_max
=
858 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
862 * The inode format changed when we moved the link count and
863 * made it 32 bits long. If this is an old format inode,
864 * convert it in memory to look like a new one. If it gets
865 * flushed to disk we will convert back before flushing or
866 * logging it. We zero out the new projid field and the old link
867 * count field. We'll handle clearing the pad field (the remains
868 * of the old uuid field) when we actually convert the inode to
869 * the new format. We don't change the version number so that we
870 * can distinguish this from a real new format inode.
872 if (ip
->i_d
.di_version
== 1) {
873 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
874 ip
->i_d
.di_onlink
= 0;
875 ip
->i_d
.di_projid
= 0;
878 ip
->i_delayed_blks
= 0;
879 ip
->i_size
= ip
->i_d
.di_size
;
882 * Mark the buffer containing the inode as something to keep
883 * around for a while. This helps to keep recently accessed
884 * meta-data in-core longer.
886 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
889 * Use xfs_trans_brelse() to release the buffer containing the
890 * on-disk inode, because it was acquired with xfs_trans_read_buf()
891 * in xfs_itobp() above. If tp is NULL, this is just a normal
892 * brelse(). If we're within a transaction, then xfs_trans_brelse()
893 * will only release the buffer if it is not dirty within the
894 * transaction. It will be OK to release the buffer in this case,
895 * because inodes on disk are never destroyed and we will be
896 * locking the new in-core inode before putting it in the hash
897 * table where other processes can find it. Thus we don't have
898 * to worry about the inode being changed just because we released
902 xfs_trans_brelse(tp
, bp
);
907 * Read in extents from a btree-format inode.
908 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
918 xfs_extnum_t nextents
;
921 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
922 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
924 return XFS_ERROR(EFSCORRUPTED
);
926 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
927 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
928 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
931 * We know that the size is valid (it's checked in iformat_btree)
933 ifp
->if_lastex
= NULLEXTNUM
;
934 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
935 ifp
->if_flags
|= XFS_IFEXTENTS
;
936 xfs_iext_add(ifp
, 0, nextents
);
937 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
939 xfs_iext_destroy(ifp
);
940 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
943 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
948 * Allocate an inode on disk and return a copy of its in-core version.
949 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
950 * appropriately within the inode. The uid and gid for the inode are
951 * set according to the contents of the given cred structure.
953 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954 * has a free inode available, call xfs_iget()
955 * to obtain the in-core version of the allocated inode. Finally,
956 * fill in the inode and log its initial contents. In this case,
957 * ialloc_context would be set to NULL and call_again set to false.
959 * If xfs_dialloc() does not have an available inode,
960 * it will replenish its supply by doing an allocation. Since we can
961 * only do one allocation within a transaction without deadlocks, we
962 * must commit the current transaction before returning the inode itself.
963 * In this case, therefore, we will set call_again to true and return.
964 * The caller should then commit the current transaction, start a new
965 * transaction, and call xfs_ialloc() again to actually get the inode.
967 * To ensure that some other process does not grab the inode that
968 * was allocated during the first call to xfs_ialloc(), this routine
969 * also returns the [locked] bp pointing to the head of the freelist
970 * as ialloc_context. The caller should hold this buffer across
971 * the commit and pass it back into this routine on the second call.
973 * If we are allocating quota inodes, we do not have a parent inode
974 * to attach to or associate with (i.e. pip == NULL) because they
975 * are not linked into the directory structure - they are attached
976 * directly to the superblock - and so have no parent.
988 xfs_buf_t
**ialloc_context
,
989 boolean_t
*call_again
,
1000 * Call the space management code to pick
1001 * the on-disk inode to be allocated.
1003 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1004 ialloc_context
, call_again
, &ino
);
1007 if (*call_again
|| ino
== NULLFSINO
) {
1011 ASSERT(*ialloc_context
== NULL
);
1014 * Get the in-core inode with the lock held exclusively.
1015 * This is because we're setting fields here we need
1016 * to prevent others from looking at until we're done.
1018 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1019 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1024 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1025 ip
->i_d
.di_onlink
= 0;
1026 ip
->i_d
.di_nlink
= nlink
;
1027 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1028 ip
->i_d
.di_uid
= current_fsuid();
1029 ip
->i_d
.di_gid
= current_fsgid();
1030 ip
->i_d
.di_projid
= prid
;
1031 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1034 * If the superblock version is up to where we support new format
1035 * inodes and this is currently an old format inode, then change
1036 * the inode version number now. This way we only do the conversion
1037 * here rather than here and in the flush/logging code.
1039 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1040 ip
->i_d
.di_version
== 1) {
1041 ip
->i_d
.di_version
= 2;
1043 * We've already zeroed the old link count, the projid field,
1044 * and the pad field.
1049 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1052 xfs_bump_ino_vers2(tp
, ip
);
1054 if (pip
&& XFS_INHERIT_GID(pip
)) {
1055 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1056 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1057 ip
->i_d
.di_mode
|= S_ISGID
;
1062 * If the group ID of the new file does not match the effective group
1063 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 if ((irix_sgid_inherit
) &&
1067 (ip
->i_d
.di_mode
& S_ISGID
) &&
1068 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1069 ip
->i_d
.di_mode
&= ~S_ISGID
;
1072 ip
->i_d
.di_size
= 0;
1074 ip
->i_d
.di_nextents
= 0;
1075 ASSERT(ip
->i_d
.di_nblocks
== 0);
1078 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1079 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1080 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1081 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1084 * di_gen will have been taken care of in xfs_iread.
1086 ip
->i_d
.di_extsize
= 0;
1087 ip
->i_d
.di_dmevmask
= 0;
1088 ip
->i_d
.di_dmstate
= 0;
1089 ip
->i_d
.di_flags
= 0;
1090 flags
= XFS_ILOG_CORE
;
1091 switch (mode
& S_IFMT
) {
1096 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1097 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1098 ip
->i_df
.if_flags
= 0;
1099 flags
|= XFS_ILOG_DEV
;
1103 * we can't set up filestreams until after the VFS inode
1104 * is set up properly.
1106 if (pip
&& xfs_inode_is_filestream(pip
))
1110 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1113 if ((mode
& S_IFMT
) == S_IFDIR
) {
1114 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1115 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1116 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1117 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1118 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1120 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1121 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1122 di_flags
|= XFS_DIFLAG_REALTIME
;
1123 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1124 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1125 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1128 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1129 xfs_inherit_noatime
)
1130 di_flags
|= XFS_DIFLAG_NOATIME
;
1131 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1133 di_flags
|= XFS_DIFLAG_NODUMP
;
1134 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1136 di_flags
|= XFS_DIFLAG_SYNC
;
1137 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1138 xfs_inherit_nosymlinks
)
1139 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1140 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1141 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1142 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1143 xfs_inherit_nodefrag
)
1144 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1145 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1146 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1147 ip
->i_d
.di_flags
|= di_flags
;
1151 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1152 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1153 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1154 ip
->i_df
.if_u1
.if_extents
= NULL
;
1160 * Attribute fork settings for new inode.
1162 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1163 ip
->i_d
.di_anextents
= 0;
1166 * Log the new values stuffed into the inode.
1168 xfs_trans_log_inode(tp
, ip
, flags
);
1170 /* now that we have an i_mode we can setup inode ops and unlock */
1171 xfs_setup_inode(ip
);
1173 /* now we have set up the vfs inode we can associate the filestream */
1175 error
= xfs_filestream_associate(pip
, ip
);
1179 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1187 * Check to make sure that there are no blocks allocated to the
1188 * file beyond the size of the file. We don't check this for
1189 * files with fixed size extents or real time extents, but we
1190 * at least do it for regular files.
1199 xfs_fileoff_t map_first
;
1201 xfs_bmbt_irec_t imaps
[2];
1203 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1206 if (XFS_IS_REALTIME_INODE(ip
))
1209 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1213 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1215 * The filesystem could be shutting down, so bmapi may return
1218 if (xfs_bmapi(NULL
, ip
, map_first
,
1220 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1222 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1225 ASSERT(nimaps
== 1);
1226 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1231 * Calculate the last possible buffered byte in a file. This must
1232 * include data that was buffered beyond the EOF by the write code.
1233 * This also needs to deal with overflowing the xfs_fsize_t type
1234 * which can happen for sizes near the limit.
1236 * We also need to take into account any blocks beyond the EOF. It
1237 * may be the case that they were buffered by a write which failed.
1238 * In that case the pages will still be in memory, but the inode size
1239 * will never have been updated.
1246 xfs_fsize_t last_byte
;
1247 xfs_fileoff_t last_block
;
1248 xfs_fileoff_t size_last_block
;
1251 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1255 * Only check for blocks beyond the EOF if the extents have
1256 * been read in. This eliminates the need for the inode lock,
1257 * and it also saves us from looking when it really isn't
1260 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1261 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1262 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1264 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1271 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1272 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1274 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1275 if (last_byte
< 0) {
1276 return XFS_MAXIOFFSET(mp
);
1278 last_byte
+= (1 << mp
->m_writeio_log
);
1279 if (last_byte
< 0) {
1280 return XFS_MAXIOFFSET(mp
);
1285 #if defined(XFS_RW_TRACE)
1291 xfs_fsize_t new_size
,
1292 xfs_off_t toss_start
,
1293 xfs_off_t toss_finish
)
1295 if (ip
->i_rwtrace
== NULL
) {
1299 ktrace_enter(ip
->i_rwtrace
,
1302 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1303 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1304 (void*)((long)flag
),
1305 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1306 (void*)(unsigned long)(new_size
& 0xffffffff),
1307 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1308 (void*)(unsigned long)(toss_start
& 0xffffffff),
1309 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1310 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1311 (void*)(unsigned long)current_cpu(),
1312 (void*)(unsigned long)current_pid(),
1318 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1322 * Start the truncation of the file to new_size. The new size
1323 * must be smaller than the current size. This routine will
1324 * clear the buffer and page caches of file data in the removed
1325 * range, and xfs_itruncate_finish() will remove the underlying
1328 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1329 * must NOT have the inode lock held at all. This is because we're
1330 * calling into the buffer/page cache code and we can't hold the
1331 * inode lock when we do so.
1333 * We need to wait for any direct I/Os in flight to complete before we
1334 * proceed with the truncate. This is needed to prevent the extents
1335 * being read or written by the direct I/Os from being removed while the
1336 * I/O is in flight as there is no other method of synchronising
1337 * direct I/O with the truncate operation. Also, because we hold
1338 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1339 * started until the truncate completes and drops the lock. Essentially,
1340 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1341 * ordering between direct I/Os and the truncate operation.
1343 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1344 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1345 * in the case that the caller is locking things out of order and
1346 * may not be able to call xfs_itruncate_finish() with the inode lock
1347 * held without dropping the I/O lock. If the caller must drop the
1348 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1349 * must be called again with all the same restrictions as the initial
1353 xfs_itruncate_start(
1356 xfs_fsize_t new_size
)
1358 xfs_fsize_t last_byte
;
1359 xfs_off_t toss_start
;
1363 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1364 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1365 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1366 (flags
== XFS_ITRUNC_MAYBE
));
1370 /* wait for the completion of any pending DIOs */
1371 if (new_size
== 0 || new_size
< ip
->i_size
)
1375 * Call toss_pages or flushinval_pages to get rid of pages
1376 * overlapping the region being removed. We have to use
1377 * the less efficient flushinval_pages in the case that the
1378 * caller may not be able to finish the truncate without
1379 * dropping the inode's I/O lock. Make sure
1380 * to catch any pages brought in by buffers overlapping
1381 * the EOF by searching out beyond the isize by our
1382 * block size. We round new_size up to a block boundary
1383 * so that we don't toss things on the same block as
1384 * new_size but before it.
1386 * Before calling toss_page or flushinval_pages, make sure to
1387 * call remapf() over the same region if the file is mapped.
1388 * This frees up mapped file references to the pages in the
1389 * given range and for the flushinval_pages case it ensures
1390 * that we get the latest mapped changes flushed out.
1392 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1393 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1394 if (toss_start
< 0) {
1396 * The place to start tossing is beyond our maximum
1397 * file size, so there is no way that the data extended
1402 last_byte
= xfs_file_last_byte(ip
);
1403 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1405 if (last_byte
> toss_start
) {
1406 if (flags
& XFS_ITRUNC_DEFINITE
) {
1407 xfs_tosspages(ip
, toss_start
,
1408 -1, FI_REMAPF_LOCKED
);
1410 error
= xfs_flushinval_pages(ip
, toss_start
,
1411 -1, FI_REMAPF_LOCKED
);
1416 if (new_size
== 0) {
1417 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1424 * Shrink the file to the given new_size. The new size must be smaller than
1425 * the current size. This will free up the underlying blocks in the removed
1426 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1428 * The transaction passed to this routine must have made a permanent log
1429 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1430 * given transaction and start new ones, so make sure everything involved in
1431 * the transaction is tidy before calling here. Some transaction will be
1432 * returned to the caller to be committed. The incoming transaction must
1433 * already include the inode, and both inode locks must be held exclusively.
1434 * The inode must also be "held" within the transaction. On return the inode
1435 * will be "held" within the returned transaction. This routine does NOT
1436 * require any disk space to be reserved for it within the transaction.
1438 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1439 * indicates the fork which is to be truncated. For the attribute fork we only
1440 * support truncation to size 0.
1442 * We use the sync parameter to indicate whether or not the first transaction
1443 * we perform might have to be synchronous. For the attr fork, it needs to be
1444 * so if the unlink of the inode is not yet known to be permanent in the log.
1445 * This keeps us from freeing and reusing the blocks of the attribute fork
1446 * before the unlink of the inode becomes permanent.
1448 * For the data fork, we normally have to run synchronously if we're being
1449 * called out of the inactive path or we're being called out of the create path
1450 * where we're truncating an existing file. Either way, the truncate needs to
1451 * be sync so blocks don't reappear in the file with altered data in case of a
1452 * crash. wsync filesystems can run the first case async because anything that
1453 * shrinks the inode has to run sync so by the time we're called here from
1454 * inactive, the inode size is permanently set to 0.
1456 * Calls from the truncate path always need to be sync unless we're in a wsync
1457 * filesystem and the file has already been unlinked.
1459 * The caller is responsible for correctly setting the sync parameter. It gets
1460 * too hard for us to guess here which path we're being called out of just
1461 * based on inode state.
1463 * If we get an error, we must return with the inode locked and linked into the
1464 * current transaction. This keeps things simple for the higher level code,
1465 * because it always knows that the inode is locked and held in the transaction
1466 * that returns to it whether errors occur or not. We don't mark the inode
1467 * dirty on error so that transactions can be easily aborted if possible.
1470 xfs_itruncate_finish(
1473 xfs_fsize_t new_size
,
1477 xfs_fsblock_t first_block
;
1478 xfs_fileoff_t first_unmap_block
;
1479 xfs_fileoff_t last_block
;
1480 xfs_filblks_t unmap_len
=0;
1485 xfs_bmap_free_t free_list
;
1488 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1489 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1490 ASSERT(*tp
!= NULL
);
1491 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1492 ASSERT(ip
->i_transp
== *tp
);
1493 ASSERT(ip
->i_itemp
!= NULL
);
1494 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1498 mp
= (ntp
)->t_mountp
;
1499 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1502 * We only support truncating the entire attribute fork.
1504 if (fork
== XFS_ATTR_FORK
) {
1507 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1508 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1510 * The first thing we do is set the size to new_size permanently
1511 * on disk. This way we don't have to worry about anyone ever
1512 * being able to look at the data being freed even in the face
1513 * of a crash. What we're getting around here is the case where
1514 * we free a block, it is allocated to another file, it is written
1515 * to, and then we crash. If the new data gets written to the
1516 * file but the log buffers containing the free and reallocation
1517 * don't, then we'd end up with garbage in the blocks being freed.
1518 * As long as we make the new_size permanent before actually
1519 * freeing any blocks it doesn't matter if they get writtten to.
1521 * The callers must signal into us whether or not the size
1522 * setting here must be synchronous. There are a few cases
1523 * where it doesn't have to be synchronous. Those cases
1524 * occur if the file is unlinked and we know the unlink is
1525 * permanent or if the blocks being truncated are guaranteed
1526 * to be beyond the inode eof (regardless of the link count)
1527 * and the eof value is permanent. Both of these cases occur
1528 * only on wsync-mounted filesystems. In those cases, we're
1529 * guaranteed that no user will ever see the data in the blocks
1530 * that are being truncated so the truncate can run async.
1531 * In the free beyond eof case, the file may wind up with
1532 * more blocks allocated to it than it needs if we crash
1533 * and that won't get fixed until the next time the file
1534 * is re-opened and closed but that's ok as that shouldn't
1535 * be too many blocks.
1537 * However, we can't just make all wsync xactions run async
1538 * because there's one call out of the create path that needs
1539 * to run sync where it's truncating an existing file to size
1540 * 0 whose size is > 0.
1542 * It's probably possible to come up with a test in this
1543 * routine that would correctly distinguish all the above
1544 * cases from the values of the function parameters and the
1545 * inode state but for sanity's sake, I've decided to let the
1546 * layers above just tell us. It's simpler to correctly figure
1547 * out in the layer above exactly under what conditions we
1548 * can run async and I think it's easier for others read and
1549 * follow the logic in case something has to be changed.
1550 * cscope is your friend -- rcc.
1552 * The attribute fork is much simpler.
1554 * For the attribute fork we allow the caller to tell us whether
1555 * the unlink of the inode that led to this call is yet permanent
1556 * in the on disk log. If it is not and we will be freeing extents
1557 * in this inode then we make the first transaction synchronous
1558 * to make sure that the unlink is permanent by the time we free
1561 if (fork
== XFS_DATA_FORK
) {
1562 if (ip
->i_d
.di_nextents
> 0) {
1564 * If we are not changing the file size then do
1565 * not update the on-disk file size - we may be
1566 * called from xfs_inactive_free_eofblocks(). If we
1567 * update the on-disk file size and then the system
1568 * crashes before the contents of the file are
1569 * flushed to disk then the files may be full of
1570 * holes (ie NULL files bug).
1572 if (ip
->i_size
!= new_size
) {
1573 ip
->i_d
.di_size
= new_size
;
1574 ip
->i_size
= new_size
;
1575 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1579 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1580 if (ip
->i_d
.di_anextents
> 0)
1581 xfs_trans_set_sync(ntp
);
1583 ASSERT(fork
== XFS_DATA_FORK
||
1584 (fork
== XFS_ATTR_FORK
&&
1585 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1586 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1589 * Since it is possible for space to become allocated beyond
1590 * the end of the file (in a crash where the space is allocated
1591 * but the inode size is not yet updated), simply remove any
1592 * blocks which show up between the new EOF and the maximum
1593 * possible file size. If the first block to be removed is
1594 * beyond the maximum file size (ie it is the same as last_block),
1595 * then there is nothing to do.
1597 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1598 ASSERT(first_unmap_block
<= last_block
);
1600 if (last_block
== first_unmap_block
) {
1603 unmap_len
= last_block
- first_unmap_block
+ 1;
1607 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1608 * will tell us whether it freed the entire range or
1609 * not. If this is a synchronous mount (wsync),
1610 * then we can tell bunmapi to keep all the
1611 * transactions asynchronous since the unlink
1612 * transaction that made this inode inactive has
1613 * already hit the disk. There's no danger of
1614 * the freed blocks being reused, there being a
1615 * crash, and the reused blocks suddenly reappearing
1616 * in this file with garbage in them once recovery
1619 xfs_bmap_init(&free_list
, &first_block
);
1620 error
= xfs_bunmapi(ntp
, ip
,
1621 first_unmap_block
, unmap_len
,
1622 xfs_bmapi_aflag(fork
) |
1623 (sync
? 0 : XFS_BMAPI_ASYNC
),
1624 XFS_ITRUNC_MAX_EXTENTS
,
1625 &first_block
, &free_list
,
1629 * If the bunmapi call encounters an error,
1630 * return to the caller where the transaction
1631 * can be properly aborted. We just need to
1632 * make sure we're not holding any resources
1633 * that we were not when we came in.
1635 xfs_bmap_cancel(&free_list
);
1640 * Duplicate the transaction that has the permanent
1641 * reservation and commit the old transaction.
1643 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1646 /* link the inode into the next xact in the chain */
1647 xfs_trans_ijoin(ntp
, ip
,
1648 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1649 xfs_trans_ihold(ntp
, ip
);
1654 * If the bmap finish call encounters an error, return
1655 * to the caller where the transaction can be properly
1656 * aborted. We just need to make sure we're not
1657 * holding any resources that we were not when we came
1660 * Aborting from this point might lose some blocks in
1661 * the file system, but oh well.
1663 xfs_bmap_cancel(&free_list
);
1669 * Mark the inode dirty so it will be logged and
1670 * moved forward in the log as part of every commit.
1672 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1675 ntp
= xfs_trans_dup(ntp
);
1676 error
= xfs_trans_commit(*tp
, 0);
1679 /* link the inode into the next transaction in the chain */
1680 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1681 xfs_trans_ihold(ntp
, ip
);
1686 * transaction commit worked ok so we can drop the extra ticket
1687 * reference that we gained in xfs_trans_dup()
1689 xfs_log_ticket_put(ntp
->t_ticket
);
1690 error
= xfs_trans_reserve(ntp
, 0,
1691 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1692 XFS_TRANS_PERM_LOG_RES
,
1693 XFS_ITRUNCATE_LOG_COUNT
);
1698 * Only update the size in the case of the data fork, but
1699 * always re-log the inode so that our permanent transaction
1700 * can keep on rolling it forward in the log.
1702 if (fork
== XFS_DATA_FORK
) {
1703 xfs_isize_check(mp
, ip
, new_size
);
1705 * If we are not changing the file size then do
1706 * not update the on-disk file size - we may be
1707 * called from xfs_inactive_free_eofblocks(). If we
1708 * update the on-disk file size and then the system
1709 * crashes before the contents of the file are
1710 * flushed to disk then the files may be full of
1711 * holes (ie NULL files bug).
1713 if (ip
->i_size
!= new_size
) {
1714 ip
->i_d
.di_size
= new_size
;
1715 ip
->i_size
= new_size
;
1718 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1719 ASSERT((new_size
!= 0) ||
1720 (fork
== XFS_ATTR_FORK
) ||
1721 (ip
->i_delayed_blks
== 0));
1722 ASSERT((new_size
!= 0) ||
1723 (fork
== XFS_ATTR_FORK
) ||
1724 (ip
->i_d
.di_nextents
== 0));
1725 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1730 * This is called when the inode's link count goes to 0.
1731 * We place the on-disk inode on a list in the AGI. It
1732 * will be pulled from this list when the inode is freed.
1749 ASSERT(ip
->i_d
.di_nlink
== 0);
1750 ASSERT(ip
->i_d
.di_mode
!= 0);
1751 ASSERT(ip
->i_transp
== tp
);
1756 * Get the agi buffer first. It ensures lock ordering
1759 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1762 agi
= XFS_BUF_TO_AGI(agibp
);
1765 * Get the index into the agi hash table for the
1766 * list this inode will go on.
1768 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1770 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1771 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1772 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1774 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1776 * There is already another inode in the bucket we need
1777 * to add ourselves to. Add us at the front of the list.
1778 * Here we put the head pointer into our next pointer,
1779 * and then we fall through to point the head at us.
1781 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1785 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1786 /* both on-disk, don't endian flip twice */
1787 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1788 offset
= ip
->i_imap
.im_boffset
+
1789 offsetof(xfs_dinode_t
, di_next_unlinked
);
1790 xfs_trans_inode_buf(tp
, ibp
);
1791 xfs_trans_log_buf(tp
, ibp
, offset
,
1792 (offset
+ sizeof(xfs_agino_t
) - 1));
1793 xfs_inobp_check(mp
, ibp
);
1797 * Point the bucket head pointer at the inode being inserted.
1800 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1801 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1802 (sizeof(xfs_agino_t
) * bucket_index
);
1803 xfs_trans_log_buf(tp
, agibp
, offset
,
1804 (offset
+ sizeof(xfs_agino_t
) - 1));
1809 * Pull the on-disk inode from the AGI unlinked list.
1822 xfs_agnumber_t agno
;
1824 xfs_agino_t next_agino
;
1825 xfs_buf_t
*last_ibp
;
1826 xfs_dinode_t
*last_dip
= NULL
;
1828 int offset
, last_offset
= 0;
1832 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1835 * Get the agi buffer first. It ensures lock ordering
1838 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1842 agi
= XFS_BUF_TO_AGI(agibp
);
1845 * Get the index into the agi hash table for the
1846 * list this inode will go on.
1848 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1850 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1851 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1852 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1854 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1856 * We're at the head of the list. Get the inode's
1857 * on-disk buffer to see if there is anyone after us
1858 * on the list. Only modify our next pointer if it
1859 * is not already NULLAGINO. This saves us the overhead
1860 * of dealing with the buffer when there is no need to
1863 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1866 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1867 error
, mp
->m_fsname
);
1870 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1871 ASSERT(next_agino
!= 0);
1872 if (next_agino
!= NULLAGINO
) {
1873 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1874 offset
= ip
->i_imap
.im_boffset
+
1875 offsetof(xfs_dinode_t
, di_next_unlinked
);
1876 xfs_trans_inode_buf(tp
, ibp
);
1877 xfs_trans_log_buf(tp
, ibp
, offset
,
1878 (offset
+ sizeof(xfs_agino_t
) - 1));
1879 xfs_inobp_check(mp
, ibp
);
1881 xfs_trans_brelse(tp
, ibp
);
1884 * Point the bucket head pointer at the next inode.
1886 ASSERT(next_agino
!= 0);
1887 ASSERT(next_agino
!= agino
);
1888 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1889 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1890 (sizeof(xfs_agino_t
) * bucket_index
);
1891 xfs_trans_log_buf(tp
, agibp
, offset
,
1892 (offset
+ sizeof(xfs_agino_t
) - 1));
1895 * We need to search the list for the inode being freed.
1897 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1899 while (next_agino
!= agino
) {
1901 * If the last inode wasn't the one pointing to
1902 * us, then release its buffer since we're not
1903 * going to do anything with it.
1905 if (last_ibp
!= NULL
) {
1906 xfs_trans_brelse(tp
, last_ibp
);
1908 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1909 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1910 &last_ibp
, &last_offset
, 0);
1913 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1914 error
, mp
->m_fsname
);
1917 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1918 ASSERT(next_agino
!= NULLAGINO
);
1919 ASSERT(next_agino
!= 0);
1922 * Now last_ibp points to the buffer previous to us on
1923 * the unlinked list. Pull us from the list.
1925 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1928 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1929 error
, mp
->m_fsname
);
1932 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1933 ASSERT(next_agino
!= 0);
1934 ASSERT(next_agino
!= agino
);
1935 if (next_agino
!= NULLAGINO
) {
1936 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1937 offset
= ip
->i_imap
.im_boffset
+
1938 offsetof(xfs_dinode_t
, di_next_unlinked
);
1939 xfs_trans_inode_buf(tp
, ibp
);
1940 xfs_trans_log_buf(tp
, ibp
, offset
,
1941 (offset
+ sizeof(xfs_agino_t
) - 1));
1942 xfs_inobp_check(mp
, ibp
);
1944 xfs_trans_brelse(tp
, ibp
);
1947 * Point the previous inode on the list to the next inode.
1949 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1950 ASSERT(next_agino
!= 0);
1951 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1952 xfs_trans_inode_buf(tp
, last_ibp
);
1953 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1954 (offset
+ sizeof(xfs_agino_t
) - 1));
1955 xfs_inobp_check(mp
, last_ibp
);
1962 xfs_inode_t
*free_ip
,
1966 xfs_mount_t
*mp
= free_ip
->i_mount
;
1967 int blks_per_cluster
;
1970 int i
, j
, found
, pre_flushed
;
1973 xfs_inode_t
*ip
, **ip_found
;
1974 xfs_inode_log_item_t
*iip
;
1975 xfs_log_item_t
*lip
;
1976 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
1978 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1979 blks_per_cluster
= 1;
1980 ninodes
= mp
->m_sb
.sb_inopblock
;
1981 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1983 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1984 mp
->m_sb
.sb_blocksize
;
1985 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1986 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1989 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
1991 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1992 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1993 XFS_INO_TO_AGBNO(mp
, inum
));
1997 * Look for each inode in memory and attempt to lock it,
1998 * we can be racing with flush and tail pushing here.
1999 * any inode we get the locks on, add to an array of
2000 * inode items to process later.
2002 * The get the buffer lock, we could beat a flush
2003 * or tail pushing thread to the lock here, in which
2004 * case they will go looking for the inode buffer
2005 * and fail, we need some other form of interlock
2009 for (i
= 0; i
< ninodes
; i
++) {
2010 read_lock(&pag
->pag_ici_lock
);
2011 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2012 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2014 /* Inode not in memory or we found it already,
2017 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2018 read_unlock(&pag
->pag_ici_lock
);
2022 if (xfs_inode_clean(ip
)) {
2023 read_unlock(&pag
->pag_ici_lock
);
2027 /* If we can get the locks then add it to the
2028 * list, otherwise by the time we get the bp lock
2029 * below it will already be attached to the
2033 /* This inode will already be locked - by us, lets
2037 if (ip
== free_ip
) {
2038 if (xfs_iflock_nowait(ip
)) {
2039 xfs_iflags_set(ip
, XFS_ISTALE
);
2040 if (xfs_inode_clean(ip
)) {
2043 ip_found
[found
++] = ip
;
2046 read_unlock(&pag
->pag_ici_lock
);
2050 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2051 if (xfs_iflock_nowait(ip
)) {
2052 xfs_iflags_set(ip
, XFS_ISTALE
);
2054 if (xfs_inode_clean(ip
)) {
2056 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2058 ip_found
[found
++] = ip
;
2061 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2064 read_unlock(&pag
->pag_ici_lock
);
2067 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2068 mp
->m_bsize
* blks_per_cluster
,
2072 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2074 if (lip
->li_type
== XFS_LI_INODE
) {
2075 iip
= (xfs_inode_log_item_t
*)lip
;
2076 ASSERT(iip
->ili_logged
== 1);
2077 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2078 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2079 &iip
->ili_flush_lsn
,
2080 &iip
->ili_item
.li_lsn
);
2081 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2084 lip
= lip
->li_bio_list
;
2087 for (i
= 0; i
< found
; i
++) {
2092 ip
->i_update_core
= 0;
2094 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2098 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2099 iip
->ili_format
.ilf_fields
= 0;
2100 iip
->ili_logged
= 1;
2101 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2102 &iip
->ili_item
.li_lsn
);
2104 xfs_buf_attach_iodone(bp
,
2105 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2106 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2107 if (ip
!= free_ip
) {
2108 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2112 if (found
|| pre_flushed
)
2113 xfs_trans_stale_inode_buf(tp
, bp
);
2114 xfs_trans_binval(tp
, bp
);
2117 kmem_free(ip_found
);
2118 xfs_put_perag(mp
, pag
);
2122 * This is called to return an inode to the inode free list.
2123 * The inode should already be truncated to 0 length and have
2124 * no pages associated with it. This routine also assumes that
2125 * the inode is already a part of the transaction.
2127 * The on-disk copy of the inode will have been added to the list
2128 * of unlinked inodes in the AGI. We need to remove the inode from
2129 * that list atomically with respect to freeing it here.
2135 xfs_bmap_free_t
*flist
)
2139 xfs_ino_t first_ino
;
2143 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2144 ASSERT(ip
->i_transp
== tp
);
2145 ASSERT(ip
->i_d
.di_nlink
== 0);
2146 ASSERT(ip
->i_d
.di_nextents
== 0);
2147 ASSERT(ip
->i_d
.di_anextents
== 0);
2148 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2149 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2150 ASSERT(ip
->i_d
.di_nblocks
== 0);
2153 * Pull the on-disk inode from the AGI unlinked list.
2155 error
= xfs_iunlink_remove(tp
, ip
);
2160 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2164 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2165 ip
->i_d
.di_flags
= 0;
2166 ip
->i_d
.di_dmevmask
= 0;
2167 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2168 ip
->i_df
.if_ext_max
=
2169 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2170 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2171 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2173 * Bump the generation count so no one will be confused
2174 * by reincarnations of this inode.
2178 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2180 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
2185 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2186 * from picking up this inode when it is reclaimed (its incore state
2187 * initialzed but not flushed to disk yet). The in-core di_mode is
2188 * already cleared and a corresponding transaction logged.
2189 * The hack here just synchronizes the in-core to on-disk
2190 * di_mode value in advance before the actual inode sync to disk.
2191 * This is OK because the inode is already unlinked and would never
2192 * change its di_mode again for this inode generation.
2193 * This is a temporary hack that would require a proper fix
2199 xfs_ifree_cluster(ip
, tp
, first_ino
);
2206 * Reallocate the space for if_broot based on the number of records
2207 * being added or deleted as indicated in rec_diff. Move the records
2208 * and pointers in if_broot to fit the new size. When shrinking this
2209 * will eliminate holes between the records and pointers created by
2210 * the caller. When growing this will create holes to be filled in
2213 * The caller must not request to add more records than would fit in
2214 * the on-disk inode root. If the if_broot is currently NULL, then
2215 * if we adding records one will be allocated. The caller must also
2216 * not request that the number of records go below zero, although
2217 * it can go to zero.
2219 * ip -- the inode whose if_broot area is changing
2220 * ext_diff -- the change in the number of records, positive or negative,
2221 * requested for the if_broot array.
2229 struct xfs_mount
*mp
= ip
->i_mount
;
2232 struct xfs_btree_block
*new_broot
;
2239 * Handle the degenerate case quietly.
2241 if (rec_diff
== 0) {
2245 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2248 * If there wasn't any memory allocated before, just
2249 * allocate it now and get out.
2251 if (ifp
->if_broot_bytes
== 0) {
2252 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2253 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2254 ifp
->if_broot_bytes
= (int)new_size
;
2259 * If there is already an existing if_broot, then we need
2260 * to realloc() it and shift the pointers to their new
2261 * location. The records don't change location because
2262 * they are kept butted up against the btree block header.
2264 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2265 new_max
= cur_max
+ rec_diff
;
2266 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2267 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2268 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2270 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2271 ifp
->if_broot_bytes
);
2272 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2274 ifp
->if_broot_bytes
= (int)new_size
;
2275 ASSERT(ifp
->if_broot_bytes
<=
2276 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2277 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2282 * rec_diff is less than 0. In this case, we are shrinking the
2283 * if_broot buffer. It must already exist. If we go to zero
2284 * records, just get rid of the root and clear the status bit.
2286 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2287 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2288 new_max
= cur_max
+ rec_diff
;
2289 ASSERT(new_max
>= 0);
2291 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2295 new_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2297 * First copy over the btree block header.
2299 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2302 ifp
->if_flags
&= ~XFS_IFBROOT
;
2306 * Only copy the records and pointers if there are any.
2310 * First copy the records.
2312 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2313 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2314 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2317 * Then copy the pointers.
2319 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2320 ifp
->if_broot_bytes
);
2321 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2323 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2325 kmem_free(ifp
->if_broot
);
2326 ifp
->if_broot
= new_broot
;
2327 ifp
->if_broot_bytes
= (int)new_size
;
2328 ASSERT(ifp
->if_broot_bytes
<=
2329 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2335 * This is called when the amount of space needed for if_data
2336 * is increased or decreased. The change in size is indicated by
2337 * the number of bytes that need to be added or deleted in the
2338 * byte_diff parameter.
2340 * If the amount of space needed has decreased below the size of the
2341 * inline buffer, then switch to using the inline buffer. Otherwise,
2342 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2343 * to what is needed.
2345 * ip -- the inode whose if_data area is changing
2346 * byte_diff -- the change in the number of bytes, positive or negative,
2347 * requested for the if_data array.
2359 if (byte_diff
== 0) {
2363 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2364 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2365 ASSERT(new_size
>= 0);
2367 if (new_size
== 0) {
2368 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2369 kmem_free(ifp
->if_u1
.if_data
);
2371 ifp
->if_u1
.if_data
= NULL
;
2373 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2375 * If the valid extents/data can fit in if_inline_ext/data,
2376 * copy them from the malloc'd vector and free it.
2378 if (ifp
->if_u1
.if_data
== NULL
) {
2379 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2380 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2381 ASSERT(ifp
->if_real_bytes
!= 0);
2382 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2384 kmem_free(ifp
->if_u1
.if_data
);
2385 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2390 * Stuck with malloc/realloc.
2391 * For inline data, the underlying buffer must be
2392 * a multiple of 4 bytes in size so that it can be
2393 * logged and stay on word boundaries. We enforce
2396 real_size
= roundup(new_size
, 4);
2397 if (ifp
->if_u1
.if_data
== NULL
) {
2398 ASSERT(ifp
->if_real_bytes
== 0);
2399 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2400 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2402 * Only do the realloc if the underlying size
2403 * is really changing.
2405 if (ifp
->if_real_bytes
!= real_size
) {
2406 ifp
->if_u1
.if_data
=
2407 kmem_realloc(ifp
->if_u1
.if_data
,
2413 ASSERT(ifp
->if_real_bytes
== 0);
2414 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2415 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2419 ifp
->if_real_bytes
= real_size
;
2420 ifp
->if_bytes
= new_size
;
2421 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2431 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2432 if (ifp
->if_broot
!= NULL
) {
2433 kmem_free(ifp
->if_broot
);
2434 ifp
->if_broot
= NULL
;
2438 * If the format is local, then we can't have an extents
2439 * array so just look for an inline data array. If we're
2440 * not local then we may or may not have an extents list,
2441 * so check and free it up if we do.
2443 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2444 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2445 (ifp
->if_u1
.if_data
!= NULL
)) {
2446 ASSERT(ifp
->if_real_bytes
!= 0);
2447 kmem_free(ifp
->if_u1
.if_data
);
2448 ifp
->if_u1
.if_data
= NULL
;
2449 ifp
->if_real_bytes
= 0;
2451 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2452 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2453 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2454 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2455 ASSERT(ifp
->if_real_bytes
!= 0);
2456 xfs_iext_destroy(ifp
);
2458 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2459 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2460 ASSERT(ifp
->if_real_bytes
== 0);
2461 if (whichfork
== XFS_ATTR_FORK
) {
2462 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2468 * Increment the pin count of the given buffer.
2469 * This value is protected by ipinlock spinlock in the mount structure.
2475 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2477 atomic_inc(&ip
->i_pincount
);
2481 * Decrement the pin count of the given inode, and wake up
2482 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2483 * inode must have been previously pinned with a call to xfs_ipin().
2489 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2491 if (atomic_dec_and_test(&ip
->i_pincount
))
2492 wake_up(&ip
->i_ipin_wait
);
2496 * This is called to unpin an inode. It can be directed to wait or to return
2497 * immediately without waiting for the inode to be unpinned. The caller must
2498 * have the inode locked in at least shared mode so that the buffer cannot be
2499 * subsequently pinned once someone is waiting for it to be unpinned.
2506 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
2508 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2509 if (atomic_read(&ip
->i_pincount
) == 0)
2512 /* Give the log a push to start the unpinning I/O */
2513 xfs_log_force(ip
->i_mount
, (iip
&& iip
->ili_last_lsn
) ?
2514 iip
->ili_last_lsn
: 0, XFS_LOG_FORCE
);
2516 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2523 __xfs_iunpin_wait(ip
, 1);
2530 __xfs_iunpin_wait(ip
, 0);
2535 * xfs_iextents_copy()
2537 * This is called to copy the REAL extents (as opposed to the delayed
2538 * allocation extents) from the inode into the given buffer. It
2539 * returns the number of bytes copied into the buffer.
2541 * If there are no delayed allocation extents, then we can just
2542 * memcpy() the extents into the buffer. Otherwise, we need to
2543 * examine each extent in turn and skip those which are delayed.
2555 xfs_fsblock_t start_block
;
2557 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2558 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2559 ASSERT(ifp
->if_bytes
> 0);
2561 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2562 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2566 * There are some delayed allocation extents in the
2567 * inode, so copy the extents one at a time and skip
2568 * the delayed ones. There must be at least one
2569 * non-delayed extent.
2572 for (i
= 0; i
< nrecs
; i
++) {
2573 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2574 start_block
= xfs_bmbt_get_startblock(ep
);
2575 if (isnullstartblock(start_block
)) {
2577 * It's a delayed allocation extent, so skip it.
2582 /* Translate to on disk format */
2583 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2584 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2588 ASSERT(copied
!= 0);
2589 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2591 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2595 * Each of the following cases stores data into the same region
2596 * of the on-disk inode, so only one of them can be valid at
2597 * any given time. While it is possible to have conflicting formats
2598 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2599 * in EXTENTS format, this can only happen when the fork has
2600 * changed formats after being modified but before being flushed.
2601 * In these cases, the format always takes precedence, because the
2602 * format indicates the current state of the fork.
2609 xfs_inode_log_item_t
*iip
,
2616 #ifdef XFS_TRANS_DEBUG
2619 static const short brootflag
[2] =
2620 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2621 static const short dataflag
[2] =
2622 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2623 static const short extflag
[2] =
2624 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2628 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2630 * This can happen if we gave up in iformat in an error path,
2631 * for the attribute fork.
2634 ASSERT(whichfork
== XFS_ATTR_FORK
);
2637 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2639 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2640 case XFS_DINODE_FMT_LOCAL
:
2641 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2642 (ifp
->if_bytes
> 0)) {
2643 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2644 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2645 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2649 case XFS_DINODE_FMT_EXTENTS
:
2650 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2651 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2652 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2653 (ifp
->if_bytes
== 0));
2654 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2655 (ifp
->if_bytes
> 0));
2656 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2657 (ifp
->if_bytes
> 0)) {
2658 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2659 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2664 case XFS_DINODE_FMT_BTREE
:
2665 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2666 (ifp
->if_broot_bytes
> 0)) {
2667 ASSERT(ifp
->if_broot
!= NULL
);
2668 ASSERT(ifp
->if_broot_bytes
<=
2669 (XFS_IFORK_SIZE(ip
, whichfork
) +
2670 XFS_BROOT_SIZE_ADJ
));
2671 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2672 (xfs_bmdr_block_t
*)cp
,
2673 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2677 case XFS_DINODE_FMT_DEV
:
2678 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2679 ASSERT(whichfork
== XFS_DATA_FORK
);
2680 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2684 case XFS_DINODE_FMT_UUID
:
2685 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2686 ASSERT(whichfork
== XFS_DATA_FORK
);
2687 memcpy(XFS_DFORK_DPTR(dip
),
2688 &ip
->i_df
.if_u2
.if_uuid
,
2704 xfs_mount_t
*mp
= ip
->i_mount
;
2705 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
2706 unsigned long first_index
, mask
;
2707 unsigned long inodes_per_cluster
;
2709 xfs_inode_t
**ilist
;
2716 ASSERT(pag
->pagi_inodeok
);
2717 ASSERT(pag
->pag_ici_init
);
2719 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2720 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2721 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2725 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2726 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2727 read_lock(&pag
->pag_ici_lock
);
2728 /* really need a gang lookup range call here */
2729 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2730 first_index
, inodes_per_cluster
);
2734 for (i
= 0; i
< nr_found
; i
++) {
2738 /* if the inode lies outside this cluster, we're done. */
2739 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
2742 * Do an un-protected check to see if the inode is dirty and
2743 * is a candidate for flushing. These checks will be repeated
2744 * later after the appropriate locks are acquired.
2746 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2750 * Try to get locks. If any are unavailable or it is pinned,
2751 * then this inode cannot be flushed and is skipped.
2754 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2756 if (!xfs_iflock_nowait(iq
)) {
2757 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2760 if (xfs_ipincount(iq
)) {
2762 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2767 * arriving here means that this inode can be flushed. First
2768 * re-check that it's dirty before flushing.
2770 if (!xfs_inode_clean(iq
)) {
2772 error
= xfs_iflush_int(iq
, bp
);
2774 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2775 goto cluster_corrupt_out
;
2781 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2785 XFS_STATS_INC(xs_icluster_flushcnt
);
2786 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2790 read_unlock(&pag
->pag_ici_lock
);
2795 cluster_corrupt_out
:
2797 * Corruption detected in the clustering loop. Invalidate the
2798 * inode buffer and shut down the filesystem.
2800 read_unlock(&pag
->pag_ici_lock
);
2802 * Clean up the buffer. If it was B_DELWRI, just release it --
2803 * brelse can handle it with no problems. If not, shut down the
2804 * filesystem before releasing the buffer.
2806 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2810 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2812 if (!bufwasdelwri
) {
2814 * Just like incore_relse: if we have b_iodone functions,
2815 * mark the buffer as an error and call them. Otherwise
2816 * mark it as stale and brelse.
2818 if (XFS_BUF_IODONE_FUNC(bp
)) {
2819 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
2822 XFS_BUF_ERROR(bp
,EIO
);
2831 * Unlocks the flush lock
2833 xfs_iflush_abort(iq
);
2835 return XFS_ERROR(EFSCORRUPTED
);
2839 * xfs_iflush() will write a modified inode's changes out to the
2840 * inode's on disk home. The caller must have the inode lock held
2841 * in at least shared mode and the inode flush completion must be
2842 * active as well. The inode lock will still be held upon return from
2843 * the call and the caller is free to unlock it.
2844 * The inode flush will be completed when the inode reaches the disk.
2845 * The flags indicate how the inode's buffer should be written out.
2852 xfs_inode_log_item_t
*iip
;
2857 int noblock
= (flags
== XFS_IFLUSH_ASYNC_NOBLOCK
);
2858 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
2860 XFS_STATS_INC(xs_iflush_count
);
2862 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2863 ASSERT(!completion_done(&ip
->i_flush
));
2864 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2865 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2871 * If the inode isn't dirty, then just release the inode
2872 * flush lock and do nothing.
2874 if (xfs_inode_clean(ip
)) {
2880 * We can't flush the inode until it is unpinned, so wait for it if we
2881 * are allowed to block. We know noone new can pin it, because we are
2882 * holding the inode lock shared and you need to hold it exclusively to
2885 * If we are not allowed to block, force the log out asynchronously so
2886 * that when we come back the inode will be unpinned. If other inodes
2887 * in the same cluster are dirty, they will probably write the inode
2888 * out for us if they occur after the log force completes.
2890 if (noblock
&& xfs_ipincount(ip
)) {
2891 xfs_iunpin_nowait(ip
);
2895 xfs_iunpin_wait(ip
);
2898 * This may have been unpinned because the filesystem is shutting
2899 * down forcibly. If that's the case we must not write this inode
2900 * to disk, because the log record didn't make it to disk!
2902 if (XFS_FORCED_SHUTDOWN(mp
)) {
2903 ip
->i_update_core
= 0;
2905 iip
->ili_format
.ilf_fields
= 0;
2907 return XFS_ERROR(EIO
);
2911 * Decide how buffer will be flushed out. This is done before
2912 * the call to xfs_iflush_int because this field is zeroed by it.
2914 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
2916 * Flush out the inode buffer according to the directions
2917 * of the caller. In the cases where the caller has given
2918 * us a choice choose the non-delwri case. This is because
2919 * the inode is in the AIL and we need to get it out soon.
2922 case XFS_IFLUSH_SYNC
:
2923 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2926 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2927 case XFS_IFLUSH_ASYNC
:
2928 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2931 case XFS_IFLUSH_DELWRI
:
2941 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2942 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2943 case XFS_IFLUSH_DELWRI
:
2946 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2947 case XFS_IFLUSH_ASYNC
:
2950 case XFS_IFLUSH_SYNC
:
2961 * Get the buffer containing the on-disk inode.
2963 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2964 noblock
? XFS_BUF_TRYLOCK
: XFS_BUF_LOCK
);
2971 * First flush out the inode that xfs_iflush was called with.
2973 error
= xfs_iflush_int(ip
, bp
);
2978 * If the buffer is pinned then push on the log now so we won't
2979 * get stuck waiting in the write for too long.
2981 if (XFS_BUF_ISPINNED(bp
))
2982 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
2986 * see if other inodes can be gathered into this write
2988 error
= xfs_iflush_cluster(ip
, bp
);
2990 goto cluster_corrupt_out
;
2992 if (flags
& INT_DELWRI
) {
2993 xfs_bdwrite(mp
, bp
);
2994 } else if (flags
& INT_ASYNC
) {
2995 error
= xfs_bawrite(mp
, bp
);
2997 error
= xfs_bwrite(mp
, bp
);
3003 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3004 cluster_corrupt_out
:
3006 * Unlocks the flush lock
3008 xfs_iflush_abort(ip
);
3009 return XFS_ERROR(EFSCORRUPTED
);
3018 xfs_inode_log_item_t
*iip
;
3021 #ifdef XFS_TRANS_DEBUG
3025 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3026 ASSERT(!completion_done(&ip
->i_flush
));
3027 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3028 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3035 * If the inode isn't dirty, then just release the inode
3036 * flush lock and do nothing.
3038 if (xfs_inode_clean(ip
)) {
3043 /* set *dip = inode's place in the buffer */
3044 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3047 * Clear i_update_core before copying out the data.
3048 * This is for coordination with our timestamp updates
3049 * that don't hold the inode lock. They will always
3050 * update the timestamps BEFORE setting i_update_core,
3051 * so if we clear i_update_core after they set it we
3052 * are guaranteed to see their updates to the timestamps.
3053 * I believe that this depends on strongly ordered memory
3054 * semantics, but we have that. We use the SYNCHRONIZE
3055 * macro to make sure that the compiler does not reorder
3056 * the i_update_core access below the data copy below.
3058 ip
->i_update_core
= 0;
3062 * Make sure to get the latest atime from the Linux inode.
3064 xfs_synchronize_atime(ip
);
3066 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
3067 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3068 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3069 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3070 ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3073 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3074 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3075 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3076 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3077 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3080 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3082 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3083 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3084 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3085 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3086 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3090 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3092 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3093 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3094 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3095 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3096 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3097 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3102 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3103 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3104 XFS_RANDOM_IFLUSH_5
)) {
3105 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3106 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3108 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3113 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3114 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3115 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3116 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3117 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3121 * bump the flush iteration count, used to detect flushes which
3122 * postdate a log record during recovery.
3125 ip
->i_d
.di_flushiter
++;
3128 * Copy the dirty parts of the inode into the on-disk
3129 * inode. We always copy out the core of the inode,
3130 * because if the inode is dirty at all the core must
3133 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3135 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3136 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3137 ip
->i_d
.di_flushiter
= 0;
3140 * If this is really an old format inode and the superblock version
3141 * has not been updated to support only new format inodes, then
3142 * convert back to the old inode format. If the superblock version
3143 * has been updated, then make the conversion permanent.
3145 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3146 if (ip
->i_d
.di_version
== 1) {
3147 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3151 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3152 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3155 * The superblock version has already been bumped,
3156 * so just make the conversion to the new inode
3159 ip
->i_d
.di_version
= 2;
3160 dip
->di_version
= 2;
3161 ip
->i_d
.di_onlink
= 0;
3163 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3164 memset(&(dip
->di_pad
[0]), 0,
3165 sizeof(dip
->di_pad
));
3166 ASSERT(ip
->i_d
.di_projid
== 0);
3170 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3171 if (XFS_IFORK_Q(ip
))
3172 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3173 xfs_inobp_check(mp
, bp
);
3176 * We've recorded everything logged in the inode, so we'd
3177 * like to clear the ilf_fields bits so we don't log and
3178 * flush things unnecessarily. However, we can't stop
3179 * logging all this information until the data we've copied
3180 * into the disk buffer is written to disk. If we did we might
3181 * overwrite the copy of the inode in the log with all the
3182 * data after re-logging only part of it, and in the face of
3183 * a crash we wouldn't have all the data we need to recover.
3185 * What we do is move the bits to the ili_last_fields field.
3186 * When logging the inode, these bits are moved back to the
3187 * ilf_fields field. In the xfs_iflush_done() routine we
3188 * clear ili_last_fields, since we know that the information
3189 * those bits represent is permanently on disk. As long as
3190 * the flush completes before the inode is logged again, then
3191 * both ilf_fields and ili_last_fields will be cleared.
3193 * We can play with the ilf_fields bits here, because the inode
3194 * lock must be held exclusively in order to set bits there
3195 * and the flush lock protects the ili_last_fields bits.
3196 * Set ili_logged so the flush done
3197 * routine can tell whether or not to look in the AIL.
3198 * Also, store the current LSN of the inode so that we can tell
3199 * whether the item has moved in the AIL from xfs_iflush_done().
3200 * In order to read the lsn we need the AIL lock, because
3201 * it is a 64 bit value that cannot be read atomically.
3203 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3204 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3205 iip
->ili_format
.ilf_fields
= 0;
3206 iip
->ili_logged
= 1;
3208 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3209 &iip
->ili_item
.li_lsn
);
3212 * Attach the function xfs_iflush_done to the inode's
3213 * buffer. This will remove the inode from the AIL
3214 * and unlock the inode's flush lock when the inode is
3215 * completely written to disk.
3217 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3218 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3220 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3221 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3224 * We're flushing an inode which is not in the AIL and has
3225 * not been logged but has i_update_core set. For this
3226 * case we can use a B_DELWRI flush and immediately drop
3227 * the inode flush lock because we can avoid the whole
3228 * AIL state thing. It's OK to drop the flush lock now,
3229 * because we've already locked the buffer and to do anything
3230 * you really need both.
3233 ASSERT(iip
->ili_logged
== 0);
3234 ASSERT(iip
->ili_last_fields
== 0);
3235 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3243 return XFS_ERROR(EFSCORRUPTED
);
3248 #ifdef XFS_ILOCK_TRACE
3250 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3252 ktrace_enter(ip
->i_lock_trace
,
3254 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3255 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3256 (void *)ra
, /* caller of ilock */
3257 (void *)(unsigned long)current_cpu(),
3258 (void *)(unsigned long)current_pid(),
3259 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3264 * Return a pointer to the extent record at file index idx.
3266 xfs_bmbt_rec_host_t
*
3268 xfs_ifork_t
*ifp
, /* inode fork pointer */
3269 xfs_extnum_t idx
) /* index of target extent */
3272 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3273 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3274 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3275 xfs_ext_irec_t
*erp
; /* irec pointer */
3276 int erp_idx
= 0; /* irec index */
3277 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3279 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3280 return &erp
->er_extbuf
[page_idx
];
3281 } else if (ifp
->if_bytes
) {
3282 return &ifp
->if_u1
.if_extents
[idx
];
3289 * Insert new item(s) into the extent records for incore inode
3290 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3294 xfs_ifork_t
*ifp
, /* inode fork pointer */
3295 xfs_extnum_t idx
, /* starting index of new items */
3296 xfs_extnum_t count
, /* number of inserted items */
3297 xfs_bmbt_irec_t
*new) /* items to insert */
3299 xfs_extnum_t i
; /* extent record index */
3301 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3302 xfs_iext_add(ifp
, idx
, count
);
3303 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3304 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3308 * This is called when the amount of space required for incore file
3309 * extents needs to be increased. The ext_diff parameter stores the
3310 * number of new extents being added and the idx parameter contains
3311 * the extent index where the new extents will be added. If the new
3312 * extents are being appended, then we just need to (re)allocate and
3313 * initialize the space. Otherwise, if the new extents are being
3314 * inserted into the middle of the existing entries, a bit more work
3315 * is required to make room for the new extents to be inserted. The
3316 * caller is responsible for filling in the new extent entries upon
3321 xfs_ifork_t
*ifp
, /* inode fork pointer */
3322 xfs_extnum_t idx
, /* index to begin adding exts */
3323 int ext_diff
) /* number of extents to add */
3325 int byte_diff
; /* new bytes being added */
3326 int new_size
; /* size of extents after adding */
3327 xfs_extnum_t nextents
; /* number of extents in file */
3329 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3330 ASSERT((idx
>= 0) && (idx
<= nextents
));
3331 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3332 new_size
= ifp
->if_bytes
+ byte_diff
;
3334 * If the new number of extents (nextents + ext_diff)
3335 * fits inside the inode, then continue to use the inline
3338 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3339 if (idx
< nextents
) {
3340 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3341 &ifp
->if_u2
.if_inline_ext
[idx
],
3342 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3343 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3345 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3346 ifp
->if_real_bytes
= 0;
3347 ifp
->if_lastex
= nextents
+ ext_diff
;
3350 * Otherwise use a linear (direct) extent list.
3351 * If the extents are currently inside the inode,
3352 * xfs_iext_realloc_direct will switch us from
3353 * inline to direct extent allocation mode.
3355 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3356 xfs_iext_realloc_direct(ifp
, new_size
);
3357 if (idx
< nextents
) {
3358 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3359 &ifp
->if_u1
.if_extents
[idx
],
3360 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3361 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3364 /* Indirection array */
3366 xfs_ext_irec_t
*erp
;
3370 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3371 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3372 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3374 xfs_iext_irec_init(ifp
);
3375 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3376 erp
= ifp
->if_u1
.if_ext_irec
;
3378 /* Extents fit in target extent page */
3379 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3380 if (page_idx
< erp
->er_extcount
) {
3381 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3382 &erp
->er_extbuf
[page_idx
],
3383 (erp
->er_extcount
- page_idx
) *
3384 sizeof(xfs_bmbt_rec_t
));
3385 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3387 erp
->er_extcount
+= ext_diff
;
3388 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3390 /* Insert a new extent page */
3392 xfs_iext_add_indirect_multi(ifp
,
3393 erp_idx
, page_idx
, ext_diff
);
3396 * If extent(s) are being appended to the last page in
3397 * the indirection array and the new extent(s) don't fit
3398 * in the page, then erp is NULL and erp_idx is set to
3399 * the next index needed in the indirection array.
3402 int count
= ext_diff
;
3405 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3406 erp
->er_extcount
= count
;
3407 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3414 ifp
->if_bytes
= new_size
;
3418 * This is called when incore extents are being added to the indirection
3419 * array and the new extents do not fit in the target extent list. The
3420 * erp_idx parameter contains the irec index for the target extent list
3421 * in the indirection array, and the idx parameter contains the extent
3422 * index within the list. The number of extents being added is stored
3423 * in the count parameter.
3425 * |-------| |-------|
3426 * | | | | idx - number of extents before idx
3428 * | | | | count - number of extents being inserted at idx
3429 * |-------| |-------|
3430 * | count | | nex2 | nex2 - number of extents after idx + count
3431 * |-------| |-------|
3434 xfs_iext_add_indirect_multi(
3435 xfs_ifork_t
*ifp
, /* inode fork pointer */
3436 int erp_idx
, /* target extent irec index */
3437 xfs_extnum_t idx
, /* index within target list */
3438 int count
) /* new extents being added */
3440 int byte_diff
; /* new bytes being added */
3441 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3442 xfs_extnum_t ext_diff
; /* number of extents to add */
3443 xfs_extnum_t ext_cnt
; /* new extents still needed */
3444 xfs_extnum_t nex2
; /* extents after idx + count */
3445 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3446 int nlists
; /* number of irec's (lists) */
3448 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3449 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3450 nex2
= erp
->er_extcount
- idx
;
3451 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3454 * Save second part of target extent list
3455 * (all extents past */
3457 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3458 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3459 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3460 erp
->er_extcount
-= nex2
;
3461 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3462 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3466 * Add the new extents to the end of the target
3467 * list, then allocate new irec record(s) and
3468 * extent buffer(s) as needed to store the rest
3469 * of the new extents.
3472 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3474 erp
->er_extcount
+= ext_diff
;
3475 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3476 ext_cnt
-= ext_diff
;
3480 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3481 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3482 erp
->er_extcount
= ext_diff
;
3483 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3484 ext_cnt
-= ext_diff
;
3487 /* Add nex2 extents back to indirection array */
3489 xfs_extnum_t ext_avail
;
3492 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3493 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3496 * If nex2 extents fit in the current page, append
3497 * nex2_ep after the new extents.
3499 if (nex2
<= ext_avail
) {
3500 i
= erp
->er_extcount
;
3503 * Otherwise, check if space is available in the
3506 else if ((erp_idx
< nlists
- 1) &&
3507 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3508 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3511 /* Create a hole for nex2 extents */
3512 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3513 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3516 * Final choice, create a new extent page for
3521 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3523 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3525 erp
->er_extcount
+= nex2
;
3526 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3531 * This is called when the amount of space required for incore file
3532 * extents needs to be decreased. The ext_diff parameter stores the
3533 * number of extents to be removed and the idx parameter contains
3534 * the extent index where the extents will be removed from.
3536 * If the amount of space needed has decreased below the linear
3537 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3538 * extent array. Otherwise, use kmem_realloc() to adjust the
3539 * size to what is needed.
3543 xfs_ifork_t
*ifp
, /* inode fork pointer */
3544 xfs_extnum_t idx
, /* index to begin removing exts */
3545 int ext_diff
) /* number of extents to remove */
3547 xfs_extnum_t nextents
; /* number of extents in file */
3548 int new_size
; /* size of extents after removal */
3550 ASSERT(ext_diff
> 0);
3551 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3552 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3554 if (new_size
== 0) {
3555 xfs_iext_destroy(ifp
);
3556 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3557 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3558 } else if (ifp
->if_real_bytes
) {
3559 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3561 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3563 ifp
->if_bytes
= new_size
;
3567 * This removes ext_diff extents from the inline buffer, beginning
3568 * at extent index idx.
3571 xfs_iext_remove_inline(
3572 xfs_ifork_t
*ifp
, /* inode fork pointer */
3573 xfs_extnum_t idx
, /* index to begin removing exts */
3574 int ext_diff
) /* number of extents to remove */
3576 int nextents
; /* number of extents in file */
3578 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3579 ASSERT(idx
< XFS_INLINE_EXTS
);
3580 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3581 ASSERT(((nextents
- ext_diff
) > 0) &&
3582 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3584 if (idx
+ ext_diff
< nextents
) {
3585 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3586 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3587 (nextents
- (idx
+ ext_diff
)) *
3588 sizeof(xfs_bmbt_rec_t
));
3589 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3590 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3592 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3593 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3598 * This removes ext_diff extents from a linear (direct) extent list,
3599 * beginning at extent index idx. If the extents are being removed
3600 * from the end of the list (ie. truncate) then we just need to re-
3601 * allocate the list to remove the extra space. Otherwise, if the
3602 * extents are being removed from the middle of the existing extent
3603 * entries, then we first need to move the extent records beginning
3604 * at idx + ext_diff up in the list to overwrite the records being
3605 * removed, then remove the extra space via kmem_realloc.
3608 xfs_iext_remove_direct(
3609 xfs_ifork_t
*ifp
, /* inode fork pointer */
3610 xfs_extnum_t idx
, /* index to begin removing exts */
3611 int ext_diff
) /* number of extents to remove */
3613 xfs_extnum_t nextents
; /* number of extents in file */
3614 int new_size
; /* size of extents after removal */
3616 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3617 new_size
= ifp
->if_bytes
-
3618 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3619 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3621 if (new_size
== 0) {
3622 xfs_iext_destroy(ifp
);
3625 /* Move extents up in the list (if needed) */
3626 if (idx
+ ext_diff
< nextents
) {
3627 memmove(&ifp
->if_u1
.if_extents
[idx
],
3628 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3629 (nextents
- (idx
+ ext_diff
)) *
3630 sizeof(xfs_bmbt_rec_t
));
3632 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3633 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3635 * Reallocate the direct extent list. If the extents
3636 * will fit inside the inode then xfs_iext_realloc_direct
3637 * will switch from direct to inline extent allocation
3640 xfs_iext_realloc_direct(ifp
, new_size
);
3641 ifp
->if_bytes
= new_size
;
3645 * This is called when incore extents are being removed from the
3646 * indirection array and the extents being removed span multiple extent
3647 * buffers. The idx parameter contains the file extent index where we
3648 * want to begin removing extents, and the count parameter contains
3649 * how many extents need to be removed.
3651 * |-------| |-------|
3652 * | nex1 | | | nex1 - number of extents before idx
3653 * |-------| | count |
3654 * | | | | count - number of extents being removed at idx
3655 * | count | |-------|
3656 * | | | nex2 | nex2 - number of extents after idx + count
3657 * |-------| |-------|
3660 xfs_iext_remove_indirect(
3661 xfs_ifork_t
*ifp
, /* inode fork pointer */
3662 xfs_extnum_t idx
, /* index to begin removing extents */
3663 int count
) /* number of extents to remove */
3665 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3666 int erp_idx
= 0; /* indirection array index */
3667 xfs_extnum_t ext_cnt
; /* extents left to remove */
3668 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3669 xfs_extnum_t nex1
; /* number of extents before idx */
3670 xfs_extnum_t nex2
; /* extents after idx + count */
3671 int nlists
; /* entries in indirection array */
3672 int page_idx
= idx
; /* index in target extent list */
3674 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3675 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3676 ASSERT(erp
!= NULL
);
3677 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3681 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3682 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3684 * Check for deletion of entire list;
3685 * xfs_iext_irec_remove() updates extent offsets.
3687 if (ext_diff
== erp
->er_extcount
) {
3688 xfs_iext_irec_remove(ifp
, erp_idx
);
3689 ext_cnt
-= ext_diff
;
3692 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3694 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3701 /* Move extents up (if needed) */
3703 memmove(&erp
->er_extbuf
[nex1
],
3704 &erp
->er_extbuf
[nex1
+ ext_diff
],
3705 nex2
* sizeof(xfs_bmbt_rec_t
));
3707 /* Zero out rest of page */
3708 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3709 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3710 /* Update remaining counters */
3711 erp
->er_extcount
-= ext_diff
;
3712 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3713 ext_cnt
-= ext_diff
;
3718 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3719 xfs_iext_irec_compact(ifp
);
3723 * Create, destroy, or resize a linear (direct) block of extents.
3726 xfs_iext_realloc_direct(
3727 xfs_ifork_t
*ifp
, /* inode fork pointer */
3728 int new_size
) /* new size of extents */
3730 int rnew_size
; /* real new size of extents */
3732 rnew_size
= new_size
;
3734 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3735 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3736 (new_size
!= ifp
->if_real_bytes
)));
3738 /* Free extent records */
3739 if (new_size
== 0) {
3740 xfs_iext_destroy(ifp
);
3742 /* Resize direct extent list and zero any new bytes */
3743 else if (ifp
->if_real_bytes
) {
3744 /* Check if extents will fit inside the inode */
3745 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3746 xfs_iext_direct_to_inline(ifp
, new_size
/
3747 (uint
)sizeof(xfs_bmbt_rec_t
));
3748 ifp
->if_bytes
= new_size
;
3751 if (!is_power_of_2(new_size
)){
3752 rnew_size
= roundup_pow_of_two(new_size
);
3754 if (rnew_size
!= ifp
->if_real_bytes
) {
3755 ifp
->if_u1
.if_extents
=
3756 kmem_realloc(ifp
->if_u1
.if_extents
,
3758 ifp
->if_real_bytes
, KM_NOFS
);
3760 if (rnew_size
> ifp
->if_real_bytes
) {
3761 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3762 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3763 rnew_size
- ifp
->if_real_bytes
);
3767 * Switch from the inline extent buffer to a direct
3768 * extent list. Be sure to include the inline extent
3769 * bytes in new_size.
3772 new_size
+= ifp
->if_bytes
;
3773 if (!is_power_of_2(new_size
)) {
3774 rnew_size
= roundup_pow_of_two(new_size
);
3776 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3778 ifp
->if_real_bytes
= rnew_size
;
3779 ifp
->if_bytes
= new_size
;
3783 * Switch from linear (direct) extent records to inline buffer.
3786 xfs_iext_direct_to_inline(
3787 xfs_ifork_t
*ifp
, /* inode fork pointer */
3788 xfs_extnum_t nextents
) /* number of extents in file */
3790 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3791 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3793 * The inline buffer was zeroed when we switched
3794 * from inline to direct extent allocation mode,
3795 * so we don't need to clear it here.
3797 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3798 nextents
* sizeof(xfs_bmbt_rec_t
));
3799 kmem_free(ifp
->if_u1
.if_extents
);
3800 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3801 ifp
->if_real_bytes
= 0;
3805 * Switch from inline buffer to linear (direct) extent records.
3806 * new_size should already be rounded up to the next power of 2
3807 * by the caller (when appropriate), so use new_size as it is.
3808 * However, since new_size may be rounded up, we can't update
3809 * if_bytes here. It is the caller's responsibility to update
3810 * if_bytes upon return.
3813 xfs_iext_inline_to_direct(
3814 xfs_ifork_t
*ifp
, /* inode fork pointer */
3815 int new_size
) /* number of extents in file */
3817 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3818 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3819 if (ifp
->if_bytes
) {
3820 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3822 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3823 sizeof(xfs_bmbt_rec_t
));
3825 ifp
->if_real_bytes
= new_size
;
3829 * Resize an extent indirection array to new_size bytes.
3832 xfs_iext_realloc_indirect(
3833 xfs_ifork_t
*ifp
, /* inode fork pointer */
3834 int new_size
) /* new indirection array size */
3836 int nlists
; /* number of irec's (ex lists) */
3837 int size
; /* current indirection array size */
3839 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3840 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3841 size
= nlists
* sizeof(xfs_ext_irec_t
);
3842 ASSERT(ifp
->if_real_bytes
);
3843 ASSERT((new_size
>= 0) && (new_size
!= size
));
3844 if (new_size
== 0) {
3845 xfs_iext_destroy(ifp
);
3847 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3848 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3849 new_size
, size
, KM_NOFS
);
3854 * Switch from indirection array to linear (direct) extent allocations.
3857 xfs_iext_indirect_to_direct(
3858 xfs_ifork_t
*ifp
) /* inode fork pointer */
3860 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3861 xfs_extnum_t nextents
; /* number of extents in file */
3862 int size
; /* size of file extents */
3864 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3865 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3866 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3867 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3869 xfs_iext_irec_compact_pages(ifp
);
3870 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3872 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3873 kmem_free(ifp
->if_u1
.if_ext_irec
);
3874 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3875 ifp
->if_u1
.if_extents
= ep
;
3876 ifp
->if_bytes
= size
;
3877 if (nextents
< XFS_LINEAR_EXTS
) {
3878 xfs_iext_realloc_direct(ifp
, size
);
3883 * Free incore file extents.
3887 xfs_ifork_t
*ifp
) /* inode fork pointer */
3889 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3893 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3894 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3895 xfs_iext_irec_remove(ifp
, erp_idx
);
3897 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3898 } else if (ifp
->if_real_bytes
) {
3899 kmem_free(ifp
->if_u1
.if_extents
);
3900 } else if (ifp
->if_bytes
) {
3901 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3902 sizeof(xfs_bmbt_rec_t
));
3904 ifp
->if_u1
.if_extents
= NULL
;
3905 ifp
->if_real_bytes
= 0;
3910 * Return a pointer to the extent record for file system block bno.
3912 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3913 xfs_iext_bno_to_ext(
3914 xfs_ifork_t
*ifp
, /* inode fork pointer */
3915 xfs_fileoff_t bno
, /* block number to search for */
3916 xfs_extnum_t
*idxp
) /* index of target extent */
3918 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3919 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3920 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3921 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3922 int high
; /* upper boundary in search */
3923 xfs_extnum_t idx
= 0; /* index of target extent */
3924 int low
; /* lower boundary in search */
3925 xfs_extnum_t nextents
; /* number of file extents */
3926 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3928 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3929 if (nextents
== 0) {
3934 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3935 /* Find target extent list */
3937 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3938 base
= erp
->er_extbuf
;
3939 high
= erp
->er_extcount
- 1;
3941 base
= ifp
->if_u1
.if_extents
;
3942 high
= nextents
- 1;
3944 /* Binary search extent records */
3945 while (low
<= high
) {
3946 idx
= (low
+ high
) >> 1;
3948 startoff
= xfs_bmbt_get_startoff(ep
);
3949 blockcount
= xfs_bmbt_get_blockcount(ep
);
3950 if (bno
< startoff
) {
3952 } else if (bno
>= startoff
+ blockcount
) {
3955 /* Convert back to file-based extent index */
3956 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3957 idx
+= erp
->er_extoff
;
3963 /* Convert back to file-based extent index */
3964 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3965 idx
+= erp
->er_extoff
;
3967 if (bno
>= startoff
+ blockcount
) {
3968 if (++idx
== nextents
) {
3971 ep
= xfs_iext_get_ext(ifp
, idx
);
3979 * Return a pointer to the indirection array entry containing the
3980 * extent record for filesystem block bno. Store the index of the
3981 * target irec in *erp_idxp.
3983 xfs_ext_irec_t
* /* pointer to found extent record */
3984 xfs_iext_bno_to_irec(
3985 xfs_ifork_t
*ifp
, /* inode fork pointer */
3986 xfs_fileoff_t bno
, /* block number to search for */
3987 int *erp_idxp
) /* irec index of target ext list */
3989 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3990 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3991 int erp_idx
; /* indirection array index */
3992 int nlists
; /* number of extent irec's (lists) */
3993 int high
; /* binary search upper limit */
3994 int low
; /* binary search lower limit */
3996 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3997 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4001 while (low
<= high
) {
4002 erp_idx
= (low
+ high
) >> 1;
4003 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4004 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4005 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4007 } else if (erp_next
&& bno
>=
4008 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4014 *erp_idxp
= erp_idx
;
4019 * Return a pointer to the indirection array entry containing the
4020 * extent record at file extent index *idxp. Store the index of the
4021 * target irec in *erp_idxp and store the page index of the target
4022 * extent record in *idxp.
4025 xfs_iext_idx_to_irec(
4026 xfs_ifork_t
*ifp
, /* inode fork pointer */
4027 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4028 int *erp_idxp
, /* pointer to target irec */
4029 int realloc
) /* new bytes were just added */
4031 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4032 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4033 int erp_idx
; /* indirection array index */
4034 int nlists
; /* number of irec's (ex lists) */
4035 int high
; /* binary search upper limit */
4036 int low
; /* binary search lower limit */
4037 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4039 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4040 ASSERT(page_idx
>= 0 && page_idx
<=
4041 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4042 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4047 /* Binary search extent irec's */
4048 while (low
<= high
) {
4049 erp_idx
= (low
+ high
) >> 1;
4050 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4051 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4052 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4053 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4055 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4056 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4059 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4060 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4064 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4067 page_idx
-= erp
->er_extoff
;
4072 *erp_idxp
= erp_idx
;
4077 * Allocate and initialize an indirection array once the space needed
4078 * for incore extents increases above XFS_IEXT_BUFSZ.
4082 xfs_ifork_t
*ifp
) /* inode fork pointer */
4084 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4085 xfs_extnum_t nextents
; /* number of extents in file */
4087 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4088 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4089 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4091 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
4093 if (nextents
== 0) {
4094 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4095 } else if (!ifp
->if_real_bytes
) {
4096 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4097 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4098 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4100 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4101 erp
->er_extcount
= nextents
;
4104 ifp
->if_flags
|= XFS_IFEXTIREC
;
4105 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4106 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4107 ifp
->if_u1
.if_ext_irec
= erp
;
4113 * Allocate and initialize a new entry in the indirection array.
4117 xfs_ifork_t
*ifp
, /* inode fork pointer */
4118 int erp_idx
) /* index for new irec */
4120 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4121 int i
; /* loop counter */
4122 int nlists
; /* number of irec's (ex lists) */
4124 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4125 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4127 /* Resize indirection array */
4128 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4129 sizeof(xfs_ext_irec_t
));
4131 * Move records down in the array so the
4132 * new page can use erp_idx.
4134 erp
= ifp
->if_u1
.if_ext_irec
;
4135 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4136 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4138 ASSERT(i
== erp_idx
);
4140 /* Initialize new extent record */
4141 erp
= ifp
->if_u1
.if_ext_irec
;
4142 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4143 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4144 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4145 erp
[erp_idx
].er_extcount
= 0;
4146 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4147 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4148 return (&erp
[erp_idx
]);
4152 * Remove a record from the indirection array.
4155 xfs_iext_irec_remove(
4156 xfs_ifork_t
*ifp
, /* inode fork pointer */
4157 int erp_idx
) /* irec index to remove */
4159 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4160 int i
; /* loop counter */
4161 int nlists
; /* number of irec's (ex lists) */
4163 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4164 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4165 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4166 if (erp
->er_extbuf
) {
4167 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4169 kmem_free(erp
->er_extbuf
);
4171 /* Compact extent records */
4172 erp
= ifp
->if_u1
.if_ext_irec
;
4173 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4174 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4177 * Manually free the last extent record from the indirection
4178 * array. A call to xfs_iext_realloc_indirect() with a size
4179 * of zero would result in a call to xfs_iext_destroy() which
4180 * would in turn call this function again, creating a nasty
4184 xfs_iext_realloc_indirect(ifp
,
4185 nlists
* sizeof(xfs_ext_irec_t
));
4187 kmem_free(ifp
->if_u1
.if_ext_irec
);
4189 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4193 * This is called to clean up large amounts of unused memory allocated
4194 * by the indirection array. Before compacting anything though, verify
4195 * that the indirection array is still needed and switch back to the
4196 * linear extent list (or even the inline buffer) if possible. The
4197 * compaction policy is as follows:
4199 * Full Compaction: Extents fit into a single page (or inline buffer)
4200 * Partial Compaction: Extents occupy less than 50% of allocated space
4201 * No Compaction: Extents occupy at least 50% of allocated space
4204 xfs_iext_irec_compact(
4205 xfs_ifork_t
*ifp
) /* inode fork pointer */
4207 xfs_extnum_t nextents
; /* number of extents in file */
4208 int nlists
; /* number of irec's (ex lists) */
4210 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4211 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4212 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4214 if (nextents
== 0) {
4215 xfs_iext_destroy(ifp
);
4216 } else if (nextents
<= XFS_INLINE_EXTS
) {
4217 xfs_iext_indirect_to_direct(ifp
);
4218 xfs_iext_direct_to_inline(ifp
, nextents
);
4219 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4220 xfs_iext_indirect_to_direct(ifp
);
4221 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4222 xfs_iext_irec_compact_pages(ifp
);
4227 * Combine extents from neighboring extent pages.
4230 xfs_iext_irec_compact_pages(
4231 xfs_ifork_t
*ifp
) /* inode fork pointer */
4233 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4234 int erp_idx
= 0; /* indirection array index */
4235 int nlists
; /* number of irec's (ex lists) */
4237 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4238 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4239 while (erp_idx
< nlists
- 1) {
4240 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4242 if (erp_next
->er_extcount
<=
4243 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4244 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4245 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4246 sizeof(xfs_bmbt_rec_t
));
4247 erp
->er_extcount
+= erp_next
->er_extcount
;
4249 * Free page before removing extent record
4250 * so er_extoffs don't get modified in
4251 * xfs_iext_irec_remove.
4253 kmem_free(erp_next
->er_extbuf
);
4254 erp_next
->er_extbuf
= NULL
;
4255 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4256 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4264 * This is called to update the er_extoff field in the indirection
4265 * array when extents have been added or removed from one of the
4266 * extent lists. erp_idx contains the irec index to begin updating
4267 * at and ext_diff contains the number of extents that were added
4271 xfs_iext_irec_update_extoffs(
4272 xfs_ifork_t
*ifp
, /* inode fork pointer */
4273 int erp_idx
, /* irec index to update */
4274 int ext_diff
) /* number of new extents */
4276 int i
; /* loop counter */
4277 int nlists
; /* number of irec's (ex lists */
4279 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4280 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4281 for (i
= erp_idx
; i
< nlists
; i
++) {
4282 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;