sched: remove stale comment from sched_group_set_shares()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobfc61b1fc67d50c99c63a4160e0e3929670fd8249
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
113 #ifdef CONFIG_SMP
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 #endif
134 static inline int rt_policy(int policy)
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
141 static inline int task_has_rt_policy(struct task_struct *p)
143 return rt_policy(p->policy);
147 * This is the priority-queue data structure of the RT scheduling class:
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
154 #ifdef CONFIG_FAIR_GROUP_SCHED
156 struct cfs_rq;
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
196 struct task_group *tg;
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
204 return tg;
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
214 #else
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
225 u64 exec_clock;
226 u64 min_vruntime;
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
234 struct sched_entity *curr;
236 unsigned long nr_spread_over;
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
262 * This is the main, per-CPU runqueue data structure.
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
268 struct rq {
269 spinlock_t lock; /* runqueue lock */
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
275 unsigned long nr_running;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278 unsigned char idle_at_tick;
279 #ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281 #endif
282 struct load_weight load; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates;
284 u64 nr_switches;
286 struct cfs_rq cfs;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
289 #endif
290 struct rt_rq rt;
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
298 unsigned long nr_uninterruptible;
300 struct task_struct *curr, *idle;
301 unsigned long next_balance;
302 struct mm_struct *prev_mm;
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
307 unsigned int clock_warps, clock_overflows;
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
310 u64 tick_timestamp;
312 atomic_t nr_iowait;
314 #ifdef CONFIG_SMP
315 struct sched_domain *sd;
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
320 int cpu; /* cpu of this runqueue */
322 struct task_struct *migration_thread;
323 struct list_head migration_queue;
324 #endif
326 #ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
334 unsigned long yld_count;
336 /* schedule() stats */
337 unsigned long sched_switch;
338 unsigned long sched_count;
339 unsigned long sched_goidle;
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count;
343 unsigned long ttwu_local;
345 /* BKL stats */
346 unsigned long bkl_count;
347 #endif
348 struct lock_class_key rq_lock_key;
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352 static DEFINE_MUTEX(sched_hotcpu_mutex);
354 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
356 rq->curr->sched_class->check_preempt_curr(rq, p);
359 static inline int cpu_of(struct rq *rq)
361 #ifdef CONFIG_SMP
362 return rq->cpu;
363 #else
364 return 0;
365 #endif
368 static inline int is_migration_thread(struct task_struct *p, struct rq *rq)
370 #ifdef CONFIG_SMP
371 return p == rq->migration_thread;
372 #else
373 return 0;
374 #endif
378 * Update the per-runqueue clock, as finegrained as the platform can give
379 * us, but without assuming monotonicity, etc.:
381 static void __update_rq_clock(struct rq *rq)
383 u64 prev_raw = rq->prev_clock_raw;
384 u64 now = sched_clock();
385 s64 delta = now - prev_raw;
386 u64 clock = rq->clock;
388 #ifdef CONFIG_SCHED_DEBUG
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390 #endif
392 * Protect against sched_clock() occasionally going backwards:
394 if (unlikely(delta < 0)) {
395 clock++;
396 rq->clock_warps++;
397 } else {
399 * Catch too large forward jumps too:
401 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
402 if (clock < rq->tick_timestamp + TICK_NSEC)
403 clock = rq->tick_timestamp + TICK_NSEC;
404 else
405 clock++;
406 rq->clock_overflows++;
407 } else {
408 if (unlikely(delta > rq->clock_max_delta))
409 rq->clock_max_delta = delta;
410 clock += delta;
414 rq->prev_clock_raw = now;
415 rq->clock = clock;
418 static void update_rq_clock(struct rq *rq)
420 if (likely(smp_processor_id() == cpu_of(rq)))
421 __update_rq_clock(rq);
425 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
426 * See detach_destroy_domains: synchronize_sched for details.
428 * The domain tree of any CPU may only be accessed from within
429 * preempt-disabled sections.
431 #define for_each_domain(cpu, __sd) \
432 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
434 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
435 #define this_rq() (&__get_cpu_var(runqueues))
436 #define task_rq(p) cpu_rq(task_cpu(p))
437 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
440 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
442 #ifdef CONFIG_SCHED_DEBUG
443 # define const_debug __read_mostly
444 #else
445 # define const_debug static const
446 #endif
449 * Debugging: various feature bits
451 enum {
452 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
453 SCHED_FEAT_START_DEBIT = 2,
454 SCHED_FEAT_TREE_AVG = 4,
455 SCHED_FEAT_APPROX_AVG = 8,
456 SCHED_FEAT_WAKEUP_PREEMPT = 16,
457 SCHED_FEAT_PREEMPT_RESTRICT = 32,
460 const_debug unsigned int sysctl_sched_features =
461 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
462 SCHED_FEAT_START_DEBIT *1 |
463 SCHED_FEAT_TREE_AVG *0 |
464 SCHED_FEAT_APPROX_AVG *0 |
465 SCHED_FEAT_WAKEUP_PREEMPT *1 |
466 SCHED_FEAT_PREEMPT_RESTRICT *1;
468 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
471 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
472 * clock constructed from sched_clock():
474 unsigned long long cpu_clock(int cpu)
476 unsigned long long now;
477 unsigned long flags;
478 struct rq *rq;
480 local_irq_save(flags);
481 rq = cpu_rq(cpu);
482 update_rq_clock(rq);
483 now = rq->clock;
484 local_irq_restore(flags);
486 return now;
488 EXPORT_SYMBOL_GPL(cpu_clock);
490 #ifndef prepare_arch_switch
491 # define prepare_arch_switch(next) do { } while (0)
492 #endif
493 #ifndef finish_arch_switch
494 # define finish_arch_switch(prev) do { } while (0)
495 #endif
497 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
498 static inline int task_running(struct rq *rq, struct task_struct *p)
500 return rq->curr == p;
503 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
507 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
509 #ifdef CONFIG_DEBUG_SPINLOCK
510 /* this is a valid case when another task releases the spinlock */
511 rq->lock.owner = current;
512 #endif
514 * If we are tracking spinlock dependencies then we have to
515 * fix up the runqueue lock - which gets 'carried over' from
516 * prev into current:
518 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
520 spin_unlock_irq(&rq->lock);
523 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
524 static inline int task_running(struct rq *rq, struct task_struct *p)
526 #ifdef CONFIG_SMP
527 return p->oncpu;
528 #else
529 return rq->curr == p;
530 #endif
533 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
535 #ifdef CONFIG_SMP
537 * We can optimise this out completely for !SMP, because the
538 * SMP rebalancing from interrupt is the only thing that cares
539 * here.
541 next->oncpu = 1;
542 #endif
543 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
544 spin_unlock_irq(&rq->lock);
545 #else
546 spin_unlock(&rq->lock);
547 #endif
550 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
552 #ifdef CONFIG_SMP
554 * After ->oncpu is cleared, the task can be moved to a different CPU.
555 * We must ensure this doesn't happen until the switch is completely
556 * finished.
558 smp_wmb();
559 prev->oncpu = 0;
560 #endif
561 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
562 local_irq_enable();
563 #endif
565 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
568 * __task_rq_lock - lock the runqueue a given task resides on.
569 * Must be called interrupts disabled.
571 static inline struct rq *__task_rq_lock(struct task_struct *p)
572 __acquires(rq->lock)
574 for (;;) {
575 struct rq *rq = task_rq(p);
576 spin_lock(&rq->lock);
577 if (likely(rq == task_rq(p)))
578 return rq;
579 spin_unlock(&rq->lock);
584 * task_rq_lock - lock the runqueue a given task resides on and disable
585 * interrupts. Note the ordering: we can safely lookup the task_rq without
586 * explicitly disabling preemption.
588 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
589 __acquires(rq->lock)
591 struct rq *rq;
593 for (;;) {
594 local_irq_save(*flags);
595 rq = task_rq(p);
596 spin_lock(&rq->lock);
597 if (likely(rq == task_rq(p)))
598 return rq;
599 spin_unlock_irqrestore(&rq->lock, *flags);
603 static void __task_rq_unlock(struct rq *rq)
604 __releases(rq->lock)
606 spin_unlock(&rq->lock);
609 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
610 __releases(rq->lock)
612 spin_unlock_irqrestore(&rq->lock, *flags);
616 * this_rq_lock - lock this runqueue and disable interrupts.
618 static struct rq *this_rq_lock(void)
619 __acquires(rq->lock)
621 struct rq *rq;
623 local_irq_disable();
624 rq = this_rq();
625 spin_lock(&rq->lock);
627 return rq;
631 * We are going deep-idle (irqs are disabled):
633 void sched_clock_idle_sleep_event(void)
635 struct rq *rq = cpu_rq(smp_processor_id());
637 spin_lock(&rq->lock);
638 __update_rq_clock(rq);
639 spin_unlock(&rq->lock);
640 rq->clock_deep_idle_events++;
642 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
645 * We just idled delta nanoseconds (called with irqs disabled):
647 void sched_clock_idle_wakeup_event(u64 delta_ns)
649 struct rq *rq = cpu_rq(smp_processor_id());
650 u64 now = sched_clock();
652 rq->idle_clock += delta_ns;
654 * Override the previous timestamp and ignore all
655 * sched_clock() deltas that occured while we idled,
656 * and use the PM-provided delta_ns to advance the
657 * rq clock:
659 spin_lock(&rq->lock);
660 rq->prev_clock_raw = now;
661 rq->clock += delta_ns;
662 spin_unlock(&rq->lock);
664 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
667 * resched_task - mark a task 'to be rescheduled now'.
669 * On UP this means the setting of the need_resched flag, on SMP it
670 * might also involve a cross-CPU call to trigger the scheduler on
671 * the target CPU.
673 #ifdef CONFIG_SMP
675 #ifndef tsk_is_polling
676 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
677 #endif
679 static void resched_task(struct task_struct *p)
681 int cpu;
683 assert_spin_locked(&task_rq(p)->lock);
685 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
686 return;
688 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
690 cpu = task_cpu(p);
691 if (cpu == smp_processor_id())
692 return;
694 /* NEED_RESCHED must be visible before we test polling */
695 smp_mb();
696 if (!tsk_is_polling(p))
697 smp_send_reschedule(cpu);
700 static void resched_cpu(int cpu)
702 struct rq *rq = cpu_rq(cpu);
703 unsigned long flags;
705 if (!spin_trylock_irqsave(&rq->lock, flags))
706 return;
707 resched_task(cpu_curr(cpu));
708 spin_unlock_irqrestore(&rq->lock, flags);
710 #else
711 static inline void resched_task(struct task_struct *p)
713 assert_spin_locked(&task_rq(p)->lock);
714 set_tsk_need_resched(p);
716 #endif
718 #if BITS_PER_LONG == 32
719 # define WMULT_CONST (~0UL)
720 #else
721 # define WMULT_CONST (1UL << 32)
722 #endif
724 #define WMULT_SHIFT 32
727 * Shift right and round:
729 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
731 static unsigned long
732 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
733 struct load_weight *lw)
735 u64 tmp;
737 if (unlikely(!lw->inv_weight))
738 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
740 tmp = (u64)delta_exec * weight;
742 * Check whether we'd overflow the 64-bit multiplication:
744 if (unlikely(tmp > WMULT_CONST))
745 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
746 WMULT_SHIFT/2);
747 else
748 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
750 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
753 static inline unsigned long
754 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
756 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
759 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
761 lw->weight += inc;
764 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
766 lw->weight -= dec;
770 * To aid in avoiding the subversion of "niceness" due to uneven distribution
771 * of tasks with abnormal "nice" values across CPUs the contribution that
772 * each task makes to its run queue's load is weighted according to its
773 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
774 * scaled version of the new time slice allocation that they receive on time
775 * slice expiry etc.
778 #define WEIGHT_IDLEPRIO 2
779 #define WMULT_IDLEPRIO (1 << 31)
782 * Nice levels are multiplicative, with a gentle 10% change for every
783 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
784 * nice 1, it will get ~10% less CPU time than another CPU-bound task
785 * that remained on nice 0.
787 * The "10% effect" is relative and cumulative: from _any_ nice level,
788 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
789 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
790 * If a task goes up by ~10% and another task goes down by ~10% then
791 * the relative distance between them is ~25%.)
793 static const int prio_to_weight[40] = {
794 /* -20 */ 88761, 71755, 56483, 46273, 36291,
795 /* -15 */ 29154, 23254, 18705, 14949, 11916,
796 /* -10 */ 9548, 7620, 6100, 4904, 3906,
797 /* -5 */ 3121, 2501, 1991, 1586, 1277,
798 /* 0 */ 1024, 820, 655, 526, 423,
799 /* 5 */ 335, 272, 215, 172, 137,
800 /* 10 */ 110, 87, 70, 56, 45,
801 /* 15 */ 36, 29, 23, 18, 15,
805 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
807 * In cases where the weight does not change often, we can use the
808 * precalculated inverse to speed up arithmetics by turning divisions
809 * into multiplications:
811 static const u32 prio_to_wmult[40] = {
812 /* -20 */ 48388, 59856, 76040, 92818, 118348,
813 /* -15 */ 147320, 184698, 229616, 287308, 360437,
814 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
815 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
816 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
817 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
818 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
819 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
822 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
825 * runqueue iterator, to support SMP load-balancing between different
826 * scheduling classes, without having to expose their internal data
827 * structures to the load-balancing proper:
829 struct rq_iterator {
830 void *arg;
831 struct task_struct *(*start)(void *);
832 struct task_struct *(*next)(void *);
835 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
836 unsigned long max_nr_move, unsigned long max_load_move,
837 struct sched_domain *sd, enum cpu_idle_type idle,
838 int *all_pinned, unsigned long *load_moved,
839 int *this_best_prio, struct rq_iterator *iterator);
841 #include "sched_stats.h"
842 #include "sched_idletask.c"
843 #include "sched_fair.c"
844 #include "sched_rt.c"
845 #ifdef CONFIG_SCHED_DEBUG
846 # include "sched_debug.c"
847 #endif
849 #define sched_class_highest (&rt_sched_class)
852 * Update delta_exec, delta_fair fields for rq.
854 * delta_fair clock advances at a rate inversely proportional to
855 * total load (rq->load.weight) on the runqueue, while
856 * delta_exec advances at the same rate as wall-clock (provided
857 * cpu is not idle).
859 * delta_exec / delta_fair is a measure of the (smoothened) load on this
860 * runqueue over any given interval. This (smoothened) load is used
861 * during load balance.
863 * This function is called /before/ updating rq->load
864 * and when switching tasks.
866 static inline void inc_load(struct rq *rq, const struct task_struct *p)
868 update_load_add(&rq->load, p->se.load.weight);
871 static inline void dec_load(struct rq *rq, const struct task_struct *p)
873 update_load_sub(&rq->load, p->se.load.weight);
876 static void inc_nr_running(struct task_struct *p, struct rq *rq)
878 rq->nr_running++;
879 inc_load(rq, p);
882 static void dec_nr_running(struct task_struct *p, struct rq *rq)
884 rq->nr_running--;
885 dec_load(rq, p);
888 static void set_load_weight(struct task_struct *p)
890 if (task_has_rt_policy(p)) {
891 p->se.load.weight = prio_to_weight[0] * 2;
892 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
893 return;
897 * SCHED_IDLE tasks get minimal weight:
899 if (p->policy == SCHED_IDLE) {
900 p->se.load.weight = WEIGHT_IDLEPRIO;
901 p->se.load.inv_weight = WMULT_IDLEPRIO;
902 return;
905 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
906 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
909 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
911 sched_info_queued(p);
912 p->sched_class->enqueue_task(rq, p, wakeup);
913 p->se.on_rq = 1;
916 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
918 p->sched_class->dequeue_task(rq, p, sleep);
919 p->se.on_rq = 0;
923 * __normal_prio - return the priority that is based on the static prio
925 static inline int __normal_prio(struct task_struct *p)
927 return p->static_prio;
931 * Calculate the expected normal priority: i.e. priority
932 * without taking RT-inheritance into account. Might be
933 * boosted by interactivity modifiers. Changes upon fork,
934 * setprio syscalls, and whenever the interactivity
935 * estimator recalculates.
937 static inline int normal_prio(struct task_struct *p)
939 int prio;
941 if (task_has_rt_policy(p))
942 prio = MAX_RT_PRIO-1 - p->rt_priority;
943 else
944 prio = __normal_prio(p);
945 return prio;
949 * Calculate the current priority, i.e. the priority
950 * taken into account by the scheduler. This value might
951 * be boosted by RT tasks, or might be boosted by
952 * interactivity modifiers. Will be RT if the task got
953 * RT-boosted. If not then it returns p->normal_prio.
955 static int effective_prio(struct task_struct *p)
957 p->normal_prio = normal_prio(p);
959 * If we are RT tasks or we were boosted to RT priority,
960 * keep the priority unchanged. Otherwise, update priority
961 * to the normal priority:
963 if (!rt_prio(p->prio))
964 return p->normal_prio;
965 return p->prio;
969 * activate_task - move a task to the runqueue.
971 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible--;
976 enqueue_task(rq, p, wakeup);
977 inc_nr_running(p, rq);
981 * deactivate_task - remove a task from the runqueue.
983 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
985 if (p->state == TASK_UNINTERRUPTIBLE)
986 rq->nr_uninterruptible++;
988 dequeue_task(rq, p, sleep);
989 dec_nr_running(p, rq);
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
996 inline int task_curr(const struct task_struct *p)
998 return cpu_curr(task_cpu(p)) == p;
1001 /* Used instead of source_load when we know the type == 0 */
1002 unsigned long weighted_cpuload(const int cpu)
1004 return cpu_rq(cpu)->load.weight;
1007 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1009 #ifdef CONFIG_SMP
1010 task_thread_info(p)->cpu = cpu;
1011 #endif
1012 set_task_cfs_rq(p);
1015 #ifdef CONFIG_SMP
1017 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1019 int old_cpu = task_cpu(p);
1020 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1021 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1022 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1023 u64 clock_offset;
1025 clock_offset = old_rq->clock - new_rq->clock;
1027 #ifdef CONFIG_SCHEDSTATS
1028 if (p->se.wait_start)
1029 p->se.wait_start -= clock_offset;
1030 if (p->se.sleep_start)
1031 p->se.sleep_start -= clock_offset;
1032 if (p->se.block_start)
1033 p->se.block_start -= clock_offset;
1034 #endif
1035 p->se.vruntime -= old_cfsrq->min_vruntime -
1036 new_cfsrq->min_vruntime;
1038 __set_task_cpu(p, new_cpu);
1041 struct migration_req {
1042 struct list_head list;
1044 struct task_struct *task;
1045 int dest_cpu;
1047 struct completion done;
1051 * The task's runqueue lock must be held.
1052 * Returns true if you have to wait for migration thread.
1054 static int
1055 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1057 struct rq *rq = task_rq(p);
1060 * If the task is not on a runqueue (and not running), then
1061 * it is sufficient to simply update the task's cpu field.
1063 if (!p->se.on_rq && !task_running(rq, p)) {
1064 set_task_cpu(p, dest_cpu);
1065 return 0;
1068 init_completion(&req->done);
1069 req->task = p;
1070 req->dest_cpu = dest_cpu;
1071 list_add(&req->list, &rq->migration_queue);
1073 return 1;
1077 * wait_task_inactive - wait for a thread to unschedule.
1079 * The caller must ensure that the task *will* unschedule sometime soon,
1080 * else this function might spin for a *long* time. This function can't
1081 * be called with interrupts off, or it may introduce deadlock with
1082 * smp_call_function() if an IPI is sent by the same process we are
1083 * waiting to become inactive.
1085 void wait_task_inactive(struct task_struct *p)
1087 unsigned long flags;
1088 int running, on_rq;
1089 struct rq *rq;
1091 for (;;) {
1093 * We do the initial early heuristics without holding
1094 * any task-queue locks at all. We'll only try to get
1095 * the runqueue lock when things look like they will
1096 * work out!
1098 rq = task_rq(p);
1101 * If the task is actively running on another CPU
1102 * still, just relax and busy-wait without holding
1103 * any locks.
1105 * NOTE! Since we don't hold any locks, it's not
1106 * even sure that "rq" stays as the right runqueue!
1107 * But we don't care, since "task_running()" will
1108 * return false if the runqueue has changed and p
1109 * is actually now running somewhere else!
1111 while (task_running(rq, p))
1112 cpu_relax();
1115 * Ok, time to look more closely! We need the rq
1116 * lock now, to be *sure*. If we're wrong, we'll
1117 * just go back and repeat.
1119 rq = task_rq_lock(p, &flags);
1120 running = task_running(rq, p);
1121 on_rq = p->se.on_rq;
1122 task_rq_unlock(rq, &flags);
1125 * Was it really running after all now that we
1126 * checked with the proper locks actually held?
1128 * Oops. Go back and try again..
1130 if (unlikely(running)) {
1131 cpu_relax();
1132 continue;
1136 * It's not enough that it's not actively running,
1137 * it must be off the runqueue _entirely_, and not
1138 * preempted!
1140 * So if it wa still runnable (but just not actively
1141 * running right now), it's preempted, and we should
1142 * yield - it could be a while.
1144 if (unlikely(on_rq)) {
1145 schedule_timeout_uninterruptible(1);
1146 continue;
1150 * Ahh, all good. It wasn't running, and it wasn't
1151 * runnable, which means that it will never become
1152 * running in the future either. We're all done!
1154 break;
1158 /***
1159 * kick_process - kick a running thread to enter/exit the kernel
1160 * @p: the to-be-kicked thread
1162 * Cause a process which is running on another CPU to enter
1163 * kernel-mode, without any delay. (to get signals handled.)
1165 * NOTE: this function doesnt have to take the runqueue lock,
1166 * because all it wants to ensure is that the remote task enters
1167 * the kernel. If the IPI races and the task has been migrated
1168 * to another CPU then no harm is done and the purpose has been
1169 * achieved as well.
1171 void kick_process(struct task_struct *p)
1173 int cpu;
1175 preempt_disable();
1176 cpu = task_cpu(p);
1177 if ((cpu != smp_processor_id()) && task_curr(p))
1178 smp_send_reschedule(cpu);
1179 preempt_enable();
1183 * Return a low guess at the load of a migration-source cpu weighted
1184 * according to the scheduling class and "nice" value.
1186 * We want to under-estimate the load of migration sources, to
1187 * balance conservatively.
1189 static unsigned long source_load(int cpu, int type)
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long total = weighted_cpuload(cpu);
1194 if (type == 0)
1195 return total;
1197 return min(rq->cpu_load[type-1], total);
1201 * Return a high guess at the load of a migration-target cpu weighted
1202 * according to the scheduling class and "nice" value.
1204 static unsigned long target_load(int cpu, int type)
1206 struct rq *rq = cpu_rq(cpu);
1207 unsigned long total = weighted_cpuload(cpu);
1209 if (type == 0)
1210 return total;
1212 return max(rq->cpu_load[type-1], total);
1216 * Return the average load per task on the cpu's run queue
1218 static inline unsigned long cpu_avg_load_per_task(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long total = weighted_cpuload(cpu);
1222 unsigned long n = rq->nr_running;
1224 return n ? total / n : SCHED_LOAD_SCALE;
1228 * find_idlest_group finds and returns the least busy CPU group within the
1229 * domain.
1231 static struct sched_group *
1232 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1234 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1235 unsigned long min_load = ULONG_MAX, this_load = 0;
1236 int load_idx = sd->forkexec_idx;
1237 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1239 do {
1240 unsigned long load, avg_load;
1241 int local_group;
1242 int i;
1244 /* Skip over this group if it has no CPUs allowed */
1245 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1246 continue;
1248 local_group = cpu_isset(this_cpu, group->cpumask);
1250 /* Tally up the load of all CPUs in the group */
1251 avg_load = 0;
1253 for_each_cpu_mask(i, group->cpumask) {
1254 /* Bias balancing toward cpus of our domain */
1255 if (local_group)
1256 load = source_load(i, load_idx);
1257 else
1258 load = target_load(i, load_idx);
1260 avg_load += load;
1263 /* Adjust by relative CPU power of the group */
1264 avg_load = sg_div_cpu_power(group,
1265 avg_load * SCHED_LOAD_SCALE);
1267 if (local_group) {
1268 this_load = avg_load;
1269 this = group;
1270 } else if (avg_load < min_load) {
1271 min_load = avg_load;
1272 idlest = group;
1274 } while (group = group->next, group != sd->groups);
1276 if (!idlest || 100*this_load < imbalance*min_load)
1277 return NULL;
1278 return idlest;
1282 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1284 static int
1285 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1287 cpumask_t tmp;
1288 unsigned long load, min_load = ULONG_MAX;
1289 int idlest = -1;
1290 int i;
1292 /* Traverse only the allowed CPUs */
1293 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1295 for_each_cpu_mask(i, tmp) {
1296 load = weighted_cpuload(i);
1298 if (load < min_load || (load == min_load && i == this_cpu)) {
1299 min_load = load;
1300 idlest = i;
1304 return idlest;
1308 * sched_balance_self: balance the current task (running on cpu) in domains
1309 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1310 * SD_BALANCE_EXEC.
1312 * Balance, ie. select the least loaded group.
1314 * Returns the target CPU number, or the same CPU if no balancing is needed.
1316 * preempt must be disabled.
1318 static int sched_balance_self(int cpu, int flag)
1320 struct task_struct *t = current;
1321 struct sched_domain *tmp, *sd = NULL;
1323 for_each_domain(cpu, tmp) {
1325 * If power savings logic is enabled for a domain, stop there.
1327 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1328 break;
1329 if (tmp->flags & flag)
1330 sd = tmp;
1333 while (sd) {
1334 cpumask_t span;
1335 struct sched_group *group;
1336 int new_cpu, weight;
1338 if (!(sd->flags & flag)) {
1339 sd = sd->child;
1340 continue;
1343 span = sd->span;
1344 group = find_idlest_group(sd, t, cpu);
1345 if (!group) {
1346 sd = sd->child;
1347 continue;
1350 new_cpu = find_idlest_cpu(group, t, cpu);
1351 if (new_cpu == -1 || new_cpu == cpu) {
1352 /* Now try balancing at a lower domain level of cpu */
1353 sd = sd->child;
1354 continue;
1357 /* Now try balancing at a lower domain level of new_cpu */
1358 cpu = new_cpu;
1359 sd = NULL;
1360 weight = cpus_weight(span);
1361 for_each_domain(cpu, tmp) {
1362 if (weight <= cpus_weight(tmp->span))
1363 break;
1364 if (tmp->flags & flag)
1365 sd = tmp;
1367 /* while loop will break here if sd == NULL */
1370 return cpu;
1373 #endif /* CONFIG_SMP */
1376 * wake_idle() will wake a task on an idle cpu if task->cpu is
1377 * not idle and an idle cpu is available. The span of cpus to
1378 * search starts with cpus closest then further out as needed,
1379 * so we always favor a closer, idle cpu.
1381 * Returns the CPU we should wake onto.
1383 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1384 static int wake_idle(int cpu, struct task_struct *p)
1386 cpumask_t tmp;
1387 struct sched_domain *sd;
1388 int i;
1391 * If it is idle, then it is the best cpu to run this task.
1393 * This cpu is also the best, if it has more than one task already.
1394 * Siblings must be also busy(in most cases) as they didn't already
1395 * pickup the extra load from this cpu and hence we need not check
1396 * sibling runqueue info. This will avoid the checks and cache miss
1397 * penalities associated with that.
1399 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1400 return cpu;
1402 for_each_domain(cpu, sd) {
1403 if (sd->flags & SD_WAKE_IDLE) {
1404 cpus_and(tmp, sd->span, p->cpus_allowed);
1405 for_each_cpu_mask(i, tmp) {
1406 if (idle_cpu(i))
1407 return i;
1409 } else {
1410 break;
1413 return cpu;
1415 #else
1416 static inline int wake_idle(int cpu, struct task_struct *p)
1418 return cpu;
1420 #endif
1422 /***
1423 * try_to_wake_up - wake up a thread
1424 * @p: the to-be-woken-up thread
1425 * @state: the mask of task states that can be woken
1426 * @sync: do a synchronous wakeup?
1428 * Put it on the run-queue if it's not already there. The "current"
1429 * thread is always on the run-queue (except when the actual
1430 * re-schedule is in progress), and as such you're allowed to do
1431 * the simpler "current->state = TASK_RUNNING" to mark yourself
1432 * runnable without the overhead of this.
1434 * returns failure only if the task is already active.
1436 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1438 int cpu, this_cpu, success = 0;
1439 unsigned long flags;
1440 long old_state;
1441 struct rq *rq;
1442 #ifdef CONFIG_SMP
1443 struct sched_domain *sd, *this_sd = NULL;
1444 unsigned long load, this_load;
1445 int new_cpu;
1446 #endif
1448 rq = task_rq_lock(p, &flags);
1449 old_state = p->state;
1450 if (!(old_state & state))
1451 goto out;
1453 if (p->se.on_rq)
1454 goto out_running;
1456 cpu = task_cpu(p);
1457 this_cpu = smp_processor_id();
1459 #ifdef CONFIG_SMP
1460 if (unlikely(task_running(rq, p)))
1461 goto out_activate;
1463 new_cpu = cpu;
1465 schedstat_inc(rq, ttwu_count);
1466 if (cpu == this_cpu) {
1467 schedstat_inc(rq, ttwu_local);
1468 goto out_set_cpu;
1471 for_each_domain(this_cpu, sd) {
1472 if (cpu_isset(cpu, sd->span)) {
1473 schedstat_inc(sd, ttwu_wake_remote);
1474 this_sd = sd;
1475 break;
1479 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1480 goto out_set_cpu;
1483 * Check for affine wakeup and passive balancing possibilities.
1485 if (this_sd) {
1486 int idx = this_sd->wake_idx;
1487 unsigned int imbalance;
1489 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1491 load = source_load(cpu, idx);
1492 this_load = target_load(this_cpu, idx);
1494 new_cpu = this_cpu; /* Wake to this CPU if we can */
1496 if (this_sd->flags & SD_WAKE_AFFINE) {
1497 unsigned long tl = this_load;
1498 unsigned long tl_per_task;
1500 tl_per_task = cpu_avg_load_per_task(this_cpu);
1503 * If sync wakeup then subtract the (maximum possible)
1504 * effect of the currently running task from the load
1505 * of the current CPU:
1507 if (sync)
1508 tl -= current->se.load.weight;
1510 if ((tl <= load &&
1511 tl + target_load(cpu, idx) <= tl_per_task) ||
1512 100*(tl + p->se.load.weight) <= imbalance*load) {
1514 * This domain has SD_WAKE_AFFINE and
1515 * p is cache cold in this domain, and
1516 * there is no bad imbalance.
1518 schedstat_inc(this_sd, ttwu_move_affine);
1519 goto out_set_cpu;
1524 * Start passive balancing when half the imbalance_pct
1525 * limit is reached.
1527 if (this_sd->flags & SD_WAKE_BALANCE) {
1528 if (imbalance*this_load <= 100*load) {
1529 schedstat_inc(this_sd, ttwu_move_balance);
1530 goto out_set_cpu;
1535 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1536 out_set_cpu:
1537 new_cpu = wake_idle(new_cpu, p);
1538 if (new_cpu != cpu) {
1539 set_task_cpu(p, new_cpu);
1540 task_rq_unlock(rq, &flags);
1541 /* might preempt at this point */
1542 rq = task_rq_lock(p, &flags);
1543 old_state = p->state;
1544 if (!(old_state & state))
1545 goto out;
1546 if (p->se.on_rq)
1547 goto out_running;
1549 this_cpu = smp_processor_id();
1550 cpu = task_cpu(p);
1553 out_activate:
1554 #endif /* CONFIG_SMP */
1555 update_rq_clock(rq);
1556 activate_task(rq, p, 1);
1558 * Sync wakeups (i.e. those types of wakeups where the waker
1559 * has indicated that it will leave the CPU in short order)
1560 * don't trigger a preemption, if the woken up task will run on
1561 * this cpu. (in this case the 'I will reschedule' promise of
1562 * the waker guarantees that the freshly woken up task is going
1563 * to be considered on this CPU.)
1565 if (!sync || cpu != this_cpu)
1566 check_preempt_curr(rq, p);
1567 success = 1;
1569 out_running:
1570 p->state = TASK_RUNNING;
1571 out:
1572 task_rq_unlock(rq, &flags);
1574 return success;
1577 int fastcall wake_up_process(struct task_struct *p)
1579 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1580 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1582 EXPORT_SYMBOL(wake_up_process);
1584 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1586 return try_to_wake_up(p, state, 0);
1590 * Perform scheduler related setup for a newly forked process p.
1591 * p is forked by current.
1593 * __sched_fork() is basic setup used by init_idle() too:
1595 static void __sched_fork(struct task_struct *p)
1597 p->se.exec_start = 0;
1598 p->se.sum_exec_runtime = 0;
1599 p->se.prev_sum_exec_runtime = 0;
1601 #ifdef CONFIG_SCHEDSTATS
1602 p->se.wait_start = 0;
1603 p->se.sum_sleep_runtime = 0;
1604 p->se.sleep_start = 0;
1605 p->se.block_start = 0;
1606 p->se.sleep_max = 0;
1607 p->se.block_max = 0;
1608 p->se.exec_max = 0;
1609 p->se.slice_max = 0;
1610 p->se.wait_max = 0;
1611 #endif
1613 INIT_LIST_HEAD(&p->run_list);
1614 p->se.on_rq = 0;
1616 #ifdef CONFIG_PREEMPT_NOTIFIERS
1617 INIT_HLIST_HEAD(&p->preempt_notifiers);
1618 #endif
1621 * We mark the process as running here, but have not actually
1622 * inserted it onto the runqueue yet. This guarantees that
1623 * nobody will actually run it, and a signal or other external
1624 * event cannot wake it up and insert it on the runqueue either.
1626 p->state = TASK_RUNNING;
1630 * fork()/clone()-time setup:
1632 void sched_fork(struct task_struct *p, int clone_flags)
1634 int cpu = get_cpu();
1636 __sched_fork(p);
1638 #ifdef CONFIG_SMP
1639 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1640 #endif
1641 set_task_cpu(p, cpu);
1644 * Make sure we do not leak PI boosting priority to the child:
1646 p->prio = current->normal_prio;
1647 if (!rt_prio(p->prio))
1648 p->sched_class = &fair_sched_class;
1650 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1651 if (likely(sched_info_on()))
1652 memset(&p->sched_info, 0, sizeof(p->sched_info));
1653 #endif
1654 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1655 p->oncpu = 0;
1656 #endif
1657 #ifdef CONFIG_PREEMPT
1658 /* Want to start with kernel preemption disabled. */
1659 task_thread_info(p)->preempt_count = 1;
1660 #endif
1661 put_cpu();
1665 * wake_up_new_task - wake up a newly created task for the first time.
1667 * This function will do some initial scheduler statistics housekeeping
1668 * that must be done for every newly created context, then puts the task
1669 * on the runqueue and wakes it.
1671 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1673 unsigned long flags;
1674 struct rq *rq;
1676 rq = task_rq_lock(p, &flags);
1677 BUG_ON(p->state != TASK_RUNNING);
1678 update_rq_clock(rq);
1680 p->prio = effective_prio(p);
1682 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
1683 activate_task(rq, p, 0);
1684 } else {
1686 * Let the scheduling class do new task startup
1687 * management (if any):
1689 p->sched_class->task_new(rq, p);
1690 inc_nr_running(p, rq);
1692 check_preempt_curr(rq, p);
1693 task_rq_unlock(rq, &flags);
1696 #ifdef CONFIG_PREEMPT_NOTIFIERS
1699 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1700 * @notifier: notifier struct to register
1702 void preempt_notifier_register(struct preempt_notifier *notifier)
1704 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1706 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1709 * preempt_notifier_unregister - no longer interested in preemption notifications
1710 * @notifier: notifier struct to unregister
1712 * This is safe to call from within a preemption notifier.
1714 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1716 hlist_del(&notifier->link);
1718 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1720 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1722 struct preempt_notifier *notifier;
1723 struct hlist_node *node;
1725 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1726 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1729 static void
1730 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1731 struct task_struct *next)
1733 struct preempt_notifier *notifier;
1734 struct hlist_node *node;
1736 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1737 notifier->ops->sched_out(notifier, next);
1740 #else
1742 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1746 static void
1747 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1748 struct task_struct *next)
1752 #endif
1755 * prepare_task_switch - prepare to switch tasks
1756 * @rq: the runqueue preparing to switch
1757 * @prev: the current task that is being switched out
1758 * @next: the task we are going to switch to.
1760 * This is called with the rq lock held and interrupts off. It must
1761 * be paired with a subsequent finish_task_switch after the context
1762 * switch.
1764 * prepare_task_switch sets up locking and calls architecture specific
1765 * hooks.
1767 static inline void
1768 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1769 struct task_struct *next)
1771 fire_sched_out_preempt_notifiers(prev, next);
1772 prepare_lock_switch(rq, next);
1773 prepare_arch_switch(next);
1777 * finish_task_switch - clean up after a task-switch
1778 * @rq: runqueue associated with task-switch
1779 * @prev: the thread we just switched away from.
1781 * finish_task_switch must be called after the context switch, paired
1782 * with a prepare_task_switch call before the context switch.
1783 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1784 * and do any other architecture-specific cleanup actions.
1786 * Note that we may have delayed dropping an mm in context_switch(). If
1787 * so, we finish that here outside of the runqueue lock. (Doing it
1788 * with the lock held can cause deadlocks; see schedule() for
1789 * details.)
1791 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1792 __releases(rq->lock)
1794 struct mm_struct *mm = rq->prev_mm;
1795 long prev_state;
1797 rq->prev_mm = NULL;
1800 * A task struct has one reference for the use as "current".
1801 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1802 * schedule one last time. The schedule call will never return, and
1803 * the scheduled task must drop that reference.
1804 * The test for TASK_DEAD must occur while the runqueue locks are
1805 * still held, otherwise prev could be scheduled on another cpu, die
1806 * there before we look at prev->state, and then the reference would
1807 * be dropped twice.
1808 * Manfred Spraul <manfred@colorfullife.com>
1810 prev_state = prev->state;
1811 finish_arch_switch(prev);
1812 finish_lock_switch(rq, prev);
1813 fire_sched_in_preempt_notifiers(current);
1814 if (mm)
1815 mmdrop(mm);
1816 if (unlikely(prev_state == TASK_DEAD)) {
1818 * Remove function-return probe instances associated with this
1819 * task and put them back on the free list.
1821 kprobe_flush_task(prev);
1822 put_task_struct(prev);
1827 * schedule_tail - first thing a freshly forked thread must call.
1828 * @prev: the thread we just switched away from.
1830 asmlinkage void schedule_tail(struct task_struct *prev)
1831 __releases(rq->lock)
1833 struct rq *rq = this_rq();
1835 finish_task_switch(rq, prev);
1836 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1837 /* In this case, finish_task_switch does not reenable preemption */
1838 preempt_enable();
1839 #endif
1840 if (current->set_child_tid)
1841 put_user(current->pid, current->set_child_tid);
1845 * context_switch - switch to the new MM and the new
1846 * thread's register state.
1848 static inline void
1849 context_switch(struct rq *rq, struct task_struct *prev,
1850 struct task_struct *next)
1852 struct mm_struct *mm, *oldmm;
1854 prepare_task_switch(rq, prev, next);
1855 mm = next->mm;
1856 oldmm = prev->active_mm;
1858 * For paravirt, this is coupled with an exit in switch_to to
1859 * combine the page table reload and the switch backend into
1860 * one hypercall.
1862 arch_enter_lazy_cpu_mode();
1864 if (unlikely(!mm)) {
1865 next->active_mm = oldmm;
1866 atomic_inc(&oldmm->mm_count);
1867 enter_lazy_tlb(oldmm, next);
1868 } else
1869 switch_mm(oldmm, mm, next);
1871 if (unlikely(!prev->mm)) {
1872 prev->active_mm = NULL;
1873 rq->prev_mm = oldmm;
1876 * Since the runqueue lock will be released by the next
1877 * task (which is an invalid locking op but in the case
1878 * of the scheduler it's an obvious special-case), so we
1879 * do an early lockdep release here:
1881 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1882 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1883 #endif
1885 /* Here we just switch the register state and the stack. */
1886 switch_to(prev, next, prev);
1888 barrier();
1890 * this_rq must be evaluated again because prev may have moved
1891 * CPUs since it called schedule(), thus the 'rq' on its stack
1892 * frame will be invalid.
1894 finish_task_switch(this_rq(), prev);
1898 * nr_running, nr_uninterruptible and nr_context_switches:
1900 * externally visible scheduler statistics: current number of runnable
1901 * threads, current number of uninterruptible-sleeping threads, total
1902 * number of context switches performed since bootup.
1904 unsigned long nr_running(void)
1906 unsigned long i, sum = 0;
1908 for_each_online_cpu(i)
1909 sum += cpu_rq(i)->nr_running;
1911 return sum;
1914 unsigned long nr_uninterruptible(void)
1916 unsigned long i, sum = 0;
1918 for_each_possible_cpu(i)
1919 sum += cpu_rq(i)->nr_uninterruptible;
1922 * Since we read the counters lockless, it might be slightly
1923 * inaccurate. Do not allow it to go below zero though:
1925 if (unlikely((long)sum < 0))
1926 sum = 0;
1928 return sum;
1931 unsigned long long nr_context_switches(void)
1933 int i;
1934 unsigned long long sum = 0;
1936 for_each_possible_cpu(i)
1937 sum += cpu_rq(i)->nr_switches;
1939 return sum;
1942 unsigned long nr_iowait(void)
1944 unsigned long i, sum = 0;
1946 for_each_possible_cpu(i)
1947 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1949 return sum;
1952 unsigned long nr_active(void)
1954 unsigned long i, running = 0, uninterruptible = 0;
1956 for_each_online_cpu(i) {
1957 running += cpu_rq(i)->nr_running;
1958 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1961 if (unlikely((long)uninterruptible < 0))
1962 uninterruptible = 0;
1964 return running + uninterruptible;
1968 * Update rq->cpu_load[] statistics. This function is usually called every
1969 * scheduler tick (TICK_NSEC).
1971 static void update_cpu_load(struct rq *this_rq)
1973 unsigned long this_load = this_rq->load.weight;
1974 int i, scale;
1976 this_rq->nr_load_updates++;
1978 /* Update our load: */
1979 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1980 unsigned long old_load, new_load;
1982 /* scale is effectively 1 << i now, and >> i divides by scale */
1984 old_load = this_rq->cpu_load[i];
1985 new_load = this_load;
1987 * Round up the averaging division if load is increasing. This
1988 * prevents us from getting stuck on 9 if the load is 10, for
1989 * example.
1991 if (new_load > old_load)
1992 new_load += scale-1;
1993 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1997 #ifdef CONFIG_SMP
2000 * double_rq_lock - safely lock two runqueues
2002 * Note this does not disable interrupts like task_rq_lock,
2003 * you need to do so manually before calling.
2005 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2006 __acquires(rq1->lock)
2007 __acquires(rq2->lock)
2009 BUG_ON(!irqs_disabled());
2010 if (rq1 == rq2) {
2011 spin_lock(&rq1->lock);
2012 __acquire(rq2->lock); /* Fake it out ;) */
2013 } else {
2014 if (rq1 < rq2) {
2015 spin_lock(&rq1->lock);
2016 spin_lock(&rq2->lock);
2017 } else {
2018 spin_lock(&rq2->lock);
2019 spin_lock(&rq1->lock);
2022 update_rq_clock(rq1);
2023 update_rq_clock(rq2);
2027 * double_rq_unlock - safely unlock two runqueues
2029 * Note this does not restore interrupts like task_rq_unlock,
2030 * you need to do so manually after calling.
2032 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2033 __releases(rq1->lock)
2034 __releases(rq2->lock)
2036 spin_unlock(&rq1->lock);
2037 if (rq1 != rq2)
2038 spin_unlock(&rq2->lock);
2039 else
2040 __release(rq2->lock);
2044 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2046 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2047 __releases(this_rq->lock)
2048 __acquires(busiest->lock)
2049 __acquires(this_rq->lock)
2051 if (unlikely(!irqs_disabled())) {
2052 /* printk() doesn't work good under rq->lock */
2053 spin_unlock(&this_rq->lock);
2054 BUG_ON(1);
2056 if (unlikely(!spin_trylock(&busiest->lock))) {
2057 if (busiest < this_rq) {
2058 spin_unlock(&this_rq->lock);
2059 spin_lock(&busiest->lock);
2060 spin_lock(&this_rq->lock);
2061 } else
2062 spin_lock(&busiest->lock);
2067 * If dest_cpu is allowed for this process, migrate the task to it.
2068 * This is accomplished by forcing the cpu_allowed mask to only
2069 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2070 * the cpu_allowed mask is restored.
2072 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2074 struct migration_req req;
2075 unsigned long flags;
2076 struct rq *rq;
2078 rq = task_rq_lock(p, &flags);
2079 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2080 || unlikely(cpu_is_offline(dest_cpu)))
2081 goto out;
2083 /* force the process onto the specified CPU */
2084 if (migrate_task(p, dest_cpu, &req)) {
2085 /* Need to wait for migration thread (might exit: take ref). */
2086 struct task_struct *mt = rq->migration_thread;
2088 get_task_struct(mt);
2089 task_rq_unlock(rq, &flags);
2090 wake_up_process(mt);
2091 put_task_struct(mt);
2092 wait_for_completion(&req.done);
2094 return;
2096 out:
2097 task_rq_unlock(rq, &flags);
2101 * sched_exec - execve() is a valuable balancing opportunity, because at
2102 * this point the task has the smallest effective memory and cache footprint.
2104 void sched_exec(void)
2106 int new_cpu, this_cpu = get_cpu();
2107 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2108 put_cpu();
2109 if (new_cpu != this_cpu)
2110 sched_migrate_task(current, new_cpu);
2114 * pull_task - move a task from a remote runqueue to the local runqueue.
2115 * Both runqueues must be locked.
2117 static void pull_task(struct rq *src_rq, struct task_struct *p,
2118 struct rq *this_rq, int this_cpu)
2120 deactivate_task(src_rq, p, 0);
2121 set_task_cpu(p, this_cpu);
2122 activate_task(this_rq, p, 0);
2124 * Note that idle threads have a prio of MAX_PRIO, for this test
2125 * to be always true for them.
2127 check_preempt_curr(this_rq, p);
2131 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2133 static
2134 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2135 struct sched_domain *sd, enum cpu_idle_type idle,
2136 int *all_pinned)
2139 * We do not migrate tasks that are:
2140 * 1) running (obviously), or
2141 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2142 * 3) are cache-hot on their current CPU.
2144 if (!cpu_isset(this_cpu, p->cpus_allowed))
2145 return 0;
2146 *all_pinned = 0;
2148 if (task_running(rq, p))
2149 return 0;
2151 return 1;
2154 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2155 unsigned long max_nr_move, unsigned long max_load_move,
2156 struct sched_domain *sd, enum cpu_idle_type idle,
2157 int *all_pinned, unsigned long *load_moved,
2158 int *this_best_prio, struct rq_iterator *iterator)
2160 int pulled = 0, pinned = 0, skip_for_load;
2161 struct task_struct *p;
2162 long rem_load_move = max_load_move;
2164 if (max_nr_move == 0 || max_load_move == 0)
2165 goto out;
2167 pinned = 1;
2170 * Start the load-balancing iterator:
2172 p = iterator->start(iterator->arg);
2173 next:
2174 if (!p)
2175 goto out;
2177 * To help distribute high priority tasks accross CPUs we don't
2178 * skip a task if it will be the highest priority task (i.e. smallest
2179 * prio value) on its new queue regardless of its load weight
2181 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2182 SCHED_LOAD_SCALE_FUZZ;
2183 if ((skip_for_load && p->prio >= *this_best_prio) ||
2184 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2185 p = iterator->next(iterator->arg);
2186 goto next;
2189 pull_task(busiest, p, this_rq, this_cpu);
2190 pulled++;
2191 rem_load_move -= p->se.load.weight;
2194 * We only want to steal up to the prescribed number of tasks
2195 * and the prescribed amount of weighted load.
2197 if (pulled < max_nr_move && rem_load_move > 0) {
2198 if (p->prio < *this_best_prio)
2199 *this_best_prio = p->prio;
2200 p = iterator->next(iterator->arg);
2201 goto next;
2203 out:
2205 * Right now, this is the only place pull_task() is called,
2206 * so we can safely collect pull_task() stats here rather than
2207 * inside pull_task().
2209 schedstat_add(sd, lb_gained[idle], pulled);
2211 if (all_pinned)
2212 *all_pinned = pinned;
2213 *load_moved = max_load_move - rem_load_move;
2214 return pulled;
2218 * move_tasks tries to move up to max_load_move weighted load from busiest to
2219 * this_rq, as part of a balancing operation within domain "sd".
2220 * Returns 1 if successful and 0 otherwise.
2222 * Called with both runqueues locked.
2224 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2225 unsigned long max_load_move,
2226 struct sched_domain *sd, enum cpu_idle_type idle,
2227 int *all_pinned)
2229 const struct sched_class *class = sched_class_highest;
2230 unsigned long total_load_moved = 0;
2231 int this_best_prio = this_rq->curr->prio;
2233 do {
2234 total_load_moved +=
2235 class->load_balance(this_rq, this_cpu, busiest,
2236 ULONG_MAX, max_load_move - total_load_moved,
2237 sd, idle, all_pinned, &this_best_prio);
2238 class = class->next;
2239 } while (class && max_load_move > total_load_moved);
2241 return total_load_moved > 0;
2245 * move_one_task tries to move exactly one task from busiest to this_rq, as
2246 * part of active balancing operations within "domain".
2247 * Returns 1 if successful and 0 otherwise.
2249 * Called with both runqueues locked.
2251 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2252 struct sched_domain *sd, enum cpu_idle_type idle)
2254 const struct sched_class *class;
2255 int this_best_prio = MAX_PRIO;
2257 for (class = sched_class_highest; class; class = class->next)
2258 if (class->load_balance(this_rq, this_cpu, busiest,
2259 1, ULONG_MAX, sd, idle, NULL,
2260 &this_best_prio))
2261 return 1;
2263 return 0;
2267 * find_busiest_group finds and returns the busiest CPU group within the
2268 * domain. It calculates and returns the amount of weighted load which
2269 * should be moved to restore balance via the imbalance parameter.
2271 static struct sched_group *
2272 find_busiest_group(struct sched_domain *sd, int this_cpu,
2273 unsigned long *imbalance, enum cpu_idle_type idle,
2274 int *sd_idle, cpumask_t *cpus, int *balance)
2276 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2277 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2278 unsigned long max_pull;
2279 unsigned long busiest_load_per_task, busiest_nr_running;
2280 unsigned long this_load_per_task, this_nr_running;
2281 int load_idx;
2282 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2283 int power_savings_balance = 1;
2284 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2285 unsigned long min_nr_running = ULONG_MAX;
2286 struct sched_group *group_min = NULL, *group_leader = NULL;
2287 #endif
2289 max_load = this_load = total_load = total_pwr = 0;
2290 busiest_load_per_task = busiest_nr_running = 0;
2291 this_load_per_task = this_nr_running = 0;
2292 if (idle == CPU_NOT_IDLE)
2293 load_idx = sd->busy_idx;
2294 else if (idle == CPU_NEWLY_IDLE)
2295 load_idx = sd->newidle_idx;
2296 else
2297 load_idx = sd->idle_idx;
2299 do {
2300 unsigned long load, group_capacity;
2301 int local_group;
2302 int i;
2303 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2304 unsigned long sum_nr_running, sum_weighted_load;
2306 local_group = cpu_isset(this_cpu, group->cpumask);
2308 if (local_group)
2309 balance_cpu = first_cpu(group->cpumask);
2311 /* Tally up the load of all CPUs in the group */
2312 sum_weighted_load = sum_nr_running = avg_load = 0;
2314 for_each_cpu_mask(i, group->cpumask) {
2315 struct rq *rq;
2317 if (!cpu_isset(i, *cpus))
2318 continue;
2320 rq = cpu_rq(i);
2322 if (*sd_idle && rq->nr_running)
2323 *sd_idle = 0;
2325 /* Bias balancing toward cpus of our domain */
2326 if (local_group) {
2327 if (idle_cpu(i) && !first_idle_cpu) {
2328 first_idle_cpu = 1;
2329 balance_cpu = i;
2332 load = target_load(i, load_idx);
2333 } else
2334 load = source_load(i, load_idx);
2336 avg_load += load;
2337 sum_nr_running += rq->nr_running;
2338 sum_weighted_load += weighted_cpuload(i);
2342 * First idle cpu or the first cpu(busiest) in this sched group
2343 * is eligible for doing load balancing at this and above
2344 * domains. In the newly idle case, we will allow all the cpu's
2345 * to do the newly idle load balance.
2347 if (idle != CPU_NEWLY_IDLE && local_group &&
2348 balance_cpu != this_cpu && balance) {
2349 *balance = 0;
2350 goto ret;
2353 total_load += avg_load;
2354 total_pwr += group->__cpu_power;
2356 /* Adjust by relative CPU power of the group */
2357 avg_load = sg_div_cpu_power(group,
2358 avg_load * SCHED_LOAD_SCALE);
2360 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2362 if (local_group) {
2363 this_load = avg_load;
2364 this = group;
2365 this_nr_running = sum_nr_running;
2366 this_load_per_task = sum_weighted_load;
2367 } else if (avg_load > max_load &&
2368 sum_nr_running > group_capacity) {
2369 max_load = avg_load;
2370 busiest = group;
2371 busiest_nr_running = sum_nr_running;
2372 busiest_load_per_task = sum_weighted_load;
2375 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2377 * Busy processors will not participate in power savings
2378 * balance.
2380 if (idle == CPU_NOT_IDLE ||
2381 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2382 goto group_next;
2385 * If the local group is idle or completely loaded
2386 * no need to do power savings balance at this domain
2388 if (local_group && (this_nr_running >= group_capacity ||
2389 !this_nr_running))
2390 power_savings_balance = 0;
2393 * If a group is already running at full capacity or idle,
2394 * don't include that group in power savings calculations
2396 if (!power_savings_balance || sum_nr_running >= group_capacity
2397 || !sum_nr_running)
2398 goto group_next;
2401 * Calculate the group which has the least non-idle load.
2402 * This is the group from where we need to pick up the load
2403 * for saving power
2405 if ((sum_nr_running < min_nr_running) ||
2406 (sum_nr_running == min_nr_running &&
2407 first_cpu(group->cpumask) <
2408 first_cpu(group_min->cpumask))) {
2409 group_min = group;
2410 min_nr_running = sum_nr_running;
2411 min_load_per_task = sum_weighted_load /
2412 sum_nr_running;
2416 * Calculate the group which is almost near its
2417 * capacity but still has some space to pick up some load
2418 * from other group and save more power
2420 if (sum_nr_running <= group_capacity - 1) {
2421 if (sum_nr_running > leader_nr_running ||
2422 (sum_nr_running == leader_nr_running &&
2423 first_cpu(group->cpumask) >
2424 first_cpu(group_leader->cpumask))) {
2425 group_leader = group;
2426 leader_nr_running = sum_nr_running;
2429 group_next:
2430 #endif
2431 group = group->next;
2432 } while (group != sd->groups);
2434 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2435 goto out_balanced;
2437 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2439 if (this_load >= avg_load ||
2440 100*max_load <= sd->imbalance_pct*this_load)
2441 goto out_balanced;
2443 busiest_load_per_task /= busiest_nr_running;
2445 * We're trying to get all the cpus to the average_load, so we don't
2446 * want to push ourselves above the average load, nor do we wish to
2447 * reduce the max loaded cpu below the average load, as either of these
2448 * actions would just result in more rebalancing later, and ping-pong
2449 * tasks around. Thus we look for the minimum possible imbalance.
2450 * Negative imbalances (*we* are more loaded than anyone else) will
2451 * be counted as no imbalance for these purposes -- we can't fix that
2452 * by pulling tasks to us. Be careful of negative numbers as they'll
2453 * appear as very large values with unsigned longs.
2455 if (max_load <= busiest_load_per_task)
2456 goto out_balanced;
2459 * In the presence of smp nice balancing, certain scenarios can have
2460 * max load less than avg load(as we skip the groups at or below
2461 * its cpu_power, while calculating max_load..)
2463 if (max_load < avg_load) {
2464 *imbalance = 0;
2465 goto small_imbalance;
2468 /* Don't want to pull so many tasks that a group would go idle */
2469 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2471 /* How much load to actually move to equalise the imbalance */
2472 *imbalance = min(max_pull * busiest->__cpu_power,
2473 (avg_load - this_load) * this->__cpu_power)
2474 / SCHED_LOAD_SCALE;
2477 * if *imbalance is less than the average load per runnable task
2478 * there is no gaurantee that any tasks will be moved so we'll have
2479 * a think about bumping its value to force at least one task to be
2480 * moved
2482 if (*imbalance < busiest_load_per_task) {
2483 unsigned long tmp, pwr_now, pwr_move;
2484 unsigned int imbn;
2486 small_imbalance:
2487 pwr_move = pwr_now = 0;
2488 imbn = 2;
2489 if (this_nr_running) {
2490 this_load_per_task /= this_nr_running;
2491 if (busiest_load_per_task > this_load_per_task)
2492 imbn = 1;
2493 } else
2494 this_load_per_task = SCHED_LOAD_SCALE;
2496 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2497 busiest_load_per_task * imbn) {
2498 *imbalance = busiest_load_per_task;
2499 return busiest;
2503 * OK, we don't have enough imbalance to justify moving tasks,
2504 * however we may be able to increase total CPU power used by
2505 * moving them.
2508 pwr_now += busiest->__cpu_power *
2509 min(busiest_load_per_task, max_load);
2510 pwr_now += this->__cpu_power *
2511 min(this_load_per_task, this_load);
2512 pwr_now /= SCHED_LOAD_SCALE;
2514 /* Amount of load we'd subtract */
2515 tmp = sg_div_cpu_power(busiest,
2516 busiest_load_per_task * SCHED_LOAD_SCALE);
2517 if (max_load > tmp)
2518 pwr_move += busiest->__cpu_power *
2519 min(busiest_load_per_task, max_load - tmp);
2521 /* Amount of load we'd add */
2522 if (max_load * busiest->__cpu_power <
2523 busiest_load_per_task * SCHED_LOAD_SCALE)
2524 tmp = sg_div_cpu_power(this,
2525 max_load * busiest->__cpu_power);
2526 else
2527 tmp = sg_div_cpu_power(this,
2528 busiest_load_per_task * SCHED_LOAD_SCALE);
2529 pwr_move += this->__cpu_power *
2530 min(this_load_per_task, this_load + tmp);
2531 pwr_move /= SCHED_LOAD_SCALE;
2533 /* Move if we gain throughput */
2534 if (pwr_move > pwr_now)
2535 *imbalance = busiest_load_per_task;
2538 return busiest;
2540 out_balanced:
2541 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2542 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2543 goto ret;
2545 if (this == group_leader && group_leader != group_min) {
2546 *imbalance = min_load_per_task;
2547 return group_min;
2549 #endif
2550 ret:
2551 *imbalance = 0;
2552 return NULL;
2556 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2558 static struct rq *
2559 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2560 unsigned long imbalance, cpumask_t *cpus)
2562 struct rq *busiest = NULL, *rq;
2563 unsigned long max_load = 0;
2564 int i;
2566 for_each_cpu_mask(i, group->cpumask) {
2567 unsigned long wl;
2569 if (!cpu_isset(i, *cpus))
2570 continue;
2572 rq = cpu_rq(i);
2573 wl = weighted_cpuload(i);
2575 if (rq->nr_running == 1 && wl > imbalance)
2576 continue;
2578 if (wl > max_load) {
2579 max_load = wl;
2580 busiest = rq;
2584 return busiest;
2588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2589 * so long as it is large enough.
2591 #define MAX_PINNED_INTERVAL 512
2594 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2595 * tasks if there is an imbalance.
2597 static int load_balance(int this_cpu, struct rq *this_rq,
2598 struct sched_domain *sd, enum cpu_idle_type idle,
2599 int *balance)
2601 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2602 struct sched_group *group;
2603 unsigned long imbalance;
2604 struct rq *busiest;
2605 cpumask_t cpus = CPU_MASK_ALL;
2606 unsigned long flags;
2609 * When power savings policy is enabled for the parent domain, idle
2610 * sibling can pick up load irrespective of busy siblings. In this case,
2611 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2612 * portraying it as CPU_NOT_IDLE.
2614 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2615 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2616 sd_idle = 1;
2618 schedstat_inc(sd, lb_count[idle]);
2620 redo:
2621 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2622 &cpus, balance);
2624 if (*balance == 0)
2625 goto out_balanced;
2627 if (!group) {
2628 schedstat_inc(sd, lb_nobusyg[idle]);
2629 goto out_balanced;
2632 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2633 if (!busiest) {
2634 schedstat_inc(sd, lb_nobusyq[idle]);
2635 goto out_balanced;
2638 BUG_ON(busiest == this_rq);
2640 schedstat_add(sd, lb_imbalance[idle], imbalance);
2642 ld_moved = 0;
2643 if (busiest->nr_running > 1) {
2645 * Attempt to move tasks. If find_busiest_group has found
2646 * an imbalance but busiest->nr_running <= 1, the group is
2647 * still unbalanced. ld_moved simply stays zero, so it is
2648 * correctly treated as an imbalance.
2650 local_irq_save(flags);
2651 double_rq_lock(this_rq, busiest);
2652 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2653 imbalance, sd, idle, &all_pinned);
2654 double_rq_unlock(this_rq, busiest);
2655 local_irq_restore(flags);
2658 * some other cpu did the load balance for us.
2660 if (ld_moved && this_cpu != smp_processor_id())
2661 resched_cpu(this_cpu);
2663 /* All tasks on this runqueue were pinned by CPU affinity */
2664 if (unlikely(all_pinned)) {
2665 cpu_clear(cpu_of(busiest), cpus);
2666 if (!cpus_empty(cpus))
2667 goto redo;
2668 goto out_balanced;
2672 if (!ld_moved) {
2673 schedstat_inc(sd, lb_failed[idle]);
2674 sd->nr_balance_failed++;
2676 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2678 spin_lock_irqsave(&busiest->lock, flags);
2680 /* don't kick the migration_thread, if the curr
2681 * task on busiest cpu can't be moved to this_cpu
2683 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2684 spin_unlock_irqrestore(&busiest->lock, flags);
2685 all_pinned = 1;
2686 goto out_one_pinned;
2689 if (!busiest->active_balance) {
2690 busiest->active_balance = 1;
2691 busiest->push_cpu = this_cpu;
2692 active_balance = 1;
2694 spin_unlock_irqrestore(&busiest->lock, flags);
2695 if (active_balance)
2696 wake_up_process(busiest->migration_thread);
2699 * We've kicked active balancing, reset the failure
2700 * counter.
2702 sd->nr_balance_failed = sd->cache_nice_tries+1;
2704 } else
2705 sd->nr_balance_failed = 0;
2707 if (likely(!active_balance)) {
2708 /* We were unbalanced, so reset the balancing interval */
2709 sd->balance_interval = sd->min_interval;
2710 } else {
2712 * If we've begun active balancing, start to back off. This
2713 * case may not be covered by the all_pinned logic if there
2714 * is only 1 task on the busy runqueue (because we don't call
2715 * move_tasks).
2717 if (sd->balance_interval < sd->max_interval)
2718 sd->balance_interval *= 2;
2721 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2722 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2723 return -1;
2724 return ld_moved;
2726 out_balanced:
2727 schedstat_inc(sd, lb_balanced[idle]);
2729 sd->nr_balance_failed = 0;
2731 out_one_pinned:
2732 /* tune up the balancing interval */
2733 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2734 (sd->balance_interval < sd->max_interval))
2735 sd->balance_interval *= 2;
2737 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2738 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2739 return -1;
2740 return 0;
2744 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2745 * tasks if there is an imbalance.
2747 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2748 * this_rq is locked.
2750 static int
2751 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2753 struct sched_group *group;
2754 struct rq *busiest = NULL;
2755 unsigned long imbalance;
2756 int ld_moved = 0;
2757 int sd_idle = 0;
2758 int all_pinned = 0;
2759 cpumask_t cpus = CPU_MASK_ALL;
2762 * When power savings policy is enabled for the parent domain, idle
2763 * sibling can pick up load irrespective of busy siblings. In this case,
2764 * let the state of idle sibling percolate up as IDLE, instead of
2765 * portraying it as CPU_NOT_IDLE.
2767 if (sd->flags & SD_SHARE_CPUPOWER &&
2768 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2769 sd_idle = 1;
2771 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2772 redo:
2773 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2774 &sd_idle, &cpus, NULL);
2775 if (!group) {
2776 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2777 goto out_balanced;
2780 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2781 &cpus);
2782 if (!busiest) {
2783 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2784 goto out_balanced;
2787 BUG_ON(busiest == this_rq);
2789 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2791 ld_moved = 0;
2792 if (busiest->nr_running > 1) {
2793 /* Attempt to move tasks */
2794 double_lock_balance(this_rq, busiest);
2795 /* this_rq->clock is already updated */
2796 update_rq_clock(busiest);
2797 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2798 imbalance, sd, CPU_NEWLY_IDLE,
2799 &all_pinned);
2800 spin_unlock(&busiest->lock);
2802 if (unlikely(all_pinned)) {
2803 cpu_clear(cpu_of(busiest), cpus);
2804 if (!cpus_empty(cpus))
2805 goto redo;
2809 if (!ld_moved) {
2810 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2811 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2812 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2813 return -1;
2814 } else
2815 sd->nr_balance_failed = 0;
2817 return ld_moved;
2819 out_balanced:
2820 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2821 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2822 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2823 return -1;
2824 sd->nr_balance_failed = 0;
2826 return 0;
2830 * idle_balance is called by schedule() if this_cpu is about to become
2831 * idle. Attempts to pull tasks from other CPUs.
2833 static void idle_balance(int this_cpu, struct rq *this_rq)
2835 struct sched_domain *sd;
2836 int pulled_task = -1;
2837 unsigned long next_balance = jiffies + HZ;
2839 for_each_domain(this_cpu, sd) {
2840 unsigned long interval;
2842 if (!(sd->flags & SD_LOAD_BALANCE))
2843 continue;
2845 if (sd->flags & SD_BALANCE_NEWIDLE)
2846 /* If we've pulled tasks over stop searching: */
2847 pulled_task = load_balance_newidle(this_cpu,
2848 this_rq, sd);
2850 interval = msecs_to_jiffies(sd->balance_interval);
2851 if (time_after(next_balance, sd->last_balance + interval))
2852 next_balance = sd->last_balance + interval;
2853 if (pulled_task)
2854 break;
2856 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2858 * We are going idle. next_balance may be set based on
2859 * a busy processor. So reset next_balance.
2861 this_rq->next_balance = next_balance;
2866 * active_load_balance is run by migration threads. It pushes running tasks
2867 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2868 * running on each physical CPU where possible, and avoids physical /
2869 * logical imbalances.
2871 * Called with busiest_rq locked.
2873 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2875 int target_cpu = busiest_rq->push_cpu;
2876 struct sched_domain *sd;
2877 struct rq *target_rq;
2879 /* Is there any task to move? */
2880 if (busiest_rq->nr_running <= 1)
2881 return;
2883 target_rq = cpu_rq(target_cpu);
2886 * This condition is "impossible", if it occurs
2887 * we need to fix it. Originally reported by
2888 * Bjorn Helgaas on a 128-cpu setup.
2890 BUG_ON(busiest_rq == target_rq);
2892 /* move a task from busiest_rq to target_rq */
2893 double_lock_balance(busiest_rq, target_rq);
2894 update_rq_clock(busiest_rq);
2895 update_rq_clock(target_rq);
2897 /* Search for an sd spanning us and the target CPU. */
2898 for_each_domain(target_cpu, sd) {
2899 if ((sd->flags & SD_LOAD_BALANCE) &&
2900 cpu_isset(busiest_cpu, sd->span))
2901 break;
2904 if (likely(sd)) {
2905 schedstat_inc(sd, alb_count);
2907 if (move_one_task(target_rq, target_cpu, busiest_rq,
2908 sd, CPU_IDLE))
2909 schedstat_inc(sd, alb_pushed);
2910 else
2911 schedstat_inc(sd, alb_failed);
2913 spin_unlock(&target_rq->lock);
2916 #ifdef CONFIG_NO_HZ
2917 static struct {
2918 atomic_t load_balancer;
2919 cpumask_t cpu_mask;
2920 } nohz ____cacheline_aligned = {
2921 .load_balancer = ATOMIC_INIT(-1),
2922 .cpu_mask = CPU_MASK_NONE,
2926 * This routine will try to nominate the ilb (idle load balancing)
2927 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2928 * load balancing on behalf of all those cpus. If all the cpus in the system
2929 * go into this tickless mode, then there will be no ilb owner (as there is
2930 * no need for one) and all the cpus will sleep till the next wakeup event
2931 * arrives...
2933 * For the ilb owner, tick is not stopped. And this tick will be used
2934 * for idle load balancing. ilb owner will still be part of
2935 * nohz.cpu_mask..
2937 * While stopping the tick, this cpu will become the ilb owner if there
2938 * is no other owner. And will be the owner till that cpu becomes busy
2939 * or if all cpus in the system stop their ticks at which point
2940 * there is no need for ilb owner.
2942 * When the ilb owner becomes busy, it nominates another owner, during the
2943 * next busy scheduler_tick()
2945 int select_nohz_load_balancer(int stop_tick)
2947 int cpu = smp_processor_id();
2949 if (stop_tick) {
2950 cpu_set(cpu, nohz.cpu_mask);
2951 cpu_rq(cpu)->in_nohz_recently = 1;
2954 * If we are going offline and still the leader, give up!
2956 if (cpu_is_offline(cpu) &&
2957 atomic_read(&nohz.load_balancer) == cpu) {
2958 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2959 BUG();
2960 return 0;
2963 /* time for ilb owner also to sleep */
2964 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2965 if (atomic_read(&nohz.load_balancer) == cpu)
2966 atomic_set(&nohz.load_balancer, -1);
2967 return 0;
2970 if (atomic_read(&nohz.load_balancer) == -1) {
2971 /* make me the ilb owner */
2972 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2973 return 1;
2974 } else if (atomic_read(&nohz.load_balancer) == cpu)
2975 return 1;
2976 } else {
2977 if (!cpu_isset(cpu, nohz.cpu_mask))
2978 return 0;
2980 cpu_clear(cpu, nohz.cpu_mask);
2982 if (atomic_read(&nohz.load_balancer) == cpu)
2983 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2984 BUG();
2986 return 0;
2988 #endif
2990 static DEFINE_SPINLOCK(balancing);
2993 * It checks each scheduling domain to see if it is due to be balanced,
2994 * and initiates a balancing operation if so.
2996 * Balancing parameters are set up in arch_init_sched_domains.
2998 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3000 int balance = 1;
3001 struct rq *rq = cpu_rq(cpu);
3002 unsigned long interval;
3003 struct sched_domain *sd;
3004 /* Earliest time when we have to do rebalance again */
3005 unsigned long next_balance = jiffies + 60*HZ;
3006 int update_next_balance = 0;
3008 for_each_domain(cpu, sd) {
3009 if (!(sd->flags & SD_LOAD_BALANCE))
3010 continue;
3012 interval = sd->balance_interval;
3013 if (idle != CPU_IDLE)
3014 interval *= sd->busy_factor;
3016 /* scale ms to jiffies */
3017 interval = msecs_to_jiffies(interval);
3018 if (unlikely(!interval))
3019 interval = 1;
3020 if (interval > HZ*NR_CPUS/10)
3021 interval = HZ*NR_CPUS/10;
3024 if (sd->flags & SD_SERIALIZE) {
3025 if (!spin_trylock(&balancing))
3026 goto out;
3029 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3030 if (load_balance(cpu, rq, sd, idle, &balance)) {
3032 * We've pulled tasks over so either we're no
3033 * longer idle, or one of our SMT siblings is
3034 * not idle.
3036 idle = CPU_NOT_IDLE;
3038 sd->last_balance = jiffies;
3040 if (sd->flags & SD_SERIALIZE)
3041 spin_unlock(&balancing);
3042 out:
3043 if (time_after(next_balance, sd->last_balance + interval)) {
3044 next_balance = sd->last_balance + interval;
3045 update_next_balance = 1;
3049 * Stop the load balance at this level. There is another
3050 * CPU in our sched group which is doing load balancing more
3051 * actively.
3053 if (!balance)
3054 break;
3058 * next_balance will be updated only when there is a need.
3059 * When the cpu is attached to null domain for ex, it will not be
3060 * updated.
3062 if (likely(update_next_balance))
3063 rq->next_balance = next_balance;
3067 * run_rebalance_domains is triggered when needed from the scheduler tick.
3068 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3069 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3071 static void run_rebalance_domains(struct softirq_action *h)
3073 int this_cpu = smp_processor_id();
3074 struct rq *this_rq = cpu_rq(this_cpu);
3075 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3076 CPU_IDLE : CPU_NOT_IDLE;
3078 rebalance_domains(this_cpu, idle);
3080 #ifdef CONFIG_NO_HZ
3082 * If this cpu is the owner for idle load balancing, then do the
3083 * balancing on behalf of the other idle cpus whose ticks are
3084 * stopped.
3086 if (this_rq->idle_at_tick &&
3087 atomic_read(&nohz.load_balancer) == this_cpu) {
3088 cpumask_t cpus = nohz.cpu_mask;
3089 struct rq *rq;
3090 int balance_cpu;
3092 cpu_clear(this_cpu, cpus);
3093 for_each_cpu_mask(balance_cpu, cpus) {
3095 * If this cpu gets work to do, stop the load balancing
3096 * work being done for other cpus. Next load
3097 * balancing owner will pick it up.
3099 if (need_resched())
3100 break;
3102 rebalance_domains(balance_cpu, CPU_IDLE);
3104 rq = cpu_rq(balance_cpu);
3105 if (time_after(this_rq->next_balance, rq->next_balance))
3106 this_rq->next_balance = rq->next_balance;
3109 #endif
3113 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3115 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3116 * idle load balancing owner or decide to stop the periodic load balancing,
3117 * if the whole system is idle.
3119 static inline void trigger_load_balance(struct rq *rq, int cpu)
3121 #ifdef CONFIG_NO_HZ
3123 * If we were in the nohz mode recently and busy at the current
3124 * scheduler tick, then check if we need to nominate new idle
3125 * load balancer.
3127 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3128 rq->in_nohz_recently = 0;
3130 if (atomic_read(&nohz.load_balancer) == cpu) {
3131 cpu_clear(cpu, nohz.cpu_mask);
3132 atomic_set(&nohz.load_balancer, -1);
3135 if (atomic_read(&nohz.load_balancer) == -1) {
3137 * simple selection for now: Nominate the
3138 * first cpu in the nohz list to be the next
3139 * ilb owner.
3141 * TBD: Traverse the sched domains and nominate
3142 * the nearest cpu in the nohz.cpu_mask.
3144 int ilb = first_cpu(nohz.cpu_mask);
3146 if (ilb != NR_CPUS)
3147 resched_cpu(ilb);
3152 * If this cpu is idle and doing idle load balancing for all the
3153 * cpus with ticks stopped, is it time for that to stop?
3155 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3156 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3157 resched_cpu(cpu);
3158 return;
3162 * If this cpu is idle and the idle load balancing is done by
3163 * someone else, then no need raise the SCHED_SOFTIRQ
3165 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3166 cpu_isset(cpu, nohz.cpu_mask))
3167 return;
3168 #endif
3169 if (time_after_eq(jiffies, rq->next_balance))
3170 raise_softirq(SCHED_SOFTIRQ);
3173 #else /* CONFIG_SMP */
3176 * on UP we do not need to balance between CPUs:
3178 static inline void idle_balance(int cpu, struct rq *rq)
3182 /* Avoid "used but not defined" warning on UP */
3183 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3184 unsigned long max_nr_move, unsigned long max_load_move,
3185 struct sched_domain *sd, enum cpu_idle_type idle,
3186 int *all_pinned, unsigned long *load_moved,
3187 int *this_best_prio, struct rq_iterator *iterator)
3189 *load_moved = 0;
3191 return 0;
3194 #endif
3196 DEFINE_PER_CPU(struct kernel_stat, kstat);
3198 EXPORT_PER_CPU_SYMBOL(kstat);
3201 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3202 * that have not yet been banked in case the task is currently running.
3204 unsigned long long task_sched_runtime(struct task_struct *p)
3206 unsigned long flags;
3207 u64 ns, delta_exec;
3208 struct rq *rq;
3210 rq = task_rq_lock(p, &flags);
3211 ns = p->se.sum_exec_runtime;
3212 if (rq->curr == p) {
3213 update_rq_clock(rq);
3214 delta_exec = rq->clock - p->se.exec_start;
3215 if ((s64)delta_exec > 0)
3216 ns += delta_exec;
3218 task_rq_unlock(rq, &flags);
3220 return ns;
3224 * Account user cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in user space since the last update
3229 void account_user_time(struct task_struct *p, cputime_t cputime)
3231 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3232 cputime64_t tmp;
3234 p->utime = cputime_add(p->utime, cputime);
3236 /* Add user time to cpustat. */
3237 tmp = cputime_to_cputime64(cputime);
3238 if (TASK_NICE(p) > 0)
3239 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3240 else
3241 cpustat->user = cputime64_add(cpustat->user, tmp);
3245 * Account system cpu time to a process.
3246 * @p: the process that the cpu time gets accounted to
3247 * @hardirq_offset: the offset to subtract from hardirq_count()
3248 * @cputime: the cpu time spent in kernel space since the last update
3250 void account_system_time(struct task_struct *p, int hardirq_offset,
3251 cputime_t cputime)
3253 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3254 struct rq *rq = this_rq();
3255 cputime64_t tmp;
3257 p->stime = cputime_add(p->stime, cputime);
3259 /* Add system time to cpustat. */
3260 tmp = cputime_to_cputime64(cputime);
3261 if (hardirq_count() - hardirq_offset)
3262 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3263 else if (softirq_count())
3264 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3265 else if (p != rq->idle)
3266 cpustat->system = cputime64_add(cpustat->system, tmp);
3267 else if (atomic_read(&rq->nr_iowait) > 0)
3268 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3269 else
3270 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3271 /* Account for system time used */
3272 acct_update_integrals(p);
3276 * Account for involuntary wait time.
3277 * @p: the process from which the cpu time has been stolen
3278 * @steal: the cpu time spent in involuntary wait
3280 void account_steal_time(struct task_struct *p, cputime_t steal)
3282 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3283 cputime64_t tmp = cputime_to_cputime64(steal);
3284 struct rq *rq = this_rq();
3286 if (p == rq->idle) {
3287 p->stime = cputime_add(p->stime, steal);
3288 if (atomic_read(&rq->nr_iowait) > 0)
3289 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3290 else
3291 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3292 } else
3293 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3297 * This function gets called by the timer code, with HZ frequency.
3298 * We call it with interrupts disabled.
3300 * It also gets called by the fork code, when changing the parent's
3301 * timeslices.
3303 void scheduler_tick(void)
3305 int cpu = smp_processor_id();
3306 struct rq *rq = cpu_rq(cpu);
3307 struct task_struct *curr = rq->curr;
3308 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3310 spin_lock(&rq->lock);
3311 __update_rq_clock(rq);
3313 * Let rq->clock advance by at least TICK_NSEC:
3315 if (unlikely(rq->clock < next_tick))
3316 rq->clock = next_tick;
3317 rq->tick_timestamp = rq->clock;
3318 update_cpu_load(rq);
3319 if (curr != rq->idle) /* FIXME: needed? */
3320 curr->sched_class->task_tick(rq, curr);
3321 spin_unlock(&rq->lock);
3323 #ifdef CONFIG_SMP
3324 rq->idle_at_tick = idle_cpu(cpu);
3325 trigger_load_balance(rq, cpu);
3326 #endif
3329 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3331 void fastcall add_preempt_count(int val)
3334 * Underflow?
3336 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3337 return;
3338 preempt_count() += val;
3340 * Spinlock count overflowing soon?
3342 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3343 PREEMPT_MASK - 10);
3345 EXPORT_SYMBOL(add_preempt_count);
3347 void fastcall sub_preempt_count(int val)
3350 * Underflow?
3352 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3353 return;
3355 * Is the spinlock portion underflowing?
3357 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3358 !(preempt_count() & PREEMPT_MASK)))
3359 return;
3361 preempt_count() -= val;
3363 EXPORT_SYMBOL(sub_preempt_count);
3365 #endif
3368 * Print scheduling while atomic bug:
3370 static noinline void __schedule_bug(struct task_struct *prev)
3372 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3373 prev->comm, preempt_count(), prev->pid);
3374 debug_show_held_locks(prev);
3375 if (irqs_disabled())
3376 print_irqtrace_events(prev);
3377 dump_stack();
3381 * Various schedule()-time debugging checks and statistics:
3383 static inline void schedule_debug(struct task_struct *prev)
3386 * Test if we are atomic. Since do_exit() needs to call into
3387 * schedule() atomically, we ignore that path for now.
3388 * Otherwise, whine if we are scheduling when we should not be.
3390 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3391 __schedule_bug(prev);
3393 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3395 schedstat_inc(this_rq(), sched_count);
3396 #ifdef CONFIG_SCHEDSTATS
3397 if (unlikely(prev->lock_depth >= 0)) {
3398 schedstat_inc(this_rq(), bkl_count);
3399 schedstat_inc(prev, sched_info.bkl_count);
3401 #endif
3405 * Pick up the highest-prio task:
3407 static inline struct task_struct *
3408 pick_next_task(struct rq *rq, struct task_struct *prev)
3410 const struct sched_class *class;
3411 struct task_struct *p;
3414 * Optimization: we know that if all tasks are in
3415 * the fair class we can call that function directly:
3417 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3418 p = fair_sched_class.pick_next_task(rq);
3419 if (likely(p))
3420 return p;
3423 class = sched_class_highest;
3424 for ( ; ; ) {
3425 p = class->pick_next_task(rq);
3426 if (p)
3427 return p;
3429 * Will never be NULL as the idle class always
3430 * returns a non-NULL p:
3432 class = class->next;
3437 * schedule() is the main scheduler function.
3439 asmlinkage void __sched schedule(void)
3441 struct task_struct *prev, *next;
3442 long *switch_count;
3443 struct rq *rq;
3444 int cpu;
3446 need_resched:
3447 preempt_disable();
3448 cpu = smp_processor_id();
3449 rq = cpu_rq(cpu);
3450 rcu_qsctr_inc(cpu);
3451 prev = rq->curr;
3452 switch_count = &prev->nivcsw;
3454 release_kernel_lock(prev);
3455 need_resched_nonpreemptible:
3457 schedule_debug(prev);
3460 * Do the rq-clock update outside the rq lock:
3462 local_irq_disable();
3463 __update_rq_clock(rq);
3464 spin_lock(&rq->lock);
3465 clear_tsk_need_resched(prev);
3467 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3468 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3469 unlikely(signal_pending(prev)))) {
3470 prev->state = TASK_RUNNING;
3471 } else {
3472 deactivate_task(rq, prev, 1);
3474 switch_count = &prev->nvcsw;
3477 if (unlikely(!rq->nr_running))
3478 idle_balance(cpu, rq);
3480 prev->sched_class->put_prev_task(rq, prev);
3481 next = pick_next_task(rq, prev);
3483 sched_info_switch(prev, next);
3485 if (likely(prev != next)) {
3486 rq->nr_switches++;
3487 rq->curr = next;
3488 ++*switch_count;
3490 context_switch(rq, prev, next); /* unlocks the rq */
3491 } else
3492 spin_unlock_irq(&rq->lock);
3494 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3495 cpu = smp_processor_id();
3496 rq = cpu_rq(cpu);
3497 goto need_resched_nonpreemptible;
3499 preempt_enable_no_resched();
3500 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3501 goto need_resched;
3503 EXPORT_SYMBOL(schedule);
3505 #ifdef CONFIG_PREEMPT
3507 * this is the entry point to schedule() from in-kernel preemption
3508 * off of preempt_enable. Kernel preemptions off return from interrupt
3509 * occur there and call schedule directly.
3511 asmlinkage void __sched preempt_schedule(void)
3513 struct thread_info *ti = current_thread_info();
3514 #ifdef CONFIG_PREEMPT_BKL
3515 struct task_struct *task = current;
3516 int saved_lock_depth;
3517 #endif
3519 * If there is a non-zero preempt_count or interrupts are disabled,
3520 * we do not want to preempt the current task. Just return..
3522 if (likely(ti->preempt_count || irqs_disabled()))
3523 return;
3525 do {
3526 add_preempt_count(PREEMPT_ACTIVE);
3529 * We keep the big kernel semaphore locked, but we
3530 * clear ->lock_depth so that schedule() doesnt
3531 * auto-release the semaphore:
3533 #ifdef CONFIG_PREEMPT_BKL
3534 saved_lock_depth = task->lock_depth;
3535 task->lock_depth = -1;
3536 #endif
3537 schedule();
3538 #ifdef CONFIG_PREEMPT_BKL
3539 task->lock_depth = saved_lock_depth;
3540 #endif
3541 sub_preempt_count(PREEMPT_ACTIVE);
3544 * Check again in case we missed a preemption opportunity
3545 * between schedule and now.
3547 barrier();
3548 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3550 EXPORT_SYMBOL(preempt_schedule);
3553 * this is the entry point to schedule() from kernel preemption
3554 * off of irq context.
3555 * Note, that this is called and return with irqs disabled. This will
3556 * protect us against recursive calling from irq.
3558 asmlinkage void __sched preempt_schedule_irq(void)
3560 struct thread_info *ti = current_thread_info();
3561 #ifdef CONFIG_PREEMPT_BKL
3562 struct task_struct *task = current;
3563 int saved_lock_depth;
3564 #endif
3565 /* Catch callers which need to be fixed */
3566 BUG_ON(ti->preempt_count || !irqs_disabled());
3568 do {
3569 add_preempt_count(PREEMPT_ACTIVE);
3572 * We keep the big kernel semaphore locked, but we
3573 * clear ->lock_depth so that schedule() doesnt
3574 * auto-release the semaphore:
3576 #ifdef CONFIG_PREEMPT_BKL
3577 saved_lock_depth = task->lock_depth;
3578 task->lock_depth = -1;
3579 #endif
3580 local_irq_enable();
3581 schedule();
3582 local_irq_disable();
3583 #ifdef CONFIG_PREEMPT_BKL
3584 task->lock_depth = saved_lock_depth;
3585 #endif
3586 sub_preempt_count(PREEMPT_ACTIVE);
3589 * Check again in case we missed a preemption opportunity
3590 * between schedule and now.
3592 barrier();
3593 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3596 #endif /* CONFIG_PREEMPT */
3598 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3599 void *key)
3601 return try_to_wake_up(curr->private, mode, sync);
3603 EXPORT_SYMBOL(default_wake_function);
3606 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3607 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3608 * number) then we wake all the non-exclusive tasks and one exclusive task.
3610 * There are circumstances in which we can try to wake a task which has already
3611 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3612 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3614 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3615 int nr_exclusive, int sync, void *key)
3617 wait_queue_t *curr, *next;
3619 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3620 unsigned flags = curr->flags;
3622 if (curr->func(curr, mode, sync, key) &&
3623 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3624 break;
3629 * __wake_up - wake up threads blocked on a waitqueue.
3630 * @q: the waitqueue
3631 * @mode: which threads
3632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3633 * @key: is directly passed to the wakeup function
3635 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3636 int nr_exclusive, void *key)
3638 unsigned long flags;
3640 spin_lock_irqsave(&q->lock, flags);
3641 __wake_up_common(q, mode, nr_exclusive, 0, key);
3642 spin_unlock_irqrestore(&q->lock, flags);
3644 EXPORT_SYMBOL(__wake_up);
3647 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3649 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3651 __wake_up_common(q, mode, 1, 0, NULL);
3655 * __wake_up_sync - wake up threads blocked on a waitqueue.
3656 * @q: the waitqueue
3657 * @mode: which threads
3658 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3660 * The sync wakeup differs that the waker knows that it will schedule
3661 * away soon, so while the target thread will be woken up, it will not
3662 * be migrated to another CPU - ie. the two threads are 'synchronized'
3663 * with each other. This can prevent needless bouncing between CPUs.
3665 * On UP it can prevent extra preemption.
3667 void fastcall
3668 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3670 unsigned long flags;
3671 int sync = 1;
3673 if (unlikely(!q))
3674 return;
3676 if (unlikely(!nr_exclusive))
3677 sync = 0;
3679 spin_lock_irqsave(&q->lock, flags);
3680 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3681 spin_unlock_irqrestore(&q->lock, flags);
3683 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3685 void fastcall complete(struct completion *x)
3687 unsigned long flags;
3689 spin_lock_irqsave(&x->wait.lock, flags);
3690 x->done++;
3691 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3692 1, 0, NULL);
3693 spin_unlock_irqrestore(&x->wait.lock, flags);
3695 EXPORT_SYMBOL(complete);
3697 void fastcall complete_all(struct completion *x)
3699 unsigned long flags;
3701 spin_lock_irqsave(&x->wait.lock, flags);
3702 x->done += UINT_MAX/2;
3703 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3704 0, 0, NULL);
3705 spin_unlock_irqrestore(&x->wait.lock, flags);
3707 EXPORT_SYMBOL(complete_all);
3709 static inline long __sched
3710 do_wait_for_common(struct completion *x, long timeout, int state)
3712 if (!x->done) {
3713 DECLARE_WAITQUEUE(wait, current);
3715 wait.flags |= WQ_FLAG_EXCLUSIVE;
3716 __add_wait_queue_tail(&x->wait, &wait);
3717 do {
3718 if (state == TASK_INTERRUPTIBLE &&
3719 signal_pending(current)) {
3720 __remove_wait_queue(&x->wait, &wait);
3721 return -ERESTARTSYS;
3723 __set_current_state(state);
3724 spin_unlock_irq(&x->wait.lock);
3725 timeout = schedule_timeout(timeout);
3726 spin_lock_irq(&x->wait.lock);
3727 if (!timeout) {
3728 __remove_wait_queue(&x->wait, &wait);
3729 return timeout;
3731 } while (!x->done);
3732 __remove_wait_queue(&x->wait, &wait);
3734 x->done--;
3735 return timeout;
3738 static long __sched
3739 wait_for_common(struct completion *x, long timeout, int state)
3741 might_sleep();
3743 spin_lock_irq(&x->wait.lock);
3744 timeout = do_wait_for_common(x, timeout, state);
3745 spin_unlock_irq(&x->wait.lock);
3746 return timeout;
3749 void fastcall __sched wait_for_completion(struct completion *x)
3751 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3753 EXPORT_SYMBOL(wait_for_completion);
3755 unsigned long fastcall __sched
3756 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3758 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3760 EXPORT_SYMBOL(wait_for_completion_timeout);
3762 int __sched wait_for_completion_interruptible(struct completion *x)
3764 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3766 EXPORT_SYMBOL(wait_for_completion_interruptible);
3768 unsigned long fastcall __sched
3769 wait_for_completion_interruptible_timeout(struct completion *x,
3770 unsigned long timeout)
3772 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3774 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3776 static long __sched
3777 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3779 unsigned long flags;
3780 wait_queue_t wait;
3782 init_waitqueue_entry(&wait, current);
3784 __set_current_state(state);
3786 spin_lock_irqsave(&q->lock, flags);
3787 __add_wait_queue(q, &wait);
3788 spin_unlock(&q->lock);
3789 timeout = schedule_timeout(timeout);
3790 spin_lock_irq(&q->lock);
3791 __remove_wait_queue(q, &wait);
3792 spin_unlock_irqrestore(&q->lock, flags);
3794 return timeout;
3797 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3799 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3801 EXPORT_SYMBOL(interruptible_sleep_on);
3803 long __sched
3804 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3806 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3808 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3810 void __sched sleep_on(wait_queue_head_t *q)
3812 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3814 EXPORT_SYMBOL(sleep_on);
3816 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3818 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3820 EXPORT_SYMBOL(sleep_on_timeout);
3822 #ifdef CONFIG_RT_MUTEXES
3825 * rt_mutex_setprio - set the current priority of a task
3826 * @p: task
3827 * @prio: prio value (kernel-internal form)
3829 * This function changes the 'effective' priority of a task. It does
3830 * not touch ->normal_prio like __setscheduler().
3832 * Used by the rt_mutex code to implement priority inheritance logic.
3834 void rt_mutex_setprio(struct task_struct *p, int prio)
3836 unsigned long flags;
3837 int oldprio, on_rq, running;
3838 struct rq *rq;
3840 BUG_ON(prio < 0 || prio > MAX_PRIO);
3842 rq = task_rq_lock(p, &flags);
3843 update_rq_clock(rq);
3845 oldprio = p->prio;
3846 on_rq = p->se.on_rq;
3847 running = task_running(rq, p);
3848 if (on_rq) {
3849 dequeue_task(rq, p, 0);
3850 if (running)
3851 p->sched_class->put_prev_task(rq, p);
3854 if (rt_prio(prio))
3855 p->sched_class = &rt_sched_class;
3856 else
3857 p->sched_class = &fair_sched_class;
3859 p->prio = prio;
3861 if (on_rq) {
3862 if (running)
3863 p->sched_class->set_curr_task(rq);
3864 enqueue_task(rq, p, 0);
3866 * Reschedule if we are currently running on this runqueue and
3867 * our priority decreased, or if we are not currently running on
3868 * this runqueue and our priority is higher than the current's
3870 if (running) {
3871 if (p->prio > oldprio)
3872 resched_task(rq->curr);
3873 } else {
3874 check_preempt_curr(rq, p);
3877 task_rq_unlock(rq, &flags);
3880 #endif
3882 void set_user_nice(struct task_struct *p, long nice)
3884 int old_prio, delta, on_rq;
3885 unsigned long flags;
3886 struct rq *rq;
3888 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3889 return;
3891 * We have to be careful, if called from sys_setpriority(),
3892 * the task might be in the middle of scheduling on another CPU.
3894 rq = task_rq_lock(p, &flags);
3895 update_rq_clock(rq);
3897 * The RT priorities are set via sched_setscheduler(), but we still
3898 * allow the 'normal' nice value to be set - but as expected
3899 * it wont have any effect on scheduling until the task is
3900 * SCHED_FIFO/SCHED_RR:
3902 if (task_has_rt_policy(p)) {
3903 p->static_prio = NICE_TO_PRIO(nice);
3904 goto out_unlock;
3906 on_rq = p->se.on_rq;
3907 if (on_rq) {
3908 dequeue_task(rq, p, 0);
3909 dec_load(rq, p);
3912 p->static_prio = NICE_TO_PRIO(nice);
3913 set_load_weight(p);
3914 old_prio = p->prio;
3915 p->prio = effective_prio(p);
3916 delta = p->prio - old_prio;
3918 if (on_rq) {
3919 enqueue_task(rq, p, 0);
3920 inc_load(rq, p);
3922 * If the task increased its priority or is running and
3923 * lowered its priority, then reschedule its CPU:
3925 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3926 resched_task(rq->curr);
3928 out_unlock:
3929 task_rq_unlock(rq, &flags);
3931 EXPORT_SYMBOL(set_user_nice);
3934 * can_nice - check if a task can reduce its nice value
3935 * @p: task
3936 * @nice: nice value
3938 int can_nice(const struct task_struct *p, const int nice)
3940 /* convert nice value [19,-20] to rlimit style value [1,40] */
3941 int nice_rlim = 20 - nice;
3943 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3944 capable(CAP_SYS_NICE));
3947 #ifdef __ARCH_WANT_SYS_NICE
3950 * sys_nice - change the priority of the current process.
3951 * @increment: priority increment
3953 * sys_setpriority is a more generic, but much slower function that
3954 * does similar things.
3956 asmlinkage long sys_nice(int increment)
3958 long nice, retval;
3961 * Setpriority might change our priority at the same moment.
3962 * We don't have to worry. Conceptually one call occurs first
3963 * and we have a single winner.
3965 if (increment < -40)
3966 increment = -40;
3967 if (increment > 40)
3968 increment = 40;
3970 nice = PRIO_TO_NICE(current->static_prio) + increment;
3971 if (nice < -20)
3972 nice = -20;
3973 if (nice > 19)
3974 nice = 19;
3976 if (increment < 0 && !can_nice(current, nice))
3977 return -EPERM;
3979 retval = security_task_setnice(current, nice);
3980 if (retval)
3981 return retval;
3983 set_user_nice(current, nice);
3984 return 0;
3987 #endif
3990 * task_prio - return the priority value of a given task.
3991 * @p: the task in question.
3993 * This is the priority value as seen by users in /proc.
3994 * RT tasks are offset by -200. Normal tasks are centered
3995 * around 0, value goes from -16 to +15.
3997 int task_prio(const struct task_struct *p)
3999 return p->prio - MAX_RT_PRIO;
4003 * task_nice - return the nice value of a given task.
4004 * @p: the task in question.
4006 int task_nice(const struct task_struct *p)
4008 return TASK_NICE(p);
4010 EXPORT_SYMBOL_GPL(task_nice);
4013 * idle_cpu - is a given cpu idle currently?
4014 * @cpu: the processor in question.
4016 int idle_cpu(int cpu)
4018 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4022 * idle_task - return the idle task for a given cpu.
4023 * @cpu: the processor in question.
4025 struct task_struct *idle_task(int cpu)
4027 return cpu_rq(cpu)->idle;
4031 * find_process_by_pid - find a process with a matching PID value.
4032 * @pid: the pid in question.
4034 static struct task_struct *find_process_by_pid(pid_t pid)
4036 return pid ? find_task_by_pid(pid) : current;
4039 /* Actually do priority change: must hold rq lock. */
4040 static void
4041 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4043 BUG_ON(p->se.on_rq);
4045 p->policy = policy;
4046 switch (p->policy) {
4047 case SCHED_NORMAL:
4048 case SCHED_BATCH:
4049 case SCHED_IDLE:
4050 p->sched_class = &fair_sched_class;
4051 break;
4052 case SCHED_FIFO:
4053 case SCHED_RR:
4054 p->sched_class = &rt_sched_class;
4055 break;
4058 p->rt_priority = prio;
4059 p->normal_prio = normal_prio(p);
4060 /* we are holding p->pi_lock already */
4061 p->prio = rt_mutex_getprio(p);
4062 set_load_weight(p);
4066 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4067 * @p: the task in question.
4068 * @policy: new policy.
4069 * @param: structure containing the new RT priority.
4071 * NOTE that the task may be already dead.
4073 int sched_setscheduler(struct task_struct *p, int policy,
4074 struct sched_param *param)
4076 int retval, oldprio, oldpolicy = -1, on_rq, running;
4077 unsigned long flags;
4078 struct rq *rq;
4080 /* may grab non-irq protected spin_locks */
4081 BUG_ON(in_interrupt());
4082 recheck:
4083 /* double check policy once rq lock held */
4084 if (policy < 0)
4085 policy = oldpolicy = p->policy;
4086 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4087 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4088 policy != SCHED_IDLE)
4089 return -EINVAL;
4091 * Valid priorities for SCHED_FIFO and SCHED_RR are
4092 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4093 * SCHED_BATCH and SCHED_IDLE is 0.
4095 if (param->sched_priority < 0 ||
4096 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4097 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4098 return -EINVAL;
4099 if (rt_policy(policy) != (param->sched_priority != 0))
4100 return -EINVAL;
4103 * Allow unprivileged RT tasks to decrease priority:
4105 if (!capable(CAP_SYS_NICE)) {
4106 if (rt_policy(policy)) {
4107 unsigned long rlim_rtprio;
4109 if (!lock_task_sighand(p, &flags))
4110 return -ESRCH;
4111 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4112 unlock_task_sighand(p, &flags);
4114 /* can't set/change the rt policy */
4115 if (policy != p->policy && !rlim_rtprio)
4116 return -EPERM;
4118 /* can't increase priority */
4119 if (param->sched_priority > p->rt_priority &&
4120 param->sched_priority > rlim_rtprio)
4121 return -EPERM;
4124 * Like positive nice levels, dont allow tasks to
4125 * move out of SCHED_IDLE either:
4127 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4128 return -EPERM;
4130 /* can't change other user's priorities */
4131 if ((current->euid != p->euid) &&
4132 (current->euid != p->uid))
4133 return -EPERM;
4136 retval = security_task_setscheduler(p, policy, param);
4137 if (retval)
4138 return retval;
4140 * make sure no PI-waiters arrive (or leave) while we are
4141 * changing the priority of the task:
4143 spin_lock_irqsave(&p->pi_lock, flags);
4145 * To be able to change p->policy safely, the apropriate
4146 * runqueue lock must be held.
4148 rq = __task_rq_lock(p);
4149 /* recheck policy now with rq lock held */
4150 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4151 policy = oldpolicy = -1;
4152 __task_rq_unlock(rq);
4153 spin_unlock_irqrestore(&p->pi_lock, flags);
4154 goto recheck;
4156 update_rq_clock(rq);
4157 on_rq = p->se.on_rq;
4158 running = task_running(rq, p);
4159 if (on_rq) {
4160 deactivate_task(rq, p, 0);
4161 if (running)
4162 p->sched_class->put_prev_task(rq, p);
4165 oldprio = p->prio;
4166 __setscheduler(rq, p, policy, param->sched_priority);
4168 if (on_rq) {
4169 if (running)
4170 p->sched_class->set_curr_task(rq);
4171 activate_task(rq, p, 0);
4173 * Reschedule if we are currently running on this runqueue and
4174 * our priority decreased, or if we are not currently running on
4175 * this runqueue and our priority is higher than the current's
4177 if (running) {
4178 if (p->prio > oldprio)
4179 resched_task(rq->curr);
4180 } else {
4181 check_preempt_curr(rq, p);
4184 __task_rq_unlock(rq);
4185 spin_unlock_irqrestore(&p->pi_lock, flags);
4187 rt_mutex_adjust_pi(p);
4189 return 0;
4191 EXPORT_SYMBOL_GPL(sched_setscheduler);
4193 static int
4194 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4196 struct sched_param lparam;
4197 struct task_struct *p;
4198 int retval;
4200 if (!param || pid < 0)
4201 return -EINVAL;
4202 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4203 return -EFAULT;
4205 rcu_read_lock();
4206 retval = -ESRCH;
4207 p = find_process_by_pid(pid);
4208 if (p != NULL)
4209 retval = sched_setscheduler(p, policy, &lparam);
4210 rcu_read_unlock();
4212 return retval;
4216 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4217 * @pid: the pid in question.
4218 * @policy: new policy.
4219 * @param: structure containing the new RT priority.
4221 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4222 struct sched_param __user *param)
4224 /* negative values for policy are not valid */
4225 if (policy < 0)
4226 return -EINVAL;
4228 return do_sched_setscheduler(pid, policy, param);
4232 * sys_sched_setparam - set/change the RT priority of a thread
4233 * @pid: the pid in question.
4234 * @param: structure containing the new RT priority.
4236 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4238 return do_sched_setscheduler(pid, -1, param);
4242 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4243 * @pid: the pid in question.
4245 asmlinkage long sys_sched_getscheduler(pid_t pid)
4247 struct task_struct *p;
4248 int retval;
4250 if (pid < 0)
4251 return -EINVAL;
4253 retval = -ESRCH;
4254 read_lock(&tasklist_lock);
4255 p = find_process_by_pid(pid);
4256 if (p) {
4257 retval = security_task_getscheduler(p);
4258 if (!retval)
4259 retval = p->policy;
4261 read_unlock(&tasklist_lock);
4262 return retval;
4266 * sys_sched_getscheduler - get the RT priority of a thread
4267 * @pid: the pid in question.
4268 * @param: structure containing the RT priority.
4270 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4272 struct sched_param lp;
4273 struct task_struct *p;
4274 int retval;
4276 if (!param || pid < 0)
4277 return -EINVAL;
4279 read_lock(&tasklist_lock);
4280 p = find_process_by_pid(pid);
4281 retval = -ESRCH;
4282 if (!p)
4283 goto out_unlock;
4285 retval = security_task_getscheduler(p);
4286 if (retval)
4287 goto out_unlock;
4289 lp.sched_priority = p->rt_priority;
4290 read_unlock(&tasklist_lock);
4293 * This one might sleep, we cannot do it with a spinlock held ...
4295 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4297 return retval;
4299 out_unlock:
4300 read_unlock(&tasklist_lock);
4301 return retval;
4304 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4306 cpumask_t cpus_allowed;
4307 struct task_struct *p;
4308 int retval;
4310 mutex_lock(&sched_hotcpu_mutex);
4311 read_lock(&tasklist_lock);
4313 p = find_process_by_pid(pid);
4314 if (!p) {
4315 read_unlock(&tasklist_lock);
4316 mutex_unlock(&sched_hotcpu_mutex);
4317 return -ESRCH;
4321 * It is not safe to call set_cpus_allowed with the
4322 * tasklist_lock held. We will bump the task_struct's
4323 * usage count and then drop tasklist_lock.
4325 get_task_struct(p);
4326 read_unlock(&tasklist_lock);
4328 retval = -EPERM;
4329 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4330 !capable(CAP_SYS_NICE))
4331 goto out_unlock;
4333 retval = security_task_setscheduler(p, 0, NULL);
4334 if (retval)
4335 goto out_unlock;
4337 cpus_allowed = cpuset_cpus_allowed(p);
4338 cpus_and(new_mask, new_mask, cpus_allowed);
4339 retval = set_cpus_allowed(p, new_mask);
4341 out_unlock:
4342 put_task_struct(p);
4343 mutex_unlock(&sched_hotcpu_mutex);
4344 return retval;
4347 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4348 cpumask_t *new_mask)
4350 if (len < sizeof(cpumask_t)) {
4351 memset(new_mask, 0, sizeof(cpumask_t));
4352 } else if (len > sizeof(cpumask_t)) {
4353 len = sizeof(cpumask_t);
4355 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4359 * sys_sched_setaffinity - set the cpu affinity of a process
4360 * @pid: pid of the process
4361 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4362 * @user_mask_ptr: user-space pointer to the new cpu mask
4364 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4365 unsigned long __user *user_mask_ptr)
4367 cpumask_t new_mask;
4368 int retval;
4370 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4371 if (retval)
4372 return retval;
4374 return sched_setaffinity(pid, new_mask);
4378 * Represents all cpu's present in the system
4379 * In systems capable of hotplug, this map could dynamically grow
4380 * as new cpu's are detected in the system via any platform specific
4381 * method, such as ACPI for e.g.
4384 cpumask_t cpu_present_map __read_mostly;
4385 EXPORT_SYMBOL(cpu_present_map);
4387 #ifndef CONFIG_SMP
4388 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4389 EXPORT_SYMBOL(cpu_online_map);
4391 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4392 EXPORT_SYMBOL(cpu_possible_map);
4393 #endif
4395 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4397 struct task_struct *p;
4398 int retval;
4400 mutex_lock(&sched_hotcpu_mutex);
4401 read_lock(&tasklist_lock);
4403 retval = -ESRCH;
4404 p = find_process_by_pid(pid);
4405 if (!p)
4406 goto out_unlock;
4408 retval = security_task_getscheduler(p);
4409 if (retval)
4410 goto out_unlock;
4412 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4414 out_unlock:
4415 read_unlock(&tasklist_lock);
4416 mutex_unlock(&sched_hotcpu_mutex);
4418 return retval;
4422 * sys_sched_getaffinity - get the cpu affinity of a process
4423 * @pid: pid of the process
4424 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4425 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4427 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4428 unsigned long __user *user_mask_ptr)
4430 int ret;
4431 cpumask_t mask;
4433 if (len < sizeof(cpumask_t))
4434 return -EINVAL;
4436 ret = sched_getaffinity(pid, &mask);
4437 if (ret < 0)
4438 return ret;
4440 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4441 return -EFAULT;
4443 return sizeof(cpumask_t);
4447 * sys_sched_yield - yield the current processor to other threads.
4449 * This function yields the current CPU to other tasks. If there are no
4450 * other threads running on this CPU then this function will return.
4452 asmlinkage long sys_sched_yield(void)
4454 struct rq *rq = this_rq_lock();
4456 schedstat_inc(rq, yld_count);
4457 current->sched_class->yield_task(rq);
4460 * Since we are going to call schedule() anyway, there's
4461 * no need to preempt or enable interrupts:
4463 __release(rq->lock);
4464 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4465 _raw_spin_unlock(&rq->lock);
4466 preempt_enable_no_resched();
4468 schedule();
4470 return 0;
4473 static void __cond_resched(void)
4475 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4476 __might_sleep(__FILE__, __LINE__);
4477 #endif
4479 * The BKS might be reacquired before we have dropped
4480 * PREEMPT_ACTIVE, which could trigger a second
4481 * cond_resched() call.
4483 do {
4484 add_preempt_count(PREEMPT_ACTIVE);
4485 schedule();
4486 sub_preempt_count(PREEMPT_ACTIVE);
4487 } while (need_resched());
4490 int __sched cond_resched(void)
4492 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4493 system_state == SYSTEM_RUNNING) {
4494 __cond_resched();
4495 return 1;
4497 return 0;
4499 EXPORT_SYMBOL(cond_resched);
4502 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4503 * call schedule, and on return reacquire the lock.
4505 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4506 * operations here to prevent schedule() from being called twice (once via
4507 * spin_unlock(), once by hand).
4509 int cond_resched_lock(spinlock_t *lock)
4511 int ret = 0;
4513 if (need_lockbreak(lock)) {
4514 spin_unlock(lock);
4515 cpu_relax();
4516 ret = 1;
4517 spin_lock(lock);
4519 if (need_resched() && system_state == SYSTEM_RUNNING) {
4520 spin_release(&lock->dep_map, 1, _THIS_IP_);
4521 _raw_spin_unlock(lock);
4522 preempt_enable_no_resched();
4523 __cond_resched();
4524 ret = 1;
4525 spin_lock(lock);
4527 return ret;
4529 EXPORT_SYMBOL(cond_resched_lock);
4531 int __sched cond_resched_softirq(void)
4533 BUG_ON(!in_softirq());
4535 if (need_resched() && system_state == SYSTEM_RUNNING) {
4536 local_bh_enable();
4537 __cond_resched();
4538 local_bh_disable();
4539 return 1;
4541 return 0;
4543 EXPORT_SYMBOL(cond_resched_softirq);
4546 * yield - yield the current processor to other threads.
4548 * This is a shortcut for kernel-space yielding - it marks the
4549 * thread runnable and calls sys_sched_yield().
4551 void __sched yield(void)
4553 set_current_state(TASK_RUNNING);
4554 sys_sched_yield();
4556 EXPORT_SYMBOL(yield);
4559 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4560 * that process accounting knows that this is a task in IO wait state.
4562 * But don't do that if it is a deliberate, throttling IO wait (this task
4563 * has set its backing_dev_info: the queue against which it should throttle)
4565 void __sched io_schedule(void)
4567 struct rq *rq = &__raw_get_cpu_var(runqueues);
4569 delayacct_blkio_start();
4570 atomic_inc(&rq->nr_iowait);
4571 schedule();
4572 atomic_dec(&rq->nr_iowait);
4573 delayacct_blkio_end();
4575 EXPORT_SYMBOL(io_schedule);
4577 long __sched io_schedule_timeout(long timeout)
4579 struct rq *rq = &__raw_get_cpu_var(runqueues);
4580 long ret;
4582 delayacct_blkio_start();
4583 atomic_inc(&rq->nr_iowait);
4584 ret = schedule_timeout(timeout);
4585 atomic_dec(&rq->nr_iowait);
4586 delayacct_blkio_end();
4587 return ret;
4591 * sys_sched_get_priority_max - return maximum RT priority.
4592 * @policy: scheduling class.
4594 * this syscall returns the maximum rt_priority that can be used
4595 * by a given scheduling class.
4597 asmlinkage long sys_sched_get_priority_max(int policy)
4599 int ret = -EINVAL;
4601 switch (policy) {
4602 case SCHED_FIFO:
4603 case SCHED_RR:
4604 ret = MAX_USER_RT_PRIO-1;
4605 break;
4606 case SCHED_NORMAL:
4607 case SCHED_BATCH:
4608 case SCHED_IDLE:
4609 ret = 0;
4610 break;
4612 return ret;
4616 * sys_sched_get_priority_min - return minimum RT priority.
4617 * @policy: scheduling class.
4619 * this syscall returns the minimum rt_priority that can be used
4620 * by a given scheduling class.
4622 asmlinkage long sys_sched_get_priority_min(int policy)
4624 int ret = -EINVAL;
4626 switch (policy) {
4627 case SCHED_FIFO:
4628 case SCHED_RR:
4629 ret = 1;
4630 break;
4631 case SCHED_NORMAL:
4632 case SCHED_BATCH:
4633 case SCHED_IDLE:
4634 ret = 0;
4636 return ret;
4640 * sys_sched_rr_get_interval - return the default timeslice of a process.
4641 * @pid: pid of the process.
4642 * @interval: userspace pointer to the timeslice value.
4644 * this syscall writes the default timeslice value of a given process
4645 * into the user-space timespec buffer. A value of '0' means infinity.
4647 asmlinkage
4648 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4650 struct task_struct *p;
4651 unsigned int time_slice;
4652 int retval;
4653 struct timespec t;
4655 if (pid < 0)
4656 return -EINVAL;
4658 retval = -ESRCH;
4659 read_lock(&tasklist_lock);
4660 p = find_process_by_pid(pid);
4661 if (!p)
4662 goto out_unlock;
4664 retval = security_task_getscheduler(p);
4665 if (retval)
4666 goto out_unlock;
4668 if (p->policy == SCHED_FIFO)
4669 time_slice = 0;
4670 else if (p->policy == SCHED_RR)
4671 time_slice = DEF_TIMESLICE;
4672 else {
4673 struct sched_entity *se = &p->se;
4674 unsigned long flags;
4675 struct rq *rq;
4677 rq = task_rq_lock(p, &flags);
4678 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4679 task_rq_unlock(rq, &flags);
4681 read_unlock(&tasklist_lock);
4682 jiffies_to_timespec(time_slice, &t);
4683 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4684 return retval;
4686 out_unlock:
4687 read_unlock(&tasklist_lock);
4688 return retval;
4691 static const char stat_nam[] = "RSDTtZX";
4693 static void show_task(struct task_struct *p)
4695 unsigned long free = 0;
4696 unsigned state;
4698 state = p->state ? __ffs(p->state) + 1 : 0;
4699 printk("%-13.13s %c", p->comm,
4700 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4701 #if BITS_PER_LONG == 32
4702 if (state == TASK_RUNNING)
4703 printk(" running ");
4704 else
4705 printk(" %08lx ", thread_saved_pc(p));
4706 #else
4707 if (state == TASK_RUNNING)
4708 printk(" running task ");
4709 else
4710 printk(" %016lx ", thread_saved_pc(p));
4711 #endif
4712 #ifdef CONFIG_DEBUG_STACK_USAGE
4714 unsigned long *n = end_of_stack(p);
4715 while (!*n)
4716 n++;
4717 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4719 #endif
4720 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4722 if (state != TASK_RUNNING)
4723 show_stack(p, NULL);
4726 void show_state_filter(unsigned long state_filter)
4728 struct task_struct *g, *p;
4730 #if BITS_PER_LONG == 32
4731 printk(KERN_INFO
4732 " task PC stack pid father\n");
4733 #else
4734 printk(KERN_INFO
4735 " task PC stack pid father\n");
4736 #endif
4737 read_lock(&tasklist_lock);
4738 do_each_thread(g, p) {
4740 * reset the NMI-timeout, listing all files on a slow
4741 * console might take alot of time:
4743 touch_nmi_watchdog();
4744 if (!state_filter || (p->state & state_filter))
4745 show_task(p);
4746 } while_each_thread(g, p);
4748 touch_all_softlockup_watchdogs();
4750 #ifdef CONFIG_SCHED_DEBUG
4751 sysrq_sched_debug_show();
4752 #endif
4753 read_unlock(&tasklist_lock);
4755 * Only show locks if all tasks are dumped:
4757 if (state_filter == -1)
4758 debug_show_all_locks();
4761 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4763 idle->sched_class = &idle_sched_class;
4767 * init_idle - set up an idle thread for a given CPU
4768 * @idle: task in question
4769 * @cpu: cpu the idle task belongs to
4771 * NOTE: this function does not set the idle thread's NEED_RESCHED
4772 * flag, to make booting more robust.
4774 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4776 struct rq *rq = cpu_rq(cpu);
4777 unsigned long flags;
4779 __sched_fork(idle);
4780 idle->se.exec_start = sched_clock();
4782 idle->prio = idle->normal_prio = MAX_PRIO;
4783 idle->cpus_allowed = cpumask_of_cpu(cpu);
4784 __set_task_cpu(idle, cpu);
4786 spin_lock_irqsave(&rq->lock, flags);
4787 rq->curr = rq->idle = idle;
4788 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4789 idle->oncpu = 1;
4790 #endif
4791 spin_unlock_irqrestore(&rq->lock, flags);
4793 /* Set the preempt count _outside_ the spinlocks! */
4794 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4795 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4796 #else
4797 task_thread_info(idle)->preempt_count = 0;
4798 #endif
4800 * The idle tasks have their own, simple scheduling class:
4802 idle->sched_class = &idle_sched_class;
4806 * In a system that switches off the HZ timer nohz_cpu_mask
4807 * indicates which cpus entered this state. This is used
4808 * in the rcu update to wait only for active cpus. For system
4809 * which do not switch off the HZ timer nohz_cpu_mask should
4810 * always be CPU_MASK_NONE.
4812 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4814 #ifdef CONFIG_SMP
4816 * This is how migration works:
4818 * 1) we queue a struct migration_req structure in the source CPU's
4819 * runqueue and wake up that CPU's migration thread.
4820 * 2) we down() the locked semaphore => thread blocks.
4821 * 3) migration thread wakes up (implicitly it forces the migrated
4822 * thread off the CPU)
4823 * 4) it gets the migration request and checks whether the migrated
4824 * task is still in the wrong runqueue.
4825 * 5) if it's in the wrong runqueue then the migration thread removes
4826 * it and puts it into the right queue.
4827 * 6) migration thread up()s the semaphore.
4828 * 7) we wake up and the migration is done.
4832 * Change a given task's CPU affinity. Migrate the thread to a
4833 * proper CPU and schedule it away if the CPU it's executing on
4834 * is removed from the allowed bitmask.
4836 * NOTE: the caller must have a valid reference to the task, the
4837 * task must not exit() & deallocate itself prematurely. The
4838 * call is not atomic; no spinlocks may be held.
4840 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4842 struct migration_req req;
4843 unsigned long flags;
4844 struct rq *rq;
4845 int ret = 0;
4847 rq = task_rq_lock(p, &flags);
4848 if (!cpus_intersects(new_mask, cpu_online_map)) {
4849 ret = -EINVAL;
4850 goto out;
4853 p->cpus_allowed = new_mask;
4854 /* Can the task run on the task's current CPU? If so, we're done */
4855 if (cpu_isset(task_cpu(p), new_mask))
4856 goto out;
4858 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4859 /* Need help from migration thread: drop lock and wait. */
4860 task_rq_unlock(rq, &flags);
4861 wake_up_process(rq->migration_thread);
4862 wait_for_completion(&req.done);
4863 tlb_migrate_finish(p->mm);
4864 return 0;
4866 out:
4867 task_rq_unlock(rq, &flags);
4869 return ret;
4871 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4874 * Move (not current) task off this cpu, onto dest cpu. We're doing
4875 * this because either it can't run here any more (set_cpus_allowed()
4876 * away from this CPU, or CPU going down), or because we're
4877 * attempting to rebalance this task on exec (sched_exec).
4879 * So we race with normal scheduler movements, but that's OK, as long
4880 * as the task is no longer on this CPU.
4882 * Returns non-zero if task was successfully migrated.
4884 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4886 struct rq *rq_dest, *rq_src;
4887 int ret = 0, on_rq;
4889 if (unlikely(cpu_is_offline(dest_cpu)))
4890 return ret;
4892 rq_src = cpu_rq(src_cpu);
4893 rq_dest = cpu_rq(dest_cpu);
4895 double_rq_lock(rq_src, rq_dest);
4896 /* Already moved. */
4897 if (task_cpu(p) != src_cpu)
4898 goto out;
4899 /* Affinity changed (again). */
4900 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4901 goto out;
4903 on_rq = p->se.on_rq;
4904 if (on_rq)
4905 deactivate_task(rq_src, p, 0);
4907 set_task_cpu(p, dest_cpu);
4908 if (on_rq) {
4909 activate_task(rq_dest, p, 0);
4910 check_preempt_curr(rq_dest, p);
4912 ret = 1;
4913 out:
4914 double_rq_unlock(rq_src, rq_dest);
4915 return ret;
4919 * migration_thread - this is a highprio system thread that performs
4920 * thread migration by bumping thread off CPU then 'pushing' onto
4921 * another runqueue.
4923 static int migration_thread(void *data)
4925 int cpu = (long)data;
4926 struct rq *rq;
4928 rq = cpu_rq(cpu);
4929 BUG_ON(rq->migration_thread != current);
4931 set_current_state(TASK_INTERRUPTIBLE);
4932 while (!kthread_should_stop()) {
4933 struct migration_req *req;
4934 struct list_head *head;
4936 spin_lock_irq(&rq->lock);
4938 if (cpu_is_offline(cpu)) {
4939 spin_unlock_irq(&rq->lock);
4940 goto wait_to_die;
4943 if (rq->active_balance) {
4944 active_load_balance(rq, cpu);
4945 rq->active_balance = 0;
4948 head = &rq->migration_queue;
4950 if (list_empty(head)) {
4951 spin_unlock_irq(&rq->lock);
4952 schedule();
4953 set_current_state(TASK_INTERRUPTIBLE);
4954 continue;
4956 req = list_entry(head->next, struct migration_req, list);
4957 list_del_init(head->next);
4959 spin_unlock(&rq->lock);
4960 __migrate_task(req->task, cpu, req->dest_cpu);
4961 local_irq_enable();
4963 complete(&req->done);
4965 __set_current_state(TASK_RUNNING);
4966 return 0;
4968 wait_to_die:
4969 /* Wait for kthread_stop */
4970 set_current_state(TASK_INTERRUPTIBLE);
4971 while (!kthread_should_stop()) {
4972 schedule();
4973 set_current_state(TASK_INTERRUPTIBLE);
4975 __set_current_state(TASK_RUNNING);
4976 return 0;
4979 #ifdef CONFIG_HOTPLUG_CPU
4981 * Figure out where task on dead CPU should go, use force if neccessary.
4982 * NOTE: interrupts should be disabled by the caller
4984 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
4986 unsigned long flags;
4987 cpumask_t mask;
4988 struct rq *rq;
4989 int dest_cpu;
4991 do {
4992 /* On same node? */
4993 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4994 cpus_and(mask, mask, p->cpus_allowed);
4995 dest_cpu = any_online_cpu(mask);
4997 /* On any allowed CPU? */
4998 if (dest_cpu == NR_CPUS)
4999 dest_cpu = any_online_cpu(p->cpus_allowed);
5001 /* No more Mr. Nice Guy. */
5002 if (dest_cpu == NR_CPUS) {
5003 rq = task_rq_lock(p, &flags);
5004 cpus_setall(p->cpus_allowed);
5005 dest_cpu = any_online_cpu(p->cpus_allowed);
5006 task_rq_unlock(rq, &flags);
5009 * Don't tell them about moving exiting tasks or
5010 * kernel threads (both mm NULL), since they never
5011 * leave kernel.
5013 if (p->mm && printk_ratelimit())
5014 printk(KERN_INFO "process %d (%s) no "
5015 "longer affine to cpu%d\n",
5016 p->pid, p->comm, dead_cpu);
5018 } while (!__migrate_task(p, dead_cpu, dest_cpu));
5022 * While a dead CPU has no uninterruptible tasks queued at this point,
5023 * it might still have a nonzero ->nr_uninterruptible counter, because
5024 * for performance reasons the counter is not stricly tracking tasks to
5025 * their home CPUs. So we just add the counter to another CPU's counter,
5026 * to keep the global sum constant after CPU-down:
5028 static void migrate_nr_uninterruptible(struct rq *rq_src)
5030 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5031 unsigned long flags;
5033 local_irq_save(flags);
5034 double_rq_lock(rq_src, rq_dest);
5035 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5036 rq_src->nr_uninterruptible = 0;
5037 double_rq_unlock(rq_src, rq_dest);
5038 local_irq_restore(flags);
5041 /* Run through task list and migrate tasks from the dead cpu. */
5042 static void migrate_live_tasks(int src_cpu)
5044 struct task_struct *p, *t;
5046 write_lock_irq(&tasklist_lock);
5048 do_each_thread(t, p) {
5049 if (p == current)
5050 continue;
5052 if (task_cpu(p) == src_cpu)
5053 move_task_off_dead_cpu(src_cpu, p);
5054 } while_each_thread(t, p);
5056 write_unlock_irq(&tasklist_lock);
5060 * activate_idle_task - move idle task to the _front_ of runqueue.
5062 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5064 update_rq_clock(rq);
5066 if (p->state == TASK_UNINTERRUPTIBLE)
5067 rq->nr_uninterruptible--;
5069 enqueue_task(rq, p, 0);
5070 inc_nr_running(p, rq);
5074 * Schedules idle task to be the next runnable task on current CPU.
5075 * It does so by boosting its priority to highest possible and adding it to
5076 * the _front_ of the runqueue. Used by CPU offline code.
5078 void sched_idle_next(void)
5080 int this_cpu = smp_processor_id();
5081 struct rq *rq = cpu_rq(this_cpu);
5082 struct task_struct *p = rq->idle;
5083 unsigned long flags;
5085 /* cpu has to be offline */
5086 BUG_ON(cpu_online(this_cpu));
5089 * Strictly not necessary since rest of the CPUs are stopped by now
5090 * and interrupts disabled on the current cpu.
5092 spin_lock_irqsave(&rq->lock, flags);
5094 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5096 /* Add idle task to the _front_ of its priority queue: */
5097 activate_idle_task(p, rq);
5099 spin_unlock_irqrestore(&rq->lock, flags);
5103 * Ensures that the idle task is using init_mm right before its cpu goes
5104 * offline.
5106 void idle_task_exit(void)
5108 struct mm_struct *mm = current->active_mm;
5110 BUG_ON(cpu_online(smp_processor_id()));
5112 if (mm != &init_mm)
5113 switch_mm(mm, &init_mm, current);
5114 mmdrop(mm);
5117 /* called under rq->lock with disabled interrupts */
5118 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5120 struct rq *rq = cpu_rq(dead_cpu);
5122 /* Must be exiting, otherwise would be on tasklist. */
5123 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5125 /* Cannot have done final schedule yet: would have vanished. */
5126 BUG_ON(p->state == TASK_DEAD);
5128 get_task_struct(p);
5131 * Drop lock around migration; if someone else moves it,
5132 * that's OK. No task can be added to this CPU, so iteration is
5133 * fine.
5134 * NOTE: interrupts should be left disabled --dev@
5136 spin_unlock(&rq->lock);
5137 move_task_off_dead_cpu(dead_cpu, p);
5138 spin_lock(&rq->lock);
5140 put_task_struct(p);
5143 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5144 static void migrate_dead_tasks(unsigned int dead_cpu)
5146 struct rq *rq = cpu_rq(dead_cpu);
5147 struct task_struct *next;
5149 for ( ; ; ) {
5150 if (!rq->nr_running)
5151 break;
5152 update_rq_clock(rq);
5153 next = pick_next_task(rq, rq->curr);
5154 if (!next)
5155 break;
5156 migrate_dead(dead_cpu, next);
5160 #endif /* CONFIG_HOTPLUG_CPU */
5162 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5164 static struct ctl_table sd_ctl_dir[] = {
5166 .procname = "sched_domain",
5167 .mode = 0555,
5169 {0,},
5172 static struct ctl_table sd_ctl_root[] = {
5174 .ctl_name = CTL_KERN,
5175 .procname = "kernel",
5176 .mode = 0555,
5177 .child = sd_ctl_dir,
5179 {0,},
5182 static struct ctl_table *sd_alloc_ctl_entry(int n)
5184 struct ctl_table *entry =
5185 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5187 BUG_ON(!entry);
5188 memset(entry, 0, n * sizeof(struct ctl_table));
5190 return entry;
5193 static void
5194 set_table_entry(struct ctl_table *entry,
5195 const char *procname, void *data, int maxlen,
5196 mode_t mode, proc_handler *proc_handler)
5198 entry->procname = procname;
5199 entry->data = data;
5200 entry->maxlen = maxlen;
5201 entry->mode = mode;
5202 entry->proc_handler = proc_handler;
5205 static struct ctl_table *
5206 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5208 struct ctl_table *table = sd_alloc_ctl_entry(12);
5210 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5211 sizeof(long), 0644, proc_doulongvec_minmax);
5212 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5213 sizeof(long), 0644, proc_doulongvec_minmax);
5214 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5215 sizeof(int), 0644, proc_dointvec_minmax);
5216 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5217 sizeof(int), 0644, proc_dointvec_minmax);
5218 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5219 sizeof(int), 0644, proc_dointvec_minmax);
5220 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5221 sizeof(int), 0644, proc_dointvec_minmax);
5222 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5223 sizeof(int), 0644, proc_dointvec_minmax);
5224 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5225 sizeof(int), 0644, proc_dointvec_minmax);
5226 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5227 sizeof(int), 0644, proc_dointvec_minmax);
5228 set_table_entry(&table[9], "cache_nice_tries",
5229 &sd->cache_nice_tries,
5230 sizeof(int), 0644, proc_dointvec_minmax);
5231 set_table_entry(&table[10], "flags", &sd->flags,
5232 sizeof(int), 0644, proc_dointvec_minmax);
5234 return table;
5237 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5239 struct ctl_table *entry, *table;
5240 struct sched_domain *sd;
5241 int domain_num = 0, i;
5242 char buf[32];
5244 for_each_domain(cpu, sd)
5245 domain_num++;
5246 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5248 i = 0;
5249 for_each_domain(cpu, sd) {
5250 snprintf(buf, 32, "domain%d", i);
5251 entry->procname = kstrdup(buf, GFP_KERNEL);
5252 entry->mode = 0555;
5253 entry->child = sd_alloc_ctl_domain_table(sd);
5254 entry++;
5255 i++;
5257 return table;
5260 static struct ctl_table_header *sd_sysctl_header;
5261 static void init_sched_domain_sysctl(void)
5263 int i, cpu_num = num_online_cpus();
5264 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5265 char buf[32];
5267 sd_ctl_dir[0].child = entry;
5269 for (i = 0; i < cpu_num; i++, entry++) {
5270 snprintf(buf, 32, "cpu%d", i);
5271 entry->procname = kstrdup(buf, GFP_KERNEL);
5272 entry->mode = 0555;
5273 entry->child = sd_alloc_ctl_cpu_table(i);
5275 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5277 #else
5278 static void init_sched_domain_sysctl(void)
5281 #endif
5284 * migration_call - callback that gets triggered when a CPU is added.
5285 * Here we can start up the necessary migration thread for the new CPU.
5287 static int __cpuinit
5288 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5290 struct task_struct *p;
5291 int cpu = (long)hcpu;
5292 unsigned long flags;
5293 struct rq *rq;
5295 switch (action) {
5296 case CPU_LOCK_ACQUIRE:
5297 mutex_lock(&sched_hotcpu_mutex);
5298 break;
5300 case CPU_UP_PREPARE:
5301 case CPU_UP_PREPARE_FROZEN:
5302 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5303 if (IS_ERR(p))
5304 return NOTIFY_BAD;
5305 kthread_bind(p, cpu);
5306 /* Must be high prio: stop_machine expects to yield to it. */
5307 rq = task_rq_lock(p, &flags);
5308 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5309 task_rq_unlock(rq, &flags);
5310 cpu_rq(cpu)->migration_thread = p;
5311 break;
5313 case CPU_ONLINE:
5314 case CPU_ONLINE_FROZEN:
5315 /* Strictly unneccessary, as first user will wake it. */
5316 wake_up_process(cpu_rq(cpu)->migration_thread);
5317 break;
5319 #ifdef CONFIG_HOTPLUG_CPU
5320 case CPU_UP_CANCELED:
5321 case CPU_UP_CANCELED_FROZEN:
5322 if (!cpu_rq(cpu)->migration_thread)
5323 break;
5324 /* Unbind it from offline cpu so it can run. Fall thru. */
5325 kthread_bind(cpu_rq(cpu)->migration_thread,
5326 any_online_cpu(cpu_online_map));
5327 kthread_stop(cpu_rq(cpu)->migration_thread);
5328 cpu_rq(cpu)->migration_thread = NULL;
5329 break;
5331 case CPU_DEAD:
5332 case CPU_DEAD_FROZEN:
5333 migrate_live_tasks(cpu);
5334 rq = cpu_rq(cpu);
5335 kthread_stop(rq->migration_thread);
5336 rq->migration_thread = NULL;
5337 /* Idle task back to normal (off runqueue, low prio) */
5338 rq = task_rq_lock(rq->idle, &flags);
5339 update_rq_clock(rq);
5340 deactivate_task(rq, rq->idle, 0);
5341 rq->idle->static_prio = MAX_PRIO;
5342 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5343 rq->idle->sched_class = &idle_sched_class;
5344 migrate_dead_tasks(cpu);
5345 task_rq_unlock(rq, &flags);
5346 migrate_nr_uninterruptible(rq);
5347 BUG_ON(rq->nr_running != 0);
5349 /* No need to migrate the tasks: it was best-effort if
5350 * they didn't take sched_hotcpu_mutex. Just wake up
5351 * the requestors. */
5352 spin_lock_irq(&rq->lock);
5353 while (!list_empty(&rq->migration_queue)) {
5354 struct migration_req *req;
5356 req = list_entry(rq->migration_queue.next,
5357 struct migration_req, list);
5358 list_del_init(&req->list);
5359 complete(&req->done);
5361 spin_unlock_irq(&rq->lock);
5362 break;
5363 #endif
5364 case CPU_LOCK_RELEASE:
5365 mutex_unlock(&sched_hotcpu_mutex);
5366 break;
5368 return NOTIFY_OK;
5371 /* Register at highest priority so that task migration (migrate_all_tasks)
5372 * happens before everything else.
5374 static struct notifier_block __cpuinitdata migration_notifier = {
5375 .notifier_call = migration_call,
5376 .priority = 10
5379 int __init migration_init(void)
5381 void *cpu = (void *)(long)smp_processor_id();
5382 int err;
5384 /* Start one for the boot CPU: */
5385 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5386 BUG_ON(err == NOTIFY_BAD);
5387 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5388 register_cpu_notifier(&migration_notifier);
5390 return 0;
5392 #endif
5394 #ifdef CONFIG_SMP
5396 /* Number of possible processor ids */
5397 int nr_cpu_ids __read_mostly = NR_CPUS;
5398 EXPORT_SYMBOL(nr_cpu_ids);
5400 #ifdef CONFIG_SCHED_DEBUG
5401 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5403 int level = 0;
5405 if (!sd) {
5406 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5407 return;
5410 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5412 do {
5413 int i;
5414 char str[NR_CPUS];
5415 struct sched_group *group = sd->groups;
5416 cpumask_t groupmask;
5418 cpumask_scnprintf(str, NR_CPUS, sd->span);
5419 cpus_clear(groupmask);
5421 printk(KERN_DEBUG);
5422 for (i = 0; i < level + 1; i++)
5423 printk(" ");
5424 printk("domain %d: ", level);
5426 if (!(sd->flags & SD_LOAD_BALANCE)) {
5427 printk("does not load-balance\n");
5428 if (sd->parent)
5429 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5430 " has parent");
5431 break;
5434 printk("span %s\n", str);
5436 if (!cpu_isset(cpu, sd->span))
5437 printk(KERN_ERR "ERROR: domain->span does not contain "
5438 "CPU%d\n", cpu);
5439 if (!cpu_isset(cpu, group->cpumask))
5440 printk(KERN_ERR "ERROR: domain->groups does not contain"
5441 " CPU%d\n", cpu);
5443 printk(KERN_DEBUG);
5444 for (i = 0; i < level + 2; i++)
5445 printk(" ");
5446 printk("groups:");
5447 do {
5448 if (!group) {
5449 printk("\n");
5450 printk(KERN_ERR "ERROR: group is NULL\n");
5451 break;
5454 if (!group->__cpu_power) {
5455 printk("\n");
5456 printk(KERN_ERR "ERROR: domain->cpu_power not "
5457 "set\n");
5458 break;
5461 if (!cpus_weight(group->cpumask)) {
5462 printk("\n");
5463 printk(KERN_ERR "ERROR: empty group\n");
5464 break;
5467 if (cpus_intersects(groupmask, group->cpumask)) {
5468 printk("\n");
5469 printk(KERN_ERR "ERROR: repeated CPUs\n");
5470 break;
5473 cpus_or(groupmask, groupmask, group->cpumask);
5475 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5476 printk(" %s", str);
5478 group = group->next;
5479 } while (group != sd->groups);
5480 printk("\n");
5482 if (!cpus_equal(sd->span, groupmask))
5483 printk(KERN_ERR "ERROR: groups don't span "
5484 "domain->span\n");
5486 level++;
5487 sd = sd->parent;
5488 if (!sd)
5489 continue;
5491 if (!cpus_subset(groupmask, sd->span))
5492 printk(KERN_ERR "ERROR: parent span is not a superset "
5493 "of domain->span\n");
5495 } while (sd);
5497 #else
5498 # define sched_domain_debug(sd, cpu) do { } while (0)
5499 #endif
5501 static int sd_degenerate(struct sched_domain *sd)
5503 if (cpus_weight(sd->span) == 1)
5504 return 1;
5506 /* Following flags need at least 2 groups */
5507 if (sd->flags & (SD_LOAD_BALANCE |
5508 SD_BALANCE_NEWIDLE |
5509 SD_BALANCE_FORK |
5510 SD_BALANCE_EXEC |
5511 SD_SHARE_CPUPOWER |
5512 SD_SHARE_PKG_RESOURCES)) {
5513 if (sd->groups != sd->groups->next)
5514 return 0;
5517 /* Following flags don't use groups */
5518 if (sd->flags & (SD_WAKE_IDLE |
5519 SD_WAKE_AFFINE |
5520 SD_WAKE_BALANCE))
5521 return 0;
5523 return 1;
5526 static int
5527 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5529 unsigned long cflags = sd->flags, pflags = parent->flags;
5531 if (sd_degenerate(parent))
5532 return 1;
5534 if (!cpus_equal(sd->span, parent->span))
5535 return 0;
5537 /* Does parent contain flags not in child? */
5538 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5539 if (cflags & SD_WAKE_AFFINE)
5540 pflags &= ~SD_WAKE_BALANCE;
5541 /* Flags needing groups don't count if only 1 group in parent */
5542 if (parent->groups == parent->groups->next) {
5543 pflags &= ~(SD_LOAD_BALANCE |
5544 SD_BALANCE_NEWIDLE |
5545 SD_BALANCE_FORK |
5546 SD_BALANCE_EXEC |
5547 SD_SHARE_CPUPOWER |
5548 SD_SHARE_PKG_RESOURCES);
5550 if (~cflags & pflags)
5551 return 0;
5553 return 1;
5557 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5558 * hold the hotplug lock.
5560 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5562 struct rq *rq = cpu_rq(cpu);
5563 struct sched_domain *tmp;
5565 /* Remove the sched domains which do not contribute to scheduling. */
5566 for (tmp = sd; tmp; tmp = tmp->parent) {
5567 struct sched_domain *parent = tmp->parent;
5568 if (!parent)
5569 break;
5570 if (sd_parent_degenerate(tmp, parent)) {
5571 tmp->parent = parent->parent;
5572 if (parent->parent)
5573 parent->parent->child = tmp;
5577 if (sd && sd_degenerate(sd)) {
5578 sd = sd->parent;
5579 if (sd)
5580 sd->child = NULL;
5583 sched_domain_debug(sd, cpu);
5585 rcu_assign_pointer(rq->sd, sd);
5588 /* cpus with isolated domains */
5589 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5591 /* Setup the mask of cpus configured for isolated domains */
5592 static int __init isolated_cpu_setup(char *str)
5594 int ints[NR_CPUS], i;
5596 str = get_options(str, ARRAY_SIZE(ints), ints);
5597 cpus_clear(cpu_isolated_map);
5598 for (i = 1; i <= ints[0]; i++)
5599 if (ints[i] < NR_CPUS)
5600 cpu_set(ints[i], cpu_isolated_map);
5601 return 1;
5604 __setup("isolcpus=", isolated_cpu_setup);
5607 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5608 * to a function which identifies what group(along with sched group) a CPU
5609 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5610 * (due to the fact that we keep track of groups covered with a cpumask_t).
5612 * init_sched_build_groups will build a circular linked list of the groups
5613 * covered by the given span, and will set each group's ->cpumask correctly,
5614 * and ->cpu_power to 0.
5616 static void
5617 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5618 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5619 struct sched_group **sg))
5621 struct sched_group *first = NULL, *last = NULL;
5622 cpumask_t covered = CPU_MASK_NONE;
5623 int i;
5625 for_each_cpu_mask(i, span) {
5626 struct sched_group *sg;
5627 int group = group_fn(i, cpu_map, &sg);
5628 int j;
5630 if (cpu_isset(i, covered))
5631 continue;
5633 sg->cpumask = CPU_MASK_NONE;
5634 sg->__cpu_power = 0;
5636 for_each_cpu_mask(j, span) {
5637 if (group_fn(j, cpu_map, NULL) != group)
5638 continue;
5640 cpu_set(j, covered);
5641 cpu_set(j, sg->cpumask);
5643 if (!first)
5644 first = sg;
5645 if (last)
5646 last->next = sg;
5647 last = sg;
5649 last->next = first;
5652 #define SD_NODES_PER_DOMAIN 16
5654 #ifdef CONFIG_NUMA
5657 * find_next_best_node - find the next node to include in a sched_domain
5658 * @node: node whose sched_domain we're building
5659 * @used_nodes: nodes already in the sched_domain
5661 * Find the next node to include in a given scheduling domain. Simply
5662 * finds the closest node not already in the @used_nodes map.
5664 * Should use nodemask_t.
5666 static int find_next_best_node(int node, unsigned long *used_nodes)
5668 int i, n, val, min_val, best_node = 0;
5670 min_val = INT_MAX;
5672 for (i = 0; i < MAX_NUMNODES; i++) {
5673 /* Start at @node */
5674 n = (node + i) % MAX_NUMNODES;
5676 if (!nr_cpus_node(n))
5677 continue;
5679 /* Skip already used nodes */
5680 if (test_bit(n, used_nodes))
5681 continue;
5683 /* Simple min distance search */
5684 val = node_distance(node, n);
5686 if (val < min_val) {
5687 min_val = val;
5688 best_node = n;
5692 set_bit(best_node, used_nodes);
5693 return best_node;
5697 * sched_domain_node_span - get a cpumask for a node's sched_domain
5698 * @node: node whose cpumask we're constructing
5699 * @size: number of nodes to include in this span
5701 * Given a node, construct a good cpumask for its sched_domain to span. It
5702 * should be one that prevents unnecessary balancing, but also spreads tasks
5703 * out optimally.
5705 static cpumask_t sched_domain_node_span(int node)
5707 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5708 cpumask_t span, nodemask;
5709 int i;
5711 cpus_clear(span);
5712 bitmap_zero(used_nodes, MAX_NUMNODES);
5714 nodemask = node_to_cpumask(node);
5715 cpus_or(span, span, nodemask);
5716 set_bit(node, used_nodes);
5718 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5719 int next_node = find_next_best_node(node, used_nodes);
5721 nodemask = node_to_cpumask(next_node);
5722 cpus_or(span, span, nodemask);
5725 return span;
5727 #endif
5729 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5732 * SMT sched-domains:
5734 #ifdef CONFIG_SCHED_SMT
5735 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5736 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5738 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5739 struct sched_group **sg)
5741 if (sg)
5742 *sg = &per_cpu(sched_group_cpus, cpu);
5743 return cpu;
5745 #endif
5748 * multi-core sched-domains:
5750 #ifdef CONFIG_SCHED_MC
5751 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5752 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5753 #endif
5755 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5756 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5757 struct sched_group **sg)
5759 int group;
5760 cpumask_t mask = cpu_sibling_map[cpu];
5761 cpus_and(mask, mask, *cpu_map);
5762 group = first_cpu(mask);
5763 if (sg)
5764 *sg = &per_cpu(sched_group_core, group);
5765 return group;
5767 #elif defined(CONFIG_SCHED_MC)
5768 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5769 struct sched_group **sg)
5771 if (sg)
5772 *sg = &per_cpu(sched_group_core, cpu);
5773 return cpu;
5775 #endif
5777 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5778 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5780 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5781 struct sched_group **sg)
5783 int group;
5784 #ifdef CONFIG_SCHED_MC
5785 cpumask_t mask = cpu_coregroup_map(cpu);
5786 cpus_and(mask, mask, *cpu_map);
5787 group = first_cpu(mask);
5788 #elif defined(CONFIG_SCHED_SMT)
5789 cpumask_t mask = cpu_sibling_map[cpu];
5790 cpus_and(mask, mask, *cpu_map);
5791 group = first_cpu(mask);
5792 #else
5793 group = cpu;
5794 #endif
5795 if (sg)
5796 *sg = &per_cpu(sched_group_phys, group);
5797 return group;
5800 #ifdef CONFIG_NUMA
5802 * The init_sched_build_groups can't handle what we want to do with node
5803 * groups, so roll our own. Now each node has its own list of groups which
5804 * gets dynamically allocated.
5806 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5807 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5809 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5810 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5812 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5813 struct sched_group **sg)
5815 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5816 int group;
5818 cpus_and(nodemask, nodemask, *cpu_map);
5819 group = first_cpu(nodemask);
5821 if (sg)
5822 *sg = &per_cpu(sched_group_allnodes, group);
5823 return group;
5826 static void init_numa_sched_groups_power(struct sched_group *group_head)
5828 struct sched_group *sg = group_head;
5829 int j;
5831 if (!sg)
5832 return;
5833 do {
5834 for_each_cpu_mask(j, sg->cpumask) {
5835 struct sched_domain *sd;
5837 sd = &per_cpu(phys_domains, j);
5838 if (j != first_cpu(sd->groups->cpumask)) {
5840 * Only add "power" once for each
5841 * physical package.
5843 continue;
5846 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5848 sg = sg->next;
5849 } while (sg != group_head);
5851 #endif
5853 #ifdef CONFIG_NUMA
5854 /* Free memory allocated for various sched_group structures */
5855 static void free_sched_groups(const cpumask_t *cpu_map)
5857 int cpu, i;
5859 for_each_cpu_mask(cpu, *cpu_map) {
5860 struct sched_group **sched_group_nodes
5861 = sched_group_nodes_bycpu[cpu];
5863 if (!sched_group_nodes)
5864 continue;
5866 for (i = 0; i < MAX_NUMNODES; i++) {
5867 cpumask_t nodemask = node_to_cpumask(i);
5868 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5870 cpus_and(nodemask, nodemask, *cpu_map);
5871 if (cpus_empty(nodemask))
5872 continue;
5874 if (sg == NULL)
5875 continue;
5876 sg = sg->next;
5877 next_sg:
5878 oldsg = sg;
5879 sg = sg->next;
5880 kfree(oldsg);
5881 if (oldsg != sched_group_nodes[i])
5882 goto next_sg;
5884 kfree(sched_group_nodes);
5885 sched_group_nodes_bycpu[cpu] = NULL;
5888 #else
5889 static void free_sched_groups(const cpumask_t *cpu_map)
5892 #endif
5895 * Initialize sched groups cpu_power.
5897 * cpu_power indicates the capacity of sched group, which is used while
5898 * distributing the load between different sched groups in a sched domain.
5899 * Typically cpu_power for all the groups in a sched domain will be same unless
5900 * there are asymmetries in the topology. If there are asymmetries, group
5901 * having more cpu_power will pickup more load compared to the group having
5902 * less cpu_power.
5904 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5905 * the maximum number of tasks a group can handle in the presence of other idle
5906 * or lightly loaded groups in the same sched domain.
5908 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5910 struct sched_domain *child;
5911 struct sched_group *group;
5913 WARN_ON(!sd || !sd->groups);
5915 if (cpu != first_cpu(sd->groups->cpumask))
5916 return;
5918 child = sd->child;
5920 sd->groups->__cpu_power = 0;
5923 * For perf policy, if the groups in child domain share resources
5924 * (for example cores sharing some portions of the cache hierarchy
5925 * or SMT), then set this domain groups cpu_power such that each group
5926 * can handle only one task, when there are other idle groups in the
5927 * same sched domain.
5929 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5930 (child->flags &
5931 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5932 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5933 return;
5937 * add cpu_power of each child group to this groups cpu_power
5939 group = child->groups;
5940 do {
5941 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5942 group = group->next;
5943 } while (group != child->groups);
5947 * Build sched domains for a given set of cpus and attach the sched domains
5948 * to the individual cpus
5950 static int build_sched_domains(const cpumask_t *cpu_map)
5952 int i;
5953 #ifdef CONFIG_NUMA
5954 struct sched_group **sched_group_nodes = NULL;
5955 int sd_allnodes = 0;
5958 * Allocate the per-node list of sched groups
5960 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5961 GFP_KERNEL);
5962 if (!sched_group_nodes) {
5963 printk(KERN_WARNING "Can not alloc sched group node list\n");
5964 return -ENOMEM;
5966 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5967 #endif
5970 * Set up domains for cpus specified by the cpu_map.
5972 for_each_cpu_mask(i, *cpu_map) {
5973 struct sched_domain *sd = NULL, *p;
5974 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5976 cpus_and(nodemask, nodemask, *cpu_map);
5978 #ifdef CONFIG_NUMA
5979 if (cpus_weight(*cpu_map) >
5980 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5981 sd = &per_cpu(allnodes_domains, i);
5982 *sd = SD_ALLNODES_INIT;
5983 sd->span = *cpu_map;
5984 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5985 p = sd;
5986 sd_allnodes = 1;
5987 } else
5988 p = NULL;
5990 sd = &per_cpu(node_domains, i);
5991 *sd = SD_NODE_INIT;
5992 sd->span = sched_domain_node_span(cpu_to_node(i));
5993 sd->parent = p;
5994 if (p)
5995 p->child = sd;
5996 cpus_and(sd->span, sd->span, *cpu_map);
5997 #endif
5999 p = sd;
6000 sd = &per_cpu(phys_domains, i);
6001 *sd = SD_CPU_INIT;
6002 sd->span = nodemask;
6003 sd->parent = p;
6004 if (p)
6005 p->child = sd;
6006 cpu_to_phys_group(i, cpu_map, &sd->groups);
6008 #ifdef CONFIG_SCHED_MC
6009 p = sd;
6010 sd = &per_cpu(core_domains, i);
6011 *sd = SD_MC_INIT;
6012 sd->span = cpu_coregroup_map(i);
6013 cpus_and(sd->span, sd->span, *cpu_map);
6014 sd->parent = p;
6015 p->child = sd;
6016 cpu_to_core_group(i, cpu_map, &sd->groups);
6017 #endif
6019 #ifdef CONFIG_SCHED_SMT
6020 p = sd;
6021 sd = &per_cpu(cpu_domains, i);
6022 *sd = SD_SIBLING_INIT;
6023 sd->span = cpu_sibling_map[i];
6024 cpus_and(sd->span, sd->span, *cpu_map);
6025 sd->parent = p;
6026 p->child = sd;
6027 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6028 #endif
6031 #ifdef CONFIG_SCHED_SMT
6032 /* Set up CPU (sibling) groups */
6033 for_each_cpu_mask(i, *cpu_map) {
6034 cpumask_t this_sibling_map = cpu_sibling_map[i];
6035 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6036 if (i != first_cpu(this_sibling_map))
6037 continue;
6039 init_sched_build_groups(this_sibling_map, cpu_map,
6040 &cpu_to_cpu_group);
6042 #endif
6044 #ifdef CONFIG_SCHED_MC
6045 /* Set up multi-core groups */
6046 for_each_cpu_mask(i, *cpu_map) {
6047 cpumask_t this_core_map = cpu_coregroup_map(i);
6048 cpus_and(this_core_map, this_core_map, *cpu_map);
6049 if (i != first_cpu(this_core_map))
6050 continue;
6051 init_sched_build_groups(this_core_map, cpu_map,
6052 &cpu_to_core_group);
6054 #endif
6056 /* Set up physical groups */
6057 for (i = 0; i < MAX_NUMNODES; i++) {
6058 cpumask_t nodemask = node_to_cpumask(i);
6060 cpus_and(nodemask, nodemask, *cpu_map);
6061 if (cpus_empty(nodemask))
6062 continue;
6064 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6067 #ifdef CONFIG_NUMA
6068 /* Set up node groups */
6069 if (sd_allnodes)
6070 init_sched_build_groups(*cpu_map, cpu_map,
6071 &cpu_to_allnodes_group);
6073 for (i = 0; i < MAX_NUMNODES; i++) {
6074 /* Set up node groups */
6075 struct sched_group *sg, *prev;
6076 cpumask_t nodemask = node_to_cpumask(i);
6077 cpumask_t domainspan;
6078 cpumask_t covered = CPU_MASK_NONE;
6079 int j;
6081 cpus_and(nodemask, nodemask, *cpu_map);
6082 if (cpus_empty(nodemask)) {
6083 sched_group_nodes[i] = NULL;
6084 continue;
6087 domainspan = sched_domain_node_span(i);
6088 cpus_and(domainspan, domainspan, *cpu_map);
6090 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6091 if (!sg) {
6092 printk(KERN_WARNING "Can not alloc domain group for "
6093 "node %d\n", i);
6094 goto error;
6096 sched_group_nodes[i] = sg;
6097 for_each_cpu_mask(j, nodemask) {
6098 struct sched_domain *sd;
6100 sd = &per_cpu(node_domains, j);
6101 sd->groups = sg;
6103 sg->__cpu_power = 0;
6104 sg->cpumask = nodemask;
6105 sg->next = sg;
6106 cpus_or(covered, covered, nodemask);
6107 prev = sg;
6109 for (j = 0; j < MAX_NUMNODES; j++) {
6110 cpumask_t tmp, notcovered;
6111 int n = (i + j) % MAX_NUMNODES;
6113 cpus_complement(notcovered, covered);
6114 cpus_and(tmp, notcovered, *cpu_map);
6115 cpus_and(tmp, tmp, domainspan);
6116 if (cpus_empty(tmp))
6117 break;
6119 nodemask = node_to_cpumask(n);
6120 cpus_and(tmp, tmp, nodemask);
6121 if (cpus_empty(tmp))
6122 continue;
6124 sg = kmalloc_node(sizeof(struct sched_group),
6125 GFP_KERNEL, i);
6126 if (!sg) {
6127 printk(KERN_WARNING
6128 "Can not alloc domain group for node %d\n", j);
6129 goto error;
6131 sg->__cpu_power = 0;
6132 sg->cpumask = tmp;
6133 sg->next = prev->next;
6134 cpus_or(covered, covered, tmp);
6135 prev->next = sg;
6136 prev = sg;
6139 #endif
6141 /* Calculate CPU power for physical packages and nodes */
6142 #ifdef CONFIG_SCHED_SMT
6143 for_each_cpu_mask(i, *cpu_map) {
6144 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6146 init_sched_groups_power(i, sd);
6148 #endif
6149 #ifdef CONFIG_SCHED_MC
6150 for_each_cpu_mask(i, *cpu_map) {
6151 struct sched_domain *sd = &per_cpu(core_domains, i);
6153 init_sched_groups_power(i, sd);
6155 #endif
6157 for_each_cpu_mask(i, *cpu_map) {
6158 struct sched_domain *sd = &per_cpu(phys_domains, i);
6160 init_sched_groups_power(i, sd);
6163 #ifdef CONFIG_NUMA
6164 for (i = 0; i < MAX_NUMNODES; i++)
6165 init_numa_sched_groups_power(sched_group_nodes[i]);
6167 if (sd_allnodes) {
6168 struct sched_group *sg;
6170 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6171 init_numa_sched_groups_power(sg);
6173 #endif
6175 /* Attach the domains */
6176 for_each_cpu_mask(i, *cpu_map) {
6177 struct sched_domain *sd;
6178 #ifdef CONFIG_SCHED_SMT
6179 sd = &per_cpu(cpu_domains, i);
6180 #elif defined(CONFIG_SCHED_MC)
6181 sd = &per_cpu(core_domains, i);
6182 #else
6183 sd = &per_cpu(phys_domains, i);
6184 #endif
6185 cpu_attach_domain(sd, i);
6188 return 0;
6190 #ifdef CONFIG_NUMA
6191 error:
6192 free_sched_groups(cpu_map);
6193 return -ENOMEM;
6194 #endif
6197 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6199 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6201 cpumask_t cpu_default_map;
6202 int err;
6205 * Setup mask for cpus without special case scheduling requirements.
6206 * For now this just excludes isolated cpus, but could be used to
6207 * exclude other special cases in the future.
6209 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6211 err = build_sched_domains(&cpu_default_map);
6213 return err;
6216 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6218 free_sched_groups(cpu_map);
6222 * Detach sched domains from a group of cpus specified in cpu_map
6223 * These cpus will now be attached to the NULL domain
6225 static void detach_destroy_domains(const cpumask_t *cpu_map)
6227 int i;
6229 for_each_cpu_mask(i, *cpu_map)
6230 cpu_attach_domain(NULL, i);
6231 synchronize_sched();
6232 arch_destroy_sched_domains(cpu_map);
6236 * Partition sched domains as specified by the cpumasks below.
6237 * This attaches all cpus from the cpumasks to the NULL domain,
6238 * waits for a RCU quiescent period, recalculates sched
6239 * domain information and then attaches them back to the
6240 * correct sched domains
6241 * Call with hotplug lock held
6243 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6245 cpumask_t change_map;
6246 int err = 0;
6248 cpus_and(*partition1, *partition1, cpu_online_map);
6249 cpus_and(*partition2, *partition2, cpu_online_map);
6250 cpus_or(change_map, *partition1, *partition2);
6252 /* Detach sched domains from all of the affected cpus */
6253 detach_destroy_domains(&change_map);
6254 if (!cpus_empty(*partition1))
6255 err = build_sched_domains(partition1);
6256 if (!err && !cpus_empty(*partition2))
6257 err = build_sched_domains(partition2);
6259 return err;
6262 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6263 static int arch_reinit_sched_domains(void)
6265 int err;
6267 mutex_lock(&sched_hotcpu_mutex);
6268 detach_destroy_domains(&cpu_online_map);
6269 err = arch_init_sched_domains(&cpu_online_map);
6270 mutex_unlock(&sched_hotcpu_mutex);
6272 return err;
6275 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6277 int ret;
6279 if (buf[0] != '0' && buf[0] != '1')
6280 return -EINVAL;
6282 if (smt)
6283 sched_smt_power_savings = (buf[0] == '1');
6284 else
6285 sched_mc_power_savings = (buf[0] == '1');
6287 ret = arch_reinit_sched_domains();
6289 return ret ? ret : count;
6292 #ifdef CONFIG_SCHED_MC
6293 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6295 return sprintf(page, "%u\n", sched_mc_power_savings);
6297 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6298 const char *buf, size_t count)
6300 return sched_power_savings_store(buf, count, 0);
6302 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6303 sched_mc_power_savings_store);
6304 #endif
6306 #ifdef CONFIG_SCHED_SMT
6307 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6309 return sprintf(page, "%u\n", sched_smt_power_savings);
6311 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6312 const char *buf, size_t count)
6314 return sched_power_savings_store(buf, count, 1);
6316 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6317 sched_smt_power_savings_store);
6318 #endif
6320 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6322 int err = 0;
6324 #ifdef CONFIG_SCHED_SMT
6325 if (smt_capable())
6326 err = sysfs_create_file(&cls->kset.kobj,
6327 &attr_sched_smt_power_savings.attr);
6328 #endif
6329 #ifdef CONFIG_SCHED_MC
6330 if (!err && mc_capable())
6331 err = sysfs_create_file(&cls->kset.kobj,
6332 &attr_sched_mc_power_savings.attr);
6333 #endif
6334 return err;
6336 #endif
6339 * Force a reinitialization of the sched domains hierarchy. The domains
6340 * and groups cannot be updated in place without racing with the balancing
6341 * code, so we temporarily attach all running cpus to the NULL domain
6342 * which will prevent rebalancing while the sched domains are recalculated.
6344 static int update_sched_domains(struct notifier_block *nfb,
6345 unsigned long action, void *hcpu)
6347 switch (action) {
6348 case CPU_UP_PREPARE:
6349 case CPU_UP_PREPARE_FROZEN:
6350 case CPU_DOWN_PREPARE:
6351 case CPU_DOWN_PREPARE_FROZEN:
6352 detach_destroy_domains(&cpu_online_map);
6353 return NOTIFY_OK;
6355 case CPU_UP_CANCELED:
6356 case CPU_UP_CANCELED_FROZEN:
6357 case CPU_DOWN_FAILED:
6358 case CPU_DOWN_FAILED_FROZEN:
6359 case CPU_ONLINE:
6360 case CPU_ONLINE_FROZEN:
6361 case CPU_DEAD:
6362 case CPU_DEAD_FROZEN:
6364 * Fall through and re-initialise the domains.
6366 break;
6367 default:
6368 return NOTIFY_DONE;
6371 /* The hotplug lock is already held by cpu_up/cpu_down */
6372 arch_init_sched_domains(&cpu_online_map);
6374 return NOTIFY_OK;
6377 void __init sched_init_smp(void)
6379 cpumask_t non_isolated_cpus;
6381 mutex_lock(&sched_hotcpu_mutex);
6382 arch_init_sched_domains(&cpu_online_map);
6383 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6384 if (cpus_empty(non_isolated_cpus))
6385 cpu_set(smp_processor_id(), non_isolated_cpus);
6386 mutex_unlock(&sched_hotcpu_mutex);
6387 /* XXX: Theoretical race here - CPU may be hotplugged now */
6388 hotcpu_notifier(update_sched_domains, 0);
6390 init_sched_domain_sysctl();
6392 /* Move init over to a non-isolated CPU */
6393 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6394 BUG();
6396 #else
6397 void __init sched_init_smp(void)
6400 #endif /* CONFIG_SMP */
6402 int in_sched_functions(unsigned long addr)
6404 /* Linker adds these: start and end of __sched functions */
6405 extern char __sched_text_start[], __sched_text_end[];
6407 return in_lock_functions(addr) ||
6408 (addr >= (unsigned long)__sched_text_start
6409 && addr < (unsigned long)__sched_text_end);
6412 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6414 cfs_rq->tasks_timeline = RB_ROOT;
6415 #ifdef CONFIG_FAIR_GROUP_SCHED
6416 cfs_rq->rq = rq;
6417 #endif
6418 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6421 void __init sched_init(void)
6423 int highest_cpu = 0;
6424 int i, j;
6426 for_each_possible_cpu(i) {
6427 struct rt_prio_array *array;
6428 struct rq *rq;
6430 rq = cpu_rq(i);
6431 spin_lock_init(&rq->lock);
6432 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6433 rq->nr_running = 0;
6434 rq->clock = 1;
6435 init_cfs_rq(&rq->cfs, rq);
6436 #ifdef CONFIG_FAIR_GROUP_SCHED
6437 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6439 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6440 struct sched_entity *se =
6441 &per_cpu(init_sched_entity, i);
6443 init_cfs_rq_p[i] = cfs_rq;
6444 init_cfs_rq(cfs_rq, rq);
6445 cfs_rq->tg = &init_task_group;
6446 list_add(&cfs_rq->leaf_cfs_rq_list,
6447 &rq->leaf_cfs_rq_list);
6449 init_sched_entity_p[i] = se;
6450 se->cfs_rq = &rq->cfs;
6451 se->my_q = cfs_rq;
6452 se->load.weight = init_task_group_load;
6453 se->load.inv_weight =
6454 div64_64(1ULL<<32, init_task_group_load);
6455 se->parent = NULL;
6457 init_task_group.shares = init_task_group_load;
6458 spin_lock_init(&init_task_group.lock);
6459 #endif
6461 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6462 rq->cpu_load[j] = 0;
6463 #ifdef CONFIG_SMP
6464 rq->sd = NULL;
6465 rq->active_balance = 0;
6466 rq->next_balance = jiffies;
6467 rq->push_cpu = 0;
6468 rq->cpu = i;
6469 rq->migration_thread = NULL;
6470 INIT_LIST_HEAD(&rq->migration_queue);
6471 #endif
6472 atomic_set(&rq->nr_iowait, 0);
6474 array = &rq->rt.active;
6475 for (j = 0; j < MAX_RT_PRIO; j++) {
6476 INIT_LIST_HEAD(array->queue + j);
6477 __clear_bit(j, array->bitmap);
6479 highest_cpu = i;
6480 /* delimiter for bitsearch: */
6481 __set_bit(MAX_RT_PRIO, array->bitmap);
6484 set_load_weight(&init_task);
6486 #ifdef CONFIG_PREEMPT_NOTIFIERS
6487 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6488 #endif
6490 #ifdef CONFIG_SMP
6491 nr_cpu_ids = highest_cpu + 1;
6492 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6493 #endif
6495 #ifdef CONFIG_RT_MUTEXES
6496 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6497 #endif
6500 * The boot idle thread does lazy MMU switching as well:
6502 atomic_inc(&init_mm.mm_count);
6503 enter_lazy_tlb(&init_mm, current);
6506 * Make us the idle thread. Technically, schedule() should not be
6507 * called from this thread, however somewhere below it might be,
6508 * but because we are the idle thread, we just pick up running again
6509 * when this runqueue becomes "idle".
6511 init_idle(current, smp_processor_id());
6513 * During early bootup we pretend to be a normal task:
6515 current->sched_class = &fair_sched_class;
6518 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6519 void __might_sleep(char *file, int line)
6521 #ifdef in_atomic
6522 static unsigned long prev_jiffy; /* ratelimiting */
6524 if ((in_atomic() || irqs_disabled()) &&
6525 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6526 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6527 return;
6528 prev_jiffy = jiffies;
6529 printk(KERN_ERR "BUG: sleeping function called from invalid"
6530 " context at %s:%d\n", file, line);
6531 printk("in_atomic():%d, irqs_disabled():%d\n",
6532 in_atomic(), irqs_disabled());
6533 debug_show_held_locks(current);
6534 if (irqs_disabled())
6535 print_irqtrace_events(current);
6536 dump_stack();
6538 #endif
6540 EXPORT_SYMBOL(__might_sleep);
6541 #endif
6543 #ifdef CONFIG_MAGIC_SYSRQ
6544 static void normalize_task(struct rq *rq, struct task_struct *p)
6546 int on_rq;
6547 update_rq_clock(rq);
6548 on_rq = p->se.on_rq;
6549 if (on_rq)
6550 deactivate_task(rq, p, 0);
6551 __setscheduler(rq, p, SCHED_NORMAL, 0);
6552 if (on_rq) {
6553 activate_task(rq, p, 0);
6554 resched_task(rq->curr);
6558 void normalize_rt_tasks(void)
6560 struct task_struct *g, *p;
6561 unsigned long flags;
6562 struct rq *rq;
6564 read_lock_irq(&tasklist_lock);
6565 do_each_thread(g, p) {
6566 p->se.exec_start = 0;
6567 #ifdef CONFIG_SCHEDSTATS
6568 p->se.wait_start = 0;
6569 p->se.sleep_start = 0;
6570 p->se.block_start = 0;
6571 #endif
6572 task_rq(p)->clock = 0;
6574 if (!rt_task(p)) {
6576 * Renice negative nice level userspace
6577 * tasks back to 0:
6579 if (TASK_NICE(p) < 0 && p->mm)
6580 set_user_nice(p, 0);
6581 continue;
6584 spin_lock_irqsave(&p->pi_lock, flags);
6585 rq = __task_rq_lock(p);
6587 if (!is_migration_thread(p, rq))
6588 normalize_task(rq, p);
6590 __task_rq_unlock(rq);
6591 spin_unlock_irqrestore(&p->pi_lock, flags);
6592 } while_each_thread(g, p);
6594 read_unlock_irq(&tasklist_lock);
6597 #endif /* CONFIG_MAGIC_SYSRQ */
6599 #ifdef CONFIG_IA64
6601 * These functions are only useful for the IA64 MCA handling.
6603 * They can only be called when the whole system has been
6604 * stopped - every CPU needs to be quiescent, and no scheduling
6605 * activity can take place. Using them for anything else would
6606 * be a serious bug, and as a result, they aren't even visible
6607 * under any other configuration.
6611 * curr_task - return the current task for a given cpu.
6612 * @cpu: the processor in question.
6614 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6616 struct task_struct *curr_task(int cpu)
6618 return cpu_curr(cpu);
6622 * set_curr_task - set the current task for a given cpu.
6623 * @cpu: the processor in question.
6624 * @p: the task pointer to set.
6626 * Description: This function must only be used when non-maskable interrupts
6627 * are serviced on a separate stack. It allows the architecture to switch the
6628 * notion of the current task on a cpu in a non-blocking manner. This function
6629 * must be called with all CPU's synchronized, and interrupts disabled, the
6630 * and caller must save the original value of the current task (see
6631 * curr_task() above) and restore that value before reenabling interrupts and
6632 * re-starting the system.
6634 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6636 void set_curr_task(int cpu, struct task_struct *p)
6638 cpu_curr(cpu) = p;
6641 #endif
6643 #ifdef CONFIG_FAIR_GROUP_SCHED
6645 /* allocate runqueue etc for a new task group */
6646 struct task_group *sched_create_group(void)
6648 struct task_group *tg;
6649 struct cfs_rq *cfs_rq;
6650 struct sched_entity *se;
6651 struct rq *rq;
6652 int i;
6654 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6655 if (!tg)
6656 return ERR_PTR(-ENOMEM);
6658 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6659 if (!tg->cfs_rq)
6660 goto err;
6661 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6662 if (!tg->se)
6663 goto err;
6665 for_each_possible_cpu(i) {
6666 rq = cpu_rq(i);
6668 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6669 cpu_to_node(i));
6670 if (!cfs_rq)
6671 goto err;
6673 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6674 cpu_to_node(i));
6675 if (!se)
6676 goto err;
6678 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6679 memset(se, 0, sizeof(struct sched_entity));
6681 tg->cfs_rq[i] = cfs_rq;
6682 init_cfs_rq(cfs_rq, rq);
6683 cfs_rq->tg = tg;
6685 tg->se[i] = se;
6686 se->cfs_rq = &rq->cfs;
6687 se->my_q = cfs_rq;
6688 se->load.weight = NICE_0_LOAD;
6689 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6690 se->parent = NULL;
6693 for_each_possible_cpu(i) {
6694 rq = cpu_rq(i);
6695 cfs_rq = tg->cfs_rq[i];
6696 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6699 tg->shares = NICE_0_LOAD;
6700 spin_lock_init(&tg->lock);
6702 return tg;
6704 err:
6705 for_each_possible_cpu(i) {
6706 if (tg->cfs_rq)
6707 kfree(tg->cfs_rq[i]);
6708 if (tg->se)
6709 kfree(tg->se[i]);
6711 kfree(tg->cfs_rq);
6712 kfree(tg->se);
6713 kfree(tg);
6715 return ERR_PTR(-ENOMEM);
6718 /* rcu callback to free various structures associated with a task group */
6719 static void free_sched_group(struct rcu_head *rhp)
6721 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6722 struct task_group *tg = cfs_rq->tg;
6723 struct sched_entity *se;
6724 int i;
6726 /* now it should be safe to free those cfs_rqs */
6727 for_each_possible_cpu(i) {
6728 cfs_rq = tg->cfs_rq[i];
6729 kfree(cfs_rq);
6731 se = tg->se[i];
6732 kfree(se);
6735 kfree(tg->cfs_rq);
6736 kfree(tg->se);
6737 kfree(tg);
6740 /* Destroy runqueue etc associated with a task group */
6741 void sched_destroy_group(struct task_group *tg)
6743 struct cfs_rq *cfs_rq;
6744 int i;
6746 for_each_possible_cpu(i) {
6747 cfs_rq = tg->cfs_rq[i];
6748 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6751 cfs_rq = tg->cfs_rq[0];
6753 /* wait for possible concurrent references to cfs_rqs complete */
6754 call_rcu(&cfs_rq->rcu, free_sched_group);
6757 /* change task's runqueue when it moves between groups.
6758 * The caller of this function should have put the task in its new group
6759 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6760 * reflect its new group.
6762 void sched_move_task(struct task_struct *tsk)
6764 int on_rq, running;
6765 unsigned long flags;
6766 struct rq *rq;
6768 rq = task_rq_lock(tsk, &flags);
6770 if (tsk->sched_class != &fair_sched_class)
6771 goto done;
6773 update_rq_clock(rq);
6775 running = task_running(rq, tsk);
6776 on_rq = tsk->se.on_rq;
6778 if (on_rq) {
6779 dequeue_task(rq, tsk, 0);
6780 if (unlikely(running))
6781 tsk->sched_class->put_prev_task(rq, tsk);
6784 set_task_cfs_rq(tsk);
6786 if (on_rq) {
6787 if (unlikely(running))
6788 tsk->sched_class->set_curr_task(rq);
6789 enqueue_task(rq, tsk, 0);
6792 done:
6793 task_rq_unlock(rq, &flags);
6796 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6798 struct cfs_rq *cfs_rq = se->cfs_rq;
6799 struct rq *rq = cfs_rq->rq;
6800 int on_rq;
6802 spin_lock_irq(&rq->lock);
6804 on_rq = se->on_rq;
6805 if (on_rq)
6806 dequeue_entity(cfs_rq, se, 0);
6808 se->load.weight = shares;
6809 se->load.inv_weight = div64_64((1ULL<<32), shares);
6811 if (on_rq)
6812 enqueue_entity(cfs_rq, se, 0);
6814 spin_unlock_irq(&rq->lock);
6817 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6819 int i;
6821 spin_lock(&tg->lock);
6822 if (tg->shares == shares)
6823 goto done;
6825 tg->shares = shares;
6826 for_each_possible_cpu(i)
6827 set_se_shares(tg->se[i], shares);
6829 done:
6830 spin_unlock(&tg->lock);
6831 return 0;
6834 unsigned long sched_group_shares(struct task_group *tg)
6836 return tg->shares;
6839 #endif /* CONFIG_FAIR_GROUP_SCHED */