2 * Driver for NEC VR4100 series Real Time Clock unit.
4 * Copyright (C) 2003-2006 Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/init.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/rtc.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
30 #include <asm/div64.h>
32 #include <asm/uaccess.h>
33 #include <asm/vr41xx/irq.h>
35 MODULE_AUTHOR("Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>");
36 MODULE_DESCRIPTION("NEC VR4100 series RTC driver");
37 MODULE_LICENSE("GPL");
39 #define RTC1_TYPE1_START 0x0b0000c0UL
40 #define RTC1_TYPE1_END 0x0b0000dfUL
41 #define RTC2_TYPE1_START 0x0b0001c0UL
42 #define RTC2_TYPE1_END 0x0b0001dfUL
44 #define RTC1_TYPE2_START 0x0f000100UL
45 #define RTC1_TYPE2_END 0x0f00011fUL
46 #define RTC2_TYPE2_START 0x0f000120UL
47 #define RTC2_TYPE2_END 0x0f00013fUL
49 #define RTC1_SIZE 0x20
50 #define RTC2_SIZE 0x20
53 #define ETIMELREG 0x00
54 #define ETIMEMREG 0x02
55 #define ETIMEHREG 0x04
61 #define RTCL1LREG 0x10
62 #define RTCL1HREG 0x12
63 #define RTCL1CNTLREG 0x14
64 #define RTCL1CNTHREG 0x16
65 #define RTCL2LREG 0x18
66 #define RTCL2HREG 0x1a
67 #define RTCL2CNTLREG 0x1c
68 #define RTCL2CNTHREG 0x1e
73 #define TCLKCNTLREG 0x04
74 #define TCLKCNTHREG 0x06
76 #define RTCINTREG 0x1e
77 #define TCLOCK_INT 0x08
78 #define RTCLONG2_INT 0x04
79 #define RTCLONG1_INT 0x02
80 #define ELAPSEDTIME_INT 0x01
82 #define RTC_FREQUENCY 32768
83 #define MAX_PERIODIC_RATE 6553
85 static void __iomem
*rtc1_base
;
86 static void __iomem
*rtc2_base
;
88 #define rtc1_read(offset) readw(rtc1_base + (offset))
89 #define rtc1_write(offset, value) writew((value), rtc1_base + (offset))
91 #define rtc2_read(offset) readw(rtc2_base + (offset))
92 #define rtc2_write(offset, value) writew((value), rtc2_base + (offset))
94 static unsigned long epoch
= 1970; /* Jan 1 1970 00:00:00 */
96 static DEFINE_SPINLOCK(rtc_lock
);
97 static char rtc_name
[] = "RTC";
98 static unsigned long periodic_frequency
;
99 static unsigned long periodic_count
;
101 struct resource rtc_resource
[2] = {
103 .flags
= IORESOURCE_MEM
, },
105 .flags
= IORESOURCE_MEM
, },
108 static inline unsigned long read_elapsed_second(void)
111 unsigned long first_low
, first_mid
, first_high
;
113 unsigned long second_low
, second_mid
, second_high
;
116 first_low
= rtc1_read(ETIMELREG
);
117 first_mid
= rtc1_read(ETIMEMREG
);
118 first_high
= rtc1_read(ETIMEHREG
);
119 second_low
= rtc1_read(ETIMELREG
);
120 second_mid
= rtc1_read(ETIMEMREG
);
121 second_high
= rtc1_read(ETIMEHREG
);
122 } while (first_low
!= second_low
|| first_mid
!= second_mid
||
123 first_high
!= second_high
);
125 return (first_high
<< 17) | (first_mid
<< 1) | (first_low
>> 15);
128 static inline void write_elapsed_second(unsigned long sec
)
130 spin_lock_irq(&rtc_lock
);
132 rtc1_write(ETIMELREG
, (uint16_t)(sec
<< 15));
133 rtc1_write(ETIMEMREG
, (uint16_t)(sec
>> 1));
134 rtc1_write(ETIMEHREG
, (uint16_t)(sec
>> 17));
136 spin_unlock_irq(&rtc_lock
);
139 static void vr41xx_rtc_release(struct device
*dev
)
142 spin_lock_irq(&rtc_lock
);
144 rtc1_write(ECMPLREG
, 0);
145 rtc1_write(ECMPMREG
, 0);
146 rtc1_write(ECMPHREG
, 0);
147 rtc1_write(RTCL1LREG
, 0);
148 rtc1_write(RTCL1HREG
, 0);
150 spin_unlock_irq(&rtc_lock
);
152 disable_irq(ELAPSEDTIME_IRQ
);
153 disable_irq(RTCLONG1_IRQ
);
156 static int vr41xx_rtc_read_time(struct device
*dev
, struct rtc_time
*time
)
158 unsigned long epoch_sec
, elapsed_sec
;
160 epoch_sec
= mktime(epoch
, 1, 1, 0, 0, 0);
161 elapsed_sec
= read_elapsed_second();
163 rtc_time_to_tm(epoch_sec
+ elapsed_sec
, time
);
168 static int vr41xx_rtc_set_time(struct device
*dev
, struct rtc_time
*time
)
170 unsigned long epoch_sec
, current_sec
;
172 epoch_sec
= mktime(epoch
, 1, 1, 0, 0, 0);
173 current_sec
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1, time
->tm_mday
,
174 time
->tm_hour
, time
->tm_min
, time
->tm_sec
);
176 write_elapsed_second(current_sec
- epoch_sec
);
181 static int vr41xx_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
183 unsigned long low
, mid
, high
;
184 struct rtc_time
*time
= &wkalrm
->time
;
186 spin_lock_irq(&rtc_lock
);
188 low
= rtc1_read(ECMPLREG
);
189 mid
= rtc1_read(ECMPMREG
);
190 high
= rtc1_read(ECMPHREG
);
192 spin_unlock_irq(&rtc_lock
);
194 rtc_time_to_tm((high
<< 17) | (mid
<< 1) | (low
>> 15), time
);
199 static int vr41xx_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
201 unsigned long alarm_sec
;
202 struct rtc_time
*time
= &wkalrm
->time
;
204 alarm_sec
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1, time
->tm_mday
,
205 time
->tm_hour
, time
->tm_min
, time
->tm_sec
);
207 spin_lock_irq(&rtc_lock
);
209 rtc1_write(ECMPLREG
, (uint16_t)(alarm_sec
<< 15));
210 rtc1_write(ECMPMREG
, (uint16_t)(alarm_sec
>> 1));
211 rtc1_write(ECMPHREG
, (uint16_t)(alarm_sec
>> 17));
213 spin_unlock_irq(&rtc_lock
);
218 static int vr41xx_rtc_ioctl(struct device
*dev
, unsigned int cmd
, unsigned long arg
)
224 enable_irq(ELAPSEDTIME_IRQ
);
227 disable_irq(ELAPSEDTIME_IRQ
);
230 enable_irq(RTCLONG1_IRQ
);
233 disable_irq(RTCLONG1_IRQ
);
236 return put_user(periodic_frequency
, (unsigned long __user
*)arg
);
239 if (arg
> MAX_PERIODIC_RATE
)
242 periodic_frequency
= arg
;
244 count
= RTC_FREQUENCY
;
247 periodic_count
= count
;
249 spin_lock_irq(&rtc_lock
);
251 rtc1_write(RTCL1LREG
, count
);
252 rtc1_write(RTCL1HREG
, count
>> 16);
254 spin_unlock_irq(&rtc_lock
);
257 return put_user(epoch
, (unsigned long __user
*)arg
);
259 /* Doesn't support before 1900 */
271 static irqreturn_t
elapsedtime_interrupt(int irq
, void *dev_id
)
273 struct platform_device
*pdev
= (struct platform_device
*)dev_id
;
274 struct rtc_device
*rtc
= platform_get_drvdata(pdev
);
276 rtc2_write(RTCINTREG
, ELAPSEDTIME_INT
);
278 rtc_update_irq(&rtc
->class_dev
, 1, RTC_AF
);
283 static irqreturn_t
rtclong1_interrupt(int irq
, void *dev_id
)
285 struct platform_device
*pdev
= (struct platform_device
*)dev_id
;
286 struct rtc_device
*rtc
= platform_get_drvdata(pdev
);
287 unsigned long count
= periodic_count
;
289 rtc2_write(RTCINTREG
, RTCLONG1_INT
);
291 rtc1_write(RTCL1LREG
, count
);
292 rtc1_write(RTCL1HREG
, count
>> 16);
294 rtc_update_irq(&rtc
->class_dev
, 1, RTC_PF
);
299 static const struct rtc_class_ops vr41xx_rtc_ops
= {
300 .release
= vr41xx_rtc_release
,
301 .ioctl
= vr41xx_rtc_ioctl
,
302 .read_time
= vr41xx_rtc_read_time
,
303 .set_time
= vr41xx_rtc_set_time
,
304 .read_alarm
= vr41xx_rtc_read_alarm
,
305 .set_alarm
= vr41xx_rtc_set_alarm
,
308 static int __devinit
rtc_probe(struct platform_device
*pdev
)
310 struct rtc_device
*rtc
;
314 if (pdev
->num_resources
!= 2)
317 rtc1_base
= ioremap(pdev
->resource
[0].start
, RTC1_SIZE
);
318 if (rtc1_base
== NULL
)
321 rtc2_base
= ioremap(pdev
->resource
[1].start
, RTC2_SIZE
);
322 if (rtc2_base
== NULL
) {
328 rtc
= rtc_device_register(rtc_name
, &pdev
->dev
, &vr41xx_rtc_ops
, THIS_MODULE
);
337 spin_lock_irq(&rtc_lock
);
339 rtc1_write(ECMPLREG
, 0);
340 rtc1_write(ECMPMREG
, 0);
341 rtc1_write(ECMPHREG
, 0);
342 rtc1_write(RTCL1LREG
, 0);
343 rtc1_write(RTCL1HREG
, 0);
345 spin_unlock_irq(&rtc_lock
);
347 irq
= ELAPSEDTIME_IRQ
;
348 retval
= request_irq(irq
, elapsedtime_interrupt
, IRQF_DISABLED
,
349 "elapsed_time", pdev
);
352 retval
= request_irq(irq
, rtclong1_interrupt
, IRQF_DISABLED
,
357 printk(KERN_ERR
"rtc: IRQ%d is busy\n", irq
);
358 rtc_device_unregister(rtc
);
359 if (irq
== RTCLONG1_IRQ
)
360 free_irq(ELAPSEDTIME_IRQ
, NULL
);
368 platform_set_drvdata(pdev
, rtc
);
370 disable_irq(ELAPSEDTIME_IRQ
);
371 disable_irq(RTCLONG1_IRQ
);
373 printk(KERN_INFO
"rtc: Real Time Clock of NEC VR4100 series\n");
378 static int __devexit
rtc_remove(struct platform_device
*pdev
)
380 struct rtc_device
*rtc
;
382 rtc
= platform_get_drvdata(pdev
);
384 rtc_device_unregister(rtc
);
386 platform_set_drvdata(pdev
, NULL
);
388 free_irq(ELAPSEDTIME_IRQ
, NULL
);
389 free_irq(RTCLONG1_IRQ
, NULL
);
390 if (rtc1_base
!= NULL
)
392 if (rtc2_base
!= NULL
)
398 static struct platform_device
*rtc_platform_device
;
400 static struct platform_driver rtc_platform_driver
= {
402 .remove
= __devexit_p(rtc_remove
),
405 .owner
= THIS_MODULE
,
409 static int __init
vr41xx_rtc_init(void)
413 switch (current_cpu_data
.cputype
) {
416 rtc_resource
[0].start
= RTC1_TYPE1_START
;
417 rtc_resource
[0].end
= RTC1_TYPE1_END
;
418 rtc_resource
[1].start
= RTC2_TYPE1_START
;
419 rtc_resource
[1].end
= RTC2_TYPE1_END
;
424 rtc_resource
[0].start
= RTC1_TYPE2_START
;
425 rtc_resource
[0].end
= RTC1_TYPE2_END
;
426 rtc_resource
[1].start
= RTC2_TYPE2_START
;
427 rtc_resource
[1].end
= RTC2_TYPE2_END
;
434 rtc_platform_device
= platform_device_alloc("RTC", -1);
435 if (rtc_platform_device
== NULL
)
438 retval
= platform_device_add_resources(rtc_platform_device
,
439 rtc_resource
, ARRAY_SIZE(rtc_resource
));
442 retval
= platform_device_add(rtc_platform_device
);
445 platform_device_put(rtc_platform_device
);
449 retval
= platform_driver_register(&rtc_platform_driver
);
451 platform_device_unregister(rtc_platform_device
);
456 static void __exit
vr41xx_rtc_exit(void)
458 platform_driver_unregister(&rtc_platform_driver
);
459 platform_device_unregister(rtc_platform_device
);
462 module_init(vr41xx_rtc_init
);
463 module_exit(vr41xx_rtc_exit
);