ACPI: ibm-acpi: implement fan watchdog command
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / atm / ambassador.c
blob323592de047b5fecc58c13f382b05e2da985c27e
1 /*
2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
36 #include <asm/atomic.h>
37 #include <asm/io.h>
38 #include <asm/byteorder.h>
40 #include "ambassador.h"
42 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
43 #define description_string "Madge ATM Ambassador driver"
44 #define version_string "1.2.4"
46 static inline void __init show_version (void) {
47 printk ("%s version %s\n", description_string, version_string);
52 Theory of Operation
54 I Hardware, detection, initialisation and shutdown.
56 1. Supported Hardware
58 This driver is for the PCI ATMizer-based Ambassador card (except
59 very early versions). It is not suitable for the similar EISA "TR7"
60 card. Commercially, both cards are known as Collage Server ATM
61 adapters.
63 The loader supports image transfer to the card, image start and few
64 other miscellaneous commands.
66 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
68 The cards are big-endian.
70 2. Detection
72 Standard PCI stuff, the early cards are detected and rejected.
74 3. Initialisation
76 The cards are reset and the self-test results are checked. The
77 microcode image is then transferred and started. This waits for a
78 pointer to a descriptor containing details of the host-based queues
79 and buffers and various parameters etc. Once they are processed
80 normal operations may begin. The BIA is read using a microcode
81 command.
83 4. Shutdown
85 This may be accomplished either by a card reset or via the microcode
86 shutdown command. Further investigation required.
88 5. Persistent state
90 The card reset does not affect PCI configuration (good) or the
91 contents of several other "shared run-time registers" (bad) which
92 include doorbell and interrupt control as well as EEPROM and PCI
93 control. The driver must be careful when modifying these registers
94 not to touch bits it does not use and to undo any changes at exit.
96 II Driver software
98 0. Generalities
100 The adapter is quite intelligent (fast) and has a simple interface
101 (few features). VPI is always zero, 1024 VCIs are supported. There
102 is limited cell rate support. UBR channels can be capped and ABR
103 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
104 support.
106 1. Driver <-> Adapter Communication
108 Apart from the basic loader commands, the driver communicates
109 through three entities: the command queue (CQ), the transmit queue
110 pair (TXQ) and the receive queue pairs (RXQ). These three entities
111 are set up by the host and passed to the microcode just after it has
112 been started.
114 All queues are host-based circular queues. They are contiguous and
115 (due to hardware limitations) have some restrictions as to their
116 locations in (bus) memory. They are of the "full means the same as
117 empty so don't do that" variety since the adapter uses pointers
118 internally.
120 The queue pairs work as follows: one queue is for supply to the
121 adapter, items in it are pending and are owned by the adapter; the
122 other is the queue for return from the adapter, items in it have
123 been dealt with by the adapter. The host adds items to the supply
124 (TX descriptors and free RX buffer descriptors) and removes items
125 from the return (TX and RX completions). The adapter deals with out
126 of order completions.
128 Interrupts (card to host) and the doorbell (host to card) are used
129 for signalling.
131 1. CQ
133 This is to communicate "open VC", "close VC", "get stats" etc. to
134 the adapter. At most one command is retired every millisecond by the
135 card. There is no out of order completion or notification. The
136 driver needs to check the return code of the command, waiting as
137 appropriate.
139 2. TXQ
141 TX supply items are of variable length (scatter gather support) and
142 so the queue items are (more or less) pointers to the real thing.
143 Each TX supply item contains a unique, host-supplied handle (the skb
144 bus address seems most sensible as this works for Alphas as well,
145 there is no need to do any endian conversions on the handles).
147 TX return items consist of just the handles above.
149 3. RXQ (up to 4 of these with different lengths and buffer sizes)
151 RX supply items consist of a unique, host-supplied handle (the skb
152 bus address again) and a pointer to the buffer data area.
154 RX return items consist of the handle above, the VC, length and a
155 status word. This just screams "oh so easy" doesn't it?
157 Note on RX pool sizes:
159 Each pool should have enough buffers to handle a back-to-back stream
160 of minimum sized frames on a single VC. For example:
162 frame spacing = 3us (about right)
164 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
166 min number of buffers for one VC = 1 + delay/spacing (buffers)
168 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
170 The 20us delay assumes that there is no need to sleep; if we need to
171 sleep to get buffers we are going to drop frames anyway.
173 In fact, each pool should have enough buffers to support the
174 simultaneous reassembly of a separate frame on each VC and cope with
175 the case in which frames complete in round robin cell fashion on
176 each VC.
178 Only one frame can complete at each cell arrival, so if "n" VCs are
179 open, the worst case is to have them all complete frames together
180 followed by all starting new frames together.
182 desired number of buffers = n + delay/spacing
184 These are the extreme requirements, however, they are "n+k" for some
185 "k" so we have only the constant to choose. This is the argument
186 rx_lats which current defaults to 7.
188 Actually, "n ? n+k : 0" is better and this is what is implemented,
189 subject to the limit given by the pool size.
191 4. Driver locking
193 Simple spinlocks are used around the TX and RX queue mechanisms.
194 Anyone with a faster, working method is welcome to implement it.
196 The adapter command queue is protected with a spinlock. We always
197 wait for commands to complete.
199 A more complex form of locking is used around parts of the VC open
200 and close functions. There are three reasons for a lock: 1. we need
201 to do atomic rate reservation and release (not used yet), 2. Opening
202 sometimes involves two adapter commands which must not be separated
203 by another command on the same VC, 3. the changes to RX pool size
204 must be atomic. The lock needs to work over context switches, so we
205 use a semaphore.
207 III Hardware Features and Microcode Bugs
209 1. Byte Ordering
211 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
213 2. Memory access
215 All structures that are not accessed using DMA must be 4-byte
216 aligned (not a problem) and must not cross 4MB boundaries.
218 There is a DMA memory hole at E0000000-E00000FF (groan).
220 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
221 but for a hardware bug).
223 RX buffers (DMA write) must not cross 16MB boundaries and must
224 include spare trailing bytes up to the next 4-byte boundary; they
225 will be written with rubbish.
227 The PLX likes to prefetch; if reading up to 4 u32 past the end of
228 each TX fragment is not a problem, then TX can be made to go a
229 little faster by passing a flag at init that disables a prefetch
230 workaround. We do not pass this flag. (new microcode only)
232 Now we:
233 . Note that alloc_skb rounds up size to a 16byte boundary.
234 . Ensure all areas do not traverse 4MB boundaries.
235 . Ensure all areas do not start at a E00000xx bus address.
236 (I cannot be certain, but this may always hold with Linux)
237 . Make all failures cause a loud message.
238 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
239 . Discard non-conforming TX fragment descriptors (the TX fails).
240 In the future we could:
241 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
242 . Segment TX areas into some/more fragments, when necessary.
243 . Relax checks for non-DMA items (ignore hole).
244 . Give scatter-gather (iovec) requirements using ???. (?)
246 3. VC close is broken (only for new microcode)
248 The VC close adapter microcode command fails to do anything if any
249 frames have been received on the VC but none have been transmitted.
250 Frames continue to be reassembled and passed (with IRQ) to the
251 driver.
253 IV To Do List
255 . Fix bugs!
257 . Timer code may be broken.
259 . Deal with buggy VC close (somehow) in microcode 12.
261 . Handle interrupted and/or non-blocking writes - is this a job for
262 the protocol layer?
264 . Add code to break up TX fragments when they span 4MB boundaries.
266 . Add SUNI phy layer (need to know where SUNI lives on card).
268 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
269 leave extra headroom space for Ambassador TX descriptors.
271 . Understand these elements of struct atm_vcc: recvq (proto?),
272 sleep, callback, listenq, backlog_quota, reply and user_back.
274 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
276 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
278 . Decide whether RX buffer recycling is or can be made completely safe;
279 turn it back on. It looks like Werner is going to axe this.
281 . Implement QoS changes on open VCs (involves extracting parts of VC open
282 and close into separate functions and using them to make changes).
284 . Hack on command queue so that someone can issue multiple commands and wait
285 on the last one (OR only "no-op" or "wait" commands are waited for).
287 . Eliminate need for while-schedule around do_command.
291 /********** microcode **********/
293 #ifdef AMB_NEW_MICROCODE
294 #define UCODE(x) UCODE2(atmsar12.x)
295 #else
296 #define UCODE(x) UCODE2(atmsar11.x)
297 #endif
298 #define UCODE2(x) #x
300 static u32 __devinitdata ucode_start =
301 #include UCODE(start)
304 static region __devinitdata ucode_regions[] = {
305 #include UCODE(regions)
306 { 0, 0 }
309 static u32 __devinitdata ucode_data[] = {
310 #include UCODE(data)
311 0xdeadbeef
314 static void do_housekeeping (unsigned long arg);
315 /********** globals **********/
317 static unsigned short debug = 0;
318 static unsigned int cmds = 8;
319 static unsigned int txs = 32;
320 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
321 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
322 static unsigned int rx_lats = 7;
323 static unsigned char pci_lat = 0;
325 static const unsigned long onegigmask = -1 << 30;
327 /********** access to adapter **********/
329 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
330 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
331 #ifdef AMB_MMIO
332 dev->membase[addr / sizeof(u32)] = data;
333 #else
334 outl (data, dev->iobase + addr);
335 #endif
338 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
339 #ifdef AMB_MMIO
340 u32 data = dev->membase[addr / sizeof(u32)];
341 #else
342 u32 data = inl (dev->iobase + addr);
343 #endif
344 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
345 return data;
348 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
349 __be32 be = cpu_to_be32 (data);
350 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
351 #ifdef AMB_MMIO
352 dev->membase[addr / sizeof(u32)] = be;
353 #else
354 outl (be, dev->iobase + addr);
355 #endif
358 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
359 #ifdef AMB_MMIO
360 __be32 be = dev->membase[addr / sizeof(u32)];
361 #else
362 __be32 be = inl (dev->iobase + addr);
363 #endif
364 u32 data = be32_to_cpu (be);
365 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
366 return data;
369 /********** dump routines **********/
371 static inline void dump_registers (const amb_dev * dev) {
372 #ifdef DEBUG_AMBASSADOR
373 if (debug & DBG_REGS) {
374 size_t i;
375 PRINTD (DBG_REGS, "reading PLX control: ");
376 for (i = 0x00; i < 0x30; i += sizeof(u32))
377 rd_mem (dev, i);
378 PRINTD (DBG_REGS, "reading mailboxes: ");
379 for (i = 0x40; i < 0x60; i += sizeof(u32))
380 rd_mem (dev, i);
381 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
382 for (i = 0x60; i < 0x70; i += sizeof(u32))
383 rd_mem (dev, i);
385 #else
386 (void) dev;
387 #endif
388 return;
391 static inline void dump_loader_block (volatile loader_block * lb) {
392 #ifdef DEBUG_AMBASSADOR
393 unsigned int i;
394 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
395 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
396 for (i = 0; i < MAX_COMMAND_DATA; ++i)
397 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
398 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
399 #else
400 (void) lb;
401 #endif
402 return;
405 static inline void dump_command (command * cmd) {
406 #ifdef DEBUG_AMBASSADOR
407 unsigned int i;
408 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
409 cmd, /*be32_to_cpu*/ (cmd->request));
410 for (i = 0; i < 3; ++i)
411 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
412 PRINTDE (DBG_CMD, "");
413 #else
414 (void) cmd;
415 #endif
416 return;
419 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
420 #ifdef DEBUG_AMBASSADOR
421 unsigned int i;
422 unsigned char * data = skb->data;
423 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
424 for (i=0; i<skb->len && i < 256;i++)
425 PRINTDM (DBG_DATA, "%02x ", data[i]);
426 PRINTDE (DBG_DATA,"");
427 #else
428 (void) prefix;
429 (void) vc;
430 (void) skb;
431 #endif
432 return;
435 /********** check memory areas for use by Ambassador **********/
437 /* see limitations under Hardware Features */
439 static inline int check_area (void * start, size_t length) {
440 // assumes length > 0
441 const u32 fourmegmask = -1 << 22;
442 const u32 twofivesixmask = -1 << 8;
443 const u32 starthole = 0xE0000000;
444 u32 startaddress = virt_to_bus (start);
445 u32 lastaddress = startaddress+length-1;
446 if ((startaddress ^ lastaddress) & fourmegmask ||
447 (startaddress & twofivesixmask) == starthole) {
448 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
449 startaddress, lastaddress);
450 return -1;
451 } else {
452 return 0;
456 /********** free an skb (as per ATM device driver documentation) **********/
458 static inline void amb_kfree_skb (struct sk_buff * skb) {
459 if (ATM_SKB(skb)->vcc->pop) {
460 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
461 } else {
462 dev_kfree_skb_any (skb);
466 /********** TX completion **********/
468 static inline void tx_complete (amb_dev * dev, tx_out * tx) {
469 tx_simple * tx_descr = bus_to_virt (tx->handle);
470 struct sk_buff * skb = tx_descr->skb;
472 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
474 // VC layer stats
475 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
477 // free the descriptor
478 kfree (tx_descr);
480 // free the skb
481 amb_kfree_skb (skb);
483 dev->stats.tx_ok++;
484 return;
487 /********** RX completion **********/
489 static void rx_complete (amb_dev * dev, rx_out * rx) {
490 struct sk_buff * skb = bus_to_virt (rx->handle);
491 u16 vc = be16_to_cpu (rx->vc);
492 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
493 u16 status = be16_to_cpu (rx->status);
494 u16 rx_len = be16_to_cpu (rx->length);
496 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
498 // XXX move this in and add to VC stats ???
499 if (!status) {
500 struct atm_vcc * atm_vcc = dev->rxer[vc];
501 dev->stats.rx.ok++;
503 if (atm_vcc) {
505 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
507 if (atm_charge (atm_vcc, skb->truesize)) {
509 // prepare socket buffer
510 ATM_SKB(skb)->vcc = atm_vcc;
511 skb_put (skb, rx_len);
513 dump_skb ("<<<", vc, skb);
515 // VC layer stats
516 atomic_inc(&atm_vcc->stats->rx);
517 __net_timestamp(skb);
518 // end of our responsability
519 atm_vcc->push (atm_vcc, skb);
520 return;
522 } else {
523 // someone fix this (message), please!
524 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
525 // drop stats incremented in atm_charge
528 } else {
529 PRINTK (KERN_INFO, "dropped over-size frame");
530 // should we count this?
531 atomic_inc(&atm_vcc->stats->rx_drop);
534 } else {
535 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
536 // this is an adapter bug, only in new version of microcode
539 } else {
540 dev->stats.rx.error++;
541 if (status & CRC_ERR)
542 dev->stats.rx.badcrc++;
543 if (status & LEN_ERR)
544 dev->stats.rx.toolong++;
545 if (status & ABORT_ERR)
546 dev->stats.rx.aborted++;
547 if (status & UNUSED_ERR)
548 dev->stats.rx.unused++;
551 dev_kfree_skb_any (skb);
552 return;
557 Note on queue handling.
559 Here "give" and "take" refer to queue entries and a queue (pair)
560 rather than frames to or from the host or adapter. Empty frame
561 buffers are given to the RX queue pair and returned unused or
562 containing RX frames. TX frames (well, pointers to TX fragment
563 lists) are given to the TX queue pair, completions are returned.
567 /********** command queue **********/
569 // I really don't like this, but it's the best I can do at the moment
571 // also, the callers are responsible for byte order as the microcode
572 // sometimes does 16-bit accesses (yuk yuk yuk)
574 static int command_do (amb_dev * dev, command * cmd) {
575 amb_cq * cq = &dev->cq;
576 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
577 command * my_slot;
579 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
581 if (test_bit (dead, &dev->flags))
582 return 0;
584 spin_lock (&cq->lock);
586 // if not full...
587 if (cq->pending < cq->maximum) {
588 // remember my slot for later
589 my_slot = ptrs->in;
590 PRINTD (DBG_CMD, "command in slot %p", my_slot);
592 dump_command (cmd);
594 // copy command in
595 *ptrs->in = *cmd;
596 cq->pending++;
597 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
599 // mail the command
600 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
602 if (cq->pending > cq->high)
603 cq->high = cq->pending;
604 spin_unlock (&cq->lock);
606 // these comments were in a while-loop before, msleep removes the loop
607 // go to sleep
608 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
609 msleep(cq->pending);
611 // wait for my slot to be reached (all waiters are here or above, until...)
612 while (ptrs->out != my_slot) {
613 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
614 set_current_state(TASK_UNINTERRUPTIBLE);
615 schedule();
618 // wait on my slot (... one gets to its slot, and... )
619 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
620 PRINTD (DBG_CMD, "wait: command slot completion");
621 set_current_state(TASK_UNINTERRUPTIBLE);
622 schedule();
625 PRINTD (DBG_CMD, "command complete");
626 // update queue (... moves the queue along to the next slot)
627 spin_lock (&cq->lock);
628 cq->pending--;
629 // copy command out
630 *cmd = *ptrs->out;
631 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
632 spin_unlock (&cq->lock);
634 return 0;
635 } else {
636 cq->filled++;
637 spin_unlock (&cq->lock);
638 return -EAGAIN;
643 /********** TX queue pair **********/
645 static inline int tx_give (amb_dev * dev, tx_in * tx) {
646 amb_txq * txq = &dev->txq;
647 unsigned long flags;
649 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
651 if (test_bit (dead, &dev->flags))
652 return 0;
654 spin_lock_irqsave (&txq->lock, flags);
656 if (txq->pending < txq->maximum) {
657 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
659 *txq->in.ptr = *tx;
660 txq->pending++;
661 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
662 // hand over the TX and ring the bell
663 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
664 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
666 if (txq->pending > txq->high)
667 txq->high = txq->pending;
668 spin_unlock_irqrestore (&txq->lock, flags);
669 return 0;
670 } else {
671 txq->filled++;
672 spin_unlock_irqrestore (&txq->lock, flags);
673 return -EAGAIN;
677 static inline int tx_take (amb_dev * dev) {
678 amb_txq * txq = &dev->txq;
679 unsigned long flags;
681 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
683 spin_lock_irqsave (&txq->lock, flags);
685 if (txq->pending && txq->out.ptr->handle) {
686 // deal with TX completion
687 tx_complete (dev, txq->out.ptr);
688 // mark unused again
689 txq->out.ptr->handle = 0;
690 // remove item
691 txq->pending--;
692 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
694 spin_unlock_irqrestore (&txq->lock, flags);
695 return 0;
696 } else {
698 spin_unlock_irqrestore (&txq->lock, flags);
699 return -1;
703 /********** RX queue pairs **********/
705 static inline int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
706 amb_rxq * rxq = &dev->rxq[pool];
707 unsigned long flags;
709 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
711 spin_lock_irqsave (&rxq->lock, flags);
713 if (rxq->pending < rxq->maximum) {
714 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
716 *rxq->in.ptr = *rx;
717 rxq->pending++;
718 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
719 // hand over the RX buffer
720 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
722 spin_unlock_irqrestore (&rxq->lock, flags);
723 return 0;
724 } else {
725 spin_unlock_irqrestore (&rxq->lock, flags);
726 return -1;
730 static inline int rx_take (amb_dev * dev, unsigned char pool) {
731 amb_rxq * rxq = &dev->rxq[pool];
732 unsigned long flags;
734 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
736 spin_lock_irqsave (&rxq->lock, flags);
738 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
739 // deal with RX completion
740 rx_complete (dev, rxq->out.ptr);
741 // mark unused again
742 rxq->out.ptr->status = 0;
743 rxq->out.ptr->length = 0;
744 // remove item
745 rxq->pending--;
746 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
748 if (rxq->pending < rxq->low)
749 rxq->low = rxq->pending;
750 spin_unlock_irqrestore (&rxq->lock, flags);
751 return 0;
752 } else {
753 if (!rxq->pending && rxq->buffers_wanted)
754 rxq->emptied++;
755 spin_unlock_irqrestore (&rxq->lock, flags);
756 return -1;
760 /********** RX Pool handling **********/
762 /* pre: buffers_wanted = 0, post: pending = 0 */
763 static inline void drain_rx_pool (amb_dev * dev, unsigned char pool) {
764 amb_rxq * rxq = &dev->rxq[pool];
766 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
768 if (test_bit (dead, &dev->flags))
769 return;
771 /* we are not quite like the fill pool routines as we cannot just
772 remove one buffer, we have to remove all of them, but we might as
773 well pretend... */
774 if (rxq->pending > rxq->buffers_wanted) {
775 command cmd;
776 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
777 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
778 while (command_do (dev, &cmd))
779 schedule();
780 /* the pool may also be emptied via the interrupt handler */
781 while (rxq->pending > rxq->buffers_wanted)
782 if (rx_take (dev, pool))
783 schedule();
786 return;
789 static void drain_rx_pools (amb_dev * dev) {
790 unsigned char pool;
792 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
794 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
795 drain_rx_pool (dev, pool);
798 static inline void fill_rx_pool (amb_dev * dev, unsigned char pool,
799 gfp_t priority)
801 rx_in rx;
802 amb_rxq * rxq;
804 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
806 if (test_bit (dead, &dev->flags))
807 return;
809 rxq = &dev->rxq[pool];
810 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
812 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
813 if (!skb) {
814 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
815 return;
817 if (check_area (skb->data, skb->truesize)) {
818 dev_kfree_skb_any (skb);
819 return;
821 // cast needed as there is no %? for pointer differences
822 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
823 skb, skb->head, (long) (skb->end - skb->head));
824 rx.handle = virt_to_bus (skb);
825 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
826 if (rx_give (dev, &rx, pool))
827 dev_kfree_skb_any (skb);
831 return;
834 // top up all RX pools (can also be called as a bottom half)
835 static void fill_rx_pools (amb_dev * dev) {
836 unsigned char pool;
838 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
840 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
841 fill_rx_pool (dev, pool, GFP_ATOMIC);
843 return;
846 /********** enable host interrupts **********/
848 static inline void interrupts_on (amb_dev * dev) {
849 wr_plain (dev, offsetof(amb_mem, interrupt_control),
850 rd_plain (dev, offsetof(amb_mem, interrupt_control))
851 | AMB_INTERRUPT_BITS);
854 /********** disable host interrupts **********/
856 static inline void interrupts_off (amb_dev * dev) {
857 wr_plain (dev, offsetof(amb_mem, interrupt_control),
858 rd_plain (dev, offsetof(amb_mem, interrupt_control))
859 &~ AMB_INTERRUPT_BITS);
862 /********** interrupt handling **********/
864 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
865 amb_dev * dev = dev_id;
867 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
870 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
872 // for us or someone else sharing the same interrupt
873 if (!interrupt) {
874 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
875 return IRQ_NONE;
878 // definitely for us
879 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
880 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
884 unsigned int irq_work = 0;
885 unsigned char pool;
886 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
887 while (!rx_take (dev, pool))
888 ++irq_work;
889 while (!tx_take (dev))
890 ++irq_work;
892 if (irq_work) {
893 #ifdef FILL_RX_POOLS_IN_BH
894 schedule_work (&dev->bh);
895 #else
896 fill_rx_pools (dev);
897 #endif
899 PRINTD (DBG_IRQ, "work done: %u", irq_work);
900 } else {
901 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
905 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
906 return IRQ_HANDLED;
909 /********** make rate (not quite as much fun as Horizon) **********/
911 static int make_rate (unsigned int rate, rounding r,
912 u16 * bits, unsigned int * actual) {
913 unsigned char exp = -1; // hush gcc
914 unsigned int man = -1; // hush gcc
916 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
918 // rates in cells per second, ITU format (nasty 16-bit floating-point)
919 // given 5-bit e and 9-bit m:
920 // rate = EITHER (1+m/2^9)*2^e OR 0
921 // bits = EITHER 1<<14 | e<<9 | m OR 0
922 // (bit 15 is "reserved", bit 14 "non-zero")
923 // smallest rate is 0 (special representation)
924 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
925 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
926 // simple algorithm:
927 // find position of top bit, this gives e
928 // remove top bit and shift (rounding if feeling clever) by 9-e
930 // ucode bug: please don't set bit 14! so 0 rate not representable
932 if (rate > 0xffc00000U) {
933 // larger than largest representable rate
935 if (r == round_up) {
936 return -EINVAL;
937 } else {
938 exp = 31;
939 man = 511;
942 } else if (rate) {
943 // representable rate
945 exp = 31;
946 man = rate;
948 // invariant: rate = man*2^(exp-31)
949 while (!(man & (1<<31))) {
950 exp = exp - 1;
951 man = man<<1;
954 // man has top bit set
955 // rate = (2^31+(man-2^31))*2^(exp-31)
956 // rate = (1+(man-2^31)/2^31)*2^exp
957 man = man<<1;
958 man &= 0xffffffffU; // a nop on 32-bit systems
959 // rate = (1+man/2^32)*2^exp
961 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
962 // time to lose significance... we want m in the range 0 to 2^9-1
963 // rounding presents a minor problem... we first decide which way
964 // we are rounding (based on given rounding direction and possibly
965 // the bits of the mantissa that are to be discarded).
967 switch (r) {
968 case round_down: {
969 // just truncate
970 man = man>>(32-9);
971 break;
973 case round_up: {
974 // check all bits that we are discarding
975 if (man & (-1>>9)) {
976 man = (man>>(32-9)) + 1;
977 if (man == (1<<9)) {
978 // no need to check for round up outside of range
979 man = 0;
980 exp += 1;
982 } else {
983 man = (man>>(32-9));
985 break;
987 case round_nearest: {
988 // check msb that we are discarding
989 if (man & (1<<(32-9-1))) {
990 man = (man>>(32-9)) + 1;
991 if (man == (1<<9)) {
992 // no need to check for round up outside of range
993 man = 0;
994 exp += 1;
996 } else {
997 man = (man>>(32-9));
999 break;
1003 } else {
1004 // zero rate - not representable
1006 if (r == round_down) {
1007 return -EINVAL;
1008 } else {
1009 exp = 0;
1010 man = 0;
1015 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
1017 if (bits)
1018 *bits = /* (1<<14) | */ (exp<<9) | man;
1020 if (actual)
1021 *actual = (exp >= 9)
1022 ? (1 << exp) + (man << (exp-9))
1023 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1025 return 0;
1028 /********** Linux ATM Operations **********/
1030 // some are not yet implemented while others do not make sense for
1031 // this device
1033 /********** Open a VC **********/
1035 static int amb_open (struct atm_vcc * atm_vcc)
1037 int error;
1039 struct atm_qos * qos;
1040 struct atm_trafprm * txtp;
1041 struct atm_trafprm * rxtp;
1042 u16 tx_rate_bits;
1043 u16 tx_vc_bits = -1; // hush gcc
1044 u16 tx_frame_bits = -1; // hush gcc
1046 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1047 amb_vcc * vcc;
1048 unsigned char pool = -1; // hush gcc
1049 short vpi = atm_vcc->vpi;
1050 int vci = atm_vcc->vci;
1052 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1054 #ifdef ATM_VPI_UNSPEC
1055 // UNSPEC is deprecated, remove this code eventually
1056 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1057 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1058 return -EINVAL;
1060 #endif
1062 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1063 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1064 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1065 return -EINVAL;
1068 qos = &atm_vcc->qos;
1070 if (qos->aal != ATM_AAL5) {
1071 PRINTD (DBG_QOS, "AAL not supported");
1072 return -EINVAL;
1075 // traffic parameters
1077 PRINTD (DBG_QOS, "TX:");
1078 txtp = &qos->txtp;
1079 if (txtp->traffic_class != ATM_NONE) {
1080 switch (txtp->traffic_class) {
1081 case ATM_UBR: {
1082 // we take "the PCR" as a rate-cap
1083 int pcr = atm_pcr_goal (txtp);
1084 if (!pcr) {
1085 // no rate cap
1086 tx_rate_bits = 0;
1087 tx_vc_bits = TX_UBR;
1088 tx_frame_bits = TX_FRAME_NOTCAP;
1089 } else {
1090 rounding r;
1091 if (pcr < 0) {
1092 r = round_down;
1093 pcr = -pcr;
1094 } else {
1095 r = round_up;
1097 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1098 tx_vc_bits = TX_UBR_CAPPED;
1099 tx_frame_bits = TX_FRAME_CAPPED;
1101 break;
1103 #if 0
1104 case ATM_ABR: {
1105 pcr = atm_pcr_goal (txtp);
1106 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1107 break;
1109 #endif
1110 default: {
1111 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1112 PRINTD (DBG_QOS, "request for non-UBR denied");
1113 return -EINVAL;
1116 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1117 tx_rate_bits, tx_vc_bits);
1120 PRINTD (DBG_QOS, "RX:");
1121 rxtp = &qos->rxtp;
1122 if (rxtp->traffic_class == ATM_NONE) {
1123 // do nothing
1124 } else {
1125 // choose an RX pool (arranged in increasing size)
1126 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1127 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1128 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1129 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1130 break;
1132 if (pool == NUM_RX_POOLS) {
1133 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1134 "no pool suitable for VC (RX max_sdu %d is too large)",
1135 rxtp->max_sdu);
1136 return -EINVAL;
1139 switch (rxtp->traffic_class) {
1140 case ATM_UBR: {
1141 break;
1143 #if 0
1144 case ATM_ABR: {
1145 pcr = atm_pcr_goal (rxtp);
1146 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1147 break;
1149 #endif
1150 default: {
1151 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1152 PRINTD (DBG_QOS, "request for non-UBR denied");
1153 return -EINVAL;
1158 // get space for our vcc stuff
1159 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1160 if (!vcc) {
1161 PRINTK (KERN_ERR, "out of memory!");
1162 return -ENOMEM;
1164 atm_vcc->dev_data = (void *) vcc;
1166 // no failures beyond this point
1168 // we are not really "immediately before allocating the connection
1169 // identifier in hardware", but it will just have to do!
1170 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1172 if (txtp->traffic_class != ATM_NONE) {
1173 command cmd;
1175 vcc->tx_frame_bits = tx_frame_bits;
1177 down (&dev->vcc_sf);
1178 if (dev->rxer[vci]) {
1179 // RXer on the channel already, just modify rate...
1180 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1181 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1182 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1183 while (command_do (dev, &cmd))
1184 schedule();
1185 // ... and TX flags, preserving the RX pool
1186 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1187 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1188 cmd.args.modify_flags.flags = cpu_to_be32
1189 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1190 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1191 while (command_do (dev, &cmd))
1192 schedule();
1193 } else {
1194 // no RXer on the channel, just open (with pool zero)
1195 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1196 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1197 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1198 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1199 while (command_do (dev, &cmd))
1200 schedule();
1202 dev->txer[vci].tx_present = 1;
1203 up (&dev->vcc_sf);
1206 if (rxtp->traffic_class != ATM_NONE) {
1207 command cmd;
1209 vcc->rx_info.pool = pool;
1211 down (&dev->vcc_sf);
1212 /* grow RX buffer pool */
1213 if (!dev->rxq[pool].buffers_wanted)
1214 dev->rxq[pool].buffers_wanted = rx_lats;
1215 dev->rxq[pool].buffers_wanted += 1;
1216 fill_rx_pool (dev, pool, GFP_KERNEL);
1218 if (dev->txer[vci].tx_present) {
1219 // TXer on the channel already
1220 // switch (from pool zero) to this pool, preserving the TX bits
1221 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1222 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1223 cmd.args.modify_flags.flags = cpu_to_be32
1224 ( (pool << SRB_POOL_SHIFT)
1225 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1226 } else {
1227 // no TXer on the channel, open the VC (with no rate info)
1228 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1229 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1230 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1231 cmd.args.open.rate = cpu_to_be32 (0);
1233 while (command_do (dev, &cmd))
1234 schedule();
1235 // this link allows RX frames through
1236 dev->rxer[vci] = atm_vcc;
1237 up (&dev->vcc_sf);
1240 // indicate readiness
1241 set_bit(ATM_VF_READY,&atm_vcc->flags);
1243 return 0;
1246 /********** Close a VC **********/
1248 static void amb_close (struct atm_vcc * atm_vcc) {
1249 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1250 amb_vcc * vcc = AMB_VCC (atm_vcc);
1251 u16 vci = atm_vcc->vci;
1253 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1255 // indicate unreadiness
1256 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1258 // disable TXing
1259 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1260 command cmd;
1262 down (&dev->vcc_sf);
1263 if (dev->rxer[vci]) {
1264 // RXer still on the channel, just modify rate... XXX not really needed
1265 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1266 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1267 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1268 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1269 } else {
1270 // no RXer on the channel, close channel
1271 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1272 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1274 dev->txer[vci].tx_present = 0;
1275 while (command_do (dev, &cmd))
1276 schedule();
1277 up (&dev->vcc_sf);
1280 // disable RXing
1281 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1282 command cmd;
1284 // this is (the?) one reason why we need the amb_vcc struct
1285 unsigned char pool = vcc->rx_info.pool;
1287 down (&dev->vcc_sf);
1288 if (dev->txer[vci].tx_present) {
1289 // TXer still on the channel, just go to pool zero XXX not really needed
1290 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1291 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1292 cmd.args.modify_flags.flags = cpu_to_be32
1293 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1294 } else {
1295 // no TXer on the channel, close the VC
1296 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1297 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1299 // forget the rxer - no more skbs will be pushed
1300 if (atm_vcc != dev->rxer[vci])
1301 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1302 "arghhh! we're going to die!",
1303 vcc, dev->rxer[vci]);
1304 dev->rxer[vci] = NULL;
1305 while (command_do (dev, &cmd))
1306 schedule();
1308 /* shrink RX buffer pool */
1309 dev->rxq[pool].buffers_wanted -= 1;
1310 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1311 dev->rxq[pool].buffers_wanted = 0;
1312 drain_rx_pool (dev, pool);
1314 up (&dev->vcc_sf);
1317 // free our structure
1318 kfree (vcc);
1320 // say the VPI/VCI is free again
1321 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1323 return;
1326 /********** Set socket options for a VC **********/
1328 // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1330 /********** Set socket options for a VC **********/
1332 // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1334 /********** Send **********/
1336 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1337 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1338 amb_vcc * vcc = AMB_VCC(atm_vcc);
1339 u16 vc = atm_vcc->vci;
1340 unsigned int tx_len = skb->len;
1341 unsigned char * tx_data = skb->data;
1342 tx_simple * tx_descr;
1343 tx_in tx;
1345 if (test_bit (dead, &dev->flags))
1346 return -EIO;
1348 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1349 vc, tx_data, tx_len);
1351 dump_skb (">>>", vc, skb);
1353 if (!dev->txer[vc].tx_present) {
1354 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1355 return -EBADFD;
1358 // this is a driver private field so we have to set it ourselves,
1359 // despite the fact that we are _required_ to use it to check for a
1360 // pop function
1361 ATM_SKB(skb)->vcc = atm_vcc;
1363 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1364 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1365 return -EIO;
1368 if (check_area (skb->data, skb->len)) {
1369 atomic_inc(&atm_vcc->stats->tx_err);
1370 return -ENOMEM; // ?
1373 // allocate memory for fragments
1374 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1375 if (!tx_descr) {
1376 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1377 return -ENOMEM;
1379 if (check_area (tx_descr, sizeof(tx_simple))) {
1380 kfree (tx_descr);
1381 return -ENOMEM;
1383 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1385 tx_descr->skb = skb;
1387 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1388 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1390 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1391 tx_descr->tx_frag_end.vc = 0;
1392 tx_descr->tx_frag_end.next_descriptor_length = 0;
1393 tx_descr->tx_frag_end.next_descriptor = 0;
1394 #ifdef AMB_NEW_MICROCODE
1395 tx_descr->tx_frag_end.cpcs_uu = 0;
1396 tx_descr->tx_frag_end.cpi = 0;
1397 tx_descr->tx_frag_end.pad = 0;
1398 #endif
1400 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1401 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1402 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1404 while (tx_give (dev, &tx))
1405 schedule();
1406 return 0;
1409 /********** Change QoS on a VC **********/
1411 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1413 /********** Free RX Socket Buffer **********/
1415 #if 0
1416 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1417 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1418 amb_vcc * vcc = AMB_VCC (atm_vcc);
1419 unsigned char pool = vcc->rx_info.pool;
1420 rx_in rx;
1422 // This may be unsafe for various reasons that I cannot really guess
1423 // at. However, I note that the ATM layer calls kfree_skb rather
1424 // than dev_kfree_skb at this point so we are least covered as far
1425 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1427 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1428 skb, atm_vcc, vcc);
1430 rx.handle = virt_to_bus (skb);
1431 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1433 skb->data = skb->head;
1434 skb->tail = skb->head;
1435 skb->len = 0;
1437 if (!rx_give (dev, &rx, pool)) {
1438 // success
1439 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1440 return;
1443 // just do what the ATM layer would have done
1444 dev_kfree_skb_any (skb);
1446 return;
1448 #endif
1450 /********** Proc File Output **********/
1452 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1453 amb_dev * dev = AMB_DEV (atm_dev);
1454 int left = *pos;
1455 unsigned char pool;
1457 PRINTD (DBG_FLOW, "amb_proc_read");
1459 /* more diagnostics here? */
1461 if (!left--) {
1462 amb_stats * s = &dev->stats;
1463 return sprintf (page,
1464 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1465 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1466 s->tx_ok, s->rx.ok, s->rx.error,
1467 s->rx.badcrc, s->rx.toolong,
1468 s->rx.aborted, s->rx.unused);
1471 if (!left--) {
1472 amb_cq * c = &dev->cq;
1473 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1474 c->pending, c->high, c->maximum);
1477 if (!left--) {
1478 amb_txq * t = &dev->txq;
1479 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1480 t->pending, t->maximum, t->high, t->filled);
1483 if (!left--) {
1484 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1485 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1486 amb_rxq * r = &dev->rxq[pool];
1487 count += sprintf (page+count, " %u/%u/%u %u %u",
1488 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1490 count += sprintf (page+count, ".\n");
1491 return count;
1494 if (!left--) {
1495 unsigned int count = sprintf (page, "RX buffer sizes:");
1496 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1497 amb_rxq * r = &dev->rxq[pool];
1498 count += sprintf (page+count, " %u", r->buffer_size);
1500 count += sprintf (page+count, ".\n");
1501 return count;
1504 #if 0
1505 if (!left--) {
1506 // suni block etc?
1508 #endif
1510 return 0;
1513 /********** Operation Structure **********/
1515 static const struct atmdev_ops amb_ops = {
1516 .open = amb_open,
1517 .close = amb_close,
1518 .send = amb_send,
1519 .proc_read = amb_proc_read,
1520 .owner = THIS_MODULE,
1523 /********** housekeeping **********/
1524 static void do_housekeeping (unsigned long arg) {
1525 amb_dev * dev = (amb_dev *) arg;
1527 // could collect device-specific (not driver/atm-linux) stats here
1529 // last resort refill once every ten seconds
1530 fill_rx_pools (dev);
1531 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1533 return;
1536 /********** creation of communication queues **********/
1538 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1539 unsigned int txs, unsigned int * rxs,
1540 unsigned int * rx_buffer_sizes) {
1541 unsigned char pool;
1542 size_t total = 0;
1543 void * memory;
1544 void * limit;
1546 PRINTD (DBG_FLOW, "create_queues %p", dev);
1548 total += cmds * sizeof(command);
1550 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1552 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1553 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1555 memory = kmalloc (total, GFP_KERNEL);
1556 if (!memory) {
1557 PRINTK (KERN_ERR, "could not allocate queues");
1558 return -ENOMEM;
1560 if (check_area (memory, total)) {
1561 PRINTK (KERN_ERR, "queues allocated in nasty area");
1562 kfree (memory);
1563 return -ENOMEM;
1566 limit = memory + total;
1567 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1569 PRINTD (DBG_CMD, "command queue at %p", memory);
1572 command * cmd = memory;
1573 amb_cq * cq = &dev->cq;
1575 cq->pending = 0;
1576 cq->high = 0;
1577 cq->maximum = cmds - 1;
1579 cq->ptrs.start = cmd;
1580 cq->ptrs.in = cmd;
1581 cq->ptrs.out = cmd;
1582 cq->ptrs.limit = cmd + cmds;
1584 memory = cq->ptrs.limit;
1587 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1590 tx_in * in = memory;
1591 tx_out * out;
1592 amb_txq * txq = &dev->txq;
1594 txq->pending = 0;
1595 txq->high = 0;
1596 txq->filled = 0;
1597 txq->maximum = txs - 1;
1599 txq->in.start = in;
1600 txq->in.ptr = in;
1601 txq->in.limit = in + txs;
1603 memory = txq->in.limit;
1604 out = memory;
1606 txq->out.start = out;
1607 txq->out.ptr = out;
1608 txq->out.limit = out + txs;
1610 memory = txq->out.limit;
1613 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1615 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1616 rx_in * in = memory;
1617 rx_out * out;
1618 amb_rxq * rxq = &dev->rxq[pool];
1620 rxq->buffer_size = rx_buffer_sizes[pool];
1621 rxq->buffers_wanted = 0;
1623 rxq->pending = 0;
1624 rxq->low = rxs[pool] - 1;
1625 rxq->emptied = 0;
1626 rxq->maximum = rxs[pool] - 1;
1628 rxq->in.start = in;
1629 rxq->in.ptr = in;
1630 rxq->in.limit = in + rxs[pool];
1632 memory = rxq->in.limit;
1633 out = memory;
1635 rxq->out.start = out;
1636 rxq->out.ptr = out;
1637 rxq->out.limit = out + rxs[pool];
1639 memory = rxq->out.limit;
1642 if (memory == limit) {
1643 return 0;
1644 } else {
1645 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1646 kfree (limit - total);
1647 return -ENOMEM;
1652 /********** destruction of communication queues **********/
1654 static void destroy_queues (amb_dev * dev) {
1655 // all queues assumed empty
1656 void * memory = dev->cq.ptrs.start;
1657 // includes txq.in, txq.out, rxq[].in and rxq[].out
1659 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1661 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1662 kfree (memory);
1664 return;
1667 /********** basic loader commands and error handling **********/
1668 // centisecond timeouts - guessing away here
1669 static unsigned int command_timeouts [] = {
1670 [host_memory_test] = 15,
1671 [read_adapter_memory] = 2,
1672 [write_adapter_memory] = 2,
1673 [adapter_start] = 50,
1674 [get_version_number] = 10,
1675 [interrupt_host] = 1,
1676 [flash_erase_sector] = 1,
1677 [adap_download_block] = 1,
1678 [adap_erase_flash] = 1,
1679 [adap_run_in_iram] = 1,
1680 [adap_end_download] = 1
1684 static unsigned int command_successes [] = {
1685 [host_memory_test] = COMMAND_PASSED_TEST,
1686 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1687 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1688 [adapter_start] = COMMAND_COMPLETE,
1689 [get_version_number] = COMMAND_COMPLETE,
1690 [interrupt_host] = COMMAND_COMPLETE,
1691 [flash_erase_sector] = COMMAND_COMPLETE,
1692 [adap_download_block] = COMMAND_COMPLETE,
1693 [adap_erase_flash] = COMMAND_COMPLETE,
1694 [adap_run_in_iram] = COMMAND_COMPLETE,
1695 [adap_end_download] = COMMAND_COMPLETE
1698 static int decode_loader_result (loader_command cmd, u32 result)
1700 int res;
1701 const char *msg;
1703 if (result == command_successes[cmd])
1704 return 0;
1706 switch (result) {
1707 case BAD_COMMAND:
1708 res = -EINVAL;
1709 msg = "bad command";
1710 break;
1711 case COMMAND_IN_PROGRESS:
1712 res = -ETIMEDOUT;
1713 msg = "command in progress";
1714 break;
1715 case COMMAND_PASSED_TEST:
1716 res = 0;
1717 msg = "command passed test";
1718 break;
1719 case COMMAND_FAILED_TEST:
1720 res = -EIO;
1721 msg = "command failed test";
1722 break;
1723 case COMMAND_READ_DATA_OK:
1724 res = 0;
1725 msg = "command read data ok";
1726 break;
1727 case COMMAND_READ_BAD_ADDRESS:
1728 res = -EINVAL;
1729 msg = "command read bad address";
1730 break;
1731 case COMMAND_WRITE_DATA_OK:
1732 res = 0;
1733 msg = "command write data ok";
1734 break;
1735 case COMMAND_WRITE_BAD_ADDRESS:
1736 res = -EINVAL;
1737 msg = "command write bad address";
1738 break;
1739 case COMMAND_WRITE_FLASH_FAILURE:
1740 res = -EIO;
1741 msg = "command write flash failure";
1742 break;
1743 case COMMAND_COMPLETE:
1744 res = 0;
1745 msg = "command complete";
1746 break;
1747 case COMMAND_FLASH_ERASE_FAILURE:
1748 res = -EIO;
1749 msg = "command flash erase failure";
1750 break;
1751 case COMMAND_WRITE_BAD_DATA:
1752 res = -EINVAL;
1753 msg = "command write bad data";
1754 break;
1755 default:
1756 res = -EINVAL;
1757 msg = "unknown error";
1758 PRINTD (DBG_LOAD|DBG_ERR,
1759 "decode_loader_result got %d=%x !",
1760 result, result);
1761 break;
1764 PRINTK (KERN_ERR, "%s", msg);
1765 return res;
1768 static int __devinit do_loader_command (volatile loader_block * lb,
1769 const amb_dev * dev, loader_command cmd) {
1771 unsigned long timeout;
1773 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1775 /* do a command
1777 Set the return value to zero, set the command type and set the
1778 valid entry to the right magic value. The payload is already
1779 correctly byte-ordered so we leave it alone. Hit the doorbell
1780 with the bus address of this structure.
1784 lb->result = 0;
1785 lb->command = cpu_to_be32 (cmd);
1786 lb->valid = cpu_to_be32 (DMA_VALID);
1787 // dump_registers (dev);
1788 // dump_loader_block (lb);
1789 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1791 timeout = command_timeouts[cmd] * 10;
1793 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1794 if (timeout) {
1795 timeout = msleep_interruptible(timeout);
1796 } else {
1797 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1798 dump_registers (dev);
1799 dump_loader_block (lb);
1800 return -ETIMEDOUT;
1803 if (cmd == adapter_start) {
1804 // wait for start command to acknowledge...
1805 timeout = 100;
1806 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1807 if (timeout) {
1808 timeout = msleep_interruptible(timeout);
1809 } else {
1810 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1811 be32_to_cpu (lb->result));
1812 dump_registers (dev);
1813 return -ETIMEDOUT;
1815 return 0;
1816 } else {
1817 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1822 /* loader: determine loader version */
1824 static int __devinit get_loader_version (loader_block * lb,
1825 const amb_dev * dev, u32 * version) {
1826 int res;
1828 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1830 res = do_loader_command (lb, dev, get_version_number);
1831 if (res)
1832 return res;
1833 if (version)
1834 *version = be32_to_cpu (lb->payload.version);
1835 return 0;
1838 /* loader: write memory data blocks */
1840 static int __devinit loader_write (loader_block * lb,
1841 const amb_dev * dev, const u32 * data,
1842 u32 address, unsigned int count) {
1843 unsigned int i;
1844 transfer_block * tb = &lb->payload.transfer;
1846 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1848 if (count > MAX_TRANSFER_DATA)
1849 return -EINVAL;
1850 tb->address = cpu_to_be32 (address);
1851 tb->count = cpu_to_be32 (count);
1852 for (i = 0; i < count; ++i)
1853 tb->data[i] = cpu_to_be32 (data[i]);
1854 return do_loader_command (lb, dev, write_adapter_memory);
1857 /* loader: verify memory data blocks */
1859 static int __devinit loader_verify (loader_block * lb,
1860 const amb_dev * dev, const u32 * data,
1861 u32 address, unsigned int count) {
1862 unsigned int i;
1863 transfer_block * tb = &lb->payload.transfer;
1864 int res;
1866 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1868 if (count > MAX_TRANSFER_DATA)
1869 return -EINVAL;
1870 tb->address = cpu_to_be32 (address);
1871 tb->count = cpu_to_be32 (count);
1872 res = do_loader_command (lb, dev, read_adapter_memory);
1873 if (!res)
1874 for (i = 0; i < count; ++i)
1875 if (tb->data[i] != cpu_to_be32 (data[i])) {
1876 res = -EINVAL;
1877 break;
1879 return res;
1882 /* loader: start microcode */
1884 static int __devinit loader_start (loader_block * lb,
1885 const amb_dev * dev, u32 address) {
1886 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1888 lb->payload.start = cpu_to_be32 (address);
1889 return do_loader_command (lb, dev, adapter_start);
1892 /********** reset card **********/
1894 static inline void sf (const char * msg)
1896 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1899 static int amb_reset (amb_dev * dev, int diags) {
1900 u32 word;
1902 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1904 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1905 // put card into reset state
1906 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1907 // wait a short while
1908 udelay (10);
1909 #if 1
1910 // put card into known good state
1911 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1912 // clear all interrupts just in case
1913 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1914 #endif
1915 // clear self-test done flag
1916 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1917 // take card out of reset state
1918 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1920 if (diags) {
1921 unsigned long timeout;
1922 // 4.2 second wait
1923 msleep(4200);
1924 // half second time-out
1925 timeout = 500;
1926 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1927 if (timeout) {
1928 timeout = msleep_interruptible(timeout);
1929 } else {
1930 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1931 return -ETIMEDOUT;
1934 // get results of self-test
1935 // XXX double check byte-order
1936 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1937 if (word & SELF_TEST_FAILURE) {
1938 if (word & GPINT_TST_FAILURE)
1939 sf ("interrupt");
1940 if (word & SUNI_DATA_PATTERN_FAILURE)
1941 sf ("SUNI data pattern");
1942 if (word & SUNI_DATA_BITS_FAILURE)
1943 sf ("SUNI data bits");
1944 if (word & SUNI_UTOPIA_FAILURE)
1945 sf ("SUNI UTOPIA interface");
1946 if (word & SUNI_FIFO_FAILURE)
1947 sf ("SUNI cell buffer FIFO");
1948 if (word & SRAM_FAILURE)
1949 sf ("bad SRAM");
1950 // better return value?
1951 return -EIO;
1955 return 0;
1958 /********** transfer and start the microcode **********/
1960 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1961 unsigned int i = 0;
1962 unsigned int total = 0;
1963 const u32 * pointer = ucode_data;
1964 u32 address;
1965 unsigned int count;
1966 int res;
1968 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1970 while (address = ucode_regions[i].start,
1971 count = ucode_regions[i].count) {
1972 PRINTD (DBG_LOAD, "starting region (%x, %u)", address, count);
1973 while (count) {
1974 unsigned int words;
1975 if (count <= MAX_TRANSFER_DATA)
1976 words = count;
1977 else
1978 words = MAX_TRANSFER_DATA;
1979 total += words;
1980 res = loader_write (lb, dev, pointer, address, words);
1981 if (res)
1982 return res;
1983 res = loader_verify (lb, dev, pointer, address, words);
1984 if (res)
1985 return res;
1986 count -= words;
1987 address += sizeof(u32) * words;
1988 pointer += words;
1990 i += 1;
1992 if (*pointer == ATM_POISON) {
1993 return loader_start (lb, dev, ucode_start);
1994 } else {
1995 // cast needed as there is no %? for pointer differnces
1996 PRINTD (DBG_LOAD|DBG_ERR,
1997 "offset=%li, *pointer=%x, address=%x, total=%u",
1998 (long) (pointer - ucode_data), *pointer, address, total);
1999 PRINTK (KERN_ERR, "incorrect microcode data");
2000 return -ENOMEM;
2004 /********** give adapter parameters **********/
2006 static inline __be32 bus_addr(void * addr) {
2007 return cpu_to_be32 (virt_to_bus (addr));
2010 static int __devinit amb_talk (amb_dev * dev) {
2011 adap_talk_block a;
2012 unsigned char pool;
2013 unsigned long timeout;
2015 PRINTD (DBG_FLOW, "amb_talk %p", dev);
2017 a.command_start = bus_addr (dev->cq.ptrs.start);
2018 a.command_end = bus_addr (dev->cq.ptrs.limit);
2019 a.tx_start = bus_addr (dev->txq.in.start);
2020 a.tx_end = bus_addr (dev->txq.in.limit);
2021 a.txcom_start = bus_addr (dev->txq.out.start);
2022 a.txcom_end = bus_addr (dev->txq.out.limit);
2024 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2025 // the other "a" items are set up by the adapter
2026 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2027 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2028 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2029 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2030 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2033 #ifdef AMB_NEW_MICROCODE
2034 // disable fast PLX prefetching
2035 a.init_flags = 0;
2036 #endif
2038 // pass the structure
2039 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2041 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2042 msleep(2200);
2043 // give the adapter another half second?
2044 timeout = 500;
2045 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2046 if (timeout) {
2047 timeout = msleep_interruptible(timeout);
2048 } else {
2049 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2050 return -ETIMEDOUT;
2053 return 0;
2056 // get microcode version
2057 static void __devinit amb_ucode_version (amb_dev * dev) {
2058 u32 major;
2059 u32 minor;
2060 command cmd;
2061 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2062 while (command_do (dev, &cmd)) {
2063 set_current_state(TASK_UNINTERRUPTIBLE);
2064 schedule();
2066 major = be32_to_cpu (cmd.args.version.major);
2067 minor = be32_to_cpu (cmd.args.version.minor);
2068 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2071 // swap bits within byte to get Ethernet ordering
2072 static u8 bit_swap (u8 byte)
2074 const u8 swap[] = {
2075 0x0, 0x8, 0x4, 0xc,
2076 0x2, 0xa, 0x6, 0xe,
2077 0x1, 0x9, 0x5, 0xd,
2078 0x3, 0xb, 0x7, 0xf
2080 return ((swap[byte & 0xf]<<4) | swap[byte>>4]);
2083 // get end station address
2084 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2085 u32 lower4;
2086 u16 upper2;
2087 command cmd;
2089 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2090 while (command_do (dev, &cmd)) {
2091 set_current_state(TASK_UNINTERRUPTIBLE);
2092 schedule();
2094 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2095 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2096 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2098 if (esi) {
2099 unsigned int i;
2101 PRINTDB (DBG_INIT, "ESI:");
2102 for (i = 0; i < ESI_LEN; ++i) {
2103 if (i < 4)
2104 esi[i] = bit_swap (lower4>>(8*i));
2105 else
2106 esi[i] = bit_swap (upper2>>(8*(i-4)));
2107 PRINTDM (DBG_INIT, " %02x", esi[i]);
2110 PRINTDE (DBG_INIT, "");
2113 return;
2116 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2118 // fix up the PLX-mapped window base address to match the block
2119 unsigned long blb;
2120 u32 mapreg;
2121 blb = virt_to_bus(lb);
2122 // the kernel stack had better not ever cross a 1Gb boundary!
2123 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2124 mapreg &= ~onegigmask;
2125 mapreg |= blb & onegigmask;
2126 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2127 return;
2130 static int __devinit amb_init (amb_dev * dev)
2132 loader_block lb;
2134 u32 version;
2136 if (amb_reset (dev, 1)) {
2137 PRINTK (KERN_ERR, "card reset failed!");
2138 } else {
2139 fixup_plx_window (dev, &lb);
2141 if (get_loader_version (&lb, dev, &version)) {
2142 PRINTK (KERN_INFO, "failed to get loader version");
2143 } else {
2144 PRINTK (KERN_INFO, "loader version is %08x", version);
2146 if (ucode_init (&lb, dev)) {
2147 PRINTK (KERN_ERR, "microcode failure");
2148 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2149 PRINTK (KERN_ERR, "failed to get memory for queues");
2150 } else {
2152 if (amb_talk (dev)) {
2153 PRINTK (KERN_ERR, "adapter did not accept queues");
2154 } else {
2156 amb_ucode_version (dev);
2157 return 0;
2159 } /* amb_talk */
2161 destroy_queues (dev);
2162 } /* create_queues, ucode_init */
2164 amb_reset (dev, 0);
2165 } /* get_loader_version */
2167 } /* amb_reset */
2169 return -EINVAL;
2172 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2174 unsigned char pool;
2175 memset (dev, 0, sizeof(amb_dev));
2177 // set up known dev items straight away
2178 dev->pci_dev = pci_dev;
2179 pci_set_drvdata(pci_dev, dev);
2181 dev->iobase = pci_resource_start (pci_dev, 1);
2182 dev->irq = pci_dev->irq;
2183 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2185 // flags (currently only dead)
2186 dev->flags = 0;
2188 // Allocate cell rates (fibre)
2189 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2190 // to be really pedantic, this should be ATM_OC3c_PCR
2191 dev->tx_avail = ATM_OC3_PCR;
2192 dev->rx_avail = ATM_OC3_PCR;
2194 #ifdef FILL_RX_POOLS_IN_BH
2195 // initialise bottom half
2196 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2197 #endif
2199 // semaphore for txer/rxer modifications - we cannot use a
2200 // spinlock as the critical region needs to switch processes
2201 init_MUTEX (&dev->vcc_sf);
2202 // queue manipulation spinlocks; we want atomic reads and
2203 // writes to the queue descriptors (handles IRQ and SMP)
2204 // consider replacing "int pending" -> "atomic_t available"
2205 // => problem related to who gets to move queue pointers
2206 spin_lock_init (&dev->cq.lock);
2207 spin_lock_init (&dev->txq.lock);
2208 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2209 spin_lock_init (&dev->rxq[pool].lock);
2212 static void setup_pci_dev(struct pci_dev *pci_dev)
2214 unsigned char lat;
2216 // enable bus master accesses
2217 pci_set_master(pci_dev);
2219 // frobnicate latency (upwards, usually)
2220 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2222 if (!pci_lat)
2223 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2225 if (lat != pci_lat) {
2226 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2227 lat, pci_lat);
2228 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2232 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2234 amb_dev * dev;
2235 int err;
2236 unsigned int irq;
2238 err = pci_enable_device(pci_dev);
2239 if (err < 0) {
2240 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2241 goto out;
2244 // read resources from PCI configuration space
2245 irq = pci_dev->irq;
2247 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2248 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2249 err = -EINVAL;
2250 goto out_disable;
2253 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2254 " IO %llx, IRQ %u, MEM %p",
2255 (unsigned long long)pci_resource_start(pci_dev, 1),
2256 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2258 // check IO region
2259 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2260 if (err < 0) {
2261 PRINTK (KERN_ERR, "IO range already in use!");
2262 goto out_disable;
2265 dev = kmalloc (sizeof(amb_dev), GFP_KERNEL);
2266 if (!dev) {
2267 PRINTK (KERN_ERR, "out of memory!");
2268 err = -ENOMEM;
2269 goto out_release;
2272 setup_dev(dev, pci_dev);
2274 err = amb_init(dev);
2275 if (err < 0) {
2276 PRINTK (KERN_ERR, "adapter initialisation failure");
2277 goto out_free;
2280 setup_pci_dev(pci_dev);
2282 // grab (but share) IRQ and install handler
2283 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2284 if (err < 0) {
2285 PRINTK (KERN_ERR, "request IRQ failed!");
2286 goto out_reset;
2289 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2290 if (!dev->atm_dev) {
2291 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2292 err = -EINVAL;
2293 goto out_free_irq;
2296 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2297 dev->atm_dev->number, dev, dev->atm_dev);
2298 dev->atm_dev->dev_data = (void *) dev;
2300 // register our address
2301 amb_esi (dev, dev->atm_dev->esi);
2303 // 0 bits for vpi, 10 bits for vci
2304 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2305 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2307 init_timer(&dev->housekeeping);
2308 dev->housekeeping.function = do_housekeeping;
2309 dev->housekeeping.data = (unsigned long) dev;
2310 mod_timer(&dev->housekeeping, jiffies);
2312 // enable host interrupts
2313 interrupts_on (dev);
2315 out:
2316 return err;
2318 out_free_irq:
2319 free_irq(irq, dev);
2320 out_reset:
2321 amb_reset(dev, 0);
2322 out_free:
2323 kfree(dev);
2324 out_release:
2325 pci_release_region(pci_dev, 1);
2326 out_disable:
2327 pci_disable_device(pci_dev);
2328 goto out;
2332 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2334 struct amb_dev *dev;
2336 dev = pci_get_drvdata(pci_dev);
2338 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2339 del_timer_sync(&dev->housekeeping);
2340 // the drain should not be necessary
2341 drain_rx_pools(dev);
2342 interrupts_off(dev);
2343 amb_reset(dev, 0);
2344 free_irq(dev->irq, dev);
2345 pci_disable_device(pci_dev);
2346 destroy_queues(dev);
2347 atm_dev_deregister(dev->atm_dev);
2348 kfree(dev);
2349 pci_release_region(pci_dev, 1);
2352 static void __init amb_check_args (void) {
2353 unsigned char pool;
2354 unsigned int max_rx_size;
2356 #ifdef DEBUG_AMBASSADOR
2357 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2358 #else
2359 if (debug)
2360 PRINTK (KERN_NOTICE, "no debugging support");
2361 #endif
2363 if (cmds < MIN_QUEUE_SIZE)
2364 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2365 cmds = MIN_QUEUE_SIZE);
2367 if (txs < MIN_QUEUE_SIZE)
2368 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2369 txs = MIN_QUEUE_SIZE);
2371 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2372 if (rxs[pool] < MIN_QUEUE_SIZE)
2373 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2374 pool, rxs[pool] = MIN_QUEUE_SIZE);
2376 // buffers sizes should be greater than zero and strictly increasing
2377 max_rx_size = 0;
2378 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2379 if (rxs_bs[pool] <= max_rx_size)
2380 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2381 pool, rxs_bs[pool]);
2382 else
2383 max_rx_size = rxs_bs[pool];
2385 if (rx_lats < MIN_RX_BUFFERS)
2386 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2387 rx_lats = MIN_RX_BUFFERS);
2389 return;
2392 /********** module stuff **********/
2394 MODULE_AUTHOR(maintainer_string);
2395 MODULE_DESCRIPTION(description_string);
2396 MODULE_LICENSE("GPL");
2397 module_param(debug, ushort, 0644);
2398 module_param(cmds, uint, 0);
2399 module_param(txs, uint, 0);
2400 module_param_array(rxs, uint, NULL, 0);
2401 module_param_array(rxs_bs, uint, NULL, 0);
2402 module_param(rx_lats, uint, 0);
2403 module_param(pci_lat, byte, 0);
2404 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2405 MODULE_PARM_DESC(cmds, "number of command queue entries");
2406 MODULE_PARM_DESC(txs, "number of TX queue entries");
2407 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2408 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2409 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2410 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2412 /********** module entry **********/
2414 static struct pci_device_id amb_pci_tbl[] = {
2415 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2416 0, 0, 0 },
2417 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2418 0, 0, 0 },
2419 { 0, }
2422 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2424 static struct pci_driver amb_driver = {
2425 .name = "amb",
2426 .probe = amb_probe,
2427 .remove = __devexit_p(amb_remove_one),
2428 .id_table = amb_pci_tbl,
2431 static int __init amb_module_init (void)
2433 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2435 // sanity check - cast needed as printk does not support %Zu
2436 if (sizeof(amb_mem) != 4*16 + 4*12) {
2437 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2438 (unsigned long) sizeof(amb_mem));
2439 return -ENOMEM;
2442 show_version();
2444 amb_check_args();
2446 // get the juice
2447 return pci_register_driver(&amb_driver);
2450 /********** module exit **********/
2452 static void __exit amb_module_exit (void)
2454 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2456 return pci_unregister_driver(&amb_driver);
2459 module_init(amb_module_init);
2460 module_exit(amb_module_exit);