ext4: Don't add the inode to journal handle until after the block is allocated
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobb567e71f5be99d91cf6881de40d2c0dace4f9938
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 #define MPAGE_DA_EXTENT_TAIL 0x01
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
56 * Test whether an inode is a fast symlink.
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 (inode->i_sb->s_blocksize >> 9) : 0;
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 * The ext4 forget function must perform a revoke if we are freeing data
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
78 int err;
80 might_sleep();
82 BUFFER_TRACE(bh, "enter");
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
96 if (bh) {
97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 return ext4_journal_forget(handle, bh);
100 return 0;
104 * data!=journal && (is_metadata || should_journal_data(inode))
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
108 if (err)
109 ext4_abort(inode->i_sb, __func__,
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
119 static unsigned long blocks_for_truncate(struct inode *inode)
121 ext4_lblk_t needed;
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
128 * like a regular file for ext4 to try to delete it. Things
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
152 static handle_t *start_transaction(struct inode *inode)
154 handle_t *result;
156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 if (!IS_ERR(result))
158 return result;
160 ext4_std_error(inode->i_sb, PTR_ERR(result));
161 return result;
165 * Try to extend this transaction for the purposes of truncation.
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 return 0;
174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 return 0;
176 return 1;
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 jbd_debug(2, "restarting handle %p\n", handle);
187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
191 * Called at the last iput() if i_nlink is zero.
193 void ext4_delete_inode(struct inode *inode)
195 handle_t *handle;
196 int err;
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
200 truncate_inode_pages(&inode->i_data, 0);
202 if (is_bad_inode(inode))
203 goto no_delete;
205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 if (IS_ERR(handle)) {
207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
213 ext4_orphan_del(NULL, inode);
214 goto no_delete;
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
226 if (inode->i_blocks)
227 ext4_truncate(inode);
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
249 * Kill off the orphan record which ext4_truncate created.
250 * AKPM: I think this can be inside the above `if'.
251 * Note that ext4_orphan_del() has to be able to cope with the
252 * deletion of a non-existent orphan - this is because we don't
253 * know if ext4_truncate() actually created an orphan record.
254 * (Well, we could do this if we need to, but heck - it works)
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
266 if (ext4_mark_inode_dirty(handle, inode))
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
272 return;
273 no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
277 typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281 } Indirect;
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 p->key = *(p->p = v);
286 p->bh = bh;
290 * ext4_block_to_path - parse the block number into array of offsets
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
297 * To store the locations of file's data ext4 uses a data structure common
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
320 static int ext4_block_to_path(struct inode *inode,
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
332 if (i_block < 0) {
333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
338 offsets[n++] = EXT4_IND_BLOCK;
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
342 offsets[n++] = EXT4_DIND_BLOCK;
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 offsets[n++] = EXT4_TIND_BLOCK;
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
353 ext4_warning(inode->i_sb, "ext4_block_to_path",
354 "block %lu > max",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
364 * ext4_get_branch - read the chain of indirect blocks leading to data
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
390 * Need to be called with
391 * down_read(&EXT4_I(inode)->i_data_sem)
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
395 Indirect chain[4], int *err)
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
401 *err = 0;
402 /* i_data is not going away, no lock needed */
403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
415 return NULL;
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
424 * ext4_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 struct ext4_inode_info *ei = EXT4_I(inode);
446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext4_fsblk_t bg_start;
449 ext4_fsblk_t last_block;
450 ext4_grpblk_t colour;
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 return bg_start + colour;
478 * ext4_find_goal - find a preferred place for allocation.
479 * @inode: owner
480 * @block: block we want
481 * @partial: pointer to the last triple within a chain
483 * Normally this function find the preferred place for block allocation,
484 * returns it.
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 Indirect *partial)
489 struct ext4_block_alloc_info *block_i;
491 block_i = EXT4_I(inode)->i_block_alloc_info;
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
502 return ext4_find_near(inode, partial);
506 * ext4_blks_to_allocate: Look up the block map and count the number
507 * of direct blocks need to be allocated for the given branch.
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518 int blocks_to_boundary)
520 unsigned long count = 0;
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
540 return count;
544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
558 int target, i;
559 unsigned long count = 0, blk_allocated = 0;
560 int index = 0;
561 ext4_fsblk_t current_block = 0;
562 int ret = 0;
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
579 if (*err)
580 goto failed_out;
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
588 if (count > 0) {
590 * save the new block number
591 * for the first direct block
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
597 break;
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
607 /* allocating blocks for data blocks */
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
612 * if the allocation failed and we didn't allocate
613 * any blocks before
615 goto failed_out;
617 if (!*err) {
618 if (target == blks) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
625 blk_allocated += count;
627 allocated:
628 /* total number of blocks allocated for direct blocks */
629 ret = blk_allocated;
630 *err = 0;
631 return ret;
632 failed_out:
633 for (i = 0; i < index; i++)
634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 return ret;
639 * ext4_alloc_branch - allocate and set up a chain of blocks.
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
650 * the same format as ext4_get_branch() would do. We are calling it after
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
653 * picture as after the successful ext4_get_block(), except that in one
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661 * as described above and return 0.
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
681 branch[0].key = cpu_to_le32(new_blocks[0]);
683 * metadata blocks and data blocks are allocated.
685 for (n = 1; n <= indirect_blks; n++) {
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
695 err = ext4_journal_get_create_access(handle, bh);
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
706 if (n == indirect_blks) {
707 current_block = new_blocks[n];
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
722 if (err)
723 goto failed;
725 *blks = num;
726 return err;
727 failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 ext4_journal_forget(handle, branch[i].bh);
733 for (i = 0; i < indirect_blks; i++)
734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
738 return err;
742 * ext4_splice_branch - splice the allocated branch onto inode.
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
746 * ext4_alloc_branch)
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 ext4_lblk_t block, Indirect *where, int num, int blks)
758 int i;
759 int err = 0;
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
763 block_i = EXT4_I(inode)->i_block_alloc_info;
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
771 err = ext4_journal_get_write_access(handle, where->bh);
772 if (err)
773 goto err_out;
775 /* That's it */
777 *where->p = where->key;
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
786 *(where->p + i) = cpu_to_le32(current_block++);
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
800 /* We are done with atomic stuff, now do the rest of housekeeping */
802 inode->i_ctime = ext4_current_time(inode);
803 ext4_mark_inode_dirty(handle, inode);
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
815 jbd_debug(5, "splicing indirect only\n");
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
818 if (err)
819 goto err_out;
820 } else {
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
825 jbd_debug(5, "splicing direct\n");
827 return err;
829 err_out:
830 for (i = 1; i <= num; i++) {
831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832 ext4_journal_forget(handle, where[i].bh);
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
838 return err;
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
853 * `handle' can be NULL if create == 0.
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
860 * Need to be called with
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865 ext4_lblk_t iblock, unsigned long maxblocks,
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
869 int err = -EIO;
870 ext4_lblk_t offsets[4];
871 Indirect chain[4];
872 Indirect *partial;
873 ext4_fsblk_t goal;
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
877 struct ext4_inode_info *ei = EXT4_I(inode);
878 int count = 0;
879 ext4_fsblk_t first_block = 0;
880 loff_t disksize;
883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884 J_ASSERT(handle != NULL || create == 0);
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
888 if (depth == 0)
889 goto out;
891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
900 ext4_fsblk_t blk;
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
909 goto got_it;
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921 ext4_init_block_alloc_info(inode);
923 goal = ext4_find_goal(inode, iblock, partial);
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
932 count = ext4_blks_to_allocate(partial, indirect_blks,
933 maxblocks, blocks_to_boundary);
935 * Block out ext4_truncate while we alter the tree
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
942 * The ext4_splice_branch call will free and forget any buffers
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
948 if (!err)
949 err = ext4_splice_branch(handle, inode, iblock,
950 partial, indirect_blks, count);
952 * i_disksize growing is protected by i_data_sem. Don't forget to
953 * protect it if you're about to implement concurrent
954 * ext4_get_block() -bzzz
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
963 if (err)
964 goto cleanup;
966 set_buffer_new(bh_result);
967 got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974 cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
980 BUFFER_TRACE(bh_result, "returned");
981 out:
982 return err;
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
997 dind_blks = (ind_blks + icap - 1) / icap;
999 tind_blks = 1;
1001 return ind_blks + dind_blks + tind_blks;
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1010 if (!blocks)
1011 return 0;
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1033 if (mdb_free) {
1034 /* Account for allocated meta_blocks */
1035 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1037 /* update fs dirty blocks counter */
1038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1043 /* update per-inode reservations */
1044 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1045 EXT4_I(inode)->i_reserved_data_blocks -= used;
1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1051 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052 * and returns if the blocks are already mapped.
1054 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055 * and store the allocated blocks in the result buffer head and mark it
1056 * mapped.
1058 * If file type is extents based, it will call ext4_ext_get_blocks(),
1059 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060 * based files
1062 * On success, it returns the number of blocks being mapped or allocate.
1063 * if create==0 and the blocks are pre-allocated and uninitialized block,
1064 * the result buffer head is unmapped. If the create ==1, it will make sure
1065 * the buffer head is mapped.
1067 * It returns 0 if plain look up failed (blocks have not been allocated), in
1068 * that casem, buffer head is unmapped
1070 * It returns the error in case of allocation failure.
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073 unsigned long max_blocks, struct buffer_head *bh,
1074 int create, int extend_disksize, int flag)
1076 int retval;
1078 clear_buffer_mapped(bh);
1081 * Try to see if we can get the block without requesting
1082 * for new file system block.
1084 down_read((&EXT4_I(inode)->i_data_sem));
1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087 bh, 0, 0);
1088 } else {
1089 retval = ext4_get_blocks_handle(handle,
1090 inode, block, max_blocks, bh, 0, 0);
1092 up_read((&EXT4_I(inode)->i_data_sem));
1094 /* If it is only a block(s) look up */
1095 if (!create)
1096 return retval;
1099 * Returns if the blocks have already allocated
1101 * Note that if blocks have been preallocated
1102 * ext4_ext_get_block() returns th create = 0
1103 * with buffer head unmapped.
1105 if (retval > 0 && buffer_mapped(bh))
1106 return retval;
1109 * New blocks allocate and/or writing to uninitialized extent
1110 * will possibly result in updating i_data, so we take
1111 * the write lock of i_data_sem, and call get_blocks()
1112 * with create == 1 flag.
1114 down_write((&EXT4_I(inode)->i_data_sem));
1117 * if the caller is from delayed allocation writeout path
1118 * we have already reserved fs blocks for allocation
1119 * let the underlying get_block() function know to
1120 * avoid double accounting
1122 if (flag)
1123 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1125 * We need to check for EXT4 here because migrate
1126 * could have changed the inode type in between
1128 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130 bh, create, extend_disksize);
1131 } else {
1132 retval = ext4_get_blocks_handle(handle, inode, block,
1133 max_blocks, bh, create, extend_disksize);
1135 if (retval > 0 && buffer_new(bh)) {
1137 * We allocated new blocks which will result in
1138 * i_data's format changing. Force the migrate
1139 * to fail by clearing migrate flags
1141 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142 ~EXT4_EXT_MIGRATE;
1146 if (flag) {
1147 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1149 * Update reserved blocks/metadata blocks
1150 * after successful block allocation
1151 * which were deferred till now
1153 if ((retval > 0) && buffer_delay(bh))
1154 ext4_da_update_reserve_space(inode, retval);
1157 up_write((&EXT4_I(inode)->i_data_sem));
1158 return retval;
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165 struct buffer_head *bh_result, int create)
1167 handle_t *handle = ext4_journal_current_handle();
1168 int ret = 0, started = 0;
1169 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170 int dio_credits;
1172 if (create && !handle) {
1173 /* Direct IO write... */
1174 if (max_blocks > DIO_MAX_BLOCKS)
1175 max_blocks = DIO_MAX_BLOCKS;
1176 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177 handle = ext4_journal_start(inode, dio_credits);
1178 if (IS_ERR(handle)) {
1179 ret = PTR_ERR(handle);
1180 goto out;
1182 started = 1;
1185 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186 max_blocks, bh_result, create, 0, 0);
1187 if (ret > 0) {
1188 bh_result->b_size = (ret << inode->i_blkbits);
1189 ret = 0;
1191 if (started)
1192 ext4_journal_stop(handle);
1193 out:
1194 return ret;
1198 * `handle' can be NULL if create is zero
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201 ext4_lblk_t block, int create, int *errp)
1203 struct buffer_head dummy;
1204 int fatal = 0, err;
1206 J_ASSERT(handle != NULL || create == 0);
1208 dummy.b_state = 0;
1209 dummy.b_blocknr = -1000;
1210 buffer_trace_init(&dummy.b_history);
1211 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212 &dummy, create, 1, 0);
1214 * ext4_get_blocks_handle() returns number of blocks
1215 * mapped. 0 in case of a HOLE.
1217 if (err > 0) {
1218 if (err > 1)
1219 WARN_ON(1);
1220 err = 0;
1222 *errp = err;
1223 if (!err && buffer_mapped(&dummy)) {
1224 struct buffer_head *bh;
1225 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226 if (!bh) {
1227 *errp = -EIO;
1228 goto err;
1230 if (buffer_new(&dummy)) {
1231 J_ASSERT(create != 0);
1232 J_ASSERT(handle != NULL);
1235 * Now that we do not always journal data, we should
1236 * keep in mind whether this should always journal the
1237 * new buffer as metadata. For now, regular file
1238 * writes use ext4_get_block instead, so it's not a
1239 * problem.
1241 lock_buffer(bh);
1242 BUFFER_TRACE(bh, "call get_create_access");
1243 fatal = ext4_journal_get_create_access(handle, bh);
1244 if (!fatal && !buffer_uptodate(bh)) {
1245 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246 set_buffer_uptodate(bh);
1248 unlock_buffer(bh);
1249 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250 err = ext4_journal_dirty_metadata(handle, bh);
1251 if (!fatal)
1252 fatal = err;
1253 } else {
1254 BUFFER_TRACE(bh, "not a new buffer");
1256 if (fatal) {
1257 *errp = fatal;
1258 brelse(bh);
1259 bh = NULL;
1261 return bh;
1263 err:
1264 return NULL;
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268 ext4_lblk_t block, int create, int *err)
1270 struct buffer_head *bh;
1272 bh = ext4_getblk(handle, inode, block, create, err);
1273 if (!bh)
1274 return bh;
1275 if (buffer_uptodate(bh))
1276 return bh;
1277 ll_rw_block(READ_META, 1, &bh);
1278 wait_on_buffer(bh);
1279 if (buffer_uptodate(bh))
1280 return bh;
1281 put_bh(bh);
1282 *err = -EIO;
1283 return NULL;
1286 static int walk_page_buffers(handle_t *handle,
1287 struct buffer_head *head,
1288 unsigned from,
1289 unsigned to,
1290 int *partial,
1291 int (*fn)(handle_t *handle,
1292 struct buffer_head *bh))
1294 struct buffer_head *bh;
1295 unsigned block_start, block_end;
1296 unsigned blocksize = head->b_size;
1297 int err, ret = 0;
1298 struct buffer_head *next;
1300 for (bh = head, block_start = 0;
1301 ret == 0 && (bh != head || !block_start);
1302 block_start = block_end, bh = next)
1304 next = bh->b_this_page;
1305 block_end = block_start + blocksize;
1306 if (block_end <= from || block_start >= to) {
1307 if (partial && !buffer_uptodate(bh))
1308 *partial = 1;
1309 continue;
1311 err = (*fn)(handle, bh);
1312 if (!ret)
1313 ret = err;
1315 return ret;
1319 * To preserve ordering, it is essential that the hole instantiation and
1320 * the data write be encapsulated in a single transaction. We cannot
1321 * close off a transaction and start a new one between the ext4_get_block()
1322 * and the commit_write(). So doing the jbd2_journal_start at the start of
1323 * prepare_write() is the right place.
1325 * Also, this function can nest inside ext4_writepage() ->
1326 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327 * has generated enough buffer credits to do the whole page. So we won't
1328 * block on the journal in that case, which is good, because the caller may
1329 * be PF_MEMALLOC.
1331 * By accident, ext4 can be reentered when a transaction is open via
1332 * quota file writes. If we were to commit the transaction while thus
1333 * reentered, there can be a deadlock - we would be holding a quota
1334 * lock, and the commit would never complete if another thread had a
1335 * transaction open and was blocking on the quota lock - a ranking
1336 * violation.
1338 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339 * will _not_ run commit under these circumstances because handle->h_ref
1340 * is elevated. We'll still have enough credits for the tiny quotafile
1341 * write.
1343 static int do_journal_get_write_access(handle_t *handle,
1344 struct buffer_head *bh)
1346 if (!buffer_mapped(bh) || buffer_freed(bh))
1347 return 0;
1348 return ext4_journal_get_write_access(handle, bh);
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352 loff_t pos, unsigned len, unsigned flags,
1353 struct page **pagep, void **fsdata)
1355 struct inode *inode = mapping->host;
1356 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357 handle_t *handle;
1358 int retries = 0;
1359 struct page *page;
1360 pgoff_t index;
1361 unsigned from, to;
1363 index = pos >> PAGE_CACHE_SHIFT;
1364 from = pos & (PAGE_CACHE_SIZE - 1);
1365 to = from + len;
1367 retry:
1368 handle = ext4_journal_start(inode, needed_blocks);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 goto out;
1374 page = __grab_cache_page(mapping, index);
1375 if (!page) {
1376 ext4_journal_stop(handle);
1377 ret = -ENOMEM;
1378 goto out;
1380 *pagep = page;
1382 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383 ext4_get_block);
1385 if (!ret && ext4_should_journal_data(inode)) {
1386 ret = walk_page_buffers(handle, page_buffers(page),
1387 from, to, NULL, do_journal_get_write_access);
1390 if (ret) {
1391 unlock_page(page);
1392 ext4_journal_stop(handle);
1393 page_cache_release(page);
1396 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397 goto retry;
1398 out:
1399 return ret;
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1405 if (!buffer_mapped(bh) || buffer_freed(bh))
1406 return 0;
1407 set_buffer_uptodate(bh);
1408 return ext4_journal_dirty_metadata(handle, bh);
1412 * We need to pick up the new inode size which generic_commit_write gave us
1413 * `file' can be NULL - eg, when called from page_symlink().
1415 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1416 * buffers are managed internally.
1418 static int ext4_ordered_write_end(struct file *file,
1419 struct address_space *mapping,
1420 loff_t pos, unsigned len, unsigned copied,
1421 struct page *page, void *fsdata)
1423 handle_t *handle = ext4_journal_current_handle();
1424 struct inode *inode = mapping->host;
1425 int ret = 0, ret2;
1427 ret = ext4_jbd2_file_inode(handle, inode);
1429 if (ret == 0) {
1431 * generic_write_end() will run mark_inode_dirty() if i_size
1432 * changes. So let's piggyback the i_disksize mark_inode_dirty
1433 * into that.
1435 loff_t new_i_size;
1437 new_i_size = pos + copied;
1438 if (new_i_size > EXT4_I(inode)->i_disksize)
1439 EXT4_I(inode)->i_disksize = new_i_size;
1440 ret2 = generic_write_end(file, mapping, pos, len, copied,
1441 page, fsdata);
1442 copied = ret2;
1443 if (ret2 < 0)
1444 ret = ret2;
1446 ret2 = ext4_journal_stop(handle);
1447 if (!ret)
1448 ret = ret2;
1450 return ret ? ret : copied;
1453 static int ext4_writeback_write_end(struct file *file,
1454 struct address_space *mapping,
1455 loff_t pos, unsigned len, unsigned copied,
1456 struct page *page, void *fsdata)
1458 handle_t *handle = ext4_journal_current_handle();
1459 struct inode *inode = mapping->host;
1460 int ret = 0, ret2;
1461 loff_t new_i_size;
1463 new_i_size = pos + copied;
1464 if (new_i_size > EXT4_I(inode)->i_disksize)
1465 EXT4_I(inode)->i_disksize = new_i_size;
1467 ret2 = generic_write_end(file, mapping, pos, len, copied,
1468 page, fsdata);
1469 copied = ret2;
1470 if (ret2 < 0)
1471 ret = ret2;
1473 ret2 = ext4_journal_stop(handle);
1474 if (!ret)
1475 ret = ret2;
1477 return ret ? ret : copied;
1480 static int ext4_journalled_write_end(struct file *file,
1481 struct address_space *mapping,
1482 loff_t pos, unsigned len, unsigned copied,
1483 struct page *page, void *fsdata)
1485 handle_t *handle = ext4_journal_current_handle();
1486 struct inode *inode = mapping->host;
1487 int ret = 0, ret2;
1488 int partial = 0;
1489 unsigned from, to;
1491 from = pos & (PAGE_CACHE_SIZE - 1);
1492 to = from + len;
1494 if (copied < len) {
1495 if (!PageUptodate(page))
1496 copied = 0;
1497 page_zero_new_buffers(page, from+copied, to);
1500 ret = walk_page_buffers(handle, page_buffers(page), from,
1501 to, &partial, write_end_fn);
1502 if (!partial)
1503 SetPageUptodate(page);
1504 if (pos+copied > inode->i_size)
1505 i_size_write(inode, pos+copied);
1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508 EXT4_I(inode)->i_disksize = inode->i_size;
1509 ret2 = ext4_mark_inode_dirty(handle, inode);
1510 if (!ret)
1511 ret = ret2;
1514 unlock_page(page);
1515 ret2 = ext4_journal_stop(handle);
1516 if (!ret)
1517 ret = ret2;
1518 page_cache_release(page);
1520 return ret ? ret : copied;
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1525 int retries = 0;
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 unsigned long md_needed, mdblocks, total = 0;
1530 * recalculate the amount of metadata blocks to reserve
1531 * in order to allocate nrblocks
1532 * worse case is one extent per block
1534 repeat:
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1543 if (ext4_claim_free_blocks(sbi, total)) {
1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 yield();
1547 goto repeat;
1549 return -ENOSPC;
1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 return 0; /* success */
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 int total, mdb, mdb_free, release;
1563 if (!to_free)
1564 return; /* Nothing to release, exit */
1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1568 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1570 * if there is no reserved blocks, but we try to free some
1571 * then the counter is messed up somewhere.
1572 * but since this function is called from invalidate
1573 * page, it's harmless to return without any action
1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 "blocks for inode %lu, but there is no reserved "
1577 "data blocks\n", to_free, inode->i_ino);
1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 return;
1582 /* recalculate the number of metablocks still need to be reserved */
1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584 mdb = ext4_calc_metadata_amount(inode, total);
1586 /* figure out how many metablocks to release */
1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1590 release = to_free + mdb_free;
1592 /* update fs dirty blocks counter for truncate case */
1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1595 /* update per-inode reservations */
1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1604 static void ext4_da_page_release_reservation(struct page *page,
1605 unsigned long offset)
1607 int to_release = 0;
1608 struct buffer_head *head, *bh;
1609 unsigned int curr_off = 0;
1611 head = page_buffers(page);
1612 bh = head;
1613 do {
1614 unsigned int next_off = curr_off + bh->b_size;
1616 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 to_release++;
1618 clear_buffer_delay(bh);
1620 curr_off = next_off;
1621 } while ((bh = bh->b_this_page) != head);
1622 ext4_da_release_space(page->mapping->host, to_release);
1626 * Delayed allocation stuff
1629 struct mpage_da_data {
1630 struct inode *inode;
1631 struct buffer_head lbh; /* extent of blocks */
1632 unsigned long first_page, next_page; /* extent of pages */
1633 get_block_t *get_block;
1634 struct writeback_control *wbc;
1635 int io_done;
1636 long pages_written;
1640 * mpage_da_submit_io - walks through extent of pages and try to write
1641 * them with writepage() call back
1643 * @mpd->inode: inode
1644 * @mpd->first_page: first page of the extent
1645 * @mpd->next_page: page after the last page of the extent
1646 * @mpd->get_block: the filesystem's block mapper function
1648 * By the time mpage_da_submit_io() is called we expect all blocks
1649 * to be allocated. this may be wrong if allocation failed.
1651 * As pages are already locked by write_cache_pages(), we can't use it
1653 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1655 struct address_space *mapping = mpd->inode->i_mapping;
1656 int ret = 0, err, nr_pages, i;
1657 unsigned long index, end;
1658 struct pagevec pvec;
1660 BUG_ON(mpd->next_page <= mpd->first_page);
1661 pagevec_init(&pvec, 0);
1662 index = mpd->first_page;
1663 end = mpd->next_page - 1;
1665 while (index <= end) {
1666 /* XXX: optimize tail */
1667 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668 if (nr_pages == 0)
1669 break;
1670 for (i = 0; i < nr_pages; i++) {
1671 struct page *page = pvec.pages[i];
1673 index = page->index;
1674 if (index > end)
1675 break;
1676 index++;
1678 err = mapping->a_ops->writepage(page, mpd->wbc);
1679 if (!err)
1680 mpd->pages_written++;
1682 * In error case, we have to continue because
1683 * remaining pages are still locked
1684 * XXX: unlock and re-dirty them?
1686 if (ret == 0)
1687 ret = err;
1689 pagevec_release(&pvec);
1691 return ret;
1695 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1697 * @mpd->inode - inode to walk through
1698 * @exbh->b_blocknr - first block on a disk
1699 * @exbh->b_size - amount of space in bytes
1700 * @logical - first logical block to start assignment with
1702 * the function goes through all passed space and put actual disk
1703 * block numbers into buffer heads, dropping BH_Delay
1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1706 struct buffer_head *exbh)
1708 struct inode *inode = mpd->inode;
1709 struct address_space *mapping = inode->i_mapping;
1710 int blocks = exbh->b_size >> inode->i_blkbits;
1711 sector_t pblock = exbh->b_blocknr, cur_logical;
1712 struct buffer_head *head, *bh;
1713 pgoff_t index, end;
1714 struct pagevec pvec;
1715 int nr_pages, i;
1717 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1721 pagevec_init(&pvec, 0);
1723 while (index <= end) {
1724 /* XXX: optimize tail */
1725 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726 if (nr_pages == 0)
1727 break;
1728 for (i = 0; i < nr_pages; i++) {
1729 struct page *page = pvec.pages[i];
1731 index = page->index;
1732 if (index > end)
1733 break;
1734 index++;
1736 BUG_ON(!PageLocked(page));
1737 BUG_ON(PageWriteback(page));
1738 BUG_ON(!page_has_buffers(page));
1740 bh = page_buffers(page);
1741 head = bh;
1743 /* skip blocks out of the range */
1744 do {
1745 if (cur_logical >= logical)
1746 break;
1747 cur_logical++;
1748 } while ((bh = bh->b_this_page) != head);
1750 do {
1751 if (cur_logical >= logical + blocks)
1752 break;
1753 if (buffer_delay(bh)) {
1754 bh->b_blocknr = pblock;
1755 clear_buffer_delay(bh);
1756 bh->b_bdev = inode->i_sb->s_bdev;
1757 } else if (buffer_unwritten(bh)) {
1758 bh->b_blocknr = pblock;
1759 clear_buffer_unwritten(bh);
1760 set_buffer_mapped(bh);
1761 set_buffer_new(bh);
1762 bh->b_bdev = inode->i_sb->s_bdev;
1763 } else if (buffer_mapped(bh))
1764 BUG_ON(bh->b_blocknr != pblock);
1766 cur_logical++;
1767 pblock++;
1768 } while ((bh = bh->b_this_page) != head);
1770 pagevec_release(&pvec);
1776 * __unmap_underlying_blocks - just a helper function to unmap
1777 * set of blocks described by @bh
1779 static inline void __unmap_underlying_blocks(struct inode *inode,
1780 struct buffer_head *bh)
1782 struct block_device *bdev = inode->i_sb->s_bdev;
1783 int blocks, i;
1785 blocks = bh->b_size >> inode->i_blkbits;
1786 for (i = 0; i < blocks; i++)
1787 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1791 sector_t logical, long blk_cnt)
1793 int nr_pages, i;
1794 pgoff_t index, end;
1795 struct pagevec pvec;
1796 struct inode *inode = mpd->inode;
1797 struct address_space *mapping = inode->i_mapping;
1799 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800 end = (logical + blk_cnt - 1) >>
1801 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1802 while (index <= end) {
1803 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1804 if (nr_pages == 0)
1805 break;
1806 for (i = 0; i < nr_pages; i++) {
1807 struct page *page = pvec.pages[i];
1808 index = page->index;
1809 if (index > end)
1810 break;
1811 index++;
1813 BUG_ON(!PageLocked(page));
1814 BUG_ON(PageWriteback(page));
1815 block_invalidatepage(page, 0);
1816 ClearPageUptodate(page);
1817 unlock_page(page);
1820 return;
1824 * mpage_da_map_blocks - go through given space
1826 * @mpd->lbh - bh describing space
1827 * @mpd->get_block - the filesystem's block mapper function
1829 * The function skips space we know is already mapped to disk blocks.
1832 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1834 int err = 0;
1835 struct buffer_head new;
1836 struct buffer_head *lbh = &mpd->lbh;
1837 sector_t next = lbh->b_blocknr;
1840 * We consider only non-mapped and non-allocated blocks
1842 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1843 return 0;
1844 new.b_state = lbh->b_state;
1845 new.b_blocknr = 0;
1846 new.b_size = lbh->b_size;
1848 * If we didn't accumulate anything
1849 * to write simply return
1851 if (!new.b_size)
1852 return 0;
1853 err = mpd->get_block(mpd->inode, next, &new, 1);
1854 if (err) {
1856 /* If get block returns with error
1857 * we simply return. Later writepage
1858 * will redirty the page and writepages
1859 * will find the dirty page again
1861 if (err == -EAGAIN)
1862 return 0;
1864 * get block failure will cause us
1865 * to loop in writepages. Because
1866 * a_ops->writepage won't be able to
1867 * make progress. The page will be redirtied
1868 * by writepage and writepages will again
1869 * try to write the same.
1871 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1872 "at logical offset %llu with max blocks "
1873 "%zd with error %d\n",
1874 __func__, mpd->inode->i_ino,
1875 (unsigned long long)next,
1876 lbh->b_size >> mpd->inode->i_blkbits, err);
1877 printk(KERN_EMERG "This should not happen.!! "
1878 "Data will be lost\n");
1879 if (err == -ENOSPC) {
1880 printk(KERN_CRIT "Total free blocks count %lld\n",
1881 ext4_count_free_blocks(mpd->inode->i_sb));
1883 /* invlaidate all the pages */
1884 ext4_da_block_invalidatepages(mpd, next,
1885 lbh->b_size >> mpd->inode->i_blkbits);
1886 return err;
1888 BUG_ON(new.b_size == 0);
1890 if (buffer_new(&new))
1891 __unmap_underlying_blocks(mpd->inode, &new);
1894 * If blocks are delayed marked, we need to
1895 * put actual blocknr and drop delayed bit
1897 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1898 mpage_put_bnr_to_bhs(mpd, next, &new);
1900 return 0;
1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1904 (1 << BH_Delay) | (1 << BH_Unwritten))
1907 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1909 * @mpd->lbh - extent of blocks
1910 * @logical - logical number of the block in the file
1911 * @bh - bh of the block (used to access block's state)
1913 * the function is used to collect contig. blocks in same state
1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1916 sector_t logical, struct buffer_head *bh)
1918 sector_t next;
1919 size_t b_size = bh->b_size;
1920 struct buffer_head *lbh = &mpd->lbh;
1921 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1923 /* check if thereserved journal credits might overflow */
1924 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1925 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1927 * With non-extent format we are limited by the journal
1928 * credit available. Total credit needed to insert
1929 * nrblocks contiguous blocks is dependent on the
1930 * nrblocks. So limit nrblocks.
1932 goto flush_it;
1933 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1934 EXT4_MAX_TRANS_DATA) {
1936 * Adding the new buffer_head would make it cross the
1937 * allowed limit for which we have journal credit
1938 * reserved. So limit the new bh->b_size
1940 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1941 mpd->inode->i_blkbits;
1942 /* we will do mpage_da_submit_io in the next loop */
1946 * First block in the extent
1948 if (lbh->b_size == 0) {
1949 lbh->b_blocknr = logical;
1950 lbh->b_size = b_size;
1951 lbh->b_state = bh->b_state & BH_FLAGS;
1952 return;
1955 next = lbh->b_blocknr + nrblocks;
1957 * Can we merge the block to our big extent?
1959 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1960 lbh->b_size += b_size;
1961 return;
1964 flush_it:
1966 * We couldn't merge the block to our extent, so we
1967 * need to flush current extent and start new one
1969 if (mpage_da_map_blocks(mpd) == 0)
1970 mpage_da_submit_io(mpd);
1971 mpd->io_done = 1;
1972 return;
1976 * __mpage_da_writepage - finds extent of pages and blocks
1978 * @page: page to consider
1979 * @wbc: not used, we just follow rules
1980 * @data: context
1982 * The function finds extents of pages and scan them for all blocks.
1984 static int __mpage_da_writepage(struct page *page,
1985 struct writeback_control *wbc, void *data)
1987 struct mpage_da_data *mpd = data;
1988 struct inode *inode = mpd->inode;
1989 struct buffer_head *bh, *head, fake;
1990 sector_t logical;
1992 if (mpd->io_done) {
1994 * Rest of the page in the page_vec
1995 * redirty then and skip then. We will
1996 * try to to write them again after
1997 * starting a new transaction
1999 redirty_page_for_writepage(wbc, page);
2000 unlock_page(page);
2001 return MPAGE_DA_EXTENT_TAIL;
2004 * Can we merge this page to current extent?
2006 if (mpd->next_page != page->index) {
2008 * Nope, we can't. So, we map non-allocated blocks
2009 * and start IO on them using writepage()
2011 if (mpd->next_page != mpd->first_page) {
2012 if (mpage_da_map_blocks(mpd) == 0)
2013 mpage_da_submit_io(mpd);
2015 * skip rest of the page in the page_vec
2017 mpd->io_done = 1;
2018 redirty_page_for_writepage(wbc, page);
2019 unlock_page(page);
2020 return MPAGE_DA_EXTENT_TAIL;
2024 * Start next extent of pages ...
2026 mpd->first_page = page->index;
2029 * ... and blocks
2031 mpd->lbh.b_size = 0;
2032 mpd->lbh.b_state = 0;
2033 mpd->lbh.b_blocknr = 0;
2036 mpd->next_page = page->index + 1;
2037 logical = (sector_t) page->index <<
2038 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2040 if (!page_has_buffers(page)) {
2042 * There is no attached buffer heads yet (mmap?)
2043 * we treat the page asfull of dirty blocks
2045 bh = &fake;
2046 bh->b_size = PAGE_CACHE_SIZE;
2047 bh->b_state = 0;
2048 set_buffer_dirty(bh);
2049 set_buffer_uptodate(bh);
2050 mpage_add_bh_to_extent(mpd, logical, bh);
2051 if (mpd->io_done)
2052 return MPAGE_DA_EXTENT_TAIL;
2053 } else {
2055 * Page with regular buffer heads, just add all dirty ones
2057 head = page_buffers(page);
2058 bh = head;
2059 do {
2060 BUG_ON(buffer_locked(bh));
2061 if (buffer_dirty(bh) &&
2062 (!buffer_mapped(bh) || buffer_delay(bh))) {
2063 mpage_add_bh_to_extent(mpd, logical, bh);
2064 if (mpd->io_done)
2065 return MPAGE_DA_EXTENT_TAIL;
2067 logical++;
2068 } while ((bh = bh->b_this_page) != head);
2071 return 0;
2075 * mpage_da_writepages - walk the list of dirty pages of the given
2076 * address space, allocates non-allocated blocks, maps newly-allocated
2077 * blocks to existing bhs and issue IO them
2079 * @mapping: address space structure to write
2080 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2081 * @get_block: the filesystem's block mapper function.
2083 * This is a library function, which implements the writepages()
2084 * address_space_operation.
2086 static int mpage_da_writepages(struct address_space *mapping,
2087 struct writeback_control *wbc,
2088 get_block_t get_block)
2090 struct mpage_da_data mpd;
2091 long to_write;
2092 int ret;
2094 if (!get_block)
2095 return generic_writepages(mapping, wbc);
2097 mpd.wbc = wbc;
2098 mpd.inode = mapping->host;
2099 mpd.lbh.b_size = 0;
2100 mpd.lbh.b_state = 0;
2101 mpd.lbh.b_blocknr = 0;
2102 mpd.first_page = 0;
2103 mpd.next_page = 0;
2104 mpd.get_block = get_block;
2105 mpd.io_done = 0;
2106 mpd.pages_written = 0;
2108 to_write = wbc->nr_to_write;
2110 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2113 * Handle last extent of pages
2115 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2116 if (mpage_da_map_blocks(&mpd) == 0)
2117 mpage_da_submit_io(&mpd);
2120 wbc->nr_to_write = to_write - mpd.pages_written;
2121 return ret;
2125 * this is a special callback for ->write_begin() only
2126 * it's intention is to return mapped block or reserve space
2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2129 struct buffer_head *bh_result, int create)
2131 int ret = 0;
2133 BUG_ON(create == 0);
2134 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2137 * first, we need to know whether the block is allocated already
2138 * preallocated blocks are unmapped but should treated
2139 * the same as allocated blocks.
2141 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2142 if ((ret == 0) && !buffer_delay(bh_result)) {
2143 /* the block isn't (pre)allocated yet, let's reserve space */
2145 * XXX: __block_prepare_write() unmaps passed block,
2146 * is it OK?
2148 ret = ext4_da_reserve_space(inode, 1);
2149 if (ret)
2150 /* not enough space to reserve */
2151 return ret;
2153 map_bh(bh_result, inode->i_sb, 0);
2154 set_buffer_new(bh_result);
2155 set_buffer_delay(bh_result);
2156 } else if (ret > 0) {
2157 bh_result->b_size = (ret << inode->i_blkbits);
2158 ret = 0;
2161 return ret;
2163 #define EXT4_DELALLOC_RSVED 1
2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2165 struct buffer_head *bh_result, int create)
2167 int ret;
2168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2169 loff_t disksize = EXT4_I(inode)->i_disksize;
2170 handle_t *handle = NULL;
2172 handle = ext4_journal_current_handle();
2173 BUG_ON(!handle);
2174 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2175 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2176 if (ret > 0) {
2178 bh_result->b_size = (ret << inode->i_blkbits);
2180 if (ext4_should_order_data(inode)) {
2181 int retval;
2182 retval = ext4_jbd2_file_inode(handle, inode);
2183 if (retval)
2185 * Failed to add inode for ordered
2186 * mode. Don't update file size
2188 return retval;
2192 * Update on-disk size along with block allocation
2193 * we don't use 'extend_disksize' as size may change
2194 * within already allocated block -bzzz
2196 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2197 if (disksize > i_size_read(inode))
2198 disksize = i_size_read(inode);
2199 if (disksize > EXT4_I(inode)->i_disksize) {
2201 * XXX: replace with spinlock if seen contended -bzzz
2203 down_write(&EXT4_I(inode)->i_data_sem);
2204 if (disksize > EXT4_I(inode)->i_disksize)
2205 EXT4_I(inode)->i_disksize = disksize;
2206 up_write(&EXT4_I(inode)->i_data_sem);
2208 if (EXT4_I(inode)->i_disksize == disksize) {
2209 ret = ext4_mark_inode_dirty(handle, inode);
2210 return ret;
2213 ret = 0;
2215 return ret;
2218 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2221 * unmapped buffer is possible for holes.
2222 * delay buffer is possible with delayed allocation
2224 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2227 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2228 struct buffer_head *bh_result, int create)
2230 int ret = 0;
2231 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2234 * we don't want to do block allocation in writepage
2235 * so call get_block_wrap with create = 0
2237 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2238 bh_result, 0, 0, 0);
2239 if (ret > 0) {
2240 bh_result->b_size = (ret << inode->i_blkbits);
2241 ret = 0;
2243 return ret;
2247 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2248 * get called via journal_submit_inode_data_buffers (no journal handle)
2249 * get called via shrink_page_list via pdflush (no journal handle)
2250 * or grab_page_cache when doing write_begin (have journal handle)
2252 static int ext4_da_writepage(struct page *page,
2253 struct writeback_control *wbc)
2255 int ret = 0;
2256 loff_t size;
2257 unsigned long len;
2258 struct buffer_head *page_bufs;
2259 struct inode *inode = page->mapping->host;
2261 size = i_size_read(inode);
2262 if (page->index == size >> PAGE_CACHE_SHIFT)
2263 len = size & ~PAGE_CACHE_MASK;
2264 else
2265 len = PAGE_CACHE_SIZE;
2267 if (page_has_buffers(page)) {
2268 page_bufs = page_buffers(page);
2269 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2270 ext4_bh_unmapped_or_delay)) {
2272 * We don't want to do block allocation
2273 * So redirty the page and return
2274 * We may reach here when we do a journal commit
2275 * via journal_submit_inode_data_buffers.
2276 * If we don't have mapping block we just ignore
2277 * them. We can also reach here via shrink_page_list
2279 redirty_page_for_writepage(wbc, page);
2280 unlock_page(page);
2281 return 0;
2283 } else {
2285 * The test for page_has_buffers() is subtle:
2286 * We know the page is dirty but it lost buffers. That means
2287 * that at some moment in time after write_begin()/write_end()
2288 * has been called all buffers have been clean and thus they
2289 * must have been written at least once. So they are all
2290 * mapped and we can happily proceed with mapping them
2291 * and writing the page.
2293 * Try to initialize the buffer_heads and check whether
2294 * all are mapped and non delay. We don't want to
2295 * do block allocation here.
2297 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2298 ext4_normal_get_block_write);
2299 if (!ret) {
2300 page_bufs = page_buffers(page);
2301 /* check whether all are mapped and non delay */
2302 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2303 ext4_bh_unmapped_or_delay)) {
2304 redirty_page_for_writepage(wbc, page);
2305 unlock_page(page);
2306 return 0;
2308 } else {
2310 * We can't do block allocation here
2311 * so just redity the page and unlock
2312 * and return
2314 redirty_page_for_writepage(wbc, page);
2315 unlock_page(page);
2316 return 0;
2320 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2321 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2322 else
2323 ret = block_write_full_page(page,
2324 ext4_normal_get_block_write,
2325 wbc);
2327 return ret;
2331 * This is called via ext4_da_writepages() to
2332 * calulate the total number of credits to reserve to fit
2333 * a single extent allocation into a single transaction,
2334 * ext4_da_writpeages() will loop calling this before
2335 * the block allocation.
2338 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2340 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2343 * With non-extent format the journal credit needed to
2344 * insert nrblocks contiguous block is dependent on
2345 * number of contiguous block. So we will limit
2346 * number of contiguous block to a sane value
2348 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2349 (max_blocks > EXT4_MAX_TRANS_DATA))
2350 max_blocks = EXT4_MAX_TRANS_DATA;
2352 return ext4_chunk_trans_blocks(inode, max_blocks);
2355 static int ext4_da_writepages(struct address_space *mapping,
2356 struct writeback_control *wbc)
2358 handle_t *handle = NULL;
2359 loff_t range_start = 0;
2360 struct inode *inode = mapping->host;
2361 int needed_blocks, ret = 0, nr_to_writebump = 0;
2362 long to_write, pages_skipped = 0;
2363 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2366 * No pages to write? This is mainly a kludge to avoid starting
2367 * a transaction for special inodes like journal inode on last iput()
2368 * because that could violate lock ordering on umount
2370 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2371 return 0;
2373 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2374 * This make sure small files blocks are allocated in
2375 * single attempt. This ensure that small files
2376 * get less fragmented.
2378 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2379 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2380 wbc->nr_to_write = sbi->s_mb_stream_request;
2383 if (!wbc->range_cyclic)
2385 * If range_cyclic is not set force range_cont
2386 * and save the old writeback_index
2388 wbc->range_cont = 1;
2390 range_start = wbc->range_start;
2391 pages_skipped = wbc->pages_skipped;
2393 restart_loop:
2394 to_write = wbc->nr_to_write;
2395 while (!ret && to_write > 0) {
2398 * we insert one extent at a time. So we need
2399 * credit needed for single extent allocation.
2400 * journalled mode is currently not supported
2401 * by delalloc
2403 BUG_ON(ext4_should_journal_data(inode));
2404 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2406 /* start a new transaction*/
2407 handle = ext4_journal_start(inode, needed_blocks);
2408 if (IS_ERR(handle)) {
2409 ret = PTR_ERR(handle);
2410 printk(KERN_EMERG "%s: jbd2_start: "
2411 "%ld pages, ino %lu; err %d\n", __func__,
2412 wbc->nr_to_write, inode->i_ino, ret);
2413 dump_stack();
2414 goto out_writepages;
2417 to_write -= wbc->nr_to_write;
2418 ret = mpage_da_writepages(mapping, wbc,
2419 ext4_da_get_block_write);
2420 ext4_journal_stop(handle);
2421 if (ret == MPAGE_DA_EXTENT_TAIL) {
2423 * got one extent now try with
2424 * rest of the pages
2426 to_write += wbc->nr_to_write;
2427 ret = 0;
2428 } else if (wbc->nr_to_write) {
2430 * There is no more writeout needed
2431 * or we requested for a noblocking writeout
2432 * and we found the device congested
2434 to_write += wbc->nr_to_write;
2435 break;
2437 wbc->nr_to_write = to_write;
2440 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2441 /* We skipped pages in this loop */
2442 wbc->range_start = range_start;
2443 wbc->nr_to_write = to_write +
2444 wbc->pages_skipped - pages_skipped;
2445 wbc->pages_skipped = pages_skipped;
2446 goto restart_loop;
2449 out_writepages:
2450 wbc->nr_to_write = to_write - nr_to_writebump;
2451 wbc->range_start = range_start;
2452 return ret;
2455 #define FALL_BACK_TO_NONDELALLOC 1
2456 static int ext4_nonda_switch(struct super_block *sb)
2458 s64 free_blocks, dirty_blocks;
2459 struct ext4_sb_info *sbi = EXT4_SB(sb);
2462 * switch to non delalloc mode if we are running low
2463 * on free block. The free block accounting via percpu
2464 * counters can get slightly wrong with FBC_BATCH getting
2465 * accumulated on each CPU without updating global counters
2466 * Delalloc need an accurate free block accounting. So switch
2467 * to non delalloc when we are near to error range.
2469 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2470 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2471 if (2 * free_blocks < 3 * dirty_blocks ||
2472 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2474 * free block count is less that 150% of dirty blocks
2475 * or free blocks is less that watermark
2477 return 1;
2479 return 0;
2482 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2483 loff_t pos, unsigned len, unsigned flags,
2484 struct page **pagep, void **fsdata)
2486 int ret, retries = 0;
2487 struct page *page;
2488 pgoff_t index;
2489 unsigned from, to;
2490 struct inode *inode = mapping->host;
2491 handle_t *handle;
2493 index = pos >> PAGE_CACHE_SHIFT;
2494 from = pos & (PAGE_CACHE_SIZE - 1);
2495 to = from + len;
2497 if (ext4_nonda_switch(inode->i_sb)) {
2498 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2499 return ext4_write_begin(file, mapping, pos,
2500 len, flags, pagep, fsdata);
2502 *fsdata = (void *)0;
2503 retry:
2505 * With delayed allocation, we don't log the i_disksize update
2506 * if there is delayed block allocation. But we still need
2507 * to journalling the i_disksize update if writes to the end
2508 * of file which has an already mapped buffer.
2510 handle = ext4_journal_start(inode, 1);
2511 if (IS_ERR(handle)) {
2512 ret = PTR_ERR(handle);
2513 goto out;
2516 page = __grab_cache_page(mapping, index);
2517 if (!page) {
2518 ext4_journal_stop(handle);
2519 ret = -ENOMEM;
2520 goto out;
2522 *pagep = page;
2524 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2525 ext4_da_get_block_prep);
2526 if (ret < 0) {
2527 unlock_page(page);
2528 ext4_journal_stop(handle);
2529 page_cache_release(page);
2532 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2533 goto retry;
2534 out:
2535 return ret;
2539 * Check if we should update i_disksize
2540 * when write to the end of file but not require block allocation
2542 static int ext4_da_should_update_i_disksize(struct page *page,
2543 unsigned long offset)
2545 struct buffer_head *bh;
2546 struct inode *inode = page->mapping->host;
2547 unsigned int idx;
2548 int i;
2550 bh = page_buffers(page);
2551 idx = offset >> inode->i_blkbits;
2553 for (i = 0; i < idx; i++)
2554 bh = bh->b_this_page;
2556 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2557 return 0;
2558 return 1;
2561 static int ext4_da_write_end(struct file *file,
2562 struct address_space *mapping,
2563 loff_t pos, unsigned len, unsigned copied,
2564 struct page *page, void *fsdata)
2566 struct inode *inode = mapping->host;
2567 int ret = 0, ret2;
2568 handle_t *handle = ext4_journal_current_handle();
2569 loff_t new_i_size;
2570 unsigned long start, end;
2571 int write_mode = (int)(unsigned long)fsdata;
2573 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2574 if (ext4_should_order_data(inode)) {
2575 return ext4_ordered_write_end(file, mapping, pos,
2576 len, copied, page, fsdata);
2577 } else if (ext4_should_writeback_data(inode)) {
2578 return ext4_writeback_write_end(file, mapping, pos,
2579 len, copied, page, fsdata);
2580 } else {
2581 BUG();
2585 start = pos & (PAGE_CACHE_SIZE - 1);
2586 end = start + copied - 1;
2589 * generic_write_end() will run mark_inode_dirty() if i_size
2590 * changes. So let's piggyback the i_disksize mark_inode_dirty
2591 * into that.
2594 new_i_size = pos + copied;
2595 if (new_i_size > EXT4_I(inode)->i_disksize) {
2596 if (ext4_da_should_update_i_disksize(page, end)) {
2597 down_write(&EXT4_I(inode)->i_data_sem);
2598 if (new_i_size > EXT4_I(inode)->i_disksize) {
2600 * Updating i_disksize when extending file
2601 * without needing block allocation
2603 if (ext4_should_order_data(inode))
2604 ret = ext4_jbd2_file_inode(handle,
2605 inode);
2607 EXT4_I(inode)->i_disksize = new_i_size;
2609 up_write(&EXT4_I(inode)->i_data_sem);
2612 ret2 = generic_write_end(file, mapping, pos, len, copied,
2613 page, fsdata);
2614 copied = ret2;
2615 if (ret2 < 0)
2616 ret = ret2;
2617 ret2 = ext4_journal_stop(handle);
2618 if (!ret)
2619 ret = ret2;
2621 return ret ? ret : copied;
2624 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2627 * Drop reserved blocks
2629 BUG_ON(!PageLocked(page));
2630 if (!page_has_buffers(page))
2631 goto out;
2633 ext4_da_page_release_reservation(page, offset);
2635 out:
2636 ext4_invalidatepage(page, offset);
2638 return;
2643 * bmap() is special. It gets used by applications such as lilo and by
2644 * the swapper to find the on-disk block of a specific piece of data.
2646 * Naturally, this is dangerous if the block concerned is still in the
2647 * journal. If somebody makes a swapfile on an ext4 data-journaling
2648 * filesystem and enables swap, then they may get a nasty shock when the
2649 * data getting swapped to that swapfile suddenly gets overwritten by
2650 * the original zero's written out previously to the journal and
2651 * awaiting writeback in the kernel's buffer cache.
2653 * So, if we see any bmap calls here on a modified, data-journaled file,
2654 * take extra steps to flush any blocks which might be in the cache.
2656 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2658 struct inode *inode = mapping->host;
2659 journal_t *journal;
2660 int err;
2662 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2663 test_opt(inode->i_sb, DELALLOC)) {
2665 * With delalloc we want to sync the file
2666 * so that we can make sure we allocate
2667 * blocks for file
2669 filemap_write_and_wait(mapping);
2672 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2674 * This is a REALLY heavyweight approach, but the use of
2675 * bmap on dirty files is expected to be extremely rare:
2676 * only if we run lilo or swapon on a freshly made file
2677 * do we expect this to happen.
2679 * (bmap requires CAP_SYS_RAWIO so this does not
2680 * represent an unprivileged user DOS attack --- we'd be
2681 * in trouble if mortal users could trigger this path at
2682 * will.)
2684 * NB. EXT4_STATE_JDATA is not set on files other than
2685 * regular files. If somebody wants to bmap a directory
2686 * or symlink and gets confused because the buffer
2687 * hasn't yet been flushed to disk, they deserve
2688 * everything they get.
2691 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2692 journal = EXT4_JOURNAL(inode);
2693 jbd2_journal_lock_updates(journal);
2694 err = jbd2_journal_flush(journal);
2695 jbd2_journal_unlock_updates(journal);
2697 if (err)
2698 return 0;
2701 return generic_block_bmap(mapping, block, ext4_get_block);
2704 static int bget_one(handle_t *handle, struct buffer_head *bh)
2706 get_bh(bh);
2707 return 0;
2710 static int bput_one(handle_t *handle, struct buffer_head *bh)
2712 put_bh(bh);
2713 return 0;
2717 * Note that we don't need to start a transaction unless we're journaling data
2718 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2719 * need to file the inode to the transaction's list in ordered mode because if
2720 * we are writing back data added by write(), the inode is already there and if
2721 * we are writing back data modified via mmap(), noone guarantees in which
2722 * transaction the data will hit the disk. In case we are journaling data, we
2723 * cannot start transaction directly because transaction start ranks above page
2724 * lock so we have to do some magic.
2726 * In all journaling modes block_write_full_page() will start the I/O.
2728 * Problem:
2730 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2731 * ext4_writepage()
2733 * Similar for:
2735 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2737 * Same applies to ext4_get_block(). We will deadlock on various things like
2738 * lock_journal and i_data_sem
2740 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2741 * allocations fail.
2743 * 16May01: If we're reentered then journal_current_handle() will be
2744 * non-zero. We simply *return*.
2746 * 1 July 2001: @@@ FIXME:
2747 * In journalled data mode, a data buffer may be metadata against the
2748 * current transaction. But the same file is part of a shared mapping
2749 * and someone does a writepage() on it.
2751 * We will move the buffer onto the async_data list, but *after* it has
2752 * been dirtied. So there's a small window where we have dirty data on
2753 * BJ_Metadata.
2755 * Note that this only applies to the last partial page in the file. The
2756 * bit which block_write_full_page() uses prepare/commit for. (That's
2757 * broken code anyway: it's wrong for msync()).
2759 * It's a rare case: affects the final partial page, for journalled data
2760 * where the file is subject to bith write() and writepage() in the same
2761 * transction. To fix it we'll need a custom block_write_full_page().
2762 * We'll probably need that anyway for journalling writepage() output.
2764 * We don't honour synchronous mounts for writepage(). That would be
2765 * disastrous. Any write() or metadata operation will sync the fs for
2766 * us.
2769 static int __ext4_normal_writepage(struct page *page,
2770 struct writeback_control *wbc)
2772 struct inode *inode = page->mapping->host;
2774 if (test_opt(inode->i_sb, NOBH))
2775 return nobh_writepage(page,
2776 ext4_normal_get_block_write, wbc);
2777 else
2778 return block_write_full_page(page,
2779 ext4_normal_get_block_write,
2780 wbc);
2783 static int ext4_normal_writepage(struct page *page,
2784 struct writeback_control *wbc)
2786 struct inode *inode = page->mapping->host;
2787 loff_t size = i_size_read(inode);
2788 loff_t len;
2790 J_ASSERT(PageLocked(page));
2791 if (page->index == size >> PAGE_CACHE_SHIFT)
2792 len = size & ~PAGE_CACHE_MASK;
2793 else
2794 len = PAGE_CACHE_SIZE;
2796 if (page_has_buffers(page)) {
2797 /* if page has buffers it should all be mapped
2798 * and allocated. If there are not buffers attached
2799 * to the page we know the page is dirty but it lost
2800 * buffers. That means that at some moment in time
2801 * after write_begin() / write_end() has been called
2802 * all buffers have been clean and thus they must have been
2803 * written at least once. So they are all mapped and we can
2804 * happily proceed with mapping them and writing the page.
2806 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2807 ext4_bh_unmapped_or_delay));
2810 if (!ext4_journal_current_handle())
2811 return __ext4_normal_writepage(page, wbc);
2813 redirty_page_for_writepage(wbc, page);
2814 unlock_page(page);
2815 return 0;
2818 static int __ext4_journalled_writepage(struct page *page,
2819 struct writeback_control *wbc)
2821 struct address_space *mapping = page->mapping;
2822 struct inode *inode = mapping->host;
2823 struct buffer_head *page_bufs;
2824 handle_t *handle = NULL;
2825 int ret = 0;
2826 int err;
2828 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2829 ext4_normal_get_block_write);
2830 if (ret != 0)
2831 goto out_unlock;
2833 page_bufs = page_buffers(page);
2834 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2835 bget_one);
2836 /* As soon as we unlock the page, it can go away, but we have
2837 * references to buffers so we are safe */
2838 unlock_page(page);
2840 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2841 if (IS_ERR(handle)) {
2842 ret = PTR_ERR(handle);
2843 goto out;
2846 ret = walk_page_buffers(handle, page_bufs, 0,
2847 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2849 err = walk_page_buffers(handle, page_bufs, 0,
2850 PAGE_CACHE_SIZE, NULL, write_end_fn);
2851 if (ret == 0)
2852 ret = err;
2853 err = ext4_journal_stop(handle);
2854 if (!ret)
2855 ret = err;
2857 walk_page_buffers(handle, page_bufs, 0,
2858 PAGE_CACHE_SIZE, NULL, bput_one);
2859 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2860 goto out;
2862 out_unlock:
2863 unlock_page(page);
2864 out:
2865 return ret;
2868 static int ext4_journalled_writepage(struct page *page,
2869 struct writeback_control *wbc)
2871 struct inode *inode = page->mapping->host;
2872 loff_t size = i_size_read(inode);
2873 loff_t len;
2875 J_ASSERT(PageLocked(page));
2876 if (page->index == size >> PAGE_CACHE_SHIFT)
2877 len = size & ~PAGE_CACHE_MASK;
2878 else
2879 len = PAGE_CACHE_SIZE;
2881 if (page_has_buffers(page)) {
2882 /* if page has buffers it should all be mapped
2883 * and allocated. If there are not buffers attached
2884 * to the page we know the page is dirty but it lost
2885 * buffers. That means that at some moment in time
2886 * after write_begin() / write_end() has been called
2887 * all buffers have been clean and thus they must have been
2888 * written at least once. So they are all mapped and we can
2889 * happily proceed with mapping them and writing the page.
2891 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2892 ext4_bh_unmapped_or_delay));
2895 if (ext4_journal_current_handle())
2896 goto no_write;
2898 if (PageChecked(page)) {
2900 * It's mmapped pagecache. Add buffers and journal it. There
2901 * doesn't seem much point in redirtying the page here.
2903 ClearPageChecked(page);
2904 return __ext4_journalled_writepage(page, wbc);
2905 } else {
2907 * It may be a page full of checkpoint-mode buffers. We don't
2908 * really know unless we go poke around in the buffer_heads.
2909 * But block_write_full_page will do the right thing.
2911 return block_write_full_page(page,
2912 ext4_normal_get_block_write,
2913 wbc);
2915 no_write:
2916 redirty_page_for_writepage(wbc, page);
2917 unlock_page(page);
2918 return 0;
2921 static int ext4_readpage(struct file *file, struct page *page)
2923 return mpage_readpage(page, ext4_get_block);
2926 static int
2927 ext4_readpages(struct file *file, struct address_space *mapping,
2928 struct list_head *pages, unsigned nr_pages)
2930 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2933 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2935 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2938 * If it's a full truncate we just forget about the pending dirtying
2940 if (offset == 0)
2941 ClearPageChecked(page);
2943 jbd2_journal_invalidatepage(journal, page, offset);
2946 static int ext4_releasepage(struct page *page, gfp_t wait)
2948 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2950 WARN_ON(PageChecked(page));
2951 if (!page_has_buffers(page))
2952 return 0;
2953 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2957 * If the O_DIRECT write will extend the file then add this inode to the
2958 * orphan list. So recovery will truncate it back to the original size
2959 * if the machine crashes during the write.
2961 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2962 * crashes then stale disk data _may_ be exposed inside the file. But current
2963 * VFS code falls back into buffered path in that case so we are safe.
2965 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2966 const struct iovec *iov, loff_t offset,
2967 unsigned long nr_segs)
2969 struct file *file = iocb->ki_filp;
2970 struct inode *inode = file->f_mapping->host;
2971 struct ext4_inode_info *ei = EXT4_I(inode);
2972 handle_t *handle;
2973 ssize_t ret;
2974 int orphan = 0;
2975 size_t count = iov_length(iov, nr_segs);
2977 if (rw == WRITE) {
2978 loff_t final_size = offset + count;
2980 if (final_size > inode->i_size) {
2981 /* Credits for sb + inode write */
2982 handle = ext4_journal_start(inode, 2);
2983 if (IS_ERR(handle)) {
2984 ret = PTR_ERR(handle);
2985 goto out;
2987 ret = ext4_orphan_add(handle, inode);
2988 if (ret) {
2989 ext4_journal_stop(handle);
2990 goto out;
2992 orphan = 1;
2993 ei->i_disksize = inode->i_size;
2994 ext4_journal_stop(handle);
2998 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2999 offset, nr_segs,
3000 ext4_get_block, NULL);
3002 if (orphan) {
3003 int err;
3005 /* Credits for sb + inode write */
3006 handle = ext4_journal_start(inode, 2);
3007 if (IS_ERR(handle)) {
3008 /* This is really bad luck. We've written the data
3009 * but cannot extend i_size. Bail out and pretend
3010 * the write failed... */
3011 ret = PTR_ERR(handle);
3012 goto out;
3014 if (inode->i_nlink)
3015 ext4_orphan_del(handle, inode);
3016 if (ret > 0) {
3017 loff_t end = offset + ret;
3018 if (end > inode->i_size) {
3019 ei->i_disksize = end;
3020 i_size_write(inode, end);
3022 * We're going to return a positive `ret'
3023 * here due to non-zero-length I/O, so there's
3024 * no way of reporting error returns from
3025 * ext4_mark_inode_dirty() to userspace. So
3026 * ignore it.
3028 ext4_mark_inode_dirty(handle, inode);
3031 err = ext4_journal_stop(handle);
3032 if (ret == 0)
3033 ret = err;
3035 out:
3036 return ret;
3040 * Pages can be marked dirty completely asynchronously from ext4's journalling
3041 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3042 * much here because ->set_page_dirty is called under VFS locks. The page is
3043 * not necessarily locked.
3045 * We cannot just dirty the page and leave attached buffers clean, because the
3046 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3047 * or jbddirty because all the journalling code will explode.
3049 * So what we do is to mark the page "pending dirty" and next time writepage
3050 * is called, propagate that into the buffers appropriately.
3052 static int ext4_journalled_set_page_dirty(struct page *page)
3054 SetPageChecked(page);
3055 return __set_page_dirty_nobuffers(page);
3058 static const struct address_space_operations ext4_ordered_aops = {
3059 .readpage = ext4_readpage,
3060 .readpages = ext4_readpages,
3061 .writepage = ext4_normal_writepage,
3062 .sync_page = block_sync_page,
3063 .write_begin = ext4_write_begin,
3064 .write_end = ext4_ordered_write_end,
3065 .bmap = ext4_bmap,
3066 .invalidatepage = ext4_invalidatepage,
3067 .releasepage = ext4_releasepage,
3068 .direct_IO = ext4_direct_IO,
3069 .migratepage = buffer_migrate_page,
3070 .is_partially_uptodate = block_is_partially_uptodate,
3073 static const struct address_space_operations ext4_writeback_aops = {
3074 .readpage = ext4_readpage,
3075 .readpages = ext4_readpages,
3076 .writepage = ext4_normal_writepage,
3077 .sync_page = block_sync_page,
3078 .write_begin = ext4_write_begin,
3079 .write_end = ext4_writeback_write_end,
3080 .bmap = ext4_bmap,
3081 .invalidatepage = ext4_invalidatepage,
3082 .releasepage = ext4_releasepage,
3083 .direct_IO = ext4_direct_IO,
3084 .migratepage = buffer_migrate_page,
3085 .is_partially_uptodate = block_is_partially_uptodate,
3088 static const struct address_space_operations ext4_journalled_aops = {
3089 .readpage = ext4_readpage,
3090 .readpages = ext4_readpages,
3091 .writepage = ext4_journalled_writepage,
3092 .sync_page = block_sync_page,
3093 .write_begin = ext4_write_begin,
3094 .write_end = ext4_journalled_write_end,
3095 .set_page_dirty = ext4_journalled_set_page_dirty,
3096 .bmap = ext4_bmap,
3097 .invalidatepage = ext4_invalidatepage,
3098 .releasepage = ext4_releasepage,
3099 .is_partially_uptodate = block_is_partially_uptodate,
3102 static const struct address_space_operations ext4_da_aops = {
3103 .readpage = ext4_readpage,
3104 .readpages = ext4_readpages,
3105 .writepage = ext4_da_writepage,
3106 .writepages = ext4_da_writepages,
3107 .sync_page = block_sync_page,
3108 .write_begin = ext4_da_write_begin,
3109 .write_end = ext4_da_write_end,
3110 .bmap = ext4_bmap,
3111 .invalidatepage = ext4_da_invalidatepage,
3112 .releasepage = ext4_releasepage,
3113 .direct_IO = ext4_direct_IO,
3114 .migratepage = buffer_migrate_page,
3115 .is_partially_uptodate = block_is_partially_uptodate,
3118 void ext4_set_aops(struct inode *inode)
3120 if (ext4_should_order_data(inode) &&
3121 test_opt(inode->i_sb, DELALLOC))
3122 inode->i_mapping->a_ops = &ext4_da_aops;
3123 else if (ext4_should_order_data(inode))
3124 inode->i_mapping->a_ops = &ext4_ordered_aops;
3125 else if (ext4_should_writeback_data(inode) &&
3126 test_opt(inode->i_sb, DELALLOC))
3127 inode->i_mapping->a_ops = &ext4_da_aops;
3128 else if (ext4_should_writeback_data(inode))
3129 inode->i_mapping->a_ops = &ext4_writeback_aops;
3130 else
3131 inode->i_mapping->a_ops = &ext4_journalled_aops;
3135 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3136 * up to the end of the block which corresponds to `from'.
3137 * This required during truncate. We need to physically zero the tail end
3138 * of that block so it doesn't yield old data if the file is later grown.
3140 int ext4_block_truncate_page(handle_t *handle,
3141 struct address_space *mapping, loff_t from)
3143 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3144 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3145 unsigned blocksize, length, pos;
3146 ext4_lblk_t iblock;
3147 struct inode *inode = mapping->host;
3148 struct buffer_head *bh;
3149 struct page *page;
3150 int err = 0;
3152 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3153 if (!page)
3154 return -EINVAL;
3156 blocksize = inode->i_sb->s_blocksize;
3157 length = blocksize - (offset & (blocksize - 1));
3158 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3161 * For "nobh" option, we can only work if we don't need to
3162 * read-in the page - otherwise we create buffers to do the IO.
3164 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3165 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3166 zero_user(page, offset, length);
3167 set_page_dirty(page);
3168 goto unlock;
3171 if (!page_has_buffers(page))
3172 create_empty_buffers(page, blocksize, 0);
3174 /* Find the buffer that contains "offset" */
3175 bh = page_buffers(page);
3176 pos = blocksize;
3177 while (offset >= pos) {
3178 bh = bh->b_this_page;
3179 iblock++;
3180 pos += blocksize;
3183 err = 0;
3184 if (buffer_freed(bh)) {
3185 BUFFER_TRACE(bh, "freed: skip");
3186 goto unlock;
3189 if (!buffer_mapped(bh)) {
3190 BUFFER_TRACE(bh, "unmapped");
3191 ext4_get_block(inode, iblock, bh, 0);
3192 /* unmapped? It's a hole - nothing to do */
3193 if (!buffer_mapped(bh)) {
3194 BUFFER_TRACE(bh, "still unmapped");
3195 goto unlock;
3199 /* Ok, it's mapped. Make sure it's up-to-date */
3200 if (PageUptodate(page))
3201 set_buffer_uptodate(bh);
3203 if (!buffer_uptodate(bh)) {
3204 err = -EIO;
3205 ll_rw_block(READ, 1, &bh);
3206 wait_on_buffer(bh);
3207 /* Uhhuh. Read error. Complain and punt. */
3208 if (!buffer_uptodate(bh))
3209 goto unlock;
3212 if (ext4_should_journal_data(inode)) {
3213 BUFFER_TRACE(bh, "get write access");
3214 err = ext4_journal_get_write_access(handle, bh);
3215 if (err)
3216 goto unlock;
3219 zero_user(page, offset, length);
3221 BUFFER_TRACE(bh, "zeroed end of block");
3223 err = 0;
3224 if (ext4_should_journal_data(inode)) {
3225 err = ext4_journal_dirty_metadata(handle, bh);
3226 } else {
3227 if (ext4_should_order_data(inode))
3228 err = ext4_jbd2_file_inode(handle, inode);
3229 mark_buffer_dirty(bh);
3232 unlock:
3233 unlock_page(page);
3234 page_cache_release(page);
3235 return err;
3239 * Probably it should be a library function... search for first non-zero word
3240 * or memcmp with zero_page, whatever is better for particular architecture.
3241 * Linus?
3243 static inline int all_zeroes(__le32 *p, __le32 *q)
3245 while (p < q)
3246 if (*p++)
3247 return 0;
3248 return 1;
3252 * ext4_find_shared - find the indirect blocks for partial truncation.
3253 * @inode: inode in question
3254 * @depth: depth of the affected branch
3255 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3256 * @chain: place to store the pointers to partial indirect blocks
3257 * @top: place to the (detached) top of branch
3259 * This is a helper function used by ext4_truncate().
3261 * When we do truncate() we may have to clean the ends of several
3262 * indirect blocks but leave the blocks themselves alive. Block is
3263 * partially truncated if some data below the new i_size is refered
3264 * from it (and it is on the path to the first completely truncated
3265 * data block, indeed). We have to free the top of that path along
3266 * with everything to the right of the path. Since no allocation
3267 * past the truncation point is possible until ext4_truncate()
3268 * finishes, we may safely do the latter, but top of branch may
3269 * require special attention - pageout below the truncation point
3270 * might try to populate it.
3272 * We atomically detach the top of branch from the tree, store the
3273 * block number of its root in *@top, pointers to buffer_heads of
3274 * partially truncated blocks - in @chain[].bh and pointers to
3275 * their last elements that should not be removed - in
3276 * @chain[].p. Return value is the pointer to last filled element
3277 * of @chain.
3279 * The work left to caller to do the actual freeing of subtrees:
3280 * a) free the subtree starting from *@top
3281 * b) free the subtrees whose roots are stored in
3282 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3283 * c) free the subtrees growing from the inode past the @chain[0].
3284 * (no partially truncated stuff there). */
3286 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3287 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3289 Indirect *partial, *p;
3290 int k, err;
3292 *top = 0;
3293 /* Make k index the deepest non-null offest + 1 */
3294 for (k = depth; k > 1 && !offsets[k-1]; k--)
3296 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3297 /* Writer: pointers */
3298 if (!partial)
3299 partial = chain + k-1;
3301 * If the branch acquired continuation since we've looked at it -
3302 * fine, it should all survive and (new) top doesn't belong to us.
3304 if (!partial->key && *partial->p)
3305 /* Writer: end */
3306 goto no_top;
3307 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3310 * OK, we've found the last block that must survive. The rest of our
3311 * branch should be detached before unlocking. However, if that rest
3312 * of branch is all ours and does not grow immediately from the inode
3313 * it's easier to cheat and just decrement partial->p.
3315 if (p == chain + k - 1 && p > chain) {
3316 p->p--;
3317 } else {
3318 *top = *p->p;
3319 /* Nope, don't do this in ext4. Must leave the tree intact */
3320 #if 0
3321 *p->p = 0;
3322 #endif
3324 /* Writer: end */
3326 while (partial > p) {
3327 brelse(partial->bh);
3328 partial--;
3330 no_top:
3331 return partial;
3335 * Zero a number of block pointers in either an inode or an indirect block.
3336 * If we restart the transaction we must again get write access to the
3337 * indirect block for further modification.
3339 * We release `count' blocks on disk, but (last - first) may be greater
3340 * than `count' because there can be holes in there.
3342 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3343 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3344 unsigned long count, __le32 *first, __le32 *last)
3346 __le32 *p;
3347 if (try_to_extend_transaction(handle, inode)) {
3348 if (bh) {
3349 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3350 ext4_journal_dirty_metadata(handle, bh);
3352 ext4_mark_inode_dirty(handle, inode);
3353 ext4_journal_test_restart(handle, inode);
3354 if (bh) {
3355 BUFFER_TRACE(bh, "retaking write access");
3356 ext4_journal_get_write_access(handle, bh);
3361 * Any buffers which are on the journal will be in memory. We find
3362 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3363 * on them. We've already detached each block from the file, so
3364 * bforget() in jbd2_journal_forget() should be safe.
3366 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3368 for (p = first; p < last; p++) {
3369 u32 nr = le32_to_cpu(*p);
3370 if (nr) {
3371 struct buffer_head *tbh;
3373 *p = 0;
3374 tbh = sb_find_get_block(inode->i_sb, nr);
3375 ext4_forget(handle, 0, inode, tbh, nr);
3379 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3383 * ext4_free_data - free a list of data blocks
3384 * @handle: handle for this transaction
3385 * @inode: inode we are dealing with
3386 * @this_bh: indirect buffer_head which contains *@first and *@last
3387 * @first: array of block numbers
3388 * @last: points immediately past the end of array
3390 * We are freeing all blocks refered from that array (numbers are stored as
3391 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3393 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3394 * blocks are contiguous then releasing them at one time will only affect one
3395 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3396 * actually use a lot of journal space.
3398 * @this_bh will be %NULL if @first and @last point into the inode's direct
3399 * block pointers.
3401 static void ext4_free_data(handle_t *handle, struct inode *inode,
3402 struct buffer_head *this_bh,
3403 __le32 *first, __le32 *last)
3405 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3406 unsigned long count = 0; /* Number of blocks in the run */
3407 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3408 corresponding to
3409 block_to_free */
3410 ext4_fsblk_t nr; /* Current block # */
3411 __le32 *p; /* Pointer into inode/ind
3412 for current block */
3413 int err;
3415 if (this_bh) { /* For indirect block */
3416 BUFFER_TRACE(this_bh, "get_write_access");
3417 err = ext4_journal_get_write_access(handle, this_bh);
3418 /* Important: if we can't update the indirect pointers
3419 * to the blocks, we can't free them. */
3420 if (err)
3421 return;
3424 for (p = first; p < last; p++) {
3425 nr = le32_to_cpu(*p);
3426 if (nr) {
3427 /* accumulate blocks to free if they're contiguous */
3428 if (count == 0) {
3429 block_to_free = nr;
3430 block_to_free_p = p;
3431 count = 1;
3432 } else if (nr == block_to_free + count) {
3433 count++;
3434 } else {
3435 ext4_clear_blocks(handle, inode, this_bh,
3436 block_to_free,
3437 count, block_to_free_p, p);
3438 block_to_free = nr;
3439 block_to_free_p = p;
3440 count = 1;
3445 if (count > 0)
3446 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3447 count, block_to_free_p, p);
3449 if (this_bh) {
3450 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3453 * The buffer head should have an attached journal head at this
3454 * point. However, if the data is corrupted and an indirect
3455 * block pointed to itself, it would have been detached when
3456 * the block was cleared. Check for this instead of OOPSing.
3458 if (bh2jh(this_bh))
3459 ext4_journal_dirty_metadata(handle, this_bh);
3460 else
3461 ext4_error(inode->i_sb, __func__,
3462 "circular indirect block detected, "
3463 "inode=%lu, block=%llu",
3464 inode->i_ino,
3465 (unsigned long long) this_bh->b_blocknr);
3470 * ext4_free_branches - free an array of branches
3471 * @handle: JBD handle for this transaction
3472 * @inode: inode we are dealing with
3473 * @parent_bh: the buffer_head which contains *@first and *@last
3474 * @first: array of block numbers
3475 * @last: pointer immediately past the end of array
3476 * @depth: depth of the branches to free
3478 * We are freeing all blocks refered from these branches (numbers are
3479 * stored as little-endian 32-bit) and updating @inode->i_blocks
3480 * appropriately.
3482 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3483 struct buffer_head *parent_bh,
3484 __le32 *first, __le32 *last, int depth)
3486 ext4_fsblk_t nr;
3487 __le32 *p;
3489 if (is_handle_aborted(handle))
3490 return;
3492 if (depth--) {
3493 struct buffer_head *bh;
3494 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3495 p = last;
3496 while (--p >= first) {
3497 nr = le32_to_cpu(*p);
3498 if (!nr)
3499 continue; /* A hole */
3501 /* Go read the buffer for the next level down */
3502 bh = sb_bread(inode->i_sb, nr);
3505 * A read failure? Report error and clear slot
3506 * (should be rare).
3508 if (!bh) {
3509 ext4_error(inode->i_sb, "ext4_free_branches",
3510 "Read failure, inode=%lu, block=%llu",
3511 inode->i_ino, nr);
3512 continue;
3515 /* This zaps the entire block. Bottom up. */
3516 BUFFER_TRACE(bh, "free child branches");
3517 ext4_free_branches(handle, inode, bh,
3518 (__le32 *) bh->b_data,
3519 (__le32 *) bh->b_data + addr_per_block,
3520 depth);
3523 * We've probably journalled the indirect block several
3524 * times during the truncate. But it's no longer
3525 * needed and we now drop it from the transaction via
3526 * jbd2_journal_revoke().
3528 * That's easy if it's exclusively part of this
3529 * transaction. But if it's part of the committing
3530 * transaction then jbd2_journal_forget() will simply
3531 * brelse() it. That means that if the underlying
3532 * block is reallocated in ext4_get_block(),
3533 * unmap_underlying_metadata() will find this block
3534 * and will try to get rid of it. damn, damn.
3536 * If this block has already been committed to the
3537 * journal, a revoke record will be written. And
3538 * revoke records must be emitted *before* clearing
3539 * this block's bit in the bitmaps.
3541 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3544 * Everything below this this pointer has been
3545 * released. Now let this top-of-subtree go.
3547 * We want the freeing of this indirect block to be
3548 * atomic in the journal with the updating of the
3549 * bitmap block which owns it. So make some room in
3550 * the journal.
3552 * We zero the parent pointer *after* freeing its
3553 * pointee in the bitmaps, so if extend_transaction()
3554 * for some reason fails to put the bitmap changes and
3555 * the release into the same transaction, recovery
3556 * will merely complain about releasing a free block,
3557 * rather than leaking blocks.
3559 if (is_handle_aborted(handle))
3560 return;
3561 if (try_to_extend_transaction(handle, inode)) {
3562 ext4_mark_inode_dirty(handle, inode);
3563 ext4_journal_test_restart(handle, inode);
3566 ext4_free_blocks(handle, inode, nr, 1, 1);
3568 if (parent_bh) {
3570 * The block which we have just freed is
3571 * pointed to by an indirect block: journal it
3573 BUFFER_TRACE(parent_bh, "get_write_access");
3574 if (!ext4_journal_get_write_access(handle,
3575 parent_bh)){
3576 *p = 0;
3577 BUFFER_TRACE(parent_bh,
3578 "call ext4_journal_dirty_metadata");
3579 ext4_journal_dirty_metadata(handle,
3580 parent_bh);
3584 } else {
3585 /* We have reached the bottom of the tree. */
3586 BUFFER_TRACE(parent_bh, "free data blocks");
3587 ext4_free_data(handle, inode, parent_bh, first, last);
3591 int ext4_can_truncate(struct inode *inode)
3593 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3594 return 0;
3595 if (S_ISREG(inode->i_mode))
3596 return 1;
3597 if (S_ISDIR(inode->i_mode))
3598 return 1;
3599 if (S_ISLNK(inode->i_mode))
3600 return !ext4_inode_is_fast_symlink(inode);
3601 return 0;
3605 * ext4_truncate()
3607 * We block out ext4_get_block() block instantiations across the entire
3608 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3609 * simultaneously on behalf of the same inode.
3611 * As we work through the truncate and commmit bits of it to the journal there
3612 * is one core, guiding principle: the file's tree must always be consistent on
3613 * disk. We must be able to restart the truncate after a crash.
3615 * The file's tree may be transiently inconsistent in memory (although it
3616 * probably isn't), but whenever we close off and commit a journal transaction,
3617 * the contents of (the filesystem + the journal) must be consistent and
3618 * restartable. It's pretty simple, really: bottom up, right to left (although
3619 * left-to-right works OK too).
3621 * Note that at recovery time, journal replay occurs *before* the restart of
3622 * truncate against the orphan inode list.
3624 * The committed inode has the new, desired i_size (which is the same as
3625 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3626 * that this inode's truncate did not complete and it will again call
3627 * ext4_truncate() to have another go. So there will be instantiated blocks
3628 * to the right of the truncation point in a crashed ext4 filesystem. But
3629 * that's fine - as long as they are linked from the inode, the post-crash
3630 * ext4_truncate() run will find them and release them.
3632 void ext4_truncate(struct inode *inode)
3634 handle_t *handle;
3635 struct ext4_inode_info *ei = EXT4_I(inode);
3636 __le32 *i_data = ei->i_data;
3637 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3638 struct address_space *mapping = inode->i_mapping;
3639 ext4_lblk_t offsets[4];
3640 Indirect chain[4];
3641 Indirect *partial;
3642 __le32 nr = 0;
3643 int n;
3644 ext4_lblk_t last_block;
3645 unsigned blocksize = inode->i_sb->s_blocksize;
3647 if (!ext4_can_truncate(inode))
3648 return;
3650 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3651 ext4_ext_truncate(inode);
3652 return;
3655 handle = start_transaction(inode);
3656 if (IS_ERR(handle))
3657 return; /* AKPM: return what? */
3659 last_block = (inode->i_size + blocksize-1)
3660 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3662 if (inode->i_size & (blocksize - 1))
3663 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3664 goto out_stop;
3666 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3667 if (n == 0)
3668 goto out_stop; /* error */
3671 * OK. This truncate is going to happen. We add the inode to the
3672 * orphan list, so that if this truncate spans multiple transactions,
3673 * and we crash, we will resume the truncate when the filesystem
3674 * recovers. It also marks the inode dirty, to catch the new size.
3676 * Implication: the file must always be in a sane, consistent
3677 * truncatable state while each transaction commits.
3679 if (ext4_orphan_add(handle, inode))
3680 goto out_stop;
3683 * From here we block out all ext4_get_block() callers who want to
3684 * modify the block allocation tree.
3686 down_write(&ei->i_data_sem);
3688 ext4_discard_reservation(inode);
3691 * The orphan list entry will now protect us from any crash which
3692 * occurs before the truncate completes, so it is now safe to propagate
3693 * the new, shorter inode size (held for now in i_size) into the
3694 * on-disk inode. We do this via i_disksize, which is the value which
3695 * ext4 *really* writes onto the disk inode.
3697 ei->i_disksize = inode->i_size;
3699 if (n == 1) { /* direct blocks */
3700 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3701 i_data + EXT4_NDIR_BLOCKS);
3702 goto do_indirects;
3705 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3706 /* Kill the top of shared branch (not detached) */
3707 if (nr) {
3708 if (partial == chain) {
3709 /* Shared branch grows from the inode */
3710 ext4_free_branches(handle, inode, NULL,
3711 &nr, &nr+1, (chain+n-1) - partial);
3712 *partial->p = 0;
3714 * We mark the inode dirty prior to restart,
3715 * and prior to stop. No need for it here.
3717 } else {
3718 /* Shared branch grows from an indirect block */
3719 BUFFER_TRACE(partial->bh, "get_write_access");
3720 ext4_free_branches(handle, inode, partial->bh,
3721 partial->p,
3722 partial->p+1, (chain+n-1) - partial);
3725 /* Clear the ends of indirect blocks on the shared branch */
3726 while (partial > chain) {
3727 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3728 (__le32*)partial->bh->b_data+addr_per_block,
3729 (chain+n-1) - partial);
3730 BUFFER_TRACE(partial->bh, "call brelse");
3731 brelse (partial->bh);
3732 partial--;
3734 do_indirects:
3735 /* Kill the remaining (whole) subtrees */
3736 switch (offsets[0]) {
3737 default:
3738 nr = i_data[EXT4_IND_BLOCK];
3739 if (nr) {
3740 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3741 i_data[EXT4_IND_BLOCK] = 0;
3743 case EXT4_IND_BLOCK:
3744 nr = i_data[EXT4_DIND_BLOCK];
3745 if (nr) {
3746 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3747 i_data[EXT4_DIND_BLOCK] = 0;
3749 case EXT4_DIND_BLOCK:
3750 nr = i_data[EXT4_TIND_BLOCK];
3751 if (nr) {
3752 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3753 i_data[EXT4_TIND_BLOCK] = 0;
3755 case EXT4_TIND_BLOCK:
3759 up_write(&ei->i_data_sem);
3760 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3761 ext4_mark_inode_dirty(handle, inode);
3764 * In a multi-transaction truncate, we only make the final transaction
3765 * synchronous
3767 if (IS_SYNC(inode))
3768 handle->h_sync = 1;
3769 out_stop:
3771 * If this was a simple ftruncate(), and the file will remain alive
3772 * then we need to clear up the orphan record which we created above.
3773 * However, if this was a real unlink then we were called by
3774 * ext4_delete_inode(), and we allow that function to clean up the
3775 * orphan info for us.
3777 if (inode->i_nlink)
3778 ext4_orphan_del(handle, inode);
3780 ext4_journal_stop(handle);
3783 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3784 unsigned long ino, struct ext4_iloc *iloc)
3786 ext4_group_t block_group;
3787 unsigned long offset;
3788 ext4_fsblk_t block;
3789 struct ext4_group_desc *gdp;
3791 if (!ext4_valid_inum(sb, ino)) {
3793 * This error is already checked for in namei.c unless we are
3794 * looking at an NFS filehandle, in which case no error
3795 * report is needed
3797 return 0;
3800 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3801 gdp = ext4_get_group_desc(sb, block_group, NULL);
3802 if (!gdp)
3803 return 0;
3806 * Figure out the offset within the block group inode table
3808 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3809 EXT4_INODE_SIZE(sb);
3810 block = ext4_inode_table(sb, gdp) +
3811 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3813 iloc->block_group = block_group;
3814 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3815 return block;
3819 * ext4_get_inode_loc returns with an extra refcount against the inode's
3820 * underlying buffer_head on success. If 'in_mem' is true, we have all
3821 * data in memory that is needed to recreate the on-disk version of this
3822 * inode.
3824 static int __ext4_get_inode_loc(struct inode *inode,
3825 struct ext4_iloc *iloc, int in_mem)
3827 ext4_fsblk_t block;
3828 struct buffer_head *bh;
3830 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3831 if (!block)
3832 return -EIO;
3834 bh = sb_getblk(inode->i_sb, block);
3835 if (!bh) {
3836 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3837 "unable to read inode block - "
3838 "inode=%lu, block=%llu",
3839 inode->i_ino, block);
3840 return -EIO;
3842 if (!buffer_uptodate(bh)) {
3843 lock_buffer(bh);
3846 * If the buffer has the write error flag, we have failed
3847 * to write out another inode in the same block. In this
3848 * case, we don't have to read the block because we may
3849 * read the old inode data successfully.
3851 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3852 set_buffer_uptodate(bh);
3854 if (buffer_uptodate(bh)) {
3855 /* someone brought it uptodate while we waited */
3856 unlock_buffer(bh);
3857 goto has_buffer;
3861 * If we have all information of the inode in memory and this
3862 * is the only valid inode in the block, we need not read the
3863 * block.
3865 if (in_mem) {
3866 struct buffer_head *bitmap_bh;
3867 struct ext4_group_desc *desc;
3868 int inodes_per_buffer;
3869 int inode_offset, i;
3870 ext4_group_t block_group;
3871 int start;
3873 block_group = (inode->i_ino - 1) /
3874 EXT4_INODES_PER_GROUP(inode->i_sb);
3875 inodes_per_buffer = bh->b_size /
3876 EXT4_INODE_SIZE(inode->i_sb);
3877 inode_offset = ((inode->i_ino - 1) %
3878 EXT4_INODES_PER_GROUP(inode->i_sb));
3879 start = inode_offset & ~(inodes_per_buffer - 1);
3881 /* Is the inode bitmap in cache? */
3882 desc = ext4_get_group_desc(inode->i_sb,
3883 block_group, NULL);
3884 if (!desc)
3885 goto make_io;
3887 bitmap_bh = sb_getblk(inode->i_sb,
3888 ext4_inode_bitmap(inode->i_sb, desc));
3889 if (!bitmap_bh)
3890 goto make_io;
3893 * If the inode bitmap isn't in cache then the
3894 * optimisation may end up performing two reads instead
3895 * of one, so skip it.
3897 if (!buffer_uptodate(bitmap_bh)) {
3898 brelse(bitmap_bh);
3899 goto make_io;
3901 for (i = start; i < start + inodes_per_buffer; i++) {
3902 if (i == inode_offset)
3903 continue;
3904 if (ext4_test_bit(i, bitmap_bh->b_data))
3905 break;
3907 brelse(bitmap_bh);
3908 if (i == start + inodes_per_buffer) {
3909 /* all other inodes are free, so skip I/O */
3910 memset(bh->b_data, 0, bh->b_size);
3911 set_buffer_uptodate(bh);
3912 unlock_buffer(bh);
3913 goto has_buffer;
3917 make_io:
3919 * There are other valid inodes in the buffer, this inode
3920 * has in-inode xattrs, or we don't have this inode in memory.
3921 * Read the block from disk.
3923 get_bh(bh);
3924 bh->b_end_io = end_buffer_read_sync;
3925 submit_bh(READ_META, bh);
3926 wait_on_buffer(bh);
3927 if (!buffer_uptodate(bh)) {
3928 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3929 "unable to read inode block - "
3930 "inode=%lu, block=%llu",
3931 inode->i_ino, block);
3932 brelse(bh);
3933 return -EIO;
3936 has_buffer:
3937 iloc->bh = bh;
3938 return 0;
3941 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3943 /* We have all inode data except xattrs in memory here. */
3944 return __ext4_get_inode_loc(inode, iloc,
3945 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3948 void ext4_set_inode_flags(struct inode *inode)
3950 unsigned int flags = EXT4_I(inode)->i_flags;
3952 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3953 if (flags & EXT4_SYNC_FL)
3954 inode->i_flags |= S_SYNC;
3955 if (flags & EXT4_APPEND_FL)
3956 inode->i_flags |= S_APPEND;
3957 if (flags & EXT4_IMMUTABLE_FL)
3958 inode->i_flags |= S_IMMUTABLE;
3959 if (flags & EXT4_NOATIME_FL)
3960 inode->i_flags |= S_NOATIME;
3961 if (flags & EXT4_DIRSYNC_FL)
3962 inode->i_flags |= S_DIRSYNC;
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3968 unsigned int flags = ei->vfs_inode.i_flags;
3970 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3971 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3972 if (flags & S_SYNC)
3973 ei->i_flags |= EXT4_SYNC_FL;
3974 if (flags & S_APPEND)
3975 ei->i_flags |= EXT4_APPEND_FL;
3976 if (flags & S_IMMUTABLE)
3977 ei->i_flags |= EXT4_IMMUTABLE_FL;
3978 if (flags & S_NOATIME)
3979 ei->i_flags |= EXT4_NOATIME_FL;
3980 if (flags & S_DIRSYNC)
3981 ei->i_flags |= EXT4_DIRSYNC_FL;
3983 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3984 struct ext4_inode_info *ei)
3986 blkcnt_t i_blocks ;
3987 struct inode *inode = &(ei->vfs_inode);
3988 struct super_block *sb = inode->i_sb;
3990 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3991 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3992 /* we are using combined 48 bit field */
3993 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3994 le32_to_cpu(raw_inode->i_blocks_lo);
3995 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3996 /* i_blocks represent file system block size */
3997 return i_blocks << (inode->i_blkbits - 9);
3998 } else {
3999 return i_blocks;
4001 } else {
4002 return le32_to_cpu(raw_inode->i_blocks_lo);
4006 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4008 struct ext4_iloc iloc;
4009 struct ext4_inode *raw_inode;
4010 struct ext4_inode_info *ei;
4011 struct buffer_head *bh;
4012 struct inode *inode;
4013 long ret;
4014 int block;
4016 inode = iget_locked(sb, ino);
4017 if (!inode)
4018 return ERR_PTR(-ENOMEM);
4019 if (!(inode->i_state & I_NEW))
4020 return inode;
4022 ei = EXT4_I(inode);
4023 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4024 ei->i_acl = EXT4_ACL_NOT_CACHED;
4025 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4026 #endif
4027 ei->i_block_alloc_info = NULL;
4029 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4030 if (ret < 0)
4031 goto bad_inode;
4032 bh = iloc.bh;
4033 raw_inode = ext4_raw_inode(&iloc);
4034 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4035 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4036 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4037 if (!(test_opt(inode->i_sb, NO_UID32))) {
4038 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4039 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4041 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4043 ei->i_state = 0;
4044 ei->i_dir_start_lookup = 0;
4045 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4046 /* We now have enough fields to check if the inode was active or not.
4047 * This is needed because nfsd might try to access dead inodes
4048 * the test is that same one that e2fsck uses
4049 * NeilBrown 1999oct15
4051 if (inode->i_nlink == 0) {
4052 if (inode->i_mode == 0 ||
4053 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4054 /* this inode is deleted */
4055 brelse(bh);
4056 ret = -ESTALE;
4057 goto bad_inode;
4059 /* The only unlinked inodes we let through here have
4060 * valid i_mode and are being read by the orphan
4061 * recovery code: that's fine, we're about to complete
4062 * the process of deleting those. */
4064 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4065 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4066 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4067 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4068 cpu_to_le32(EXT4_OS_HURD)) {
4069 ei->i_file_acl |=
4070 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4072 inode->i_size = ext4_isize(raw_inode);
4073 ei->i_disksize = inode->i_size;
4074 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4075 ei->i_block_group = iloc.block_group;
4077 * NOTE! The in-memory inode i_data array is in little-endian order
4078 * even on big-endian machines: we do NOT byteswap the block numbers!
4080 for (block = 0; block < EXT4_N_BLOCKS; block++)
4081 ei->i_data[block] = raw_inode->i_block[block];
4082 INIT_LIST_HEAD(&ei->i_orphan);
4084 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4085 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4086 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4087 EXT4_INODE_SIZE(inode->i_sb)) {
4088 brelse(bh);
4089 ret = -EIO;
4090 goto bad_inode;
4092 if (ei->i_extra_isize == 0) {
4093 /* The extra space is currently unused. Use it. */
4094 ei->i_extra_isize = sizeof(struct ext4_inode) -
4095 EXT4_GOOD_OLD_INODE_SIZE;
4096 } else {
4097 __le32 *magic = (void *)raw_inode +
4098 EXT4_GOOD_OLD_INODE_SIZE +
4099 ei->i_extra_isize;
4100 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4101 ei->i_state |= EXT4_STATE_XATTR;
4103 } else
4104 ei->i_extra_isize = 0;
4106 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4107 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4108 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4109 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4111 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4113 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4114 inode->i_version |=
4115 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4118 if (S_ISREG(inode->i_mode)) {
4119 inode->i_op = &ext4_file_inode_operations;
4120 inode->i_fop = &ext4_file_operations;
4121 ext4_set_aops(inode);
4122 } else if (S_ISDIR(inode->i_mode)) {
4123 inode->i_op = &ext4_dir_inode_operations;
4124 inode->i_fop = &ext4_dir_operations;
4125 } else if (S_ISLNK(inode->i_mode)) {
4126 if (ext4_inode_is_fast_symlink(inode))
4127 inode->i_op = &ext4_fast_symlink_inode_operations;
4128 else {
4129 inode->i_op = &ext4_symlink_inode_operations;
4130 ext4_set_aops(inode);
4132 } else {
4133 inode->i_op = &ext4_special_inode_operations;
4134 if (raw_inode->i_block[0])
4135 init_special_inode(inode, inode->i_mode,
4136 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4137 else
4138 init_special_inode(inode, inode->i_mode,
4139 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4141 brelse(iloc.bh);
4142 ext4_set_inode_flags(inode);
4143 unlock_new_inode(inode);
4144 return inode;
4146 bad_inode:
4147 iget_failed(inode);
4148 return ERR_PTR(ret);
4151 static int ext4_inode_blocks_set(handle_t *handle,
4152 struct ext4_inode *raw_inode,
4153 struct ext4_inode_info *ei)
4155 struct inode *inode = &(ei->vfs_inode);
4156 u64 i_blocks = inode->i_blocks;
4157 struct super_block *sb = inode->i_sb;
4158 int err = 0;
4160 if (i_blocks <= ~0U) {
4162 * i_blocks can be represnted in a 32 bit variable
4163 * as multiple of 512 bytes
4165 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4166 raw_inode->i_blocks_high = 0;
4167 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4168 } else if (i_blocks <= 0xffffffffffffULL) {
4170 * i_blocks can be represented in a 48 bit variable
4171 * as multiple of 512 bytes
4173 err = ext4_update_rocompat_feature(handle, sb,
4174 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4175 if (err)
4176 goto err_out;
4177 /* i_block is stored in the split 48 bit fields */
4178 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4179 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4180 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4181 } else {
4183 * i_blocks should be represented in a 48 bit variable
4184 * as multiple of file system block size
4186 err = ext4_update_rocompat_feature(handle, sb,
4187 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4188 if (err)
4189 goto err_out;
4190 ei->i_flags |= EXT4_HUGE_FILE_FL;
4191 /* i_block is stored in file system block size */
4192 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4193 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4194 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4196 err_out:
4197 return err;
4201 * Post the struct inode info into an on-disk inode location in the
4202 * buffer-cache. This gobbles the caller's reference to the
4203 * buffer_head in the inode location struct.
4205 * The caller must have write access to iloc->bh.
4207 static int ext4_do_update_inode(handle_t *handle,
4208 struct inode *inode,
4209 struct ext4_iloc *iloc)
4211 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4212 struct ext4_inode_info *ei = EXT4_I(inode);
4213 struct buffer_head *bh = iloc->bh;
4214 int err = 0, rc, block;
4216 /* For fields not not tracking in the in-memory inode,
4217 * initialise them to zero for new inodes. */
4218 if (ei->i_state & EXT4_STATE_NEW)
4219 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4221 ext4_get_inode_flags(ei);
4222 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4223 if (!(test_opt(inode->i_sb, NO_UID32))) {
4224 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4225 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4227 * Fix up interoperability with old kernels. Otherwise, old inodes get
4228 * re-used with the upper 16 bits of the uid/gid intact
4230 if (!ei->i_dtime) {
4231 raw_inode->i_uid_high =
4232 cpu_to_le16(high_16_bits(inode->i_uid));
4233 raw_inode->i_gid_high =
4234 cpu_to_le16(high_16_bits(inode->i_gid));
4235 } else {
4236 raw_inode->i_uid_high = 0;
4237 raw_inode->i_gid_high = 0;
4239 } else {
4240 raw_inode->i_uid_low =
4241 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4242 raw_inode->i_gid_low =
4243 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4244 raw_inode->i_uid_high = 0;
4245 raw_inode->i_gid_high = 0;
4247 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4249 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4250 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4251 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4252 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4254 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4255 goto out_brelse;
4256 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4257 /* clear the migrate flag in the raw_inode */
4258 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4259 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4260 cpu_to_le32(EXT4_OS_HURD))
4261 raw_inode->i_file_acl_high =
4262 cpu_to_le16(ei->i_file_acl >> 32);
4263 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4264 ext4_isize_set(raw_inode, ei->i_disksize);
4265 if (ei->i_disksize > 0x7fffffffULL) {
4266 struct super_block *sb = inode->i_sb;
4267 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4268 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4269 EXT4_SB(sb)->s_es->s_rev_level ==
4270 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4271 /* If this is the first large file
4272 * created, add a flag to the superblock.
4274 err = ext4_journal_get_write_access(handle,
4275 EXT4_SB(sb)->s_sbh);
4276 if (err)
4277 goto out_brelse;
4278 ext4_update_dynamic_rev(sb);
4279 EXT4_SET_RO_COMPAT_FEATURE(sb,
4280 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4281 sb->s_dirt = 1;
4282 handle->h_sync = 1;
4283 err = ext4_journal_dirty_metadata(handle,
4284 EXT4_SB(sb)->s_sbh);
4287 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4288 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4289 if (old_valid_dev(inode->i_rdev)) {
4290 raw_inode->i_block[0] =
4291 cpu_to_le32(old_encode_dev(inode->i_rdev));
4292 raw_inode->i_block[1] = 0;
4293 } else {
4294 raw_inode->i_block[0] = 0;
4295 raw_inode->i_block[1] =
4296 cpu_to_le32(new_encode_dev(inode->i_rdev));
4297 raw_inode->i_block[2] = 0;
4299 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4300 raw_inode->i_block[block] = ei->i_data[block];
4302 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4303 if (ei->i_extra_isize) {
4304 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4305 raw_inode->i_version_hi =
4306 cpu_to_le32(inode->i_version >> 32);
4307 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4311 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4312 rc = ext4_journal_dirty_metadata(handle, bh);
4313 if (!err)
4314 err = rc;
4315 ei->i_state &= ~EXT4_STATE_NEW;
4317 out_brelse:
4318 brelse(bh);
4319 ext4_std_error(inode->i_sb, err);
4320 return err;
4324 * ext4_write_inode()
4326 * We are called from a few places:
4328 * - Within generic_file_write() for O_SYNC files.
4329 * Here, there will be no transaction running. We wait for any running
4330 * trasnaction to commit.
4332 * - Within sys_sync(), kupdate and such.
4333 * We wait on commit, if tol to.
4335 * - Within prune_icache() (PF_MEMALLOC == true)
4336 * Here we simply return. We can't afford to block kswapd on the
4337 * journal commit.
4339 * In all cases it is actually safe for us to return without doing anything,
4340 * because the inode has been copied into a raw inode buffer in
4341 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4342 * knfsd.
4344 * Note that we are absolutely dependent upon all inode dirtiers doing the
4345 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4346 * which we are interested.
4348 * It would be a bug for them to not do this. The code:
4350 * mark_inode_dirty(inode)
4351 * stuff();
4352 * inode->i_size = expr;
4354 * is in error because a kswapd-driven write_inode() could occur while
4355 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4356 * will no longer be on the superblock's dirty inode list.
4358 int ext4_write_inode(struct inode *inode, int wait)
4360 if (current->flags & PF_MEMALLOC)
4361 return 0;
4363 if (ext4_journal_current_handle()) {
4364 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4365 dump_stack();
4366 return -EIO;
4369 if (!wait)
4370 return 0;
4372 return ext4_force_commit(inode->i_sb);
4376 * ext4_setattr()
4378 * Called from notify_change.
4380 * We want to trap VFS attempts to truncate the file as soon as
4381 * possible. In particular, we want to make sure that when the VFS
4382 * shrinks i_size, we put the inode on the orphan list and modify
4383 * i_disksize immediately, so that during the subsequent flushing of
4384 * dirty pages and freeing of disk blocks, we can guarantee that any
4385 * commit will leave the blocks being flushed in an unused state on
4386 * disk. (On recovery, the inode will get truncated and the blocks will
4387 * be freed, so we have a strong guarantee that no future commit will
4388 * leave these blocks visible to the user.)
4390 * Another thing we have to assure is that if we are in ordered mode
4391 * and inode is still attached to the committing transaction, we must
4392 * we start writeout of all the dirty pages which are being truncated.
4393 * This way we are sure that all the data written in the previous
4394 * transaction are already on disk (truncate waits for pages under
4395 * writeback).
4397 * Called with inode->i_mutex down.
4399 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4401 struct inode *inode = dentry->d_inode;
4402 int error, rc = 0;
4403 const unsigned int ia_valid = attr->ia_valid;
4405 error = inode_change_ok(inode, attr);
4406 if (error)
4407 return error;
4409 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4410 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4411 handle_t *handle;
4413 /* (user+group)*(old+new) structure, inode write (sb,
4414 * inode block, ? - but truncate inode update has it) */
4415 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4416 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4417 if (IS_ERR(handle)) {
4418 error = PTR_ERR(handle);
4419 goto err_out;
4421 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4422 if (error) {
4423 ext4_journal_stop(handle);
4424 return error;
4426 /* Update corresponding info in inode so that everything is in
4427 * one transaction */
4428 if (attr->ia_valid & ATTR_UID)
4429 inode->i_uid = attr->ia_uid;
4430 if (attr->ia_valid & ATTR_GID)
4431 inode->i_gid = attr->ia_gid;
4432 error = ext4_mark_inode_dirty(handle, inode);
4433 ext4_journal_stop(handle);
4436 if (attr->ia_valid & ATTR_SIZE) {
4437 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4438 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4440 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4441 error = -EFBIG;
4442 goto err_out;
4447 if (S_ISREG(inode->i_mode) &&
4448 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4449 handle_t *handle;
4451 handle = ext4_journal_start(inode, 3);
4452 if (IS_ERR(handle)) {
4453 error = PTR_ERR(handle);
4454 goto err_out;
4457 error = ext4_orphan_add(handle, inode);
4458 EXT4_I(inode)->i_disksize = attr->ia_size;
4459 rc = ext4_mark_inode_dirty(handle, inode);
4460 if (!error)
4461 error = rc;
4462 ext4_journal_stop(handle);
4464 if (ext4_should_order_data(inode)) {
4465 error = ext4_begin_ordered_truncate(inode,
4466 attr->ia_size);
4467 if (error) {
4468 /* Do as much error cleanup as possible */
4469 handle = ext4_journal_start(inode, 3);
4470 if (IS_ERR(handle)) {
4471 ext4_orphan_del(NULL, inode);
4472 goto err_out;
4474 ext4_orphan_del(handle, inode);
4475 ext4_journal_stop(handle);
4476 goto err_out;
4481 rc = inode_setattr(inode, attr);
4483 /* If inode_setattr's call to ext4_truncate failed to get a
4484 * transaction handle at all, we need to clean up the in-core
4485 * orphan list manually. */
4486 if (inode->i_nlink)
4487 ext4_orphan_del(NULL, inode);
4489 if (!rc && (ia_valid & ATTR_MODE))
4490 rc = ext4_acl_chmod(inode);
4492 err_out:
4493 ext4_std_error(inode->i_sb, error);
4494 if (!error)
4495 error = rc;
4496 return error;
4499 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4500 struct kstat *stat)
4502 struct inode *inode;
4503 unsigned long delalloc_blocks;
4505 inode = dentry->d_inode;
4506 generic_fillattr(inode, stat);
4509 * We can't update i_blocks if the block allocation is delayed
4510 * otherwise in the case of system crash before the real block
4511 * allocation is done, we will have i_blocks inconsistent with
4512 * on-disk file blocks.
4513 * We always keep i_blocks updated together with real
4514 * allocation. But to not confuse with user, stat
4515 * will return the blocks that include the delayed allocation
4516 * blocks for this file.
4518 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4519 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4520 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4522 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4523 return 0;
4526 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4527 int chunk)
4529 int indirects;
4531 /* if nrblocks are contiguous */
4532 if (chunk) {
4534 * With N contiguous data blocks, it need at most
4535 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4536 * 2 dindirect blocks
4537 * 1 tindirect block
4539 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4540 return indirects + 3;
4543 * if nrblocks are not contiguous, worse case, each block touch
4544 * a indirect block, and each indirect block touch a double indirect
4545 * block, plus a triple indirect block
4547 indirects = nrblocks * 2 + 1;
4548 return indirects;
4551 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4553 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4554 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4555 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4558 * Account for index blocks, block groups bitmaps and block group
4559 * descriptor blocks if modify datablocks and index blocks
4560 * worse case, the indexs blocks spread over different block groups
4562 * If datablocks are discontiguous, they are possible to spread over
4563 * different block groups too. If they are contiugous, with flexbg,
4564 * they could still across block group boundary.
4566 * Also account for superblock, inode, quota and xattr blocks
4568 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4570 int groups, gdpblocks;
4571 int idxblocks;
4572 int ret = 0;
4575 * How many index blocks need to touch to modify nrblocks?
4576 * The "Chunk" flag indicating whether the nrblocks is
4577 * physically contiguous on disk
4579 * For Direct IO and fallocate, they calls get_block to allocate
4580 * one single extent at a time, so they could set the "Chunk" flag
4582 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4584 ret = idxblocks;
4587 * Now let's see how many group bitmaps and group descriptors need
4588 * to account
4590 groups = idxblocks;
4591 if (chunk)
4592 groups += 1;
4593 else
4594 groups += nrblocks;
4596 gdpblocks = groups;
4597 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4598 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4599 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4600 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4602 /* bitmaps and block group descriptor blocks */
4603 ret += groups + gdpblocks;
4605 /* Blocks for super block, inode, quota and xattr blocks */
4606 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4608 return ret;
4612 * Calulate the total number of credits to reserve to fit
4613 * the modification of a single pages into a single transaction,
4614 * which may include multiple chunks of block allocations.
4616 * This could be called via ext4_write_begin()
4618 * We need to consider the worse case, when
4619 * one new block per extent.
4621 int ext4_writepage_trans_blocks(struct inode *inode)
4623 int bpp = ext4_journal_blocks_per_page(inode);
4624 int ret;
4626 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4628 /* Account for data blocks for journalled mode */
4629 if (ext4_should_journal_data(inode))
4630 ret += bpp;
4631 return ret;
4635 * Calculate the journal credits for a chunk of data modification.
4637 * This is called from DIO, fallocate or whoever calling
4638 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4640 * journal buffers for data blocks are not included here, as DIO
4641 * and fallocate do no need to journal data buffers.
4643 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4645 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4649 * The caller must have previously called ext4_reserve_inode_write().
4650 * Give this, we know that the caller already has write access to iloc->bh.
4652 int ext4_mark_iloc_dirty(handle_t *handle,
4653 struct inode *inode, struct ext4_iloc *iloc)
4655 int err = 0;
4657 if (test_opt(inode->i_sb, I_VERSION))
4658 inode_inc_iversion(inode);
4660 /* the do_update_inode consumes one bh->b_count */
4661 get_bh(iloc->bh);
4663 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4664 err = ext4_do_update_inode(handle, inode, iloc);
4665 put_bh(iloc->bh);
4666 return err;
4670 * On success, We end up with an outstanding reference count against
4671 * iloc->bh. This _must_ be cleaned up later.
4675 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4676 struct ext4_iloc *iloc)
4678 int err = 0;
4679 if (handle) {
4680 err = ext4_get_inode_loc(inode, iloc);
4681 if (!err) {
4682 BUFFER_TRACE(iloc->bh, "get_write_access");
4683 err = ext4_journal_get_write_access(handle, iloc->bh);
4684 if (err) {
4685 brelse(iloc->bh);
4686 iloc->bh = NULL;
4690 ext4_std_error(inode->i_sb, err);
4691 return err;
4695 * Expand an inode by new_extra_isize bytes.
4696 * Returns 0 on success or negative error number on failure.
4698 static int ext4_expand_extra_isize(struct inode *inode,
4699 unsigned int new_extra_isize,
4700 struct ext4_iloc iloc,
4701 handle_t *handle)
4703 struct ext4_inode *raw_inode;
4704 struct ext4_xattr_ibody_header *header;
4705 struct ext4_xattr_entry *entry;
4707 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4708 return 0;
4710 raw_inode = ext4_raw_inode(&iloc);
4712 header = IHDR(inode, raw_inode);
4713 entry = IFIRST(header);
4715 /* No extended attributes present */
4716 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4717 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4718 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4719 new_extra_isize);
4720 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4721 return 0;
4724 /* try to expand with EAs present */
4725 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4726 raw_inode, handle);
4730 * What we do here is to mark the in-core inode as clean with respect to inode
4731 * dirtiness (it may still be data-dirty).
4732 * This means that the in-core inode may be reaped by prune_icache
4733 * without having to perform any I/O. This is a very good thing,
4734 * because *any* task may call prune_icache - even ones which
4735 * have a transaction open against a different journal.
4737 * Is this cheating? Not really. Sure, we haven't written the
4738 * inode out, but prune_icache isn't a user-visible syncing function.
4739 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4740 * we start and wait on commits.
4742 * Is this efficient/effective? Well, we're being nice to the system
4743 * by cleaning up our inodes proactively so they can be reaped
4744 * without I/O. But we are potentially leaving up to five seconds'
4745 * worth of inodes floating about which prune_icache wants us to
4746 * write out. One way to fix that would be to get prune_icache()
4747 * to do a write_super() to free up some memory. It has the desired
4748 * effect.
4750 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4752 struct ext4_iloc iloc;
4753 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4754 static unsigned int mnt_count;
4755 int err, ret;
4757 might_sleep();
4758 err = ext4_reserve_inode_write(handle, inode, &iloc);
4759 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4760 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4762 * We need extra buffer credits since we may write into EA block
4763 * with this same handle. If journal_extend fails, then it will
4764 * only result in a minor loss of functionality for that inode.
4765 * If this is felt to be critical, then e2fsck should be run to
4766 * force a large enough s_min_extra_isize.
4768 if ((jbd2_journal_extend(handle,
4769 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4770 ret = ext4_expand_extra_isize(inode,
4771 sbi->s_want_extra_isize,
4772 iloc, handle);
4773 if (ret) {
4774 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4775 if (mnt_count !=
4776 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4777 ext4_warning(inode->i_sb, __func__,
4778 "Unable to expand inode %lu. Delete"
4779 " some EAs or run e2fsck.",
4780 inode->i_ino);
4781 mnt_count =
4782 le16_to_cpu(sbi->s_es->s_mnt_count);
4787 if (!err)
4788 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4789 return err;
4793 * ext4_dirty_inode() is called from __mark_inode_dirty()
4795 * We're really interested in the case where a file is being extended.
4796 * i_size has been changed by generic_commit_write() and we thus need
4797 * to include the updated inode in the current transaction.
4799 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4800 * are allocated to the file.
4802 * If the inode is marked synchronous, we don't honour that here - doing
4803 * so would cause a commit on atime updates, which we don't bother doing.
4804 * We handle synchronous inodes at the highest possible level.
4806 void ext4_dirty_inode(struct inode *inode)
4808 handle_t *current_handle = ext4_journal_current_handle();
4809 handle_t *handle;
4811 handle = ext4_journal_start(inode, 2);
4812 if (IS_ERR(handle))
4813 goto out;
4814 if (current_handle &&
4815 current_handle->h_transaction != handle->h_transaction) {
4816 /* This task has a transaction open against a different fs */
4817 printk(KERN_EMERG "%s: transactions do not match!\n",
4818 __func__);
4819 } else {
4820 jbd_debug(5, "marking dirty. outer handle=%p\n",
4821 current_handle);
4822 ext4_mark_inode_dirty(handle, inode);
4824 ext4_journal_stop(handle);
4825 out:
4826 return;
4829 #if 0
4831 * Bind an inode's backing buffer_head into this transaction, to prevent
4832 * it from being flushed to disk early. Unlike
4833 * ext4_reserve_inode_write, this leaves behind no bh reference and
4834 * returns no iloc structure, so the caller needs to repeat the iloc
4835 * lookup to mark the inode dirty later.
4837 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4839 struct ext4_iloc iloc;
4841 int err = 0;
4842 if (handle) {
4843 err = ext4_get_inode_loc(inode, &iloc);
4844 if (!err) {
4845 BUFFER_TRACE(iloc.bh, "get_write_access");
4846 err = jbd2_journal_get_write_access(handle, iloc.bh);
4847 if (!err)
4848 err = ext4_journal_dirty_metadata(handle,
4849 iloc.bh);
4850 brelse(iloc.bh);
4853 ext4_std_error(inode->i_sb, err);
4854 return err;
4856 #endif
4858 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4860 journal_t *journal;
4861 handle_t *handle;
4862 int err;
4865 * We have to be very careful here: changing a data block's
4866 * journaling status dynamically is dangerous. If we write a
4867 * data block to the journal, change the status and then delete
4868 * that block, we risk forgetting to revoke the old log record
4869 * from the journal and so a subsequent replay can corrupt data.
4870 * So, first we make sure that the journal is empty and that
4871 * nobody is changing anything.
4874 journal = EXT4_JOURNAL(inode);
4875 if (is_journal_aborted(journal))
4876 return -EROFS;
4878 jbd2_journal_lock_updates(journal);
4879 jbd2_journal_flush(journal);
4882 * OK, there are no updates running now, and all cached data is
4883 * synced to disk. We are now in a completely consistent state
4884 * which doesn't have anything in the journal, and we know that
4885 * no filesystem updates are running, so it is safe to modify
4886 * the inode's in-core data-journaling state flag now.
4889 if (val)
4890 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4891 else
4892 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4893 ext4_set_aops(inode);
4895 jbd2_journal_unlock_updates(journal);
4897 /* Finally we can mark the inode as dirty. */
4899 handle = ext4_journal_start(inode, 1);
4900 if (IS_ERR(handle))
4901 return PTR_ERR(handle);
4903 err = ext4_mark_inode_dirty(handle, inode);
4904 handle->h_sync = 1;
4905 ext4_journal_stop(handle);
4906 ext4_std_error(inode->i_sb, err);
4908 return err;
4911 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4913 return !buffer_mapped(bh);
4916 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4918 loff_t size;
4919 unsigned long len;
4920 int ret = -EINVAL;
4921 void *fsdata;
4922 struct file *file = vma->vm_file;
4923 struct inode *inode = file->f_path.dentry->d_inode;
4924 struct address_space *mapping = inode->i_mapping;
4927 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4928 * get i_mutex because we are already holding mmap_sem.
4930 down_read(&inode->i_alloc_sem);
4931 size = i_size_read(inode);
4932 if (page->mapping != mapping || size <= page_offset(page)
4933 || !PageUptodate(page)) {
4934 /* page got truncated from under us? */
4935 goto out_unlock;
4937 ret = 0;
4938 if (PageMappedToDisk(page))
4939 goto out_unlock;
4941 if (page->index == size >> PAGE_CACHE_SHIFT)
4942 len = size & ~PAGE_CACHE_MASK;
4943 else
4944 len = PAGE_CACHE_SIZE;
4946 if (page_has_buffers(page)) {
4947 /* return if we have all the buffers mapped */
4948 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4949 ext4_bh_unmapped))
4950 goto out_unlock;
4953 * OK, we need to fill the hole... Do write_begin write_end
4954 * to do block allocation/reservation.We are not holding
4955 * inode.i__mutex here. That allow * parallel write_begin,
4956 * write_end call. lock_page prevent this from happening
4957 * on the same page though
4959 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4960 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4961 if (ret < 0)
4962 goto out_unlock;
4963 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4964 len, len, page, fsdata);
4965 if (ret < 0)
4966 goto out_unlock;
4967 ret = 0;
4968 out_unlock:
4969 up_read(&inode->i_alloc_sem);
4970 return ret;