2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
39 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
47 STATIC
void xfs_unmountfs_wait(xfs_mount_t
*);
51 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
53 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
55 STATIC
int xfs_icsb_modify_counters(xfs_mount_t
*, xfs_sb_field_t
,
57 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
61 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
62 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
63 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
69 short type
; /* 0 = integer
70 * 1 = binary / string (no translation)
73 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
74 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
75 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
76 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
77 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
78 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
79 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
80 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
81 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
82 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
83 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
84 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
85 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
86 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
87 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
88 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
89 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
90 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
91 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
92 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
93 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
94 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
95 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
96 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
97 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
98 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
99 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
100 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
101 { offsetof(xfs_sb_t
, sb_icount
), 0 },
102 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
103 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
104 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
105 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
106 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
107 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
108 { offsetof(xfs_sb_t
, sb_flags
), 0 },
109 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
110 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
111 { offsetof(xfs_sb_t
, sb_unit
), 0 },
112 { offsetof(xfs_sb_t
, sb_width
), 0 },
113 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
114 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
115 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
116 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
117 { offsetof(xfs_sb_t
, sb_features2
), 0 },
118 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
119 { sizeof(xfs_sb_t
), 0 }
122 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
123 static int xfs_uuid_table_size
;
124 static uuid_t
*xfs_uuid_table
;
127 * See if the UUID is unique among mounted XFS filesystems.
128 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132 struct xfs_mount
*mp
)
134 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
137 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
140 if (uuid_is_nil(uuid
)) {
142 "XFS: Filesystem %s has nil UUID - can't mount",
144 return XFS_ERROR(EINVAL
);
147 mutex_lock(&xfs_uuid_table_mutex
);
148 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
149 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
153 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
158 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
159 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
160 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
162 hole
= xfs_uuid_table_size
++;
164 xfs_uuid_table
[hole
] = *uuid
;
165 mutex_unlock(&xfs_uuid_table_mutex
);
170 mutex_unlock(&xfs_uuid_table_mutex
);
171 cmn_err(CE_WARN
, "XFS: Filesystem %s has duplicate UUID - can't mount",
173 return XFS_ERROR(EINVAL
);
178 struct xfs_mount
*mp
)
180 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
183 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
186 mutex_lock(&xfs_uuid_table_mutex
);
187 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
188 if (uuid_is_nil(&xfs_uuid_table
[i
]))
190 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
192 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
195 ASSERT(i
< xfs_uuid_table_size
);
196 mutex_unlock(&xfs_uuid_table_mutex
);
201 * Reference counting access wrappers to the perag structures.
204 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
206 struct xfs_perag
*pag
;
209 spin_lock(&mp
->m_perag_lock
);
210 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
212 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
213 /* catch leaks in the positive direction during testing */
214 ASSERT(atomic_read(&pag
->pag_ref
) < 1000);
215 ref
= atomic_inc_return(&pag
->pag_ref
);
217 spin_unlock(&mp
->m_perag_lock
);
218 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
223 xfs_perag_put(struct xfs_perag
*pag
)
227 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
228 ref
= atomic_dec_return(&pag
->pag_ref
);
229 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
233 * Free up the resources associated with a mount structure. Assume that
234 * the structure was initially zeroed, so we can tell which fields got
242 struct xfs_perag
*pag
;
244 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
245 spin_lock(&mp
->m_perag_lock
);
246 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
248 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
249 spin_unlock(&mp
->m_perag_lock
);
255 * Check size of device based on the (data/realtime) block count.
256 * Note: this check is used by the growfs code as well as mount.
259 xfs_sb_validate_fsb_count(
263 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
264 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
266 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
267 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
269 #else /* Limited by UINT_MAX of sectors */
270 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
277 * Check the validity of the SB found.
280 xfs_mount_validate_sb(
286 * If the log device and data device have the
287 * same device number, the log is internal.
288 * Consequently, the sb_logstart should be non-zero. If
289 * we have a zero sb_logstart in this case, we may be trying to mount
290 * a volume filesystem in a non-volume manner.
292 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
293 xfs_fs_mount_cmn_err(flags
, "bad magic number");
294 return XFS_ERROR(EWRONGFS
);
297 if (!xfs_sb_good_version(sbp
)) {
298 xfs_fs_mount_cmn_err(flags
, "bad version");
299 return XFS_ERROR(EWRONGFS
);
303 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
304 xfs_fs_mount_cmn_err(flags
,
305 "filesystem is marked as having an external log; "
306 "specify logdev on the\nmount command line.");
307 return XFS_ERROR(EINVAL
);
311 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
312 xfs_fs_mount_cmn_err(flags
,
313 "filesystem is marked as having an internal log; "
314 "do not specify logdev on\nthe mount command line.");
315 return XFS_ERROR(EINVAL
);
319 * More sanity checking. These were stolen directly from
323 sbp
->sb_agcount
<= 0 ||
324 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
325 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
326 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
327 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
328 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
329 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
330 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
331 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
332 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
333 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
334 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
335 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
336 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
337 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
338 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
339 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
340 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
341 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
342 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */))) {
343 xfs_fs_mount_cmn_err(flags
, "SB sanity check 1 failed");
344 return XFS_ERROR(EFSCORRUPTED
);
348 * Sanity check AG count, size fields against data size field
351 sbp
->sb_dblocks
== 0 ||
353 (xfs_drfsbno_t
)sbp
->sb_agcount
* sbp
->sb_agblocks
||
354 sbp
->sb_dblocks
< (xfs_drfsbno_t
)(sbp
->sb_agcount
- 1) *
355 sbp
->sb_agblocks
+ XFS_MIN_AG_BLOCKS
)) {
356 xfs_fs_mount_cmn_err(flags
, "SB sanity check 2 failed");
357 return XFS_ERROR(EFSCORRUPTED
);
361 * Until this is fixed only page-sized or smaller data blocks work.
363 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
364 xfs_fs_mount_cmn_err(flags
,
365 "file system with blocksize %d bytes",
367 xfs_fs_mount_cmn_err(flags
,
368 "only pagesize (%ld) or less will currently work.",
370 return XFS_ERROR(ENOSYS
);
374 * Currently only very few inode sizes are supported.
376 switch (sbp
->sb_inodesize
) {
383 xfs_fs_mount_cmn_err(flags
,
384 "inode size of %d bytes not supported",
386 return XFS_ERROR(ENOSYS
);
389 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
390 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
391 xfs_fs_mount_cmn_err(flags
,
392 "file system too large to be mounted on this system.");
393 return XFS_ERROR(EFBIG
);
396 if (unlikely(sbp
->sb_inprogress
)) {
397 xfs_fs_mount_cmn_err(flags
, "file system busy");
398 return XFS_ERROR(EFSCORRUPTED
);
402 * Version 1 directory format has never worked on Linux.
404 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
405 xfs_fs_mount_cmn_err(flags
,
406 "file system using version 1 directory format");
407 return XFS_ERROR(ENOSYS
);
414 xfs_initialize_perag(
416 xfs_agnumber_t agcount
,
417 xfs_agnumber_t
*maxagi
)
419 xfs_agnumber_t index
, max_metadata
;
420 xfs_agnumber_t first_initialised
= 0;
424 xfs_sb_t
*sbp
= &mp
->m_sb
;
428 * Walk the current per-ag tree so we don't try to initialise AGs
429 * that already exist (growfs case). Allocate and insert all the
430 * AGs we don't find ready for initialisation.
432 for (index
= 0; index
< agcount
; index
++) {
433 pag
= xfs_perag_get(mp
, index
);
438 if (!first_initialised
)
439 first_initialised
= index
;
441 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
444 pag
->pag_agno
= index
;
446 rwlock_init(&pag
->pag_ici_lock
);
447 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
449 if (radix_tree_preload(GFP_NOFS
))
452 spin_lock(&mp
->m_perag_lock
);
453 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
455 spin_unlock(&mp
->m_perag_lock
);
456 radix_tree_preload_end();
460 spin_unlock(&mp
->m_perag_lock
);
461 radix_tree_preload_end();
465 * If we mount with the inode64 option, or no inode overflows
466 * the legacy 32-bit address space clear the inode32 option.
468 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
469 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
471 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
472 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
474 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
476 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
478 * Calculate how much should be reserved for inodes to meet
479 * the max inode percentage.
481 if (mp
->m_maxicount
) {
484 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
486 icount
+= sbp
->sb_agblocks
- 1;
487 do_div(icount
, sbp
->sb_agblocks
);
488 max_metadata
= icount
;
490 max_metadata
= agcount
;
493 for (index
= 0; index
< agcount
; index
++) {
494 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
495 if (ino
> XFS_MAXINUMBER_32
) {
500 pag
= xfs_perag_get(mp
, index
);
501 pag
->pagi_inodeok
= 1;
502 if (index
< max_metadata
)
503 pag
->pagf_metadata
= 1;
507 for (index
= 0; index
< agcount
; index
++) {
508 pag
= xfs_perag_get(mp
, index
);
509 pag
->pagi_inodeok
= 1;
520 for (; index
> first_initialised
; index
--) {
521 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
532 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
533 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
534 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
535 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
536 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
537 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
538 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
539 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
540 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
541 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
542 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
543 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
544 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
545 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
546 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
547 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
548 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
549 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
550 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
551 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
552 to
->sb_blocklog
= from
->sb_blocklog
;
553 to
->sb_sectlog
= from
->sb_sectlog
;
554 to
->sb_inodelog
= from
->sb_inodelog
;
555 to
->sb_inopblog
= from
->sb_inopblog
;
556 to
->sb_agblklog
= from
->sb_agblklog
;
557 to
->sb_rextslog
= from
->sb_rextslog
;
558 to
->sb_inprogress
= from
->sb_inprogress
;
559 to
->sb_imax_pct
= from
->sb_imax_pct
;
560 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
561 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
562 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
563 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
564 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
565 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
566 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
567 to
->sb_flags
= from
->sb_flags
;
568 to
->sb_shared_vn
= from
->sb_shared_vn
;
569 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
570 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
571 to
->sb_width
= be32_to_cpu(from
->sb_width
);
572 to
->sb_dirblklog
= from
->sb_dirblklog
;
573 to
->sb_logsectlog
= from
->sb_logsectlog
;
574 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
575 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
576 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
577 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
581 * Copy in core superblock to ondisk one.
583 * The fields argument is mask of superblock fields to copy.
591 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
592 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
602 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
603 first
= xfs_sb_info
[f
].offset
;
604 size
= xfs_sb_info
[f
+ 1].offset
- first
;
606 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
608 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
609 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
613 *(__be16
*)(to_ptr
+ first
) =
614 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
617 *(__be32
*)(to_ptr
+ first
) =
618 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
621 *(__be64
*)(to_ptr
+ first
) =
622 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
629 fields
&= ~(1LL << f
);
636 * Does the initial read of the superblock.
639 xfs_readsb(xfs_mount_t
*mp
, int flags
)
641 unsigned int sector_size
;
642 unsigned int extra_flags
;
646 ASSERT(mp
->m_sb_bp
== NULL
);
647 ASSERT(mp
->m_ddev_targp
!= NULL
);
650 * Allocate a (locked) buffer to hold the superblock.
651 * This will be kept around at all times to optimize
652 * access to the superblock.
654 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
655 extra_flags
= XBF_LOCK
| XBF_FS_MANAGED
| XBF_MAPPED
;
657 bp
= xfs_buf_read(mp
->m_ddev_targp
, XFS_SB_DADDR
, BTOBB(sector_size
),
659 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
660 xfs_fs_mount_cmn_err(flags
, "SB read failed");
661 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
664 ASSERT(XFS_BUF_ISBUSY(bp
));
665 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
668 * Initialize the mount structure from the superblock.
669 * But first do some basic consistency checking.
671 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
673 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
675 xfs_fs_mount_cmn_err(flags
, "SB validate failed");
680 * We must be able to do sector-sized and sector-aligned IO.
682 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
683 xfs_fs_mount_cmn_err(flags
,
684 "device supports only %u byte sectors (not %u)",
685 sector_size
, mp
->m_sb
.sb_sectsize
);
691 * If device sector size is smaller than the superblock size,
692 * re-read the superblock so the buffer is correctly sized.
694 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
695 XFS_BUF_UNMANAGE(bp
);
697 sector_size
= mp
->m_sb
.sb_sectsize
;
698 bp
= xfs_buf_read(mp
->m_ddev_targp
, XFS_SB_DADDR
,
699 BTOBB(sector_size
), extra_flags
);
700 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
701 xfs_fs_mount_cmn_err(flags
, "SB re-read failed");
702 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
705 ASSERT(XFS_BUF_ISBUSY(bp
));
706 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
709 /* Initialize per-cpu counters */
710 xfs_icsb_reinit_counters(mp
);
714 ASSERT(XFS_BUF_VALUSEMA(bp
) > 0);
719 XFS_BUF_UNMANAGE(bp
);
729 * Mount initialization code establishing various mount
730 * fields from the superblock associated with the given
734 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
736 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
737 spin_lock_init(&mp
->m_agirotor_lock
);
738 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
739 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
740 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
741 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
742 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
743 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
744 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
745 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
746 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
748 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
749 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
750 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
751 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
753 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
754 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
755 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
756 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
758 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
759 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
760 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
761 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
763 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
764 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
766 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
770 * xfs_initialize_perag_data
772 * Read in each per-ag structure so we can count up the number of
773 * allocated inodes, free inodes and used filesystem blocks as this
774 * information is no longer persistent in the superblock. Once we have
775 * this information, write it into the in-core superblock structure.
778 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
780 xfs_agnumber_t index
;
782 xfs_sb_t
*sbp
= &mp
->m_sb
;
786 uint64_t bfreelst
= 0;
790 for (index
= 0; index
< agcount
; index
++) {
792 * read the agf, then the agi. This gets us
793 * all the information we need and populates the
794 * per-ag structures for us.
796 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
800 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
803 pag
= xfs_perag_get(mp
, index
);
804 ifree
+= pag
->pagi_freecount
;
805 ialloc
+= pag
->pagi_count
;
806 bfree
+= pag
->pagf_freeblks
;
807 bfreelst
+= pag
->pagf_flcount
;
808 btree
+= pag
->pagf_btreeblks
;
812 * Overwrite incore superblock counters with just-read data
814 spin_lock(&mp
->m_sb_lock
);
815 sbp
->sb_ifree
= ifree
;
816 sbp
->sb_icount
= ialloc
;
817 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
818 spin_unlock(&mp
->m_sb_lock
);
820 /* Fixup the per-cpu counters as well. */
821 xfs_icsb_reinit_counters(mp
);
827 * Update alignment values based on mount options and sb values
830 xfs_update_alignment(xfs_mount_t
*mp
)
832 xfs_sb_t
*sbp
= &(mp
->m_sb
);
836 * If stripe unit and stripe width are not multiples
837 * of the fs blocksize turn off alignment.
839 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
840 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
841 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
843 "XFS: alignment check 1 failed");
844 return XFS_ERROR(EINVAL
);
846 mp
->m_dalign
= mp
->m_swidth
= 0;
849 * Convert the stripe unit and width to FSBs.
851 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
852 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
853 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
854 return XFS_ERROR(EINVAL
);
856 xfs_fs_cmn_err(CE_WARN
, mp
,
857 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
858 mp
->m_dalign
, mp
->m_swidth
,
863 } else if (mp
->m_dalign
) {
864 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
866 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
867 xfs_fs_cmn_err(CE_WARN
, mp
,
868 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
871 return XFS_ERROR(EINVAL
);
878 * Update superblock with new values
881 if (xfs_sb_version_hasdalign(sbp
)) {
882 if (sbp
->sb_unit
!= mp
->m_dalign
) {
883 sbp
->sb_unit
= mp
->m_dalign
;
884 mp
->m_update_flags
|= XFS_SB_UNIT
;
886 if (sbp
->sb_width
!= mp
->m_swidth
) {
887 sbp
->sb_width
= mp
->m_swidth
;
888 mp
->m_update_flags
|= XFS_SB_WIDTH
;
891 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
892 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
893 mp
->m_dalign
= sbp
->sb_unit
;
894 mp
->m_swidth
= sbp
->sb_width
;
901 * Set the maximum inode count for this filesystem
904 xfs_set_maxicount(xfs_mount_t
*mp
)
906 xfs_sb_t
*sbp
= &(mp
->m_sb
);
909 if (sbp
->sb_imax_pct
) {
911 * Make sure the maximum inode count is a multiple
912 * of the units we allocate inodes in.
914 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
916 do_div(icount
, mp
->m_ialloc_blks
);
917 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
925 * Set the default minimum read and write sizes unless
926 * already specified in a mount option.
927 * We use smaller I/O sizes when the file system
928 * is being used for NFS service (wsync mount option).
931 xfs_set_rw_sizes(xfs_mount_t
*mp
)
933 xfs_sb_t
*sbp
= &(mp
->m_sb
);
934 int readio_log
, writeio_log
;
936 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
937 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
938 readio_log
= XFS_WSYNC_READIO_LOG
;
939 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
941 readio_log
= XFS_READIO_LOG_LARGE
;
942 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
945 readio_log
= mp
->m_readio_log
;
946 writeio_log
= mp
->m_writeio_log
;
949 if (sbp
->sb_blocklog
> readio_log
) {
950 mp
->m_readio_log
= sbp
->sb_blocklog
;
952 mp
->m_readio_log
= readio_log
;
954 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
955 if (sbp
->sb_blocklog
> writeio_log
) {
956 mp
->m_writeio_log
= sbp
->sb_blocklog
;
958 mp
->m_writeio_log
= writeio_log
;
960 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
964 * Set whether we're using inode alignment.
967 xfs_set_inoalignment(xfs_mount_t
*mp
)
969 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
970 mp
->m_sb
.sb_inoalignmt
>=
971 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
972 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
974 mp
->m_inoalign_mask
= 0;
976 * If we are using stripe alignment, check whether
977 * the stripe unit is a multiple of the inode alignment
979 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
980 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
981 mp
->m_sinoalign
= mp
->m_dalign
;
987 * Check that the data (and log if separate) are an ok size.
990 xfs_check_sizes(xfs_mount_t
*mp
)
996 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
997 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
998 cmn_err(CE_WARN
, "XFS: size check 1 failed");
999 return XFS_ERROR(EFBIG
);
1001 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
1002 d
- XFS_FSS_TO_BB(mp
, 1),
1003 XFS_FSS_TO_BB(mp
, 1), 0, &bp
);
1007 cmn_err(CE_WARN
, "XFS: size check 2 failed");
1008 if (error
== ENOSPC
)
1009 error
= XFS_ERROR(EFBIG
);
1013 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1014 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1015 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1016 cmn_err(CE_WARN
, "XFS: size check 3 failed");
1017 return XFS_ERROR(EFBIG
);
1019 error
= xfs_read_buf(mp
, mp
->m_logdev_targp
,
1020 d
- XFS_FSB_TO_BB(mp
, 1),
1021 XFS_FSB_TO_BB(mp
, 1), 0, &bp
);
1025 cmn_err(CE_WARN
, "XFS: size check 3 failed");
1026 if (error
== ENOSPC
)
1027 error
= XFS_ERROR(EFBIG
);
1035 * Clear the quotaflags in memory and in the superblock.
1038 xfs_mount_reset_sbqflags(
1039 struct xfs_mount
*mp
)
1042 struct xfs_trans
*tp
;
1047 * It is OK to look at sb_qflags here in mount path,
1048 * without m_sb_lock.
1050 if (mp
->m_sb
.sb_qflags
== 0)
1052 spin_lock(&mp
->m_sb_lock
);
1053 mp
->m_sb
.sb_qflags
= 0;
1054 spin_unlock(&mp
->m_sb_lock
);
1057 * If the fs is readonly, let the incore superblock run
1058 * with quotas off but don't flush the update out to disk
1060 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1064 xfs_fs_cmn_err(CE_NOTE
, mp
, "Writing superblock quota changes");
1067 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1068 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1069 XFS_DEFAULT_LOG_COUNT
);
1071 xfs_trans_cancel(tp
, 0);
1072 xfs_fs_cmn_err(CE_ALERT
, mp
,
1073 "xfs_mount_reset_sbqflags: Superblock update failed!");
1077 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1078 return xfs_trans_commit(tp
, 0);
1082 xfs_default_resblks(xfs_mount_t
*mp
)
1087 * We default to 5% or 8192 fsbs of space reserved, whichever is
1088 * smaller. This is intended to cover concurrent allocation
1089 * transactions when we initially hit enospc. These each require a 4
1090 * block reservation. Hence by default we cover roughly 2000 concurrent
1091 * allocation reservations.
1093 resblks
= mp
->m_sb
.sb_dblocks
;
1094 do_div(resblks
, 20);
1095 resblks
= min_t(__uint64_t
, resblks
, 8192);
1100 * This function does the following on an initial mount of a file system:
1101 * - reads the superblock from disk and init the mount struct
1102 * - if we're a 32-bit kernel, do a size check on the superblock
1103 * so we don't mount terabyte filesystems
1104 * - init mount struct realtime fields
1105 * - allocate inode hash table for fs
1106 * - init directory manager
1107 * - perform recovery and init the log manager
1113 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1116 uint quotamount
= 0;
1117 uint quotaflags
= 0;
1120 xfs_mount_common(mp
, sbp
);
1123 * Check for a mismatched features2 values. Older kernels
1124 * read & wrote into the wrong sb offset for sb_features2
1125 * on some platforms due to xfs_sb_t not being 64bit size aligned
1126 * when sb_features2 was added, which made older superblock
1127 * reading/writing routines swap it as a 64-bit value.
1129 * For backwards compatibility, we make both slots equal.
1131 * If we detect a mismatched field, we OR the set bits into the
1132 * existing features2 field in case it has already been modified; we
1133 * don't want to lose any features. We then update the bad location
1134 * with the ORed value so that older kernels will see any features2
1135 * flags, and mark the two fields as needing updates once the
1136 * transaction subsystem is online.
1138 if (xfs_sb_has_mismatched_features2(sbp
)) {
1140 "XFS: correcting sb_features alignment problem");
1141 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1142 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1143 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1146 * Re-check for ATTR2 in case it was found in bad_features2
1149 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1150 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1151 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1154 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1155 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1156 xfs_sb_version_removeattr2(&mp
->m_sb
);
1157 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1159 /* update sb_versionnum for the clearing of the morebits */
1160 if (!sbp
->sb_features2
)
1161 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1165 * Check if sb_agblocks is aligned at stripe boundary
1166 * If sb_agblocks is NOT aligned turn off m_dalign since
1167 * allocator alignment is within an ag, therefore ag has
1168 * to be aligned at stripe boundary.
1170 error
= xfs_update_alignment(mp
);
1174 xfs_alloc_compute_maxlevels(mp
);
1175 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1176 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1177 xfs_ialloc_compute_maxlevels(mp
);
1179 xfs_set_maxicount(mp
);
1181 mp
->m_maxioffset
= xfs_max_file_offset(sbp
->sb_blocklog
);
1183 error
= xfs_uuid_mount(mp
);
1188 * Set the minimum read and write sizes
1190 xfs_set_rw_sizes(mp
);
1193 * Set the inode cluster size.
1194 * This may still be overridden by the file system
1195 * block size if it is larger than the chosen cluster size.
1197 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1200 * Set inode alignment fields
1202 xfs_set_inoalignment(mp
);
1205 * Check that the data (and log if separate) are an ok size.
1207 error
= xfs_check_sizes(mp
);
1209 goto out_remove_uuid
;
1212 * Initialize realtime fields in the mount structure
1214 error
= xfs_rtmount_init(mp
);
1216 cmn_err(CE_WARN
, "XFS: RT mount failed");
1217 goto out_remove_uuid
;
1221 * Copies the low order bits of the timestamp and the randomly
1222 * set "sequence" number out of a UUID.
1224 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1226 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1231 * Initialize the attribute manager's entries.
1233 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1236 * Initialize the precomputed transaction reservations values.
1241 * Allocate and initialize the per-ag data.
1243 spin_lock_init(&mp
->m_perag_lock
);
1244 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1245 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1247 cmn_err(CE_WARN
, "XFS: Failed per-ag init: %d", error
);
1248 goto out_remove_uuid
;
1251 if (!sbp
->sb_logblocks
) {
1252 cmn_err(CE_WARN
, "XFS: no log defined");
1253 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1254 error
= XFS_ERROR(EFSCORRUPTED
);
1255 goto out_free_perag
;
1259 * log's mount-time initialization. Perform 1st part recovery if needed
1261 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1262 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1263 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1265 cmn_err(CE_WARN
, "XFS: log mount failed");
1266 goto out_free_perag
;
1270 * Now the log is mounted, we know if it was an unclean shutdown or
1271 * not. If it was, with the first phase of recovery has completed, we
1272 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1273 * but they are recovered transactionally in the second recovery phase
1276 * Hence we can safely re-initialise incore superblock counters from
1277 * the per-ag data. These may not be correct if the filesystem was not
1278 * cleanly unmounted, so we need to wait for recovery to finish before
1281 * If the filesystem was cleanly unmounted, then we can trust the
1282 * values in the superblock to be correct and we don't need to do
1285 * If we are currently making the filesystem, the initialisation will
1286 * fail as the perag data is in an undefined state.
1288 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1289 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1290 !mp
->m_sb
.sb_inprogress
) {
1291 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1293 goto out_free_perag
;
1297 * Get and sanity-check the root inode.
1298 * Save the pointer to it in the mount structure.
1300 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
1302 cmn_err(CE_WARN
, "XFS: failed to read root inode");
1303 goto out_log_dealloc
;
1306 ASSERT(rip
!= NULL
);
1308 if (unlikely((rip
->i_d
.di_mode
& S_IFMT
) != S_IFDIR
)) {
1309 cmn_err(CE_WARN
, "XFS: corrupted root inode");
1310 cmn_err(CE_WARN
, "Device %s - root %llu is not a directory",
1311 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
1312 (unsigned long long)rip
->i_ino
);
1313 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1314 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1316 error
= XFS_ERROR(EFSCORRUPTED
);
1319 mp
->m_rootip
= rip
; /* save it */
1321 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1324 * Initialize realtime inode pointers in the mount structure
1326 error
= xfs_rtmount_inodes(mp
);
1329 * Free up the root inode.
1331 cmn_err(CE_WARN
, "XFS: failed to read RT inodes");
1336 * If this is a read-only mount defer the superblock updates until
1337 * the next remount into writeable mode. Otherwise we would never
1338 * perform the update e.g. for the root filesystem.
1340 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1341 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1343 cmn_err(CE_WARN
, "XFS: failed to write sb changes");
1349 * Initialise the XFS quota management subsystem for this mount
1351 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1352 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1356 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1359 * If a file system had quotas running earlier, but decided to
1360 * mount without -o uquota/pquota/gquota options, revoke the
1361 * quotachecked license.
1363 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1365 "XFS: resetting qflags for filesystem %s",
1368 error
= xfs_mount_reset_sbqflags(mp
);
1375 * Finish recovering the file system. This part needed to be
1376 * delayed until after the root and real-time bitmap inodes
1377 * were consistently read in.
1379 error
= xfs_log_mount_finish(mp
);
1381 cmn_err(CE_WARN
, "XFS: log mount finish failed");
1386 * Complete the quota initialisation, post-log-replay component.
1389 ASSERT(mp
->m_qflags
== 0);
1390 mp
->m_qflags
= quotaflags
;
1392 xfs_qm_mount_quotas(mp
);
1396 * Now we are mounted, reserve a small amount of unused space for
1397 * privileged transactions. This is needed so that transaction
1398 * space required for critical operations can dip into this pool
1399 * when at ENOSPC. This is needed for operations like create with
1400 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1401 * are not allowed to use this reserved space.
1403 * This may drive us straight to ENOSPC on mount, but that implies
1404 * we were already there on the last unmount. Warn if this occurs.
1406 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1407 resblks
= xfs_default_resblks(mp
);
1408 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1410 cmn_err(CE_WARN
, "XFS: Unable to allocate reserve "
1411 "blocks. Continuing without a reserve pool.");
1417 xfs_rtunmount_inodes(mp
);
1421 xfs_log_unmount(mp
);
1425 xfs_uuid_unmount(mp
);
1431 * This flushes out the inodes,dquots and the superblock, unmounts the
1432 * log and makes sure that incore structures are freed.
1436 struct xfs_mount
*mp
)
1441 xfs_qm_unmount_quotas(mp
);
1442 xfs_rtunmount_inodes(mp
);
1443 IRELE(mp
->m_rootip
);
1446 * We can potentially deadlock here if we have an inode cluster
1447 * that has been freed has its buffer still pinned in memory because
1448 * the transaction is still sitting in a iclog. The stale inodes
1449 * on that buffer will have their flush locks held until the
1450 * transaction hits the disk and the callbacks run. the inode
1451 * flush takes the flush lock unconditionally and with nothing to
1452 * push out the iclog we will never get that unlocked. hence we
1453 * need to force the log first.
1455 xfs_log_force(mp
, XFS_LOG_SYNC
);
1458 * Do a delwri reclaim pass first so that as many dirty inodes are
1459 * queued up for IO as possible. Then flush the buffers before making
1460 * a synchronous path to catch all the remaining inodes are reclaimed.
1461 * This makes the reclaim process as quick as possible by avoiding
1462 * synchronous writeout and blocking on inodes already in the delwri
1463 * state as much as possible.
1465 xfs_reclaim_inodes(mp
, 0);
1466 XFS_bflush(mp
->m_ddev_targp
);
1467 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1472 * Flush out the log synchronously so that we know for sure
1473 * that nothing is pinned. This is important because bflush()
1474 * will skip pinned buffers.
1476 xfs_log_force(mp
, XFS_LOG_SYNC
);
1478 xfs_binval(mp
->m_ddev_targp
);
1479 if (mp
->m_rtdev_targp
) {
1480 xfs_binval(mp
->m_rtdev_targp
);
1484 * Unreserve any blocks we have so that when we unmount we don't account
1485 * the reserved free space as used. This is really only necessary for
1486 * lazy superblock counting because it trusts the incore superblock
1487 * counters to be absolutely correct on clean unmount.
1489 * We don't bother correcting this elsewhere for lazy superblock
1490 * counting because on mount of an unclean filesystem we reconstruct the
1491 * correct counter value and this is irrelevant.
1493 * For non-lazy counter filesystems, this doesn't matter at all because
1494 * we only every apply deltas to the superblock and hence the incore
1495 * value does not matter....
1498 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1500 cmn_err(CE_WARN
, "XFS: Unable to free reserved block pool. "
1501 "Freespace may not be correct on next mount.");
1503 error
= xfs_log_sbcount(mp
, 1);
1505 cmn_err(CE_WARN
, "XFS: Unable to update superblock counters. "
1506 "Freespace may not be correct on next mount.");
1507 xfs_unmountfs_writesb(mp
);
1508 xfs_unmountfs_wait(mp
); /* wait for async bufs */
1509 xfs_log_unmount_write(mp
);
1510 xfs_log_unmount(mp
);
1511 xfs_uuid_unmount(mp
);
1514 xfs_errortag_clearall(mp
, 0);
1520 xfs_unmountfs_wait(xfs_mount_t
*mp
)
1522 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1523 xfs_wait_buftarg(mp
->m_logdev_targp
);
1524 if (mp
->m_rtdev_targp
)
1525 xfs_wait_buftarg(mp
->m_rtdev_targp
);
1526 xfs_wait_buftarg(mp
->m_ddev_targp
);
1530 xfs_fs_writable(xfs_mount_t
*mp
)
1532 return !(xfs_test_for_freeze(mp
) || XFS_FORCED_SHUTDOWN(mp
) ||
1533 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1539 * Called either periodically to keep the on disk superblock values
1540 * roughly up to date or from unmount to make sure the values are
1541 * correct on a clean unmount.
1543 * Note this code can be called during the process of freezing, so
1544 * we may need to use the transaction allocator which does not not
1545 * block when the transaction subsystem is in its frozen state.
1555 if (!xfs_fs_writable(mp
))
1558 xfs_icsb_sync_counters(mp
, 0);
1561 * we don't need to do this if we are updating the superblock
1562 * counters on every modification.
1564 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1567 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1568 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1569 XFS_DEFAULT_LOG_COUNT
);
1571 xfs_trans_cancel(tp
, 0);
1575 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1577 xfs_trans_set_sync(tp
);
1578 error
= xfs_trans_commit(tp
, 0);
1583 xfs_unmountfs_writesb(xfs_mount_t
*mp
)
1589 * skip superblock write if fs is read-only, or
1590 * if we are doing a forced umount.
1592 if (!((mp
->m_flags
& XFS_MOUNT_RDONLY
) ||
1593 XFS_FORCED_SHUTDOWN(mp
))) {
1595 sbp
= xfs_getsb(mp
, 0);
1597 XFS_BUF_UNDONE(sbp
);
1598 XFS_BUF_UNREAD(sbp
);
1599 XFS_BUF_UNDELAYWRITE(sbp
);
1601 XFS_BUF_UNASYNC(sbp
);
1602 ASSERT(XFS_BUF_TARGET(sbp
) == mp
->m_ddev_targp
);
1603 xfsbdstrat(mp
, sbp
);
1604 error
= xfs_iowait(sbp
);
1606 xfs_ioerror_alert("xfs_unmountfs_writesb",
1607 mp
, sbp
, XFS_BUF_ADDR(sbp
));
1614 * xfs_mod_sb() can be used to copy arbitrary changes to the
1615 * in-core superblock into the superblock buffer to be logged.
1616 * It does not provide the higher level of locking that is
1617 * needed to protect the in-core superblock from concurrent
1621 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1633 bp
= xfs_trans_getsb(tp
, mp
, 0);
1634 first
= sizeof(xfs_sb_t
);
1637 /* translate/copy */
1639 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1641 /* find modified range */
1642 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1643 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1644 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1646 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1647 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1648 first
= xfs_sb_info
[f
].offset
;
1650 xfs_trans_log_buf(tp
, bp
, first
, last
);
1655 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1656 * a delta to a specified field in the in-core superblock. Simply
1657 * switch on the field indicated and apply the delta to that field.
1658 * Fields are not allowed to dip below zero, so if the delta would
1659 * do this do not apply it and return EINVAL.
1661 * The m_sb_lock must be held when this routine is called.
1664 xfs_mod_incore_sb_unlocked(
1666 xfs_sb_field_t field
,
1670 int scounter
; /* short counter for 32 bit fields */
1671 long long lcounter
; /* long counter for 64 bit fields */
1672 long long res_used
, rem
;
1675 * With the in-core superblock spin lock held, switch
1676 * on the indicated field. Apply the delta to the
1677 * proper field. If the fields value would dip below
1678 * 0, then do not apply the delta and return EINVAL.
1681 case XFS_SBS_ICOUNT
:
1682 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1686 return XFS_ERROR(EINVAL
);
1688 mp
->m_sb
.sb_icount
= lcounter
;
1691 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1695 return XFS_ERROR(EINVAL
);
1697 mp
->m_sb
.sb_ifree
= lcounter
;
1699 case XFS_SBS_FDBLOCKS
:
1700 lcounter
= (long long)
1701 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1702 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1704 if (delta
> 0) { /* Putting blocks back */
1705 if (res_used
> delta
) {
1706 mp
->m_resblks_avail
+= delta
;
1708 rem
= delta
- res_used
;
1709 mp
->m_resblks_avail
= mp
->m_resblks
;
1712 } else { /* Taking blocks away */
1714 if (lcounter
>= 0) {
1715 mp
->m_sb
.sb_fdblocks
= lcounter
+
1716 XFS_ALLOC_SET_ASIDE(mp
);
1721 * We are out of blocks, use any available reserved
1722 * blocks if were allowed to.
1725 return XFS_ERROR(ENOSPC
);
1727 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1728 if (lcounter
>= 0) {
1729 mp
->m_resblks_avail
= lcounter
;
1732 printk_once(KERN_WARNING
1733 "Filesystem \"%s\": reserve blocks depleted! "
1734 "Consider increasing reserve pool size.",
1736 return XFS_ERROR(ENOSPC
);
1739 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1741 case XFS_SBS_FREXTENTS
:
1742 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1745 return XFS_ERROR(ENOSPC
);
1747 mp
->m_sb
.sb_frextents
= lcounter
;
1749 case XFS_SBS_DBLOCKS
:
1750 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1754 return XFS_ERROR(EINVAL
);
1756 mp
->m_sb
.sb_dblocks
= lcounter
;
1758 case XFS_SBS_AGCOUNT
:
1759 scounter
= mp
->m_sb
.sb_agcount
;
1763 return XFS_ERROR(EINVAL
);
1765 mp
->m_sb
.sb_agcount
= scounter
;
1767 case XFS_SBS_IMAX_PCT
:
1768 scounter
= mp
->m_sb
.sb_imax_pct
;
1772 return XFS_ERROR(EINVAL
);
1774 mp
->m_sb
.sb_imax_pct
= scounter
;
1776 case XFS_SBS_REXTSIZE
:
1777 scounter
= mp
->m_sb
.sb_rextsize
;
1781 return XFS_ERROR(EINVAL
);
1783 mp
->m_sb
.sb_rextsize
= scounter
;
1785 case XFS_SBS_RBMBLOCKS
:
1786 scounter
= mp
->m_sb
.sb_rbmblocks
;
1790 return XFS_ERROR(EINVAL
);
1792 mp
->m_sb
.sb_rbmblocks
= scounter
;
1794 case XFS_SBS_RBLOCKS
:
1795 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1799 return XFS_ERROR(EINVAL
);
1801 mp
->m_sb
.sb_rblocks
= lcounter
;
1803 case XFS_SBS_REXTENTS
:
1804 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1808 return XFS_ERROR(EINVAL
);
1810 mp
->m_sb
.sb_rextents
= lcounter
;
1812 case XFS_SBS_REXTSLOG
:
1813 scounter
= mp
->m_sb
.sb_rextslog
;
1817 return XFS_ERROR(EINVAL
);
1819 mp
->m_sb
.sb_rextslog
= scounter
;
1823 return XFS_ERROR(EINVAL
);
1828 * xfs_mod_incore_sb() is used to change a field in the in-core
1829 * superblock structure by the specified delta. This modification
1830 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1831 * routine to do the work.
1836 xfs_sb_field_t field
,
1842 /* check for per-cpu counters */
1844 #ifdef HAVE_PERCPU_SB
1845 case XFS_SBS_ICOUNT
:
1847 case XFS_SBS_FDBLOCKS
:
1848 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1849 status
= xfs_icsb_modify_counters(mp
, field
,
1856 spin_lock(&mp
->m_sb_lock
);
1857 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1858 spin_unlock(&mp
->m_sb_lock
);
1866 * xfs_mod_incore_sb_batch() is used to change more than one field
1867 * in the in-core superblock structure at a time. This modification
1868 * is protected by a lock internal to this module. The fields and
1869 * changes to those fields are specified in the array of xfs_mod_sb
1870 * structures passed in.
1872 * Either all of the specified deltas will be applied or none of
1873 * them will. If any modified field dips below 0, then all modifications
1874 * will be backed out and EINVAL will be returned.
1877 xfs_mod_incore_sb_batch(xfs_mount_t
*mp
, xfs_mod_sb_t
*msb
, uint nmsb
, int rsvd
)
1883 * Loop through the array of mod structures and apply each
1884 * individually. If any fail, then back out all those
1885 * which have already been applied. Do all of this within
1886 * the scope of the m_sb_lock so that all of the changes will
1889 spin_lock(&mp
->m_sb_lock
);
1891 for (msbp
= &msbp
[0]; msbp
< (msb
+ nmsb
); msbp
++) {
1893 * Apply the delta at index n. If it fails, break
1894 * from the loop so we'll fall into the undo loop
1897 switch (msbp
->msb_field
) {
1898 #ifdef HAVE_PERCPU_SB
1899 case XFS_SBS_ICOUNT
:
1901 case XFS_SBS_FDBLOCKS
:
1902 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1903 spin_unlock(&mp
->m_sb_lock
);
1904 status
= xfs_icsb_modify_counters(mp
,
1906 msbp
->msb_delta
, rsvd
);
1907 spin_lock(&mp
->m_sb_lock
);
1913 status
= xfs_mod_incore_sb_unlocked(mp
,
1915 msbp
->msb_delta
, rsvd
);
1925 * If we didn't complete the loop above, then back out
1926 * any changes made to the superblock. If you add code
1927 * between the loop above and here, make sure that you
1928 * preserve the value of status. Loop back until
1929 * we step below the beginning of the array. Make sure
1930 * we don't touch anything back there.
1934 while (msbp
>= msb
) {
1935 switch (msbp
->msb_field
) {
1936 #ifdef HAVE_PERCPU_SB
1937 case XFS_SBS_ICOUNT
:
1939 case XFS_SBS_FDBLOCKS
:
1940 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1941 spin_unlock(&mp
->m_sb_lock
);
1942 status
= xfs_icsb_modify_counters(mp
,
1946 spin_lock(&mp
->m_sb_lock
);
1952 status
= xfs_mod_incore_sb_unlocked(mp
,
1958 ASSERT(status
== 0);
1962 spin_unlock(&mp
->m_sb_lock
);
1967 * xfs_getsb() is called to obtain the buffer for the superblock.
1968 * The buffer is returned locked and read in from disk.
1969 * The buffer should be released with a call to xfs_brelse().
1971 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1972 * the superblock buffer if it can be locked without sleeping.
1973 * If it can't then we'll return NULL.
1982 ASSERT(mp
->m_sb_bp
!= NULL
);
1984 if (flags
& XBF_TRYLOCK
) {
1985 if (!XFS_BUF_CPSEMA(bp
)) {
1989 XFS_BUF_PSEMA(bp
, PRIBIO
);
1992 ASSERT(XFS_BUF_ISDONE(bp
));
1997 * Used to free the superblock along various error paths.
2006 * Use xfs_getsb() so that the buffer will be locked
2007 * when we call xfs_buf_relse().
2009 bp
= xfs_getsb(mp
, 0);
2010 XFS_BUF_UNMANAGE(bp
);
2016 * Used to log changes to the superblock unit and width fields which could
2017 * be altered by the mount options, as well as any potential sb_features2
2018 * fixup. Only the first superblock is updated.
2028 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
2029 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
2030 XFS_SB_VERSIONNUM
));
2032 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
2033 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
2034 XFS_DEFAULT_LOG_COUNT
);
2036 xfs_trans_cancel(tp
, 0);
2039 xfs_mod_sb(tp
, fields
);
2040 error
= xfs_trans_commit(tp
, 0);
2045 * If the underlying (data/log/rt) device is readonly, there are some
2046 * operations that cannot proceed.
2049 xfs_dev_is_read_only(
2050 struct xfs_mount
*mp
,
2053 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
2054 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
2055 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
2057 "XFS: %s required on read-only device.", message
);
2059 "XFS: write access unavailable, cannot proceed.");
2065 #ifdef HAVE_PERCPU_SB
2067 * Per-cpu incore superblock counters
2069 * Simple concept, difficult implementation
2071 * Basically, replace the incore superblock counters with a distributed per cpu
2072 * counter for contended fields (e.g. free block count).
2074 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2075 * hence needs to be accurately read when we are running low on space. Hence
2076 * there is a method to enable and disable the per-cpu counters based on how
2077 * much "stuff" is available in them.
2079 * Basically, a counter is enabled if there is enough free resource to justify
2080 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2081 * ENOSPC), then we disable the counters to synchronise all callers and
2082 * re-distribute the available resources.
2084 * If, once we redistributed the available resources, we still get a failure,
2085 * we disable the per-cpu counter and go through the slow path.
2087 * The slow path is the current xfs_mod_incore_sb() function. This means that
2088 * when we disable a per-cpu counter, we need to drain its resources back to
2089 * the global superblock. We do this after disabling the counter to prevent
2090 * more threads from queueing up on the counter.
2092 * Essentially, this means that we still need a lock in the fast path to enable
2093 * synchronisation between the global counters and the per-cpu counters. This
2094 * is not a problem because the lock will be local to a CPU almost all the time
2095 * and have little contention except when we get to ENOSPC conditions.
2097 * Basically, this lock becomes a barrier that enables us to lock out the fast
2098 * path while we do things like enabling and disabling counters and
2099 * synchronising the counters.
2103 * 1. m_sb_lock before picking up per-cpu locks
2104 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2105 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2106 * 4. modifying per-cpu counters requires holding per-cpu lock
2107 * 5. modifying global counters requires holding m_sb_lock
2108 * 6. enabling or disabling a counter requires holding the m_sb_lock
2109 * and _none_ of the per-cpu locks.
2111 * Disabled counters are only ever re-enabled by a balance operation
2112 * that results in more free resources per CPU than a given threshold.
2113 * To ensure counters don't remain disabled, they are rebalanced when
2114 * the global resource goes above a higher threshold (i.e. some hysteresis
2115 * is present to prevent thrashing).
2118 #ifdef CONFIG_HOTPLUG_CPU
2120 * hot-plug CPU notifier support.
2122 * We need a notifier per filesystem as we need to be able to identify
2123 * the filesystem to balance the counters out. This is achieved by
2124 * having a notifier block embedded in the xfs_mount_t and doing pointer
2125 * magic to get the mount pointer from the notifier block address.
2128 xfs_icsb_cpu_notify(
2129 struct notifier_block
*nfb
,
2130 unsigned long action
,
2133 xfs_icsb_cnts_t
*cntp
;
2136 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2137 cntp
= (xfs_icsb_cnts_t
*)
2138 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2140 case CPU_UP_PREPARE
:
2141 case CPU_UP_PREPARE_FROZEN
:
2142 /* Easy Case - initialize the area and locks, and
2143 * then rebalance when online does everything else for us. */
2144 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2147 case CPU_ONLINE_FROZEN
:
2149 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2150 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2151 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2152 xfs_icsb_unlock(mp
);
2155 case CPU_DEAD_FROZEN
:
2156 /* Disable all the counters, then fold the dead cpu's
2157 * count into the total on the global superblock and
2158 * re-enable the counters. */
2160 spin_lock(&mp
->m_sb_lock
);
2161 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2162 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2163 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2165 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2166 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2167 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2169 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2171 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2172 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2173 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2174 spin_unlock(&mp
->m_sb_lock
);
2175 xfs_icsb_unlock(mp
);
2181 #endif /* CONFIG_HOTPLUG_CPU */
2184 xfs_icsb_init_counters(
2187 xfs_icsb_cnts_t
*cntp
;
2190 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2191 if (mp
->m_sb_cnts
== NULL
)
2194 #ifdef CONFIG_HOTPLUG_CPU
2195 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2196 mp
->m_icsb_notifier
.priority
= 0;
2197 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2198 #endif /* CONFIG_HOTPLUG_CPU */
2200 for_each_online_cpu(i
) {
2201 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2202 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2205 mutex_init(&mp
->m_icsb_mutex
);
2208 * start with all counters disabled so that the
2209 * initial balance kicks us off correctly
2211 mp
->m_icsb_counters
= -1;
2216 xfs_icsb_reinit_counters(
2221 * start with all counters disabled so that the
2222 * initial balance kicks us off correctly
2224 mp
->m_icsb_counters
= -1;
2225 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2226 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2227 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2228 xfs_icsb_unlock(mp
);
2232 xfs_icsb_destroy_counters(
2235 if (mp
->m_sb_cnts
) {
2236 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2237 free_percpu(mp
->m_sb_cnts
);
2239 mutex_destroy(&mp
->m_icsb_mutex
);
2244 xfs_icsb_cnts_t
*icsbp
)
2246 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2252 xfs_icsb_unlock_cntr(
2253 xfs_icsb_cnts_t
*icsbp
)
2255 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2260 xfs_icsb_lock_all_counters(
2263 xfs_icsb_cnts_t
*cntp
;
2266 for_each_online_cpu(i
) {
2267 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2268 xfs_icsb_lock_cntr(cntp
);
2273 xfs_icsb_unlock_all_counters(
2276 xfs_icsb_cnts_t
*cntp
;
2279 for_each_online_cpu(i
) {
2280 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2281 xfs_icsb_unlock_cntr(cntp
);
2288 xfs_icsb_cnts_t
*cnt
,
2291 xfs_icsb_cnts_t
*cntp
;
2294 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2296 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2297 xfs_icsb_lock_all_counters(mp
);
2299 for_each_online_cpu(i
) {
2300 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2301 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2302 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2303 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2306 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2307 xfs_icsb_unlock_all_counters(mp
);
2311 xfs_icsb_counter_disabled(
2313 xfs_sb_field_t field
)
2315 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2316 return test_bit(field
, &mp
->m_icsb_counters
);
2320 xfs_icsb_disable_counter(
2322 xfs_sb_field_t field
)
2324 xfs_icsb_cnts_t cnt
;
2326 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2329 * If we are already disabled, then there is nothing to do
2330 * here. We check before locking all the counters to avoid
2331 * the expensive lock operation when being called in the
2332 * slow path and the counter is already disabled. This is
2333 * safe because the only time we set or clear this state is under
2336 if (xfs_icsb_counter_disabled(mp
, field
))
2339 xfs_icsb_lock_all_counters(mp
);
2340 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2341 /* drain back to superblock */
2343 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2345 case XFS_SBS_ICOUNT
:
2346 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2349 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2351 case XFS_SBS_FDBLOCKS
:
2352 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2359 xfs_icsb_unlock_all_counters(mp
);
2363 xfs_icsb_enable_counter(
2365 xfs_sb_field_t field
,
2369 xfs_icsb_cnts_t
*cntp
;
2372 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2374 xfs_icsb_lock_all_counters(mp
);
2375 for_each_online_cpu(i
) {
2376 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2378 case XFS_SBS_ICOUNT
:
2379 cntp
->icsb_icount
= count
+ resid
;
2382 cntp
->icsb_ifree
= count
+ resid
;
2384 case XFS_SBS_FDBLOCKS
:
2385 cntp
->icsb_fdblocks
= count
+ resid
;
2393 clear_bit(field
, &mp
->m_icsb_counters
);
2394 xfs_icsb_unlock_all_counters(mp
);
2398 xfs_icsb_sync_counters_locked(
2402 xfs_icsb_cnts_t cnt
;
2404 xfs_icsb_count(mp
, &cnt
, flags
);
2406 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2407 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2408 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2409 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2410 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2411 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2415 * Accurate update of per-cpu counters to incore superblock
2418 xfs_icsb_sync_counters(
2422 spin_lock(&mp
->m_sb_lock
);
2423 xfs_icsb_sync_counters_locked(mp
, flags
);
2424 spin_unlock(&mp
->m_sb_lock
);
2428 * Balance and enable/disable counters as necessary.
2430 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2431 * chosen to be the same number as single on disk allocation chunk per CPU, and
2432 * free blocks is something far enough zero that we aren't going thrash when we
2433 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2434 * prevent looping endlessly when xfs_alloc_space asks for more than will
2435 * be distributed to a single CPU but each CPU has enough blocks to be
2438 * Note that we can be called when counters are already disabled.
2439 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2440 * prevent locking every per-cpu counter needlessly.
2443 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2444 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2445 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2447 xfs_icsb_balance_counter_locked(
2449 xfs_sb_field_t field
,
2452 uint64_t count
, resid
;
2453 int weight
= num_online_cpus();
2454 uint64_t min
= (uint64_t)min_per_cpu
;
2456 /* disable counter and sync counter */
2457 xfs_icsb_disable_counter(mp
, field
);
2459 /* update counters - first CPU gets residual*/
2461 case XFS_SBS_ICOUNT
:
2462 count
= mp
->m_sb
.sb_icount
;
2463 resid
= do_div(count
, weight
);
2464 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2468 count
= mp
->m_sb
.sb_ifree
;
2469 resid
= do_div(count
, weight
);
2470 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2473 case XFS_SBS_FDBLOCKS
:
2474 count
= mp
->m_sb
.sb_fdblocks
;
2475 resid
= do_div(count
, weight
);
2476 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2481 count
= resid
= 0; /* quiet, gcc */
2485 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2489 xfs_icsb_balance_counter(
2491 xfs_sb_field_t fields
,
2494 spin_lock(&mp
->m_sb_lock
);
2495 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2496 spin_unlock(&mp
->m_sb_lock
);
2500 xfs_icsb_modify_counters(
2502 xfs_sb_field_t field
,
2506 xfs_icsb_cnts_t
*icsbp
;
2507 long long lcounter
; /* long counter for 64 bit fields */
2513 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2516 * if the counter is disabled, go to slow path
2518 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2520 xfs_icsb_lock_cntr(icsbp
);
2521 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2522 xfs_icsb_unlock_cntr(icsbp
);
2527 case XFS_SBS_ICOUNT
:
2528 lcounter
= icsbp
->icsb_icount
;
2530 if (unlikely(lcounter
< 0))
2531 goto balance_counter
;
2532 icsbp
->icsb_icount
= lcounter
;
2536 lcounter
= icsbp
->icsb_ifree
;
2538 if (unlikely(lcounter
< 0))
2539 goto balance_counter
;
2540 icsbp
->icsb_ifree
= lcounter
;
2543 case XFS_SBS_FDBLOCKS
:
2544 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2546 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2548 if (unlikely(lcounter
< 0))
2549 goto balance_counter
;
2550 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2556 xfs_icsb_unlock_cntr(icsbp
);
2564 * serialise with a mutex so we don't burn lots of cpu on
2565 * the superblock lock. We still need to hold the superblock
2566 * lock, however, when we modify the global structures.
2571 * Now running atomically.
2573 * If the counter is enabled, someone has beaten us to rebalancing.
2574 * Drop the lock and try again in the fast path....
2576 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2577 xfs_icsb_unlock(mp
);
2582 * The counter is currently disabled. Because we are
2583 * running atomically here, we know a rebalance cannot
2584 * be in progress. Hence we can go straight to operating
2585 * on the global superblock. We do not call xfs_mod_incore_sb()
2586 * here even though we need to get the m_sb_lock. Doing so
2587 * will cause us to re-enter this function and deadlock.
2588 * Hence we get the m_sb_lock ourselves and then call
2589 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2590 * directly on the global counters.
2592 spin_lock(&mp
->m_sb_lock
);
2593 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2594 spin_unlock(&mp
->m_sb_lock
);
2597 * Now that we've modified the global superblock, we
2598 * may be able to re-enable the distributed counters
2599 * (e.g. lots of space just got freed). After that
2603 xfs_icsb_balance_counter(mp
, field
, 0);
2604 xfs_icsb_unlock(mp
);
2608 xfs_icsb_unlock_cntr(icsbp
);
2612 * We may have multiple threads here if multiple per-cpu
2613 * counters run dry at the same time. This will mean we can
2614 * do more balances than strictly necessary but it is not
2615 * the common slowpath case.
2620 * running atomically.
2622 * This will leave the counter in the correct state for future
2623 * accesses. After the rebalance, we simply try again and our retry
2624 * will either succeed through the fast path or slow path without
2625 * another balance operation being required.
2627 xfs_icsb_balance_counter(mp
, field
, delta
);
2628 xfs_icsb_unlock(mp
);