pid: sys_wait... fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob2567de3487bd29e6c16a717058be11f1d3926a0e
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 static void exit_mm(struct task_struct * tsk);
55 static void __unhash_process(struct task_struct *p)
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
71 * This function expects the tasklist_lock write-locked.
73 static void __exit_signal(struct task_struct *tsk)
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
90 * If there is any task waiting for the group exit
91 * then notify it:
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
94 wake_up_process(sig->group_exit_task);
96 if (tsk == sig->curr_target)
97 sig->curr_target = next_thread(tsk);
99 * Accumulate here the counters for all threads but the
100 * group leader as they die, so they can be added into
101 * the process-wide totals when those are taken.
102 * The group leader stays around as a zombie as long
103 * as there are other threads. When it gets reaped,
104 * the exit.c code will add its counts into these totals.
105 * We won't ever get here for the group leader, since it
106 * will have been the last reference on the signal_struct.
108 sig->utime = cputime_add(sig->utime, tsk->utime);
109 sig->stime = cputime_add(sig->stime, tsk->stime);
110 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->inblock += task_io_get_inblock(tsk);
116 sig->oublock += task_io_get_oublock(tsk);
117 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
118 sig = NULL; /* Marker for below. */
121 __unhash_process(tsk);
123 tsk->signal = NULL;
124 tsk->sighand = NULL;
125 spin_unlock(&sighand->siglock);
126 rcu_read_unlock();
128 __cleanup_sighand(sighand);
129 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
130 flush_sigqueue(&tsk->pending);
131 if (sig) {
132 flush_sigqueue(&sig->shared_pending);
133 taskstats_tgid_free(sig);
134 __cleanup_signal(sig);
138 static void delayed_put_task_struct(struct rcu_head *rhp)
140 put_task_struct(container_of(rhp, struct task_struct, rcu));
143 void release_task(struct task_struct * p)
145 struct task_struct *leader;
146 int zap_leader;
147 repeat:
148 atomic_dec(&p->user->processes);
149 proc_flush_task(p);
150 write_lock_irq(&tasklist_lock);
151 ptrace_unlink(p);
152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
153 __exit_signal(p);
156 * If we are the last non-leader member of the thread
157 * group, and the leader is zombie, then notify the
158 * group leader's parent process. (if it wants notification.)
160 zap_leader = 0;
161 leader = p->group_leader;
162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
163 BUG_ON(leader->exit_signal == -1);
164 do_notify_parent(leader, leader->exit_signal);
166 * If we were the last child thread and the leader has
167 * exited already, and the leader's parent ignores SIGCHLD,
168 * then we are the one who should release the leader.
170 * do_notify_parent() will have marked it self-reaping in
171 * that case.
173 zap_leader = (leader->exit_signal == -1);
176 write_unlock_irq(&tasklist_lock);
177 release_thread(p);
178 call_rcu(&p->rcu, delayed_put_task_struct);
180 p = leader;
181 if (unlikely(zap_leader))
182 goto repeat;
186 * This checks not only the pgrp, but falls back on the pid if no
187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188 * without this...
190 * The caller must hold rcu lock or the tasklist lock.
192 struct pid *session_of_pgrp(struct pid *pgrp)
194 struct task_struct *p;
195 struct pid *sid = NULL;
197 p = pid_task(pgrp, PIDTYPE_PGID);
198 if (p == NULL)
199 p = pid_task(pgrp, PIDTYPE_PID);
200 if (p != NULL)
201 sid = task_session(p);
203 return sid;
207 * Determine if a process group is "orphaned", according to the POSIX
208 * definition in 2.2.2.52. Orphaned process groups are not to be affected
209 * by terminal-generated stop signals. Newly orphaned process groups are
210 * to receive a SIGHUP and a SIGCONT.
212 * "I ask you, have you ever known what it is to be an orphan?"
214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
216 struct task_struct *p;
217 int ret = 1;
219 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
220 if (p == ignored_task
221 || p->exit_state
222 || is_global_init(p->real_parent))
223 continue;
224 if (task_pgrp(p->real_parent) != pgrp &&
225 task_session(p->real_parent) == task_session(p)) {
226 ret = 0;
227 break;
229 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
230 return ret; /* (sighing) "Often!" */
233 int is_current_pgrp_orphaned(void)
235 int retval;
237 read_lock(&tasklist_lock);
238 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
239 read_unlock(&tasklist_lock);
241 return retval;
244 static int has_stopped_jobs(struct pid *pgrp)
246 int retval = 0;
247 struct task_struct *p;
249 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
250 if (!task_is_stopped(p))
251 continue;
252 retval = 1;
253 break;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 return retval;
259 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
261 * If a kernel thread is launched as a result of a system call, or if
262 * it ever exits, it should generally reparent itself to kthreadd so it
263 * isn't in the way of other processes and is correctly cleaned up on exit.
265 * The various task state such as scheduling policy and priority may have
266 * been inherited from a user process, so we reset them to sane values here.
268 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
270 static void reparent_to_kthreadd(void)
272 write_lock_irq(&tasklist_lock);
274 ptrace_unlink(current);
275 /* Reparent to init */
276 remove_parent(current);
277 current->real_parent = current->parent = kthreadd_task;
278 add_parent(current);
280 /* Set the exit signal to SIGCHLD so we signal init on exit */
281 current->exit_signal = SIGCHLD;
283 if (task_nice(current) < 0)
284 set_user_nice(current, 0);
285 /* cpus_allowed? */
286 /* rt_priority? */
287 /* signals? */
288 security_task_reparent_to_init(current);
289 memcpy(current->signal->rlim, init_task.signal->rlim,
290 sizeof(current->signal->rlim));
291 atomic_inc(&(INIT_USER->__count));
292 write_unlock_irq(&tasklist_lock);
293 switch_uid(INIT_USER);
296 void __set_special_pids(struct pid *pid)
298 struct task_struct *curr = current->group_leader;
299 pid_t nr = pid_nr(pid);
301 if (task_session(curr) != pid) {
302 detach_pid(curr, PIDTYPE_SID);
303 attach_pid(curr, PIDTYPE_SID, pid);
304 set_task_session(curr, nr);
306 if (task_pgrp(curr) != pid) {
307 detach_pid(curr, PIDTYPE_PGID);
308 attach_pid(curr, PIDTYPE_PGID, pid);
309 set_task_pgrp(curr, nr);
313 static void set_special_pids(struct pid *pid)
315 write_lock_irq(&tasklist_lock);
316 __set_special_pids(pid);
317 write_unlock_irq(&tasklist_lock);
321 * Let kernel threads use this to say that they
322 * allow a certain signal (since daemonize() will
323 * have disabled all of them by default).
325 int allow_signal(int sig)
327 if (!valid_signal(sig) || sig < 1)
328 return -EINVAL;
330 spin_lock_irq(&current->sighand->siglock);
331 sigdelset(&current->blocked, sig);
332 if (!current->mm) {
333 /* Kernel threads handle their own signals.
334 Let the signal code know it'll be handled, so
335 that they don't get converted to SIGKILL or
336 just silently dropped */
337 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
339 recalc_sigpending();
340 spin_unlock_irq(&current->sighand->siglock);
341 return 0;
344 EXPORT_SYMBOL(allow_signal);
346 int disallow_signal(int sig)
348 if (!valid_signal(sig) || sig < 1)
349 return -EINVAL;
351 spin_lock_irq(&current->sighand->siglock);
352 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
353 recalc_sigpending();
354 spin_unlock_irq(&current->sighand->siglock);
355 return 0;
358 EXPORT_SYMBOL(disallow_signal);
361 * Put all the gunge required to become a kernel thread without
362 * attached user resources in one place where it belongs.
365 void daemonize(const char *name, ...)
367 va_list args;
368 struct fs_struct *fs;
369 sigset_t blocked;
371 va_start(args, name);
372 vsnprintf(current->comm, sizeof(current->comm), name, args);
373 va_end(args);
376 * If we were started as result of loading a module, close all of the
377 * user space pages. We don't need them, and if we didn't close them
378 * they would be locked into memory.
380 exit_mm(current);
382 * We don't want to have TIF_FREEZE set if the system-wide hibernation
383 * or suspend transition begins right now.
385 current->flags |= PF_NOFREEZE;
387 if (current->nsproxy != &init_nsproxy) {
388 get_nsproxy(&init_nsproxy);
389 switch_task_namespaces(current, &init_nsproxy);
391 set_special_pids(&init_struct_pid);
392 proc_clear_tty(current);
394 /* Block and flush all signals */
395 sigfillset(&blocked);
396 sigprocmask(SIG_BLOCK, &blocked, NULL);
397 flush_signals(current);
399 /* Become as one with the init task */
401 exit_fs(current); /* current->fs->count--; */
402 fs = init_task.fs;
403 current->fs = fs;
404 atomic_inc(&fs->count);
406 exit_files(current);
407 current->files = init_task.files;
408 atomic_inc(&current->files->count);
410 reparent_to_kthreadd();
413 EXPORT_SYMBOL(daemonize);
415 static void close_files(struct files_struct * files)
417 int i, j;
418 struct fdtable *fdt;
420 j = 0;
423 * It is safe to dereference the fd table without RCU or
424 * ->file_lock because this is the last reference to the
425 * files structure.
427 fdt = files_fdtable(files);
428 for (;;) {
429 unsigned long set;
430 i = j * __NFDBITS;
431 if (i >= fdt->max_fds)
432 break;
433 set = fdt->open_fds->fds_bits[j++];
434 while (set) {
435 if (set & 1) {
436 struct file * file = xchg(&fdt->fd[i], NULL);
437 if (file) {
438 filp_close(file, files);
439 cond_resched();
442 i++;
443 set >>= 1;
448 struct files_struct *get_files_struct(struct task_struct *task)
450 struct files_struct *files;
452 task_lock(task);
453 files = task->files;
454 if (files)
455 atomic_inc(&files->count);
456 task_unlock(task);
458 return files;
461 void fastcall put_files_struct(struct files_struct *files)
463 struct fdtable *fdt;
465 if (atomic_dec_and_test(&files->count)) {
466 close_files(files);
468 * Free the fd and fdset arrays if we expanded them.
469 * If the fdtable was embedded, pass files for freeing
470 * at the end of the RCU grace period. Otherwise,
471 * you can free files immediately.
473 fdt = files_fdtable(files);
474 if (fdt != &files->fdtab)
475 kmem_cache_free(files_cachep, files);
476 free_fdtable(fdt);
480 EXPORT_SYMBOL(put_files_struct);
482 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
484 struct files_struct *old;
486 old = tsk->files;
487 task_lock(tsk);
488 tsk->files = files;
489 task_unlock(tsk);
490 put_files_struct(old);
492 EXPORT_SYMBOL(reset_files_struct);
494 static void __exit_files(struct task_struct *tsk)
496 struct files_struct * files = tsk->files;
498 if (files) {
499 task_lock(tsk);
500 tsk->files = NULL;
501 task_unlock(tsk);
502 put_files_struct(files);
506 void exit_files(struct task_struct *tsk)
508 __exit_files(tsk);
511 static void __put_fs_struct(struct fs_struct *fs)
513 /* No need to hold fs->lock if we are killing it */
514 if (atomic_dec_and_test(&fs->count)) {
515 dput(fs->root);
516 mntput(fs->rootmnt);
517 dput(fs->pwd);
518 mntput(fs->pwdmnt);
519 if (fs->altroot) {
520 dput(fs->altroot);
521 mntput(fs->altrootmnt);
523 kmem_cache_free(fs_cachep, fs);
527 void put_fs_struct(struct fs_struct *fs)
529 __put_fs_struct(fs);
532 static void __exit_fs(struct task_struct *tsk)
534 struct fs_struct * fs = tsk->fs;
536 if (fs) {
537 task_lock(tsk);
538 tsk->fs = NULL;
539 task_unlock(tsk);
540 __put_fs_struct(fs);
544 void exit_fs(struct task_struct *tsk)
546 __exit_fs(tsk);
549 EXPORT_SYMBOL_GPL(exit_fs);
552 * Turn us into a lazy TLB process if we
553 * aren't already..
555 static void exit_mm(struct task_struct * tsk)
557 struct mm_struct *mm = tsk->mm;
559 mm_release(tsk, mm);
560 if (!mm)
561 return;
563 * Serialize with any possible pending coredump.
564 * We must hold mmap_sem around checking core_waiters
565 * and clearing tsk->mm. The core-inducing thread
566 * will increment core_waiters for each thread in the
567 * group with ->mm != NULL.
569 down_read(&mm->mmap_sem);
570 if (mm->core_waiters) {
571 up_read(&mm->mmap_sem);
572 down_write(&mm->mmap_sem);
573 if (!--mm->core_waiters)
574 complete(mm->core_startup_done);
575 up_write(&mm->mmap_sem);
577 wait_for_completion(&mm->core_done);
578 down_read(&mm->mmap_sem);
580 atomic_inc(&mm->mm_count);
581 BUG_ON(mm != tsk->active_mm);
582 /* more a memory barrier than a real lock */
583 task_lock(tsk);
584 tsk->mm = NULL;
585 up_read(&mm->mmap_sem);
586 enter_lazy_tlb(mm, current);
587 /* We don't want this task to be frozen prematurely */
588 clear_freeze_flag(tsk);
589 task_unlock(tsk);
590 mmput(mm);
593 static void
594 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
596 if (p->pdeath_signal)
597 /* We already hold the tasklist_lock here. */
598 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
600 /* Move the child from its dying parent to the new one. */
601 if (unlikely(traced)) {
602 /* Preserve ptrace links if someone else is tracing this child. */
603 list_del_init(&p->ptrace_list);
604 if (p->parent != p->real_parent)
605 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
606 } else {
607 /* If this child is being traced, then we're the one tracing it
608 * anyway, so let go of it.
610 p->ptrace = 0;
611 remove_parent(p);
612 p->parent = p->real_parent;
613 add_parent(p);
615 if (task_is_traced(p)) {
617 * If it was at a trace stop, turn it into
618 * a normal stop since it's no longer being
619 * traced.
621 ptrace_untrace(p);
625 /* If this is a threaded reparent there is no need to
626 * notify anyone anything has happened.
628 if (p->real_parent->group_leader == father->group_leader)
629 return;
631 /* We don't want people slaying init. */
632 if (p->exit_signal != -1)
633 p->exit_signal = SIGCHLD;
635 /* If we'd notified the old parent about this child's death,
636 * also notify the new parent.
638 if (!traced && p->exit_state == EXIT_ZOMBIE &&
639 p->exit_signal != -1 && thread_group_empty(p))
640 do_notify_parent(p, p->exit_signal);
643 * process group orphan check
644 * Case ii: Our child is in a different pgrp
645 * than we are, and it was the only connection
646 * outside, so the child pgrp is now orphaned.
648 if ((task_pgrp(p) != task_pgrp(father)) &&
649 (task_session(p) == task_session(father))) {
650 struct pid *pgrp = task_pgrp(p);
652 if (will_become_orphaned_pgrp(pgrp, NULL) &&
653 has_stopped_jobs(pgrp)) {
654 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
655 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
661 * When we die, we re-parent all our children.
662 * Try to give them to another thread in our thread
663 * group, and if no such member exists, give it to
664 * the child reaper process (ie "init") in our pid
665 * space.
667 static void forget_original_parent(struct task_struct *father)
669 struct task_struct *p, *n, *reaper = father;
670 struct list_head ptrace_dead;
672 INIT_LIST_HEAD(&ptrace_dead);
674 write_lock_irq(&tasklist_lock);
676 do {
677 reaper = next_thread(reaper);
678 if (reaper == father) {
679 reaper = task_child_reaper(father);
680 break;
682 } while (reaper->flags & PF_EXITING);
685 * There are only two places where our children can be:
687 * - in our child list
688 * - in our ptraced child list
690 * Search them and reparent children.
692 list_for_each_entry_safe(p, n, &father->children, sibling) {
693 int ptrace;
695 ptrace = p->ptrace;
697 /* if father isn't the real parent, then ptrace must be enabled */
698 BUG_ON(father != p->real_parent && !ptrace);
700 if (father == p->real_parent) {
701 /* reparent with a reaper, real father it's us */
702 p->real_parent = reaper;
703 reparent_thread(p, father, 0);
704 } else {
705 /* reparent ptraced task to its real parent */
706 __ptrace_unlink (p);
707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
708 thread_group_empty(p))
709 do_notify_parent(p, p->exit_signal);
713 * if the ptraced child is a zombie with exit_signal == -1
714 * we must collect it before we exit, or it will remain
715 * zombie forever since we prevented it from self-reap itself
716 * while it was being traced by us, to be able to see it in wait4.
718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
719 list_add(&p->ptrace_list, &ptrace_dead);
722 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
723 p->real_parent = reaper;
724 reparent_thread(p, father, 1);
727 write_unlock_irq(&tasklist_lock);
728 BUG_ON(!list_empty(&father->children));
729 BUG_ON(!list_empty(&father->ptrace_children));
731 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
732 list_del_init(&p->ptrace_list);
733 release_task(p);
739 * Send signals to all our closest relatives so that they know
740 * to properly mourn us..
742 static void exit_notify(struct task_struct *tsk)
744 int state;
745 struct task_struct *t;
746 struct pid *pgrp;
749 * This does two things:
751 * A. Make init inherit all the child processes
752 * B. Check to see if any process groups have become orphaned
753 * as a result of our exiting, and if they have any stopped
754 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
756 forget_original_parent(tsk);
757 exit_task_namespaces(tsk);
759 write_lock_irq(&tasklist_lock);
761 * Check to see if any process groups have become orphaned
762 * as a result of our exiting, and if they have any stopped
763 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
765 * Case i: Our father is in a different pgrp than we are
766 * and we were the only connection outside, so our pgrp
767 * is about to become orphaned.
769 t = tsk->real_parent;
771 pgrp = task_pgrp(tsk);
772 if ((task_pgrp(t) != pgrp) &&
773 (task_session(t) == task_session(tsk)) &&
774 will_become_orphaned_pgrp(pgrp, tsk) &&
775 has_stopped_jobs(pgrp)) {
776 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
777 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
780 /* Let father know we died
782 * Thread signals are configurable, but you aren't going to use
783 * that to send signals to arbitary processes.
784 * That stops right now.
786 * If the parent exec id doesn't match the exec id we saved
787 * when we started then we know the parent has changed security
788 * domain.
790 * If our self_exec id doesn't match our parent_exec_id then
791 * we have changed execution domain as these two values started
792 * the same after a fork.
794 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
795 ( tsk->parent_exec_id != t->self_exec_id ||
796 tsk->self_exec_id != tsk->parent_exec_id)
797 && !capable(CAP_KILL))
798 tsk->exit_signal = SIGCHLD;
801 /* If something other than our normal parent is ptracing us, then
802 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
803 * only has special meaning to our real parent.
805 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
806 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
807 do_notify_parent(tsk, signal);
808 } else if (tsk->ptrace) {
809 do_notify_parent(tsk, SIGCHLD);
812 state = EXIT_ZOMBIE;
813 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
814 state = EXIT_DEAD;
815 tsk->exit_state = state;
817 if (thread_group_leader(tsk) &&
818 tsk->signal->notify_count < 0 &&
819 tsk->signal->group_exit_task)
820 wake_up_process(tsk->signal->group_exit_task);
822 write_unlock_irq(&tasklist_lock);
824 /* If the process is dead, release it - nobody will wait for it */
825 if (state == EXIT_DEAD)
826 release_task(tsk);
829 #ifdef CONFIG_DEBUG_STACK_USAGE
830 static void check_stack_usage(void)
832 static DEFINE_SPINLOCK(low_water_lock);
833 static int lowest_to_date = THREAD_SIZE;
834 unsigned long *n = end_of_stack(current);
835 unsigned long free;
837 while (*n == 0)
838 n++;
839 free = (unsigned long)n - (unsigned long)end_of_stack(current);
841 if (free >= lowest_to_date)
842 return;
844 spin_lock(&low_water_lock);
845 if (free < lowest_to_date) {
846 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
847 "left\n",
848 current->comm, free);
849 lowest_to_date = free;
851 spin_unlock(&low_water_lock);
853 #else
854 static inline void check_stack_usage(void) {}
855 #endif
857 static inline void exit_child_reaper(struct task_struct *tsk)
859 if (likely(tsk->group_leader != task_child_reaper(tsk)))
860 return;
862 if (tsk->nsproxy->pid_ns == &init_pid_ns)
863 panic("Attempted to kill init!");
866 * @tsk is the last thread in the 'cgroup-init' and is exiting.
867 * Terminate all remaining processes in the namespace and reap them
868 * before exiting @tsk.
870 * Note that @tsk (last thread of cgroup-init) may not necessarily
871 * be the child-reaper (i.e main thread of cgroup-init) of the
872 * namespace i.e the child_reaper may have already exited.
874 * Even after a child_reaper exits, we let it inherit orphaned children,
875 * because, pid_ns->child_reaper remains valid as long as there is
876 * at least one living sub-thread in the cgroup init.
878 * This living sub-thread of the cgroup-init will be notified when
879 * a child inherited by the 'child-reaper' exits (do_notify_parent()
880 * uses __group_send_sig_info()). Further, when reaping child processes,
881 * do_wait() iterates over children of all living sub threads.
883 * i.e even though 'child_reaper' thread is listed as the parent of the
884 * orphaned children, any living sub-thread in the cgroup-init can
885 * perform the role of the child_reaper.
887 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
890 fastcall NORET_TYPE void do_exit(long code)
892 struct task_struct *tsk = current;
893 int group_dead;
895 profile_task_exit(tsk);
897 WARN_ON(atomic_read(&tsk->fs_excl));
899 if (unlikely(in_interrupt()))
900 panic("Aiee, killing interrupt handler!");
901 if (unlikely(!tsk->pid))
902 panic("Attempted to kill the idle task!");
904 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
905 current->ptrace_message = code;
906 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
910 * We're taking recursive faults here in do_exit. Safest is to just
911 * leave this task alone and wait for reboot.
913 if (unlikely(tsk->flags & PF_EXITING)) {
914 printk(KERN_ALERT
915 "Fixing recursive fault but reboot is needed!\n");
917 * We can do this unlocked here. The futex code uses
918 * this flag just to verify whether the pi state
919 * cleanup has been done or not. In the worst case it
920 * loops once more. We pretend that the cleanup was
921 * done as there is no way to return. Either the
922 * OWNER_DIED bit is set by now or we push the blocked
923 * task into the wait for ever nirwana as well.
925 tsk->flags |= PF_EXITPIDONE;
926 if (tsk->io_context)
927 exit_io_context();
928 set_current_state(TASK_UNINTERRUPTIBLE);
929 schedule();
932 exit_signals(tsk); /* sets PF_EXITING */
934 * tsk->flags are checked in the futex code to protect against
935 * an exiting task cleaning up the robust pi futexes.
937 smp_mb();
938 spin_unlock_wait(&tsk->pi_lock);
940 if (unlikely(in_atomic()))
941 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
942 current->comm, task_pid_nr(current),
943 preempt_count());
945 acct_update_integrals(tsk);
946 if (tsk->mm) {
947 update_hiwater_rss(tsk->mm);
948 update_hiwater_vm(tsk->mm);
950 group_dead = atomic_dec_and_test(&tsk->signal->live);
951 if (group_dead) {
952 exit_child_reaper(tsk);
953 hrtimer_cancel(&tsk->signal->real_timer);
954 exit_itimers(tsk->signal);
956 acct_collect(code, group_dead);
957 #ifdef CONFIG_FUTEX
958 if (unlikely(tsk->robust_list))
959 exit_robust_list(tsk);
960 #ifdef CONFIG_COMPAT
961 if (unlikely(tsk->compat_robust_list))
962 compat_exit_robust_list(tsk);
963 #endif
964 #endif
965 if (group_dead)
966 tty_audit_exit();
967 if (unlikely(tsk->audit_context))
968 audit_free(tsk);
970 tsk->exit_code = code;
971 taskstats_exit(tsk, group_dead);
973 exit_mm(tsk);
975 if (group_dead)
976 acct_process();
977 exit_sem(tsk);
978 __exit_files(tsk);
979 __exit_fs(tsk);
980 check_stack_usage();
981 exit_thread();
982 cgroup_exit(tsk, 1);
983 exit_keys(tsk);
985 if (group_dead && tsk->signal->leader)
986 disassociate_ctty(1);
988 module_put(task_thread_info(tsk)->exec_domain->module);
989 if (tsk->binfmt)
990 module_put(tsk->binfmt->module);
992 proc_exit_connector(tsk);
993 exit_notify(tsk);
994 #ifdef CONFIG_NUMA
995 mpol_free(tsk->mempolicy);
996 tsk->mempolicy = NULL;
997 #endif
998 #ifdef CONFIG_FUTEX
1000 * This must happen late, after the PID is not
1001 * hashed anymore:
1003 if (unlikely(!list_empty(&tsk->pi_state_list)))
1004 exit_pi_state_list(tsk);
1005 if (unlikely(current->pi_state_cache))
1006 kfree(current->pi_state_cache);
1007 #endif
1009 * Make sure we are holding no locks:
1011 debug_check_no_locks_held(tsk);
1013 * We can do this unlocked here. The futex code uses this flag
1014 * just to verify whether the pi state cleanup has been done
1015 * or not. In the worst case it loops once more.
1017 tsk->flags |= PF_EXITPIDONE;
1019 if (tsk->io_context)
1020 exit_io_context();
1022 if (tsk->splice_pipe)
1023 __free_pipe_info(tsk->splice_pipe);
1025 preempt_disable();
1026 /* causes final put_task_struct in finish_task_switch(). */
1027 tsk->state = TASK_DEAD;
1029 schedule();
1030 BUG();
1031 /* Avoid "noreturn function does return". */
1032 for (;;)
1033 cpu_relax(); /* For when BUG is null */
1036 EXPORT_SYMBOL_GPL(do_exit);
1038 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1040 if (comp)
1041 complete(comp);
1043 do_exit(code);
1046 EXPORT_SYMBOL(complete_and_exit);
1048 asmlinkage long sys_exit(int error_code)
1050 do_exit((error_code&0xff)<<8);
1054 * Take down every thread in the group. This is called by fatal signals
1055 * as well as by sys_exit_group (below).
1057 NORET_TYPE void
1058 do_group_exit(int exit_code)
1060 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1062 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1063 exit_code = current->signal->group_exit_code;
1064 else if (!thread_group_empty(current)) {
1065 struct signal_struct *const sig = current->signal;
1066 struct sighand_struct *const sighand = current->sighand;
1067 spin_lock_irq(&sighand->siglock);
1068 if (signal_group_exit(sig))
1069 /* Another thread got here before we took the lock. */
1070 exit_code = sig->group_exit_code;
1071 else {
1072 sig->group_exit_code = exit_code;
1073 sig->flags = SIGNAL_GROUP_EXIT;
1074 zap_other_threads(current);
1076 spin_unlock_irq(&sighand->siglock);
1079 do_exit(exit_code);
1080 /* NOTREACHED */
1084 * this kills every thread in the thread group. Note that any externally
1085 * wait4()-ing process will get the correct exit code - even if this
1086 * thread is not the thread group leader.
1088 asmlinkage void sys_exit_group(int error_code)
1090 do_group_exit((error_code & 0xff) << 8);
1093 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1095 struct pid *pid = NULL;
1096 if (type == PIDTYPE_PID)
1097 pid = task->pids[type].pid;
1098 else if (type < PIDTYPE_MAX)
1099 pid = task->group_leader->pids[type].pid;
1100 return pid;
1103 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1104 struct task_struct *p)
1106 int err;
1108 if (type < PIDTYPE_MAX) {
1109 if (task_pid_type(p, type) != pid)
1110 return 0;
1114 * Do not consider detached threads that are
1115 * not ptraced:
1117 if (p->exit_signal == -1 && !p->ptrace)
1118 return 0;
1120 /* Wait for all children (clone and not) if __WALL is set;
1121 * otherwise, wait for clone children *only* if __WCLONE is
1122 * set; otherwise, wait for non-clone children *only*. (Note:
1123 * A "clone" child here is one that reports to its parent
1124 * using a signal other than SIGCHLD.) */
1125 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1126 && !(options & __WALL))
1127 return 0;
1129 err = security_task_wait(p);
1130 if (likely(!err))
1131 return 1;
1133 if (type != PIDTYPE_PID)
1134 return 0;
1135 /* This child was explicitly requested, abort */
1136 read_unlock(&tasklist_lock);
1137 return err;
1140 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1141 int why, int status,
1142 struct siginfo __user *infop,
1143 struct rusage __user *rusagep)
1145 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1147 put_task_struct(p);
1148 if (!retval)
1149 retval = put_user(SIGCHLD, &infop->si_signo);
1150 if (!retval)
1151 retval = put_user(0, &infop->si_errno);
1152 if (!retval)
1153 retval = put_user((short)why, &infop->si_code);
1154 if (!retval)
1155 retval = put_user(pid, &infop->si_pid);
1156 if (!retval)
1157 retval = put_user(uid, &infop->si_uid);
1158 if (!retval)
1159 retval = put_user(status, &infop->si_status);
1160 if (!retval)
1161 retval = pid;
1162 return retval;
1166 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1167 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1168 * the lock and this task is uninteresting. If we return nonzero, we have
1169 * released the lock and the system call should return.
1171 static int wait_task_zombie(struct task_struct *p, int noreap,
1172 struct siginfo __user *infop,
1173 int __user *stat_addr, struct rusage __user *ru)
1175 unsigned long state;
1176 int retval, status, traced;
1177 pid_t pid = task_pid_nr_ns(p, current->nsproxy->pid_ns);
1179 if (unlikely(noreap)) {
1180 uid_t uid = p->uid;
1181 int exit_code = p->exit_code;
1182 int why, status;
1184 get_task_struct(p);
1185 read_unlock(&tasklist_lock);
1186 if ((exit_code & 0x7f) == 0) {
1187 why = CLD_EXITED;
1188 status = exit_code >> 8;
1189 } else {
1190 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1191 status = exit_code & 0x7f;
1193 return wait_noreap_copyout(p, pid, uid, why,
1194 status, infop, ru);
1198 * Try to move the task's state to DEAD
1199 * only one thread is allowed to do this:
1201 state = xchg(&p->exit_state, EXIT_DEAD);
1202 if (state != EXIT_ZOMBIE) {
1203 BUG_ON(state != EXIT_DEAD);
1204 return 0;
1207 /* traced means p->ptrace, but not vice versa */
1208 traced = (p->real_parent != p->parent);
1210 if (likely(!traced)) {
1211 struct signal_struct *psig;
1212 struct signal_struct *sig;
1215 * The resource counters for the group leader are in its
1216 * own task_struct. Those for dead threads in the group
1217 * are in its signal_struct, as are those for the child
1218 * processes it has previously reaped. All these
1219 * accumulate in the parent's signal_struct c* fields.
1221 * We don't bother to take a lock here to protect these
1222 * p->signal fields, because they are only touched by
1223 * __exit_signal, which runs with tasklist_lock
1224 * write-locked anyway, and so is excluded here. We do
1225 * need to protect the access to p->parent->signal fields,
1226 * as other threads in the parent group can be right
1227 * here reaping other children at the same time.
1229 spin_lock_irq(&p->parent->sighand->siglock);
1230 psig = p->parent->signal;
1231 sig = p->signal;
1232 psig->cutime =
1233 cputime_add(psig->cutime,
1234 cputime_add(p->utime,
1235 cputime_add(sig->utime,
1236 sig->cutime)));
1237 psig->cstime =
1238 cputime_add(psig->cstime,
1239 cputime_add(p->stime,
1240 cputime_add(sig->stime,
1241 sig->cstime)));
1242 psig->cgtime =
1243 cputime_add(psig->cgtime,
1244 cputime_add(p->gtime,
1245 cputime_add(sig->gtime,
1246 sig->cgtime)));
1247 psig->cmin_flt +=
1248 p->min_flt + sig->min_flt + sig->cmin_flt;
1249 psig->cmaj_flt +=
1250 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1251 psig->cnvcsw +=
1252 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1253 psig->cnivcsw +=
1254 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1255 psig->cinblock +=
1256 task_io_get_inblock(p) +
1257 sig->inblock + sig->cinblock;
1258 psig->coublock +=
1259 task_io_get_oublock(p) +
1260 sig->oublock + sig->coublock;
1261 spin_unlock_irq(&p->parent->sighand->siglock);
1265 * Now we are sure this task is interesting, and no other
1266 * thread can reap it because we set its state to EXIT_DEAD.
1268 read_unlock(&tasklist_lock);
1270 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1271 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1272 ? p->signal->group_exit_code : p->exit_code;
1273 if (!retval && stat_addr)
1274 retval = put_user(status, stat_addr);
1275 if (!retval && infop)
1276 retval = put_user(SIGCHLD, &infop->si_signo);
1277 if (!retval && infop)
1278 retval = put_user(0, &infop->si_errno);
1279 if (!retval && infop) {
1280 int why;
1282 if ((status & 0x7f) == 0) {
1283 why = CLD_EXITED;
1284 status >>= 8;
1285 } else {
1286 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1287 status &= 0x7f;
1289 retval = put_user((short)why, &infop->si_code);
1290 if (!retval)
1291 retval = put_user(status, &infop->si_status);
1293 if (!retval && infop)
1294 retval = put_user(pid, &infop->si_pid);
1295 if (!retval && infop)
1296 retval = put_user(p->uid, &infop->si_uid);
1297 if (!retval)
1298 retval = pid;
1300 if (traced) {
1301 write_lock_irq(&tasklist_lock);
1302 /* We dropped tasklist, ptracer could die and untrace */
1303 ptrace_unlink(p);
1305 * If this is not a detached task, notify the parent.
1306 * If it's still not detached after that, don't release
1307 * it now.
1309 if (p->exit_signal != -1) {
1310 do_notify_parent(p, p->exit_signal);
1311 if (p->exit_signal != -1) {
1312 p->exit_state = EXIT_ZOMBIE;
1313 p = NULL;
1316 write_unlock_irq(&tasklist_lock);
1318 if (p != NULL)
1319 release_task(p);
1321 return retval;
1325 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1326 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1327 * the lock and this task is uninteresting. If we return nonzero, we have
1328 * released the lock and the system call should return.
1330 static int wait_task_stopped(struct task_struct *p,
1331 int noreap, struct siginfo __user *infop,
1332 int __user *stat_addr, struct rusage __user *ru)
1334 int retval, exit_code, why;
1335 uid_t uid = 0; /* unneeded, required by compiler */
1336 pid_t pid;
1338 exit_code = 0;
1339 spin_lock_irq(&p->sighand->siglock);
1341 if (unlikely(!task_is_stopped_or_traced(p)))
1342 goto unlock_sig;
1344 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1346 * A group stop is in progress and this is the group leader.
1347 * We won't report until all threads have stopped.
1349 goto unlock_sig;
1351 exit_code = p->exit_code;
1352 if (!exit_code)
1353 goto unlock_sig;
1355 if (!noreap)
1356 p->exit_code = 0;
1358 uid = p->uid;
1359 unlock_sig:
1360 spin_unlock_irq(&p->sighand->siglock);
1361 if (!exit_code)
1362 return 0;
1365 * Now we are pretty sure this task is interesting.
1366 * Make sure it doesn't get reaped out from under us while we
1367 * give up the lock and then examine it below. We don't want to
1368 * keep holding onto the tasklist_lock while we call getrusage and
1369 * possibly take page faults for user memory.
1371 get_task_struct(p);
1372 pid = task_pid_nr_ns(p, current->nsproxy->pid_ns);
1373 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1374 read_unlock(&tasklist_lock);
1376 if (unlikely(noreap))
1377 return wait_noreap_copyout(p, pid, uid,
1378 why, exit_code,
1379 infop, ru);
1381 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1382 if (!retval && stat_addr)
1383 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1384 if (!retval && infop)
1385 retval = put_user(SIGCHLD, &infop->si_signo);
1386 if (!retval && infop)
1387 retval = put_user(0, &infop->si_errno);
1388 if (!retval && infop)
1389 retval = put_user(why, &infop->si_code);
1390 if (!retval && infop)
1391 retval = put_user(exit_code, &infop->si_status);
1392 if (!retval && infop)
1393 retval = put_user(pid, &infop->si_pid);
1394 if (!retval && infop)
1395 retval = put_user(uid, &infop->si_uid);
1396 if (!retval)
1397 retval = pid;
1398 put_task_struct(p);
1400 BUG_ON(!retval);
1401 return retval;
1405 * Handle do_wait work for one task in a live, non-stopped state.
1406 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1407 * the lock and this task is uninteresting. If we return nonzero, we have
1408 * released the lock and the system call should return.
1410 static int wait_task_continued(struct task_struct *p, int noreap,
1411 struct siginfo __user *infop,
1412 int __user *stat_addr, struct rusage __user *ru)
1414 int retval;
1415 pid_t pid;
1416 uid_t uid;
1418 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1419 return 0;
1421 spin_lock_irq(&p->sighand->siglock);
1422 /* Re-check with the lock held. */
1423 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1424 spin_unlock_irq(&p->sighand->siglock);
1425 return 0;
1427 if (!noreap)
1428 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1429 spin_unlock_irq(&p->sighand->siglock);
1431 pid = task_pid_nr_ns(p, current->nsproxy->pid_ns);
1432 uid = p->uid;
1433 get_task_struct(p);
1434 read_unlock(&tasklist_lock);
1436 if (!infop) {
1437 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1438 put_task_struct(p);
1439 if (!retval && stat_addr)
1440 retval = put_user(0xffff, stat_addr);
1441 if (!retval)
1442 retval = pid;
1443 } else {
1444 retval = wait_noreap_copyout(p, pid, uid,
1445 CLD_CONTINUED, SIGCONT,
1446 infop, ru);
1447 BUG_ON(retval == 0);
1450 return retval;
1453 static long do_wait(enum pid_type type, struct pid *pid, int options,
1454 struct siginfo __user *infop, int __user *stat_addr,
1455 struct rusage __user *ru)
1457 DECLARE_WAITQUEUE(wait, current);
1458 struct task_struct *tsk;
1459 int flag, retval;
1461 add_wait_queue(&current->signal->wait_chldexit,&wait);
1462 repeat:
1463 /* If there is nothing that can match our critier just get out */
1464 retval = -ECHILD;
1465 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1466 goto end;
1469 * We will set this flag if we see any child that might later
1470 * match our criteria, even if we are not able to reap it yet.
1472 flag = retval = 0;
1473 current->state = TASK_INTERRUPTIBLE;
1474 read_lock(&tasklist_lock);
1475 tsk = current;
1476 do {
1477 struct task_struct *p;
1479 list_for_each_entry(p, &tsk->children, sibling) {
1480 int ret = eligible_child(type, pid, options, p);
1481 if (!ret)
1482 continue;
1484 if (unlikely(ret < 0)) {
1485 retval = ret;
1486 } else if (task_is_stopped_or_traced(p)) {
1488 * It's stopped now, so it might later
1489 * continue, exit, or stop again.
1491 flag = 1;
1492 if (!(p->ptrace & PT_PTRACED) &&
1493 !(options & WUNTRACED))
1494 continue;
1496 retval = wait_task_stopped(p,
1497 (options & WNOWAIT), infop,
1498 stat_addr, ru);
1499 } else if (p->exit_state == EXIT_ZOMBIE &&
1500 !delay_group_leader(p)) {
1502 * We don't reap group leaders with subthreads.
1504 if (!likely(options & WEXITED))
1505 continue;
1506 retval = wait_task_zombie(p,
1507 (options & WNOWAIT), infop,
1508 stat_addr, ru);
1509 } else if (p->exit_state != EXIT_DEAD) {
1511 * It's running now, so it might later
1512 * exit, stop, or stop and then continue.
1514 flag = 1;
1515 if (!unlikely(options & WCONTINUED))
1516 continue;
1517 retval = wait_task_continued(p,
1518 (options & WNOWAIT), infop,
1519 stat_addr, ru);
1521 if (retval != 0) /* tasklist_lock released */
1522 goto end;
1524 if (!flag) {
1525 list_for_each_entry(p, &tsk->ptrace_children,
1526 ptrace_list) {
1527 flag = eligible_child(type, pid, options, p);
1528 if (!flag)
1529 continue;
1530 if (likely(flag > 0))
1531 break;
1532 retval = flag;
1533 goto end;
1536 if (options & __WNOTHREAD)
1537 break;
1538 tsk = next_thread(tsk);
1539 BUG_ON(tsk->signal != current->signal);
1540 } while (tsk != current);
1541 read_unlock(&tasklist_lock);
1543 if (flag) {
1544 if (options & WNOHANG)
1545 goto end;
1546 retval = -ERESTARTSYS;
1547 if (signal_pending(current))
1548 goto end;
1549 schedule();
1550 goto repeat;
1552 retval = -ECHILD;
1553 end:
1554 current->state = TASK_RUNNING;
1555 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1556 if (infop) {
1557 if (retval > 0)
1558 retval = 0;
1559 else {
1561 * For a WNOHANG return, clear out all the fields
1562 * we would set so the user can easily tell the
1563 * difference.
1565 if (!retval)
1566 retval = put_user(0, &infop->si_signo);
1567 if (!retval)
1568 retval = put_user(0, &infop->si_errno);
1569 if (!retval)
1570 retval = put_user(0, &infop->si_code);
1571 if (!retval)
1572 retval = put_user(0, &infop->si_pid);
1573 if (!retval)
1574 retval = put_user(0, &infop->si_uid);
1575 if (!retval)
1576 retval = put_user(0, &infop->si_status);
1579 return retval;
1582 asmlinkage long sys_waitid(int which, pid_t upid,
1583 struct siginfo __user *infop, int options,
1584 struct rusage __user *ru)
1586 struct pid *pid = NULL;
1587 enum pid_type type;
1588 long ret;
1590 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1591 return -EINVAL;
1592 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1593 return -EINVAL;
1595 switch (which) {
1596 case P_ALL:
1597 type = PIDTYPE_MAX;
1598 break;
1599 case P_PID:
1600 type = PIDTYPE_PID;
1601 if (upid <= 0)
1602 return -EINVAL;
1603 break;
1604 case P_PGID:
1605 type = PIDTYPE_PGID;
1606 if (upid <= 0)
1607 return -EINVAL;
1608 break;
1609 default:
1610 return -EINVAL;
1613 if (type < PIDTYPE_MAX)
1614 pid = find_get_pid(upid);
1615 ret = do_wait(type, pid, options, infop, NULL, ru);
1616 put_pid(pid);
1618 /* avoid REGPARM breakage on x86: */
1619 prevent_tail_call(ret);
1620 return ret;
1623 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1624 int options, struct rusage __user *ru)
1626 struct pid *pid = NULL;
1627 enum pid_type type;
1628 long ret;
1630 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1631 __WNOTHREAD|__WCLONE|__WALL))
1632 return -EINVAL;
1634 if (upid == -1)
1635 type = PIDTYPE_MAX;
1636 else if (upid < 0) {
1637 type = PIDTYPE_PGID;
1638 pid = find_get_pid(-upid);
1639 } else if (upid == 0) {
1640 type = PIDTYPE_PGID;
1641 pid = get_pid(task_pgrp(current));
1642 } else /* upid > 0 */ {
1643 type = PIDTYPE_PID;
1644 pid = find_get_pid(upid);
1647 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1648 put_pid(pid);
1650 /* avoid REGPARM breakage on x86: */
1651 prevent_tail_call(ret);
1652 return ret;
1655 #ifdef __ARCH_WANT_SYS_WAITPID
1658 * sys_waitpid() remains for compatibility. waitpid() should be
1659 * implemented by calling sys_wait4() from libc.a.
1661 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1663 return sys_wait4(pid, stat_addr, options, NULL);
1666 #endif