[IA64] Support multiple CPUs going through OS_MCA
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / kernel / mca.c
blob4b5daa3cc0feab6723764d67a7c221e74e5b3eb3
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
61 * 2007-04-27 Russ Anderson <rja@sgi.com>
62 * Support multiple cpus going through OS_MCA in the same event.
64 #include <linux/types.h>
65 #include <linux/init.h>
66 #include <linux/sched.h>
67 #include <linux/interrupt.h>
68 #include <linux/irq.h>
69 #include <linux/bootmem.h>
70 #include <linux/acpi.h>
71 #include <linux/timer.h>
72 #include <linux/module.h>
73 #include <linux/kernel.h>
74 #include <linux/smp.h>
75 #include <linux/workqueue.h>
76 #include <linux/cpumask.h>
77 #include <linux/kdebug.h>
79 #include <asm/delay.h>
80 #include <asm/machvec.h>
81 #include <asm/meminit.h>
82 #include <asm/page.h>
83 #include <asm/ptrace.h>
84 #include <asm/system.h>
85 #include <asm/sal.h>
86 #include <asm/mca.h>
87 #include <asm/kexec.h>
89 #include <asm/irq.h>
90 #include <asm/hw_irq.h>
92 #include "mca_drv.h"
93 #include "entry.h"
95 #if defined(IA64_MCA_DEBUG_INFO)
96 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
97 #else
98 # define IA64_MCA_DEBUG(fmt...)
99 #endif
101 /* Used by mca_asm.S */
102 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
103 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
104 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
105 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
107 unsigned long __per_cpu_mca[NR_CPUS];
109 /* In mca_asm.S */
110 extern void ia64_os_init_dispatch_monarch (void);
111 extern void ia64_os_init_dispatch_slave (void);
113 static int monarch_cpu = -1;
115 static ia64_mc_info_t ia64_mc_info;
117 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
118 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
119 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
120 #define CPE_HISTORY_LENGTH 5
121 #define CMC_HISTORY_LENGTH 5
123 #ifdef CONFIG_ACPI
124 static struct timer_list cpe_poll_timer;
125 #endif
126 static struct timer_list cmc_poll_timer;
128 * This variable tells whether we are currently in polling mode.
129 * Start with this in the wrong state so we won't play w/ timers
130 * before the system is ready.
132 static int cmc_polling_enabled = 1;
135 * Clearing this variable prevents CPE polling from getting activated
136 * in mca_late_init. Use it if your system doesn't provide a CPEI,
137 * but encounters problems retrieving CPE logs. This should only be
138 * necessary for debugging.
140 static int cpe_poll_enabled = 1;
142 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
144 static int mca_init __initdata;
147 * limited & delayed printing support for MCA/INIT handler
150 #define mprintk(fmt...) ia64_mca_printk(fmt)
152 #define MLOGBUF_SIZE (512+256*NR_CPUS)
153 #define MLOGBUF_MSGMAX 256
154 static char mlogbuf[MLOGBUF_SIZE];
155 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
156 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
157 static unsigned long mlogbuf_start;
158 static unsigned long mlogbuf_end;
159 static unsigned int mlogbuf_finished = 0;
160 static unsigned long mlogbuf_timestamp = 0;
162 static int loglevel_save = -1;
163 #define BREAK_LOGLEVEL(__console_loglevel) \
164 oops_in_progress = 1; \
165 if (loglevel_save < 0) \
166 loglevel_save = __console_loglevel; \
167 __console_loglevel = 15;
169 #define RESTORE_LOGLEVEL(__console_loglevel) \
170 if (loglevel_save >= 0) { \
171 __console_loglevel = loglevel_save; \
172 loglevel_save = -1; \
174 mlogbuf_finished = 0; \
175 oops_in_progress = 0;
178 * Push messages into buffer, print them later if not urgent.
180 void ia64_mca_printk(const char *fmt, ...)
182 va_list args;
183 int printed_len;
184 char temp_buf[MLOGBUF_MSGMAX];
185 char *p;
187 va_start(args, fmt);
188 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
189 va_end(args);
191 /* Copy the output into mlogbuf */
192 if (oops_in_progress) {
193 /* mlogbuf was abandoned, use printk directly instead. */
194 printk(temp_buf);
195 } else {
196 spin_lock(&mlogbuf_wlock);
197 for (p = temp_buf; *p; p++) {
198 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
199 if (next != mlogbuf_start) {
200 mlogbuf[mlogbuf_end] = *p;
201 mlogbuf_end = next;
202 } else {
203 /* buffer full */
204 break;
207 mlogbuf[mlogbuf_end] = '\0';
208 spin_unlock(&mlogbuf_wlock);
211 EXPORT_SYMBOL(ia64_mca_printk);
214 * Print buffered messages.
215 * NOTE: call this after returning normal context. (ex. from salinfod)
217 void ia64_mlogbuf_dump(void)
219 char temp_buf[MLOGBUF_MSGMAX];
220 char *p;
221 unsigned long index;
222 unsigned long flags;
223 unsigned int printed_len;
225 /* Get output from mlogbuf */
226 while (mlogbuf_start != mlogbuf_end) {
227 temp_buf[0] = '\0';
228 p = temp_buf;
229 printed_len = 0;
231 spin_lock_irqsave(&mlogbuf_rlock, flags);
233 index = mlogbuf_start;
234 while (index != mlogbuf_end) {
235 *p = mlogbuf[index];
236 index = (index + 1) % MLOGBUF_SIZE;
237 if (!*p)
238 break;
239 p++;
240 if (++printed_len >= MLOGBUF_MSGMAX - 1)
241 break;
243 *p = '\0';
244 if (temp_buf[0])
245 printk(temp_buf);
246 mlogbuf_start = index;
248 mlogbuf_timestamp = 0;
249 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
252 EXPORT_SYMBOL(ia64_mlogbuf_dump);
255 * Call this if system is going to down or if immediate flushing messages to
256 * console is required. (ex. recovery was failed, crash dump is going to be
257 * invoked, long-wait rendezvous etc.)
258 * NOTE: this should be called from monarch.
260 static void ia64_mlogbuf_finish(int wait)
262 BREAK_LOGLEVEL(console_loglevel);
264 spin_lock_init(&mlogbuf_rlock);
265 ia64_mlogbuf_dump();
266 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
267 "MCA/INIT might be dodgy or fail.\n");
269 if (!wait)
270 return;
272 /* wait for console */
273 printk("Delaying for 5 seconds...\n");
274 udelay(5*1000000);
276 mlogbuf_finished = 1;
280 * Print buffered messages from INIT context.
282 static void ia64_mlogbuf_dump_from_init(void)
284 if (mlogbuf_finished)
285 return;
287 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
288 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
289 " and the system seems to be messed up.\n");
290 ia64_mlogbuf_finish(0);
291 return;
294 if (!spin_trylock(&mlogbuf_rlock)) {
295 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
296 "Generated messages other than stack dump will be "
297 "buffered to mlogbuf and will be printed later.\n");
298 printk(KERN_ERR "INIT: If messages would not printed after "
299 "this INIT, wait 30sec and assert INIT again.\n");
300 if (!mlogbuf_timestamp)
301 mlogbuf_timestamp = jiffies;
302 return;
304 spin_unlock(&mlogbuf_rlock);
305 ia64_mlogbuf_dump();
308 static void inline
309 ia64_mca_spin(const char *func)
311 if (monarch_cpu == smp_processor_id())
312 ia64_mlogbuf_finish(0);
313 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
314 while (1)
315 cpu_relax();
318 * IA64_MCA log support
320 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
321 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
323 typedef struct ia64_state_log_s
325 spinlock_t isl_lock;
326 int isl_index;
327 unsigned long isl_count;
328 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
329 } ia64_state_log_t;
331 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
333 #define IA64_LOG_ALLOCATE(it, size) \
334 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
335 (ia64_err_rec_t *)alloc_bootmem(size); \
336 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
337 (ia64_err_rec_t *)alloc_bootmem(size);}
338 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
339 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
340 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
341 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
342 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
343 #define IA64_LOG_INDEX_INC(it) \
344 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
345 ia64_state_log[it].isl_count++;}
346 #define IA64_LOG_INDEX_DEC(it) \
347 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
348 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
349 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
350 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
353 * ia64_log_init
354 * Reset the OS ia64 log buffer
355 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
356 * Outputs : None
358 static void __init
359 ia64_log_init(int sal_info_type)
361 u64 max_size = 0;
363 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
364 IA64_LOG_LOCK_INIT(sal_info_type);
366 // SAL will tell us the maximum size of any error record of this type
367 max_size = ia64_sal_get_state_info_size(sal_info_type);
368 if (!max_size)
369 /* alloc_bootmem() doesn't like zero-sized allocations! */
370 return;
372 // set up OS data structures to hold error info
373 IA64_LOG_ALLOCATE(sal_info_type, max_size);
374 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
375 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
379 * ia64_log_get
381 * Get the current MCA log from SAL and copy it into the OS log buffer.
383 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384 * irq_safe whether you can use printk at this point
385 * Outputs : size (total record length)
386 * *buffer (ptr to error record)
389 static u64
390 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
392 sal_log_record_header_t *log_buffer;
393 u64 total_len = 0;
394 unsigned long s;
396 IA64_LOG_LOCK(sal_info_type);
398 /* Get the process state information */
399 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
401 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
403 if (total_len) {
404 IA64_LOG_INDEX_INC(sal_info_type);
405 IA64_LOG_UNLOCK(sal_info_type);
406 if (irq_safe) {
407 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
408 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
410 *buffer = (u8 *) log_buffer;
411 return total_len;
412 } else {
413 IA64_LOG_UNLOCK(sal_info_type);
414 return 0;
419 * ia64_mca_log_sal_error_record
421 * This function retrieves a specified error record type from SAL
422 * and wakes up any processes waiting for error records.
424 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
425 * FIXME: remove MCA and irq_safe.
427 static void
428 ia64_mca_log_sal_error_record(int sal_info_type)
430 u8 *buffer;
431 sal_log_record_header_t *rh;
432 u64 size;
433 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
434 #ifdef IA64_MCA_DEBUG_INFO
435 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
436 #endif
438 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
439 if (!size)
440 return;
442 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
444 if (irq_safe)
445 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
446 smp_processor_id(),
447 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
449 /* Clear logs from corrected errors in case there's no user-level logger */
450 rh = (sal_log_record_header_t *)buffer;
451 if (rh->severity == sal_log_severity_corrected)
452 ia64_sal_clear_state_info(sal_info_type);
456 * search_mca_table
457 * See if the MCA surfaced in an instruction range
458 * that has been tagged as recoverable.
460 * Inputs
461 * first First address range to check
462 * last Last address range to check
463 * ip Instruction pointer, address we are looking for
465 * Return value:
466 * 1 on Success (in the table)/ 0 on Failure (not in the table)
469 search_mca_table (const struct mca_table_entry *first,
470 const struct mca_table_entry *last,
471 unsigned long ip)
473 const struct mca_table_entry *curr;
474 u64 curr_start, curr_end;
476 curr = first;
477 while (curr <= last) {
478 curr_start = (u64) &curr->start_addr + curr->start_addr;
479 curr_end = (u64) &curr->end_addr + curr->end_addr;
481 if ((ip >= curr_start) && (ip <= curr_end)) {
482 return 1;
484 curr++;
486 return 0;
489 /* Given an address, look for it in the mca tables. */
490 int mca_recover_range(unsigned long addr)
492 extern struct mca_table_entry __start___mca_table[];
493 extern struct mca_table_entry __stop___mca_table[];
495 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
497 EXPORT_SYMBOL_GPL(mca_recover_range);
499 #ifdef CONFIG_ACPI
501 int cpe_vector = -1;
502 int ia64_cpe_irq = -1;
504 static irqreturn_t
505 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
507 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
508 static int index;
509 static DEFINE_SPINLOCK(cpe_history_lock);
511 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
512 __FUNCTION__, cpe_irq, smp_processor_id());
514 /* SAL spec states this should run w/ interrupts enabled */
515 local_irq_enable();
517 spin_lock(&cpe_history_lock);
518 if (!cpe_poll_enabled && cpe_vector >= 0) {
520 int i, count = 1; /* we know 1 happened now */
521 unsigned long now = jiffies;
523 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
524 if (now - cpe_history[i] <= HZ)
525 count++;
528 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
529 if (count >= CPE_HISTORY_LENGTH) {
531 cpe_poll_enabled = 1;
532 spin_unlock(&cpe_history_lock);
533 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
536 * Corrected errors will still be corrected, but
537 * make sure there's a log somewhere that indicates
538 * something is generating more than we can handle.
540 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
542 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
544 /* lock already released, get out now */
545 goto out;
546 } else {
547 cpe_history[index++] = now;
548 if (index == CPE_HISTORY_LENGTH)
549 index = 0;
552 spin_unlock(&cpe_history_lock);
553 out:
554 /* Get the CPE error record and log it */
555 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
557 return IRQ_HANDLED;
560 #endif /* CONFIG_ACPI */
562 #ifdef CONFIG_ACPI
564 * ia64_mca_register_cpev
566 * Register the corrected platform error vector with SAL.
568 * Inputs
569 * cpev Corrected Platform Error Vector number
571 * Outputs
572 * None
574 static void __init
575 ia64_mca_register_cpev (int cpev)
577 /* Register the CPE interrupt vector with SAL */
578 struct ia64_sal_retval isrv;
580 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
581 if (isrv.status) {
582 printk(KERN_ERR "Failed to register Corrected Platform "
583 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
584 return;
587 IA64_MCA_DEBUG("%s: corrected platform error "
588 "vector %#x registered\n", __FUNCTION__, cpev);
590 #endif /* CONFIG_ACPI */
593 * ia64_mca_cmc_vector_setup
595 * Setup the corrected machine check vector register in the processor.
596 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
597 * This function is invoked on a per-processor basis.
599 * Inputs
600 * None
602 * Outputs
603 * None
605 void __cpuinit
606 ia64_mca_cmc_vector_setup (void)
608 cmcv_reg_t cmcv;
610 cmcv.cmcv_regval = 0;
611 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
612 cmcv.cmcv_vector = IA64_CMC_VECTOR;
613 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
615 IA64_MCA_DEBUG("%s: CPU %d corrected "
616 "machine check vector %#x registered.\n",
617 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
619 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
620 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
624 * ia64_mca_cmc_vector_disable
626 * Mask the corrected machine check vector register in the processor.
627 * This function is invoked on a per-processor basis.
629 * Inputs
630 * dummy(unused)
632 * Outputs
633 * None
635 static void
636 ia64_mca_cmc_vector_disable (void *dummy)
638 cmcv_reg_t cmcv;
640 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
642 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
643 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
645 IA64_MCA_DEBUG("%s: CPU %d corrected "
646 "machine check vector %#x disabled.\n",
647 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
651 * ia64_mca_cmc_vector_enable
653 * Unmask the corrected machine check vector register in the processor.
654 * This function is invoked on a per-processor basis.
656 * Inputs
657 * dummy(unused)
659 * Outputs
660 * None
662 static void
663 ia64_mca_cmc_vector_enable (void *dummy)
665 cmcv_reg_t cmcv;
667 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
669 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
670 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
672 IA64_MCA_DEBUG("%s: CPU %d corrected "
673 "machine check vector %#x enabled.\n",
674 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
678 * ia64_mca_cmc_vector_disable_keventd
680 * Called via keventd (smp_call_function() is not safe in interrupt context) to
681 * disable the cmc interrupt vector.
683 static void
684 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
686 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
690 * ia64_mca_cmc_vector_enable_keventd
692 * Called via keventd (smp_call_function() is not safe in interrupt context) to
693 * enable the cmc interrupt vector.
695 static void
696 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
698 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
702 * ia64_mca_wakeup
704 * Send an inter-cpu interrupt to wake-up a particular cpu
705 * and mark that cpu to be out of rendez.
707 * Inputs : cpuid
708 * Outputs : None
710 static void
711 ia64_mca_wakeup(int cpu)
713 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
714 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
719 * ia64_mca_wakeup_all
721 * Wakeup all the cpus which have rendez'ed previously.
723 * Inputs : None
724 * Outputs : None
726 static void
727 ia64_mca_wakeup_all(void)
729 int cpu;
731 /* Clear the Rendez checkin flag for all cpus */
732 for_each_online_cpu(cpu) {
733 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
734 ia64_mca_wakeup(cpu);
740 * ia64_mca_rendez_interrupt_handler
742 * This is handler used to put slave processors into spinloop
743 * while the monarch processor does the mca handling and later
744 * wake each slave up once the monarch is done.
746 * Inputs : None
747 * Outputs : None
749 static irqreturn_t
750 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
752 unsigned long flags;
753 int cpu = smp_processor_id();
754 struct ia64_mca_notify_die nd =
755 { .sos = NULL, .monarch_cpu = &monarch_cpu };
757 /* Mask all interrupts */
758 local_irq_save(flags);
759 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
760 (long)&nd, 0, 0) == NOTIFY_STOP)
761 ia64_mca_spin(__FUNCTION__);
763 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
764 /* Register with the SAL monarch that the slave has
765 * reached SAL
767 ia64_sal_mc_rendez();
769 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
770 (long)&nd, 0, 0) == NOTIFY_STOP)
771 ia64_mca_spin(__FUNCTION__);
773 /* Wait for the monarch cpu to exit. */
774 while (monarch_cpu != -1)
775 cpu_relax(); /* spin until monarch leaves */
777 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
778 (long)&nd, 0, 0) == NOTIFY_STOP)
779 ia64_mca_spin(__FUNCTION__);
781 /* Enable all interrupts */
782 local_irq_restore(flags);
783 return IRQ_HANDLED;
787 * ia64_mca_wakeup_int_handler
789 * The interrupt handler for processing the inter-cpu interrupt to the
790 * slave cpu which was spinning in the rendez loop.
791 * Since this spinning is done by turning off the interrupts and
792 * polling on the wakeup-interrupt bit in the IRR, there is
793 * nothing useful to be done in the handler.
795 * Inputs : wakeup_irq (Wakeup-interrupt bit)
796 * arg (Interrupt handler specific argument)
797 * Outputs : None
800 static irqreturn_t
801 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
803 return IRQ_HANDLED;
806 /* Function pointer for extra MCA recovery */
807 int (*ia64_mca_ucmc_extension)
808 (void*,struct ia64_sal_os_state*)
809 = NULL;
812 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
814 if (ia64_mca_ucmc_extension)
815 return 1;
817 ia64_mca_ucmc_extension = fn;
818 return 0;
821 void
822 ia64_unreg_MCA_extension(void)
824 if (ia64_mca_ucmc_extension)
825 ia64_mca_ucmc_extension = NULL;
828 EXPORT_SYMBOL(ia64_reg_MCA_extension);
829 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
832 static inline void
833 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
835 u64 fslot, tslot, nat;
836 *tr = *fr;
837 fslot = ((unsigned long)fr >> 3) & 63;
838 tslot = ((unsigned long)tr >> 3) & 63;
839 *tnat &= ~(1UL << tslot);
840 nat = (fnat >> fslot) & 1;
841 *tnat |= (nat << tslot);
844 /* Change the comm field on the MCA/INT task to include the pid that
845 * was interrupted, it makes for easier debugging. If that pid was 0
846 * (swapper or nested MCA/INIT) then use the start of the previous comm
847 * field suffixed with its cpu.
850 static void
851 ia64_mca_modify_comm(const struct task_struct *previous_current)
853 char *p, comm[sizeof(current->comm)];
854 if (previous_current->pid)
855 snprintf(comm, sizeof(comm), "%s %d",
856 current->comm, previous_current->pid);
857 else {
858 int l;
859 if ((p = strchr(previous_current->comm, ' ')))
860 l = p - previous_current->comm;
861 else
862 l = strlen(previous_current->comm);
863 snprintf(comm, sizeof(comm), "%s %*s %d",
864 current->comm, l, previous_current->comm,
865 task_thread_info(previous_current)->cpu);
867 memcpy(current->comm, comm, sizeof(current->comm));
870 /* On entry to this routine, we are running on the per cpu stack, see
871 * mca_asm.h. The original stack has not been touched by this event. Some of
872 * the original stack's registers will be in the RBS on this stack. This stack
873 * also contains a partial pt_regs and switch_stack, the rest of the data is in
874 * PAL minstate.
876 * The first thing to do is modify the original stack to look like a blocked
877 * task so we can run backtrace on the original task. Also mark the per cpu
878 * stack as current to ensure that we use the correct task state, it also means
879 * that we can do backtrace on the MCA/INIT handler code itself.
882 static struct task_struct *
883 ia64_mca_modify_original_stack(struct pt_regs *regs,
884 const struct switch_stack *sw,
885 struct ia64_sal_os_state *sos,
886 const char *type)
888 char *p;
889 ia64_va va;
890 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
891 const pal_min_state_area_t *ms = sos->pal_min_state;
892 struct task_struct *previous_current;
893 struct pt_regs *old_regs;
894 struct switch_stack *old_sw;
895 unsigned size = sizeof(struct pt_regs) +
896 sizeof(struct switch_stack) + 16;
897 u64 *old_bspstore, *old_bsp;
898 u64 *new_bspstore, *new_bsp;
899 u64 old_unat, old_rnat, new_rnat, nat;
900 u64 slots, loadrs = regs->loadrs;
901 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
902 u64 ar_bspstore = regs->ar_bspstore;
903 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
904 const u64 *bank;
905 const char *msg;
906 int cpu = smp_processor_id();
908 previous_current = curr_task(cpu);
909 set_curr_task(cpu, current);
910 if ((p = strchr(current->comm, ' ')))
911 *p = '\0';
913 /* Best effort attempt to cope with MCA/INIT delivered while in
914 * physical mode.
916 regs->cr_ipsr = ms->pmsa_ipsr;
917 if (ia64_psr(regs)->dt == 0) {
918 va.l = r12;
919 if (va.f.reg == 0) {
920 va.f.reg = 7;
921 r12 = va.l;
923 va.l = r13;
924 if (va.f.reg == 0) {
925 va.f.reg = 7;
926 r13 = va.l;
929 if (ia64_psr(regs)->rt == 0) {
930 va.l = ar_bspstore;
931 if (va.f.reg == 0) {
932 va.f.reg = 7;
933 ar_bspstore = va.l;
935 va.l = ar_bsp;
936 if (va.f.reg == 0) {
937 va.f.reg = 7;
938 ar_bsp = va.l;
942 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
943 * have been copied to the old stack, the old stack may fail the
944 * validation tests below. So ia64_old_stack() must restore the dirty
945 * registers from the new stack. The old and new bspstore probably
946 * have different alignments, so loadrs calculated on the old bsp
947 * cannot be used to restore from the new bsp. Calculate a suitable
948 * loadrs for the new stack and save it in the new pt_regs, where
949 * ia64_old_stack() can get it.
951 old_bspstore = (u64 *)ar_bspstore;
952 old_bsp = (u64 *)ar_bsp;
953 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
954 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
955 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
956 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
958 /* Verify the previous stack state before we change it */
959 if (user_mode(regs)) {
960 msg = "occurred in user space";
961 /* previous_current is guaranteed to be valid when the task was
962 * in user space, so ...
964 ia64_mca_modify_comm(previous_current);
965 goto no_mod;
968 if (r13 != sos->prev_IA64_KR_CURRENT) {
969 msg = "inconsistent previous current and r13";
970 goto no_mod;
973 if (!mca_recover_range(ms->pmsa_iip)) {
974 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
975 msg = "inconsistent r12 and r13";
976 goto no_mod;
978 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
979 msg = "inconsistent ar.bspstore and r13";
980 goto no_mod;
982 va.p = old_bspstore;
983 if (va.f.reg < 5) {
984 msg = "old_bspstore is in the wrong region";
985 goto no_mod;
987 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
988 msg = "inconsistent ar.bsp and r13";
989 goto no_mod;
991 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
992 if (ar_bspstore + size > r12) {
993 msg = "no room for blocked state";
994 goto no_mod;
998 ia64_mca_modify_comm(previous_current);
1000 /* Make the original task look blocked. First stack a struct pt_regs,
1001 * describing the state at the time of interrupt. mca_asm.S built a
1002 * partial pt_regs, copy it and fill in the blanks using minstate.
1004 p = (char *)r12 - sizeof(*regs);
1005 old_regs = (struct pt_regs *)p;
1006 memcpy(old_regs, regs, sizeof(*regs));
1007 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1008 * pmsa_{xip,xpsr,xfs}
1010 if (ia64_psr(regs)->ic) {
1011 old_regs->cr_iip = ms->pmsa_iip;
1012 old_regs->cr_ipsr = ms->pmsa_ipsr;
1013 old_regs->cr_ifs = ms->pmsa_ifs;
1014 } else {
1015 old_regs->cr_iip = ms->pmsa_xip;
1016 old_regs->cr_ipsr = ms->pmsa_xpsr;
1017 old_regs->cr_ifs = ms->pmsa_xfs;
1019 old_regs->pr = ms->pmsa_pr;
1020 old_regs->b0 = ms->pmsa_br0;
1021 old_regs->loadrs = loadrs;
1022 old_regs->ar_rsc = ms->pmsa_rsc;
1023 old_unat = old_regs->ar_unat;
1024 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1025 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1026 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1027 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1028 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1029 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1030 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1031 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1032 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1033 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1034 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1035 if (ia64_psr(old_regs)->bn)
1036 bank = ms->pmsa_bank1_gr;
1037 else
1038 bank = ms->pmsa_bank0_gr;
1039 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1040 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1041 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1042 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1043 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1044 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1045 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1046 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1047 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1048 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1049 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1050 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1051 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1052 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1053 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1054 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1056 /* Next stack a struct switch_stack. mca_asm.S built a partial
1057 * switch_stack, copy it and fill in the blanks using pt_regs and
1058 * minstate.
1060 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1061 * ar.pfs is set to 0.
1063 * unwind.c::unw_unwind() does special processing for interrupt frames.
1064 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1065 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1066 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1067 * switch_stack on the original stack so it will unwind correctly when
1068 * unwind.c reads pt_regs.
1070 * thread.ksp is updated to point to the synthesized switch_stack.
1072 p -= sizeof(struct switch_stack);
1073 old_sw = (struct switch_stack *)p;
1074 memcpy(old_sw, sw, sizeof(*sw));
1075 old_sw->caller_unat = old_unat;
1076 old_sw->ar_fpsr = old_regs->ar_fpsr;
1077 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1078 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1079 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1080 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1081 old_sw->b0 = (u64)ia64_leave_kernel;
1082 old_sw->b1 = ms->pmsa_br1;
1083 old_sw->ar_pfs = 0;
1084 old_sw->ar_unat = old_unat;
1085 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1086 previous_current->thread.ksp = (u64)p - 16;
1088 /* Finally copy the original stack's registers back to its RBS.
1089 * Registers from ar.bspstore through ar.bsp at the time of the event
1090 * are in the current RBS, copy them back to the original stack. The
1091 * copy must be done register by register because the original bspstore
1092 * and the current one have different alignments, so the saved RNAT
1093 * data occurs at different places.
1095 * mca_asm does cover, so the old_bsp already includes all registers at
1096 * the time of MCA/INIT. It also does flushrs, so all registers before
1097 * this function have been written to backing store on the MCA/INIT
1098 * stack.
1100 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1101 old_rnat = regs->ar_rnat;
1102 while (slots--) {
1103 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1104 new_rnat = ia64_get_rnat(new_bspstore++);
1106 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1107 *old_bspstore++ = old_rnat;
1108 old_rnat = 0;
1110 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1111 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1112 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1113 *old_bspstore++ = *new_bspstore++;
1115 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1116 old_sw->ar_rnat = old_rnat;
1118 sos->prev_task = previous_current;
1119 return previous_current;
1121 no_mod:
1122 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1123 smp_processor_id(), type, msg);
1124 return previous_current;
1127 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1128 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1129 * not entered rendezvous yet then wait a bit. The assumption is that any
1130 * slave that has not rendezvoused after a reasonable time is never going to do
1131 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1132 * interrupt, as well as cpus that receive the INIT slave event.
1135 static void
1136 ia64_wait_for_slaves(int monarch, const char *type)
1138 int c, wait = 0, missing = 0;
1139 for_each_online_cpu(c) {
1140 if (c == monarch)
1141 continue;
1142 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1143 udelay(1000); /* short wait first */
1144 wait = 1;
1145 break;
1148 if (!wait)
1149 goto all_in;
1150 for_each_online_cpu(c) {
1151 if (c == monarch)
1152 continue;
1153 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1154 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
1155 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1156 missing = 1;
1157 break;
1160 if (!missing)
1161 goto all_in;
1163 * Maybe slave(s) dead. Print buffered messages immediately.
1165 ia64_mlogbuf_finish(0);
1166 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1167 for_each_online_cpu(c) {
1168 if (c == monarch)
1169 continue;
1170 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1171 mprintk(" %d", c);
1173 mprintk("\n");
1174 return;
1176 all_in:
1177 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1178 return;
1182 * ia64_mca_handler
1184 * This is uncorrectable machine check handler called from OS_MCA
1185 * dispatch code which is in turn called from SAL_CHECK().
1186 * This is the place where the core of OS MCA handling is done.
1187 * Right now the logs are extracted and displayed in a well-defined
1188 * format. This handler code is supposed to be run only on the
1189 * monarch processor. Once the monarch is done with MCA handling
1190 * further MCA logging is enabled by clearing logs.
1191 * Monarch also has the duty of sending wakeup-IPIs to pull the
1192 * slave processors out of rendezvous spinloop.
1194 * If multiple processors call into OS_MCA, the first will become
1195 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1196 * bitmask. After the first monarch has processed its MCA, it
1197 * will wake up the next cpu in the mca_cpu bitmask and then go
1198 * into the rendezvous loop. When all processors have serviced
1199 * their MCA, the last monarch frees up the rest of the processors.
1201 void
1202 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1203 struct ia64_sal_os_state *sos)
1205 int recover, cpu = smp_processor_id();
1206 struct task_struct *previous_current;
1207 struct ia64_mca_notify_die nd =
1208 { .sos = sos, .monarch_cpu = &monarch_cpu };
1209 static atomic_t mca_count;
1210 static cpumask_t mca_cpu;
1212 if (atomic_add_return(1, &mca_count) == 1) {
1213 monarch_cpu = cpu;
1214 sos->monarch = 1;
1215 } else {
1216 cpu_set(cpu, mca_cpu);
1217 sos->monarch = 0;
1219 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1220 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1222 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1224 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1225 == NOTIFY_STOP)
1226 ia64_mca_spin(__FUNCTION__);
1227 if (sos->monarch) {
1228 ia64_wait_for_slaves(cpu, "MCA");
1229 } else {
1230 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1231 while (cpu_isset(cpu, mca_cpu))
1232 cpu_relax(); /* spin until monarch wakes us */
1233 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1236 /* Wakeup all the processors which are spinning in the rendezvous loop.
1237 * They will leave SAL, then spin in the OS with interrupts disabled
1238 * until this monarch cpu leaves the MCA handler. That gets control
1239 * back to the OS so we can backtrace the other cpus, backtrace when
1240 * spinning in SAL does not work.
1242 ia64_mca_wakeup_all();
1243 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1244 == NOTIFY_STOP)
1245 ia64_mca_spin(__FUNCTION__);
1247 /* Get the MCA error record and log it */
1248 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1250 /* MCA error recovery */
1251 recover = (ia64_mca_ucmc_extension
1252 && ia64_mca_ucmc_extension(
1253 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1254 sos));
1256 if (recover) {
1257 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1258 rh->severity = sal_log_severity_corrected;
1259 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1260 sos->os_status = IA64_MCA_CORRECTED;
1261 } else {
1262 /* Dump buffered message to console */
1263 ia64_mlogbuf_finish(1);
1264 #ifdef CONFIG_KEXEC
1265 atomic_set(&kdump_in_progress, 1);
1266 monarch_cpu = -1;
1267 #endif
1269 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1270 == NOTIFY_STOP)
1271 ia64_mca_spin(__FUNCTION__);
1274 if (atomic_dec_return(&mca_count) > 0) {
1275 int i;
1277 /* wake up the next monarch cpu,
1278 * and put this cpu in the rendez loop.
1280 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1281 for_each_online_cpu(i) {
1282 if (cpu_isset(i, mca_cpu)) {
1283 monarch_cpu = i;
1284 cpu_clear(i, mca_cpu); /* wake next cpu */
1285 while (monarch_cpu != -1)
1286 cpu_relax(); /* spin until last cpu leaves */
1287 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1288 set_curr_task(cpu, previous_current);
1289 return;
1293 set_curr_task(cpu, previous_current);
1294 monarch_cpu = -1;
1297 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1298 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1301 * ia64_mca_cmc_int_handler
1303 * This is corrected machine check interrupt handler.
1304 * Right now the logs are extracted and displayed in a well-defined
1305 * format.
1307 * Inputs
1308 * interrupt number
1309 * client data arg ptr
1311 * Outputs
1312 * None
1314 static irqreturn_t
1315 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1317 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1318 static int index;
1319 static DEFINE_SPINLOCK(cmc_history_lock);
1321 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1322 __FUNCTION__, cmc_irq, smp_processor_id());
1324 /* SAL spec states this should run w/ interrupts enabled */
1325 local_irq_enable();
1327 spin_lock(&cmc_history_lock);
1328 if (!cmc_polling_enabled) {
1329 int i, count = 1; /* we know 1 happened now */
1330 unsigned long now = jiffies;
1332 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1333 if (now - cmc_history[i] <= HZ)
1334 count++;
1337 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1338 if (count >= CMC_HISTORY_LENGTH) {
1340 cmc_polling_enabled = 1;
1341 spin_unlock(&cmc_history_lock);
1342 /* If we're being hit with CMC interrupts, we won't
1343 * ever execute the schedule_work() below. Need to
1344 * disable CMC interrupts on this processor now.
1346 ia64_mca_cmc_vector_disable(NULL);
1347 schedule_work(&cmc_disable_work);
1350 * Corrected errors will still be corrected, but
1351 * make sure there's a log somewhere that indicates
1352 * something is generating more than we can handle.
1354 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1356 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1358 /* lock already released, get out now */
1359 goto out;
1360 } else {
1361 cmc_history[index++] = now;
1362 if (index == CMC_HISTORY_LENGTH)
1363 index = 0;
1366 spin_unlock(&cmc_history_lock);
1367 out:
1368 /* Get the CMC error record and log it */
1369 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1371 return IRQ_HANDLED;
1375 * ia64_mca_cmc_int_caller
1377 * Triggered by sw interrupt from CMC polling routine. Calls
1378 * real interrupt handler and either triggers a sw interrupt
1379 * on the next cpu or does cleanup at the end.
1381 * Inputs
1382 * interrupt number
1383 * client data arg ptr
1384 * Outputs
1385 * handled
1387 static irqreturn_t
1388 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1390 static int start_count = -1;
1391 unsigned int cpuid;
1393 cpuid = smp_processor_id();
1395 /* If first cpu, update count */
1396 if (start_count == -1)
1397 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1399 ia64_mca_cmc_int_handler(cmc_irq, arg);
1401 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1403 if (cpuid < NR_CPUS) {
1404 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1405 } else {
1406 /* If no log record, switch out of polling mode */
1407 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1409 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1410 schedule_work(&cmc_enable_work);
1411 cmc_polling_enabled = 0;
1413 } else {
1415 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1418 start_count = -1;
1421 return IRQ_HANDLED;
1425 * ia64_mca_cmc_poll
1427 * Poll for Corrected Machine Checks (CMCs)
1429 * Inputs : dummy(unused)
1430 * Outputs : None
1433 static void
1434 ia64_mca_cmc_poll (unsigned long dummy)
1436 /* Trigger a CMC interrupt cascade */
1437 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1441 * ia64_mca_cpe_int_caller
1443 * Triggered by sw interrupt from CPE polling routine. Calls
1444 * real interrupt handler and either triggers a sw interrupt
1445 * on the next cpu or does cleanup at the end.
1447 * Inputs
1448 * interrupt number
1449 * client data arg ptr
1450 * Outputs
1451 * handled
1453 #ifdef CONFIG_ACPI
1455 static irqreturn_t
1456 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1458 static int start_count = -1;
1459 static int poll_time = MIN_CPE_POLL_INTERVAL;
1460 unsigned int cpuid;
1462 cpuid = smp_processor_id();
1464 /* If first cpu, update count */
1465 if (start_count == -1)
1466 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1468 ia64_mca_cpe_int_handler(cpe_irq, arg);
1470 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1472 if (cpuid < NR_CPUS) {
1473 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1474 } else {
1476 * If a log was recorded, increase our polling frequency,
1477 * otherwise, backoff or return to interrupt mode.
1479 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1480 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1481 } else if (cpe_vector < 0) {
1482 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1483 } else {
1484 poll_time = MIN_CPE_POLL_INTERVAL;
1486 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1487 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1488 cpe_poll_enabled = 0;
1491 if (cpe_poll_enabled)
1492 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1493 start_count = -1;
1496 return IRQ_HANDLED;
1500 * ia64_mca_cpe_poll
1502 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1503 * on first cpu, from there it will trickle through all the cpus.
1505 * Inputs : dummy(unused)
1506 * Outputs : None
1509 static void
1510 ia64_mca_cpe_poll (unsigned long dummy)
1512 /* Trigger a CPE interrupt cascade */
1513 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1516 #endif /* CONFIG_ACPI */
1518 static int
1519 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1521 int c;
1522 struct task_struct *g, *t;
1523 if (val != DIE_INIT_MONARCH_PROCESS)
1524 return NOTIFY_DONE;
1525 #ifdef CONFIG_KEXEC
1526 if (atomic_read(&kdump_in_progress))
1527 return NOTIFY_DONE;
1528 #endif
1531 * FIXME: mlogbuf will brim over with INIT stack dumps.
1532 * To enable show_stack from INIT, we use oops_in_progress which should
1533 * be used in real oops. This would cause something wrong after INIT.
1535 BREAK_LOGLEVEL(console_loglevel);
1536 ia64_mlogbuf_dump_from_init();
1538 printk(KERN_ERR "Processes interrupted by INIT -");
1539 for_each_online_cpu(c) {
1540 struct ia64_sal_os_state *s;
1541 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1542 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1543 g = s->prev_task;
1544 if (g) {
1545 if (g->pid)
1546 printk(" %d", g->pid);
1547 else
1548 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1551 printk("\n\n");
1552 if (read_trylock(&tasklist_lock)) {
1553 do_each_thread (g, t) {
1554 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1555 show_stack(t, NULL);
1556 } while_each_thread (g, t);
1557 read_unlock(&tasklist_lock);
1559 /* FIXME: This will not restore zapped printk locks. */
1560 RESTORE_LOGLEVEL(console_loglevel);
1561 return NOTIFY_DONE;
1565 * C portion of the OS INIT handler
1567 * Called from ia64_os_init_dispatch
1569 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1570 * this event. This code is used for both monarch and slave INIT events, see
1571 * sos->monarch.
1573 * All INIT events switch to the INIT stack and change the previous process to
1574 * blocked status. If one of the INIT events is the monarch then we are
1575 * probably processing the nmi button/command. Use the monarch cpu to dump all
1576 * the processes. The slave INIT events all spin until the monarch cpu
1577 * returns. We can also get INIT slave events for MCA, in which case the MCA
1578 * process is the monarch.
1581 void
1582 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1583 struct ia64_sal_os_state *sos)
1585 static atomic_t slaves;
1586 static atomic_t monarchs;
1587 struct task_struct *previous_current;
1588 int cpu = smp_processor_id();
1589 struct ia64_mca_notify_die nd =
1590 { .sos = sos, .monarch_cpu = &monarch_cpu };
1592 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1594 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1595 sos->proc_state_param, cpu, sos->monarch);
1596 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1598 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1599 sos->os_status = IA64_INIT_RESUME;
1601 /* FIXME: Workaround for broken proms that drive all INIT events as
1602 * slaves. The last slave that enters is promoted to be a monarch.
1603 * Remove this code in September 2006, that gives platforms a year to
1604 * fix their proms and get their customers updated.
1606 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1607 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1608 __FUNCTION__, cpu);
1609 atomic_dec(&slaves);
1610 sos->monarch = 1;
1613 /* FIXME: Workaround for broken proms that drive all INIT events as
1614 * monarchs. Second and subsequent monarchs are demoted to slaves.
1615 * Remove this code in September 2006, that gives platforms a year to
1616 * fix their proms and get their customers updated.
1618 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1619 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1620 __FUNCTION__, cpu);
1621 atomic_dec(&monarchs);
1622 sos->monarch = 0;
1625 if (!sos->monarch) {
1626 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1627 while (monarch_cpu == -1)
1628 cpu_relax(); /* spin until monarch enters */
1629 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1630 == NOTIFY_STOP)
1631 ia64_mca_spin(__FUNCTION__);
1632 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1633 == NOTIFY_STOP)
1634 ia64_mca_spin(__FUNCTION__);
1635 while (monarch_cpu != -1)
1636 cpu_relax(); /* spin until monarch leaves */
1637 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1638 == NOTIFY_STOP)
1639 ia64_mca_spin(__FUNCTION__);
1640 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1641 set_curr_task(cpu, previous_current);
1642 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1643 atomic_dec(&slaves);
1644 return;
1647 monarch_cpu = cpu;
1648 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1649 == NOTIFY_STOP)
1650 ia64_mca_spin(__FUNCTION__);
1653 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1654 * generated via the BMC's command-line interface, but since the console is on the
1655 * same serial line, the user will need some time to switch out of the BMC before
1656 * the dump begins.
1658 mprintk("Delaying for 5 seconds...\n");
1659 udelay(5*1000000);
1660 ia64_wait_for_slaves(cpu, "INIT");
1661 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1662 * to default_monarch_init_process() above and just print all the
1663 * tasks.
1665 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1666 == NOTIFY_STOP)
1667 ia64_mca_spin(__FUNCTION__);
1668 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1669 == NOTIFY_STOP)
1670 ia64_mca_spin(__FUNCTION__);
1671 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1672 atomic_dec(&monarchs);
1673 set_curr_task(cpu, previous_current);
1674 monarch_cpu = -1;
1675 return;
1678 static int __init
1679 ia64_mca_disable_cpe_polling(char *str)
1681 cpe_poll_enabled = 0;
1682 return 1;
1685 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1687 static struct irqaction cmci_irqaction = {
1688 .handler = ia64_mca_cmc_int_handler,
1689 .flags = IRQF_DISABLED,
1690 .name = "cmc_hndlr"
1693 static struct irqaction cmcp_irqaction = {
1694 .handler = ia64_mca_cmc_int_caller,
1695 .flags = IRQF_DISABLED,
1696 .name = "cmc_poll"
1699 static struct irqaction mca_rdzv_irqaction = {
1700 .handler = ia64_mca_rendez_int_handler,
1701 .flags = IRQF_DISABLED,
1702 .name = "mca_rdzv"
1705 static struct irqaction mca_wkup_irqaction = {
1706 .handler = ia64_mca_wakeup_int_handler,
1707 .flags = IRQF_DISABLED,
1708 .name = "mca_wkup"
1711 #ifdef CONFIG_ACPI
1712 static struct irqaction mca_cpe_irqaction = {
1713 .handler = ia64_mca_cpe_int_handler,
1714 .flags = IRQF_DISABLED,
1715 .name = "cpe_hndlr"
1718 static struct irqaction mca_cpep_irqaction = {
1719 .handler = ia64_mca_cpe_int_caller,
1720 .flags = IRQF_DISABLED,
1721 .name = "cpe_poll"
1723 #endif /* CONFIG_ACPI */
1725 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1726 * these stacks can never sleep, they cannot return from the kernel to user
1727 * space, they do not appear in a normal ps listing. So there is no need to
1728 * format most of the fields.
1731 static void __cpuinit
1732 format_mca_init_stack(void *mca_data, unsigned long offset,
1733 const char *type, int cpu)
1735 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1736 struct thread_info *ti;
1737 memset(p, 0, KERNEL_STACK_SIZE);
1738 ti = task_thread_info(p);
1739 ti->flags = _TIF_MCA_INIT;
1740 ti->preempt_count = 1;
1741 ti->task = p;
1742 ti->cpu = cpu;
1743 p->stack = ti;
1744 p->state = TASK_UNINTERRUPTIBLE;
1745 cpu_set(cpu, p->cpus_allowed);
1746 INIT_LIST_HEAD(&p->tasks);
1747 p->parent = p->real_parent = p->group_leader = p;
1748 INIT_LIST_HEAD(&p->children);
1749 INIT_LIST_HEAD(&p->sibling);
1750 strncpy(p->comm, type, sizeof(p->comm)-1);
1753 /* Do per-CPU MCA-related initialization. */
1755 void __cpuinit
1756 ia64_mca_cpu_init(void *cpu_data)
1758 void *pal_vaddr;
1759 static int first_time = 1;
1761 if (first_time) {
1762 void *mca_data;
1763 int cpu;
1765 first_time = 0;
1766 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1767 * NR_CPUS + KERNEL_STACK_SIZE);
1768 mca_data = (void *)(((unsigned long)mca_data +
1769 KERNEL_STACK_SIZE - 1) &
1770 (-KERNEL_STACK_SIZE));
1771 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1772 format_mca_init_stack(mca_data,
1773 offsetof(struct ia64_mca_cpu, mca_stack),
1774 "MCA", cpu);
1775 format_mca_init_stack(mca_data,
1776 offsetof(struct ia64_mca_cpu, init_stack),
1777 "INIT", cpu);
1778 __per_cpu_mca[cpu] = __pa(mca_data);
1779 mca_data += sizeof(struct ia64_mca_cpu);
1784 * The MCA info structure was allocated earlier and its
1785 * physical address saved in __per_cpu_mca[cpu]. Copy that
1786 * address * to ia64_mca_data so we can access it as a per-CPU
1787 * variable.
1789 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1792 * Stash away a copy of the PTE needed to map the per-CPU page.
1793 * We may need it during MCA recovery.
1795 __get_cpu_var(ia64_mca_per_cpu_pte) =
1796 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1799 * Also, stash away a copy of the PAL address and the PTE
1800 * needed to map it.
1802 pal_vaddr = efi_get_pal_addr();
1803 if (!pal_vaddr)
1804 return;
1805 __get_cpu_var(ia64_mca_pal_base) =
1806 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1807 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1808 PAGE_KERNEL));
1812 * ia64_mca_init
1814 * Do all the system level mca specific initialization.
1816 * 1. Register spinloop and wakeup request interrupt vectors
1818 * 2. Register OS_MCA handler entry point
1820 * 3. Register OS_INIT handler entry point
1822 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1824 * Note that this initialization is done very early before some kernel
1825 * services are available.
1827 * Inputs : None
1829 * Outputs : None
1831 void __init
1832 ia64_mca_init(void)
1834 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1835 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1836 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1837 int i;
1838 s64 rc;
1839 struct ia64_sal_retval isrv;
1840 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1841 static struct notifier_block default_init_monarch_nb = {
1842 .notifier_call = default_monarch_init_process,
1843 .priority = 0/* we need to notified last */
1846 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1848 /* Clear the Rendez checkin flag for all cpus */
1849 for(i = 0 ; i < NR_CPUS; i++)
1850 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1853 * Register the rendezvous spinloop and wakeup mechanism with SAL
1856 /* Register the rendezvous interrupt vector with SAL */
1857 while (1) {
1858 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1859 SAL_MC_PARAM_MECHANISM_INT,
1860 IA64_MCA_RENDEZ_VECTOR,
1861 timeout,
1862 SAL_MC_PARAM_RZ_ALWAYS);
1863 rc = isrv.status;
1864 if (rc == 0)
1865 break;
1866 if (rc == -2) {
1867 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1868 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1869 timeout = isrv.v0;
1870 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1871 continue;
1873 printk(KERN_ERR "Failed to register rendezvous interrupt "
1874 "with SAL (status %ld)\n", rc);
1875 return;
1878 /* Register the wakeup interrupt vector with SAL */
1879 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1880 SAL_MC_PARAM_MECHANISM_INT,
1881 IA64_MCA_WAKEUP_VECTOR,
1882 0, 0);
1883 rc = isrv.status;
1884 if (rc) {
1885 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1886 "(status %ld)\n", rc);
1887 return;
1890 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1892 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1894 * XXX - disable SAL checksum by setting size to 0; should be
1895 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1897 ia64_mc_info.imi_mca_handler_size = 0;
1899 /* Register the os mca handler with SAL */
1900 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1901 ia64_mc_info.imi_mca_handler,
1902 ia64_tpa(mca_hldlr_ptr->gp),
1903 ia64_mc_info.imi_mca_handler_size,
1904 0, 0, 0)))
1906 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1907 "(status %ld)\n", rc);
1908 return;
1911 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1912 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1915 * XXX - disable SAL checksum by setting size to 0, should be
1916 * size of the actual init handler in mca_asm.S.
1918 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1919 ia64_mc_info.imi_monarch_init_handler_size = 0;
1920 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1921 ia64_mc_info.imi_slave_init_handler_size = 0;
1923 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1924 ia64_mc_info.imi_monarch_init_handler);
1926 /* Register the os init handler with SAL */
1927 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1928 ia64_mc_info.imi_monarch_init_handler,
1929 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1930 ia64_mc_info.imi_monarch_init_handler_size,
1931 ia64_mc_info.imi_slave_init_handler,
1932 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1933 ia64_mc_info.imi_slave_init_handler_size)))
1935 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1936 "(status %ld)\n", rc);
1937 return;
1939 if (register_die_notifier(&default_init_monarch_nb)) {
1940 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1941 return;
1944 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1947 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1948 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1950 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1951 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1952 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1954 /* Setup the MCA rendezvous interrupt vector */
1955 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1957 /* Setup the MCA wakeup interrupt vector */
1958 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1960 #ifdef CONFIG_ACPI
1961 /* Setup the CPEI/P handler */
1962 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1963 #endif
1965 /* Initialize the areas set aside by the OS to buffer the
1966 * platform/processor error states for MCA/INIT/CMC
1967 * handling.
1969 ia64_log_init(SAL_INFO_TYPE_MCA);
1970 ia64_log_init(SAL_INFO_TYPE_INIT);
1971 ia64_log_init(SAL_INFO_TYPE_CMC);
1972 ia64_log_init(SAL_INFO_TYPE_CPE);
1974 mca_init = 1;
1975 printk(KERN_INFO "MCA related initialization done\n");
1979 * ia64_mca_late_init
1981 * Opportunity to setup things that require initialization later
1982 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1983 * platform doesn't support an interrupt driven mechanism.
1985 * Inputs : None
1986 * Outputs : Status
1988 static int __init
1989 ia64_mca_late_init(void)
1991 if (!mca_init)
1992 return 0;
1994 /* Setup the CMCI/P vector and handler */
1995 init_timer(&cmc_poll_timer);
1996 cmc_poll_timer.function = ia64_mca_cmc_poll;
1998 /* Unmask/enable the vector */
1999 cmc_polling_enabled = 0;
2000 schedule_work(&cmc_enable_work);
2002 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2004 #ifdef CONFIG_ACPI
2005 /* Setup the CPEI/P vector and handler */
2006 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2007 init_timer(&cpe_poll_timer);
2008 cpe_poll_timer.function = ia64_mca_cpe_poll;
2011 irq_desc_t *desc;
2012 unsigned int irq;
2014 if (cpe_vector >= 0) {
2015 /* If platform supports CPEI, enable the irq. */
2016 cpe_poll_enabled = 0;
2017 for (irq = 0; irq < NR_IRQS; ++irq)
2018 if (irq_to_vector(irq) == cpe_vector) {
2019 desc = irq_desc + irq;
2020 desc->status |= IRQ_PER_CPU;
2021 setup_irq(irq, &mca_cpe_irqaction);
2022 ia64_cpe_irq = irq;
2024 ia64_mca_register_cpev(cpe_vector);
2025 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
2026 } else {
2027 /* If platform doesn't support CPEI, get the timer going. */
2028 if (cpe_poll_enabled) {
2029 ia64_mca_cpe_poll(0UL);
2030 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2034 #endif
2036 return 0;
2039 device_initcall(ia64_mca_late_init);