4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy
)
127 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
132 static inline int task_has_rt_policy(struct task_struct
*p
)
134 return rt_policy(p
->policy
);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array
{
141 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
142 struct list_head queue
[MAX_RT_PRIO
];
145 struct rt_bandwidth
{
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock
;
150 struct hrtimer rt_period_timer
;
153 static struct rt_bandwidth def_rt_bandwidth
;
155 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
157 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
159 struct rt_bandwidth
*rt_b
=
160 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
166 now
= hrtimer_cb_get_time(timer
);
167 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
172 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
175 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
179 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
181 rt_b
->rt_period
= ns_to_ktime(period
);
182 rt_b
->rt_runtime
= runtime
;
184 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
186 hrtimer_init(&rt_b
->rt_period_timer
,
187 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
188 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime
>= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
200 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
203 if (hrtimer_active(&rt_b
->rt_period_timer
))
206 raw_spin_lock(&rt_b
->rt_runtime_lock
);
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
215 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
217 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
218 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
219 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
220 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
221 HRTIMER_MODE_ABS_PINNED
, 0);
223 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
229 hrtimer_cancel(&rt_b
->rt_period_timer
);
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex
);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups
);
247 /* task group related information */
249 struct cgroup_subsys_state css
;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity
**se
;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq
**cfs_rq
;
256 unsigned long shares
;
258 atomic_t load_weight
;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity
**rt_se
;
263 struct rt_rq
**rt_rq
;
265 struct rt_bandwidth rt_bandwidth
;
269 struct list_head list
;
271 struct task_group
*parent
;
272 struct list_head siblings
;
273 struct list_head children
;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup
*autogroup
;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock
);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
298 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group
;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load
;
311 unsigned long nr_running
;
316 u64 min_vruntime_copy
;
319 struct rb_root tasks_timeline
;
320 struct rb_node
*rb_leftmost
;
322 struct list_head tasks
;
323 struct list_head
*balance_iterator
;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity
*curr
, *next
, *last
, *skip
;
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over
;
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
347 struct list_head leaf_cfs_rq_list
;
348 struct task_group
*tg
; /* group that "owns" this runqueue */
352 * the part of load.weight contributed by tasks
354 unsigned long task_weight
;
357 * h_load = weight * f(tg)
359 * Where f(tg) is the recursive weight fraction assigned to
362 unsigned long h_load
;
365 * Maintaining per-cpu shares distribution for group scheduling
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
373 u64 load_stamp
, load_last
, load_unacc_exec_time
;
375 unsigned long load_contribution
;
380 /* Real-Time classes' related field in a runqueue: */
382 struct rt_prio_array active
;
383 unsigned long rt_nr_running
;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
386 int curr
; /* highest queued rt task prio */
388 int next
; /* next highest */
393 unsigned long rt_nr_migratory
;
394 unsigned long rt_nr_total
;
396 struct plist_head pushable_tasks
;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock
;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted
;
408 struct list_head leaf_rt_rq_list
;
409 struct task_group
*tg
;
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
427 cpumask_var_t online
;
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
433 cpumask_var_t rto_mask
;
435 struct cpupri cpupri
;
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
442 static struct root_domain def_root_domain
;
444 #endif /* CONFIG_SMP */
447 * This is the main, per-CPU runqueue data structure.
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
461 unsigned long nr_running
;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
464 unsigned long last_load_update_tick
;
467 unsigned char nohz_balance_kick
;
469 int skip_clock_update
;
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load
;
473 unsigned long nr_load_updates
;
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list
;
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list
;
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
493 unsigned long nr_uninterruptible
;
495 struct task_struct
*curr
, *idle
, *stop
;
496 unsigned long next_balance
;
497 struct mm_struct
*prev_mm
;
505 struct root_domain
*rd
;
506 struct sched_domain
*sd
;
508 unsigned long cpu_power
;
510 unsigned char idle_at_tick
;
511 /* For active balancing */
515 struct cpu_stop_work active_balance_work
;
516 /* cpu of this runqueue: */
520 unsigned long avg_load_per_task
;
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 /* calc_load related fields */
533 unsigned long calc_load_update
;
534 long calc_load_active
;
536 #ifdef CONFIG_SCHED_HRTICK
538 int hrtick_csd_pending
;
539 struct call_single_data hrtick_csd
;
541 struct hrtimer hrtick_timer
;
544 #ifdef CONFIG_SCHEDSTATS
546 struct sched_info rq_sched_info
;
547 unsigned long long rq_cpu_time
;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
550 /* sys_sched_yield() stats */
551 unsigned int yld_count
;
553 /* schedule() stats */
554 unsigned int sched_switch
;
555 unsigned int sched_count
;
556 unsigned int sched_goidle
;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count
;
560 unsigned int ttwu_local
;
564 struct task_struct
*wake_list
;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
571 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
573 static inline int cpu_of(struct rq
*rq
)
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group
*task_group(struct task_struct
*p
)
615 struct task_group
*tg
;
616 struct cgroup_subsys_state
*css
;
618 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
619 lockdep_is_held(&p
->pi_lock
));
620 tg
= container_of(css
, struct task_group
, css
);
622 return autogroup_task_group(p
, tg
);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
630 p
->se
.parent
= task_group(p
)->se
[cpu
];
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
635 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
642 static inline struct task_group
*task_group(struct task_struct
*p
)
647 #endif /* CONFIG_CGROUP_SCHED */
649 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
651 static void update_rq_clock(struct rq
*rq
)
655 if (rq
->skip_clock_update
> 0)
658 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
660 update_rq_clock_task(rq
, delta
);
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
669 # define const_debug static const
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
679 int runqueue_is_locked(int cpu
)
681 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
685 * Debugging: various feature bits
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
692 #include "sched_features.h"
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
700 const_debug
unsigned int sysctl_sched_features
=
701 #include "sched_features.h"
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
710 static __read_mostly
char *sched_feat_names
[] = {
711 #include "sched_features.h"
717 static int sched_feat_show(struct seq_file
*m
, void *v
)
721 for (i
= 0; sched_feat_names
[i
]; i
++) {
722 if (!(sysctl_sched_features
& (1UL << i
)))
724 seq_printf(m
, "%s ", sched_feat_names
[i
]);
732 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
733 size_t cnt
, loff_t
*ppos
)
743 if (copy_from_user(&buf
, ubuf
, cnt
))
749 if (strncmp(cmp
, "NO_", 3) == 0) {
754 for (i
= 0; sched_feat_names
[i
]; i
++) {
755 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
757 sysctl_sched_features
&= ~(1UL << i
);
759 sysctl_sched_features
|= (1UL << i
);
764 if (!sched_feat_names
[i
])
772 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
774 return single_open(filp
, sched_feat_show
, NULL
);
777 static const struct file_operations sched_feat_fops
= {
778 .open
= sched_feat_open
,
779 .write
= sched_feat_write
,
782 .release
= single_release
,
785 static __init
int sched_init_debug(void)
787 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
792 late_initcall(sched_init_debug
);
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
802 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
805 * period over which we average the RT time consumption, measured
810 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
813 * period over which we measure -rt task cpu usage in us.
816 unsigned int sysctl_sched_rt_period
= 1000000;
818 static __read_mostly
int scheduler_running
;
821 * part of the period that we allow rt tasks to run in us.
824 int sysctl_sched_rt_runtime
= 950000;
826 static inline u64
global_rt_period(void)
828 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
831 static inline u64
global_rt_runtime(void)
833 if (sysctl_sched_rt_runtime
< 0)
836 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
846 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
848 return rq
->curr
== p
;
851 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
856 return task_current(rq
, p
);
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
873 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq
->lock
.owner
= current
;
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
893 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
895 raw_spin_unlock_irq(&rq
->lock
);
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq
->lock
);
912 raw_spin_unlock(&rq
->lock
);
916 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the rq @p resides on.
936 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
941 lockdep_assert_held(&p
->pi_lock
);
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
955 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
956 __acquires(p
->pi_lock
)
962 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
964 raw_spin_lock(&rq
->lock
);
965 if (likely(rq
== task_rq(p
)))
967 raw_spin_unlock(&rq
->lock
);
968 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
972 static void __task_rq_unlock(struct rq
*rq
)
975 raw_spin_unlock(&rq
->lock
);
979 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
981 __releases(p
->pi_lock
)
983 raw_spin_unlock(&rq
->lock
);
984 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq
*this_rq_lock(void)
997 raw_spin_lock(&rq
->lock
);
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq
*rq
)
1021 if (!sched_feat(HRTICK
))
1023 if (!cpu_active(cpu_of(rq
)))
1025 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1028 static void hrtick_clear(struct rq
*rq
)
1030 if (hrtimer_active(&rq
->hrtick_timer
))
1031 hrtimer_cancel(&rq
->hrtick_timer
);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1040 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1042 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1044 raw_spin_lock(&rq
->lock
);
1045 update_rq_clock(rq
);
1046 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1047 raw_spin_unlock(&rq
->lock
);
1049 return HRTIMER_NORESTART
;
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg
)
1058 struct rq
*rq
= arg
;
1060 raw_spin_lock(&rq
->lock
);
1061 hrtimer_restart(&rq
->hrtick_timer
);
1062 rq
->hrtick_csd_pending
= 0;
1063 raw_spin_unlock(&rq
->lock
);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq
*rq
, u64 delay
)
1073 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1074 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1076 hrtimer_set_expires(timer
, time
);
1078 if (rq
== this_rq()) {
1079 hrtimer_restart(timer
);
1080 } else if (!rq
->hrtick_csd_pending
) {
1081 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1082 rq
->hrtick_csd_pending
= 1;
1087 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1089 int cpu
= (int)(long)hcpu
;
1092 case CPU_UP_CANCELED
:
1093 case CPU_UP_CANCELED_FROZEN
:
1094 case CPU_DOWN_PREPARE
:
1095 case CPU_DOWN_PREPARE_FROZEN
:
1097 case CPU_DEAD_FROZEN
:
1098 hrtick_clear(cpu_rq(cpu
));
1105 static __init
void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick
, 0);
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq
*rq
, u64 delay
)
1117 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1118 HRTIMER_MODE_REL_PINNED
, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq
*rq
)
1129 rq
->hrtick_csd_pending
= 0;
1131 rq
->hrtick_csd
.flags
= 0;
1132 rq
->hrtick_csd
.func
= __hrtick_start
;
1133 rq
->hrtick_csd
.info
= rq
;
1136 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1137 rq
->hrtick_timer
.function
= hrtick
;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq
*rq
)
1144 static inline void init_rq_hrtick(struct rq
*rq
)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 static void resched_task(struct task_struct
*p
)
1170 assert_raw_spin_locked(&task_rq(p
)->lock
);
1172 if (test_tsk_need_resched(p
))
1175 set_tsk_need_resched(p
);
1178 if (cpu
== smp_processor_id())
1181 /* NEED_RESCHED must be visible before we test polling */
1183 if (!tsk_is_polling(p
))
1184 smp_send_reschedule(cpu
);
1187 static void resched_cpu(int cpu
)
1189 struct rq
*rq
= cpu_rq(cpu
);
1190 unsigned long flags
;
1192 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1194 resched_task(cpu_curr(cpu
));
1195 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 int get_nohz_timer_target(void)
1209 int cpu
= smp_processor_id();
1211 struct sched_domain
*sd
;
1214 for_each_domain(cpu
, sd
) {
1215 for_each_cpu(i
, sched_domain_span(sd
)) {
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1236 void wake_up_idle_cpu(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1240 if (cpu
== smp_processor_id())
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1250 if (rq
->curr
!= rq
->idle
)
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1258 set_tsk_need_resched(rq
->idle
);
1260 /* NEED_RESCHED must be visible before we test polling */
1262 if (!tsk_is_polling(rq
->idle
))
1263 smp_send_reschedule(cpu
);
1266 #endif /* CONFIG_NO_HZ */
1268 static u64
sched_avg_period(void)
1270 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1273 static void sched_avg_update(struct rq
*rq
)
1275 s64 period
= sched_avg_period();
1277 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1283 asm("" : "+rm" (rq
->age_stamp
));
1284 rq
->age_stamp
+= period
;
1289 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1291 rq
->rt_avg
+= rt_delta
;
1292 sched_avg_update(rq
);
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct
*p
)
1298 assert_raw_spin_locked(&task_rq(p
)->lock
);
1299 set_tsk_need_resched(p
);
1302 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1306 static void sched_avg_update(struct rq
*rq
)
1309 #endif /* CONFIG_SMP */
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1314 # define WMULT_CONST (1UL << 32)
1317 #define WMULT_SHIFT 32
1320 * Shift right and round:
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325 * delta *= weight / lw
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1329 struct load_weight
*lw
)
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1338 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1339 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1341 tmp
= (u64
)delta_exec
;
1343 if (!lw
->inv_weight
) {
1344 unsigned long w
= scale_load_down(lw
->weight
);
1346 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1348 else if (unlikely(!w
))
1349 lw
->inv_weight
= WMULT_CONST
;
1351 lw
->inv_weight
= WMULT_CONST
/ w
;
1355 * Check whether we'd overflow the 64-bit multiplication:
1357 if (unlikely(tmp
> WMULT_CONST
))
1358 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1361 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1363 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1366 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1372 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1378 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1393 #define WEIGHT_IDLEPRIO 3
1394 #define WMULT_IDLEPRIO 1431655765
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1408 static const int prio_to_weight
[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1426 static const u32 prio_to_wmult
[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1437 /* Time spent by the tasks of the cpu accounting group executing in ... */
1438 enum cpuacct_stat_index
{
1439 CPUACCT_STAT_USER
, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1442 CPUACCT_STAT_NSTATS
,
1445 #ifdef CONFIG_CGROUP_CPUACCT
1446 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1447 static void cpuacct_update_stats(struct task_struct
*tsk
,
1448 enum cpuacct_stat_index idx
, cputime_t val
);
1450 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1451 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1452 enum cpuacct_stat_index idx
, cputime_t val
) {}
1455 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1457 update_load_add(&rq
->load
, load
);
1460 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1462 update_load_sub(&rq
->load
, load
);
1465 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1466 typedef int (*tg_visitor
)(struct task_group
*, void *);
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1472 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1474 struct task_group
*parent
, *child
;
1478 parent
= &root_task_group
;
1480 ret
= (*down
)(parent
, data
);
1483 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1490 ret
= (*up
)(parent
, data
);
1495 parent
= parent
->parent
;
1504 static int tg_nop(struct task_group
*tg
, void *data
)
1511 /* Used instead of source_load when we know the type == 0 */
1512 static unsigned long weighted_cpuload(const int cpu
)
1514 return cpu_rq(cpu
)->load
.weight
;
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1524 static unsigned long source_load(int cpu
, int type
)
1526 struct rq
*rq
= cpu_rq(cpu
);
1527 unsigned long total
= weighted_cpuload(cpu
);
1529 if (type
== 0 || !sched_feat(LB_BIAS
))
1532 return min(rq
->cpu_load
[type
-1], total
);
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1539 static unsigned long target_load(int cpu
, int type
)
1541 struct rq
*rq
= cpu_rq(cpu
);
1542 unsigned long total
= weighted_cpuload(cpu
);
1544 if (type
== 0 || !sched_feat(LB_BIAS
))
1547 return max(rq
->cpu_load
[type
-1], total
);
1550 static unsigned long power_of(int cpu
)
1552 return cpu_rq(cpu
)->cpu_power
;
1555 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1557 static unsigned long cpu_avg_load_per_task(int cpu
)
1559 struct rq
*rq
= cpu_rq(cpu
);
1560 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1563 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1565 rq
->avg_load_per_task
= 0;
1567 return rq
->avg_load_per_task
;
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group
*tg
, void *data
)
1580 long cpu
= (long)data
;
1583 load
= cpu_rq(cpu
)->load
.weight
;
1585 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1586 load
*= tg
->se
[cpu
]->load
.weight
;
1587 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1590 tg
->cfs_rq
[cpu
]->h_load
= load
;
1595 static void update_h_load(long cpu
)
1597 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1602 #ifdef CONFIG_PREEMPT
1604 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
1614 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1615 __releases(this_rq
->lock
)
1616 __acquires(busiest
->lock
)
1617 __acquires(this_rq
->lock
)
1619 raw_spin_unlock(&this_rq
->lock
);
1620 double_rq_lock(this_rq
, busiest
);
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1633 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1634 __releases(this_rq
->lock
)
1635 __acquires(busiest
->lock
)
1636 __acquires(this_rq
->lock
)
1640 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1641 if (busiest
< this_rq
) {
1642 raw_spin_unlock(&this_rq
->lock
);
1643 raw_spin_lock(&busiest
->lock
);
1644 raw_spin_lock_nested(&this_rq
->lock
,
1645 SINGLE_DEPTH_NESTING
);
1648 raw_spin_lock_nested(&busiest
->lock
,
1649 SINGLE_DEPTH_NESTING
);
1654 #endif /* CONFIG_PREEMPT */
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1659 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
1663 raw_spin_unlock(&this_rq
->lock
);
1667 return _double_lock_balance(this_rq
, busiest
);
1670 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1671 __releases(busiest
->lock
)
1673 raw_spin_unlock(&busiest
->lock
);
1674 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1678 * double_rq_lock - safely lock two runqueues
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1683 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1684 __acquires(rq1
->lock
)
1685 __acquires(rq2
->lock
)
1687 BUG_ON(!irqs_disabled());
1689 raw_spin_lock(&rq1
->lock
);
1690 __acquire(rq2
->lock
); /* Fake it out ;) */
1693 raw_spin_lock(&rq1
->lock
);
1694 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1696 raw_spin_lock(&rq2
->lock
);
1697 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1703 * double_rq_unlock - safely unlock two runqueues
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1708 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1709 __releases(rq1
->lock
)
1710 __releases(rq2
->lock
)
1712 raw_spin_unlock(&rq1
->lock
);
1714 raw_spin_unlock(&rq2
->lock
);
1716 __release(rq2
->lock
);
1719 #else /* CONFIG_SMP */
1722 * double_rq_lock - safely lock two runqueues
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1727 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1728 __acquires(rq1
->lock
)
1729 __acquires(rq2
->lock
)
1731 BUG_ON(!irqs_disabled());
1733 raw_spin_lock(&rq1
->lock
);
1734 __acquire(rq2
->lock
); /* Fake it out ;) */
1738 * double_rq_unlock - safely unlock two runqueues
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1743 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1744 __releases(rq1
->lock
)
1745 __releases(rq2
->lock
)
1748 raw_spin_unlock(&rq1
->lock
);
1749 __release(rq2
->lock
);
1754 static void calc_load_account_idle(struct rq
*this_rq
);
1755 static void update_sysctl(void);
1756 static int get_update_sysctl_factor(void);
1757 static void update_cpu_load(struct rq
*this_rq
);
1759 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1761 set_task_rq(p
, cpu
);
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1769 task_thread_info(p
)->cpu
= cpu
;
1773 static const struct sched_class rt_sched_class
;
1775 #define sched_class_highest (&stop_sched_class)
1776 #define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
1779 #include "sched_stats.h"
1781 static void inc_nr_running(struct rq
*rq
)
1786 static void dec_nr_running(struct rq
*rq
)
1791 static void set_load_weight(struct task_struct
*p
)
1793 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1794 struct load_weight
*load
= &p
->se
.load
;
1797 * SCHED_IDLE tasks get minimal weight:
1799 if (p
->policy
== SCHED_IDLE
) {
1800 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1801 load
->inv_weight
= WMULT_IDLEPRIO
;
1805 load
->weight
= scale_load(prio_to_weight
[prio
]);
1806 load
->inv_weight
= prio_to_wmult
[prio
];
1809 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1811 update_rq_clock(rq
);
1812 sched_info_queued(p
);
1813 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1816 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1818 update_rq_clock(rq
);
1819 sched_info_dequeued(p
);
1820 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1824 * activate_task - move a task to the runqueue.
1826 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1828 if (task_contributes_to_load(p
))
1829 rq
->nr_uninterruptible
--;
1831 enqueue_task(rq
, p
, flags
);
1836 * deactivate_task - remove a task from the runqueue.
1838 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1840 if (task_contributes_to_load(p
))
1841 rq
->nr_uninterruptible
++;
1843 dequeue_task(rq
, p
, flags
);
1847 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
1860 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1861 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1863 static DEFINE_PER_CPU(u64
, irq_start_time
);
1864 static int sched_clock_irqtime
;
1866 void enable_sched_clock_irqtime(void)
1868 sched_clock_irqtime
= 1;
1871 void disable_sched_clock_irqtime(void)
1873 sched_clock_irqtime
= 0;
1876 #ifndef CONFIG_64BIT
1877 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1879 static inline void irq_time_write_begin(void)
1881 __this_cpu_inc(irq_time_seq
.sequence
);
1885 static inline void irq_time_write_end(void)
1888 __this_cpu_inc(irq_time_seq
.sequence
);
1891 static inline u64
irq_time_read(int cpu
)
1897 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1898 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1899 per_cpu(cpu_hardirq_time
, cpu
);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1904 #else /* CONFIG_64BIT */
1905 static inline void irq_time_write_begin(void)
1909 static inline void irq_time_write_end(void)
1913 static inline u64
irq_time_read(int cpu
)
1915 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1917 #endif /* CONFIG_64BIT */
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1923 void account_system_vtime(struct task_struct
*curr
)
1925 unsigned long flags
;
1929 if (!sched_clock_irqtime
)
1932 local_irq_save(flags
);
1934 cpu
= smp_processor_id();
1935 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1936 __this_cpu_add(irq_start_time
, delta
);
1938 irq_time_write_begin();
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1945 if (hardirq_count())
1946 __this_cpu_add(cpu_hardirq_time
, delta
);
1947 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1948 __this_cpu_add(cpu_softirq_time
, delta
);
1950 irq_time_write_end();
1951 local_irq_restore(flags
);
1953 EXPORT_SYMBOL_GPL(account_system_vtime
);
1955 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1959 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1976 if (irq_delta
> delta
)
1979 rq
->prev_irq_time
+= irq_delta
;
1981 rq
->clock_task
+= delta
;
1983 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
1984 sched_rt_avg_update(rq
, irq_delta
);
1987 static int irqtime_account_hi_update(void)
1989 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1990 unsigned long flags
;
1994 local_irq_save(flags
);
1995 latest_ns
= this_cpu_read(cpu_hardirq_time
);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
1998 local_irq_restore(flags
);
2002 static int irqtime_account_si_update(void)
2004 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2005 unsigned long flags
;
2009 local_irq_save(flags
);
2010 latest_ns
= this_cpu_read(cpu_softirq_time
);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2013 local_irq_restore(flags
);
2017 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2019 #define sched_clock_irqtime (0)
2021 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2023 rq
->clock_task
+= delta
;
2026 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2028 #include "sched_idletask.c"
2029 #include "sched_fair.c"
2030 #include "sched_rt.c"
2031 #include "sched_autogroup.c"
2032 #include "sched_stoptask.c"
2033 #ifdef CONFIG_SCHED_DEBUG
2034 # include "sched_debug.c"
2037 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2039 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2040 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2051 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2053 stop
->sched_class
= &stop_sched_class
;
2056 cpu_rq(cpu
)->stop
= stop
;
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2063 old_stop
->sched_class
= &rt_sched_class
;
2068 * __normal_prio - return the priority that is based on the static prio
2070 static inline int __normal_prio(struct task_struct
*p
)
2072 return p
->static_prio
;
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2082 static inline int normal_prio(struct task_struct
*p
)
2086 if (task_has_rt_policy(p
))
2087 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2089 prio
= __normal_prio(p
);
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2100 static int effective_prio(struct task_struct
*p
)
2102 p
->normal_prio
= normal_prio(p
);
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2108 if (!rt_prio(p
->prio
))
2109 return p
->normal_prio
;
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2117 inline int task_curr(const struct task_struct
*p
)
2119 return cpu_curr(task_cpu(p
)) == p
;
2122 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2123 const struct sched_class
*prev_class
,
2126 if (prev_class
!= p
->sched_class
) {
2127 if (prev_class
->switched_from
)
2128 prev_class
->switched_from(rq
, p
);
2129 p
->sched_class
->switched_to(rq
, p
);
2130 } else if (oldprio
!= p
->prio
)
2131 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2134 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2136 const struct sched_class
*class;
2138 if (p
->sched_class
== rq
->curr
->sched_class
) {
2139 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2141 for_each_class(class) {
2142 if (class == rq
->curr
->sched_class
)
2144 if (class == p
->sched_class
) {
2145 resched_task(rq
->curr
);
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2155 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2156 rq
->skip_clock_update
= 1;
2161 * Is this task likely cache-hot:
2164 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2168 if (p
->sched_class
!= &fair_sched_class
)
2171 if (unlikely(p
->policy
== SCHED_IDLE
))
2175 * Buddy candidates are cache hot:
2177 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2178 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2179 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2182 if (sysctl_sched_migration_cost
== -1)
2184 if (sysctl_sched_migration_cost
== 0)
2187 delta
= now
- p
->se
.exec_start
;
2189 return delta
< (s64
)sysctl_sched_migration_cost
;
2192 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2194 #ifdef CONFIG_SCHED_DEBUG
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2199 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2200 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2202 #ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2204 lockdep_is_held(&task_rq(p
)->lock
)));
2208 trace_sched_migrate_task(p
, new_cpu
);
2210 if (task_cpu(p
) != new_cpu
) {
2211 p
->se
.nr_migrations
++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2215 __set_task_cpu(p
, new_cpu
);
2218 struct migration_arg
{
2219 struct task_struct
*task
;
2223 static int migration_cpu_stop(void *data
);
2226 * wait_task_inactive - wait for a thread to unschedule.
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2241 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2243 unsigned long flags
;
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2268 while (task_running(rq
, p
)) {
2269 if (match_state
&& unlikely(p
->state
!= match_state
))
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2279 rq
= task_rq_lock(p
, &flags
);
2280 trace_sched_wait_task(p
);
2281 running
= task_running(rq
, p
);
2284 if (!match_state
|| p
->state
== match_state
)
2285 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2286 task_rq_unlock(rq
, p
, &flags
);
2289 * If it changed from the expected state, bail out now.
2291 if (unlikely(!ncsw
))
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2298 * Oops. Go back and try again..
2300 if (unlikely(running
)) {
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2310 * So if it was still runnable (but just not actively
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2314 if (unlikely(on_rq
)) {
2315 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2317 set_current_state(TASK_UNINTERRUPTIBLE
);
2318 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2340 * NOTE: this function doesn't have to take the runqueue lock,
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2346 void kick_process(struct task_struct
*p
)
2352 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2353 smp_send_reschedule(cpu
);
2356 EXPORT_SYMBOL_GPL(kick_process
);
2357 #endif /* CONFIG_SMP */
2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2363 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2366 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2370 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2373 /* Any allowed, online CPU? */
2374 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2375 if (dest_cpu
< nr_cpu_ids
)
2378 /* No more Mr. Nice Guy. */
2379 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2385 if (p
->mm
&& printk_ratelimit()) {
2386 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p
), p
->comm
, cpu
);
2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2397 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2399 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2406 * Since this is common to all placement strategies, this lives here.
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2411 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2413 cpu
= select_fallback_rq(task_cpu(p
), p
);
2418 static void update_avg(u64
*avg
, u64 sample
)
2420 s64 diff
= sample
- *avg
;
2426 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2428 #ifdef CONFIG_SCHEDSTATS
2429 struct rq
*rq
= this_rq();
2432 int this_cpu
= smp_processor_id();
2434 if (cpu
== this_cpu
) {
2435 schedstat_inc(rq
, ttwu_local
);
2436 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2438 struct sched_domain
*sd
;
2440 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2442 for_each_domain(this_cpu
, sd
) {
2443 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2444 schedstat_inc(sd
, ttwu_wake_remote
);
2450 #endif /* CONFIG_SMP */
2452 schedstat_inc(rq
, ttwu_count
);
2453 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2455 if (wake_flags
& WF_SYNC
)
2456 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2458 if (cpu
!= task_cpu(p
))
2459 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2461 #endif /* CONFIG_SCHEDSTATS */
2464 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2466 activate_task(rq
, p
, en_flags
);
2469 /* if a worker is waking up, notify workqueue */
2470 if (p
->flags
& PF_WQ_WORKER
)
2471 wq_worker_waking_up(p
, cpu_of(rq
));
2475 * Mark the task runnable and perform wakeup-preemption.
2478 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2480 trace_sched_wakeup(p
, true);
2481 check_preempt_curr(rq
, p
, wake_flags
);
2483 p
->state
= TASK_RUNNING
;
2485 if (p
->sched_class
->task_woken
)
2486 p
->sched_class
->task_woken(rq
, p
);
2488 if (unlikely(rq
->idle_stamp
)) {
2489 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2490 u64 max
= 2*sysctl_sched_migration_cost
;
2495 update_avg(&rq
->avg_idle
, delta
);
2502 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2505 if (p
->sched_contributes_to_load
)
2506 rq
->nr_uninterruptible
--;
2509 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2510 ttwu_do_wakeup(rq
, p
, wake_flags
);
2514 * Called in case the task @p isn't fully descheduled from its runqueue,
2515 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2516 * since all we need to do is flip p->state to TASK_RUNNING, since
2517 * the task is still ->on_rq.
2519 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2524 rq
= __task_rq_lock(p
);
2526 ttwu_do_wakeup(rq
, p
, wake_flags
);
2529 __task_rq_unlock(rq
);
2535 static void sched_ttwu_pending(void)
2537 struct rq
*rq
= this_rq();
2538 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2543 raw_spin_lock(&rq
->lock
);
2546 struct task_struct
*p
= list
;
2547 list
= list
->wake_entry
;
2548 ttwu_do_activate(rq
, p
, 0);
2551 raw_spin_unlock(&rq
->lock
);
2554 void scheduler_ipi(void)
2556 sched_ttwu_pending();
2559 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2561 struct rq
*rq
= cpu_rq(cpu
);
2562 struct task_struct
*next
= rq
->wake_list
;
2565 struct task_struct
*old
= next
;
2567 p
->wake_entry
= next
;
2568 next
= cmpxchg(&rq
->wake_list
, old
, p
);
2574 smp_send_reschedule(cpu
);
2578 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2580 struct rq
*rq
= cpu_rq(cpu
);
2582 #if defined(CONFIG_SMP)
2583 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2584 ttwu_queue_remote(p
, cpu
);
2589 raw_spin_lock(&rq
->lock
);
2590 ttwu_do_activate(rq
, p
, 0);
2591 raw_spin_unlock(&rq
->lock
);
2595 * try_to_wake_up - wake up a thread
2596 * @p: the thread to be awakened
2597 * @state: the mask of task states that can be woken
2598 * @wake_flags: wake modifier flags (WF_*)
2600 * Put it on the run-queue if it's not already there. The "current"
2601 * thread is always on the run-queue (except when the actual
2602 * re-schedule is in progress), and as such you're allowed to do
2603 * the simpler "current->state = TASK_RUNNING" to mark yourself
2604 * runnable without the overhead of this.
2606 * Returns %true if @p was woken up, %false if it was already running
2607 * or @state didn't match @p's state.
2610 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2612 unsigned long flags
;
2613 int cpu
, success
= 0;
2616 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2617 if (!(p
->state
& state
))
2620 success
= 1; /* we're going to change ->state */
2623 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2628 * If the owning (remote) cpu is still in the middle of schedule() with
2629 * this task as prev, wait until its done referencing the task.
2632 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2634 * If called from interrupt context we could have landed in the
2635 * middle of schedule(), in this case we should take care not
2636 * to spin on ->on_cpu if p is current, since that would
2647 * Pairs with the smp_wmb() in finish_lock_switch().
2651 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2652 p
->state
= TASK_WAKING
;
2654 if (p
->sched_class
->task_waking
)
2655 p
->sched_class
->task_waking(p
);
2657 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2658 if (task_cpu(p
) != cpu
)
2659 set_task_cpu(p
, cpu
);
2660 #endif /* CONFIG_SMP */
2664 ttwu_stat(p
, cpu
, wake_flags
);
2666 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2672 * try_to_wake_up_local - try to wake up a local task with rq lock held
2673 * @p: the thread to be awakened
2675 * Put @p on the run-queue if it's not already there. The caller must
2676 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2679 static void try_to_wake_up_local(struct task_struct
*p
)
2681 struct rq
*rq
= task_rq(p
);
2683 BUG_ON(rq
!= this_rq());
2684 BUG_ON(p
== current
);
2685 lockdep_assert_held(&rq
->lock
);
2687 if (!raw_spin_trylock(&p
->pi_lock
)) {
2688 raw_spin_unlock(&rq
->lock
);
2689 raw_spin_lock(&p
->pi_lock
);
2690 raw_spin_lock(&rq
->lock
);
2693 if (!(p
->state
& TASK_NORMAL
))
2697 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2699 ttwu_do_wakeup(rq
, p
, 0);
2700 ttwu_stat(p
, smp_processor_id(), 0);
2702 raw_spin_unlock(&p
->pi_lock
);
2706 * wake_up_process - Wake up a specific process
2707 * @p: The process to be woken up.
2709 * Attempt to wake up the nominated process and move it to the set of runnable
2710 * processes. Returns 1 if the process was woken up, 0 if it was already
2713 * It may be assumed that this function implies a write memory barrier before
2714 * changing the task state if and only if any tasks are woken up.
2716 int wake_up_process(struct task_struct
*p
)
2718 return try_to_wake_up(p
, TASK_ALL
, 0);
2720 EXPORT_SYMBOL(wake_up_process
);
2722 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2724 return try_to_wake_up(p
, state
, 0);
2728 * Perform scheduler related setup for a newly forked process p.
2729 * p is forked by current.
2731 * __sched_fork() is basic setup used by init_idle() too:
2733 static void __sched_fork(struct task_struct
*p
)
2738 p
->se
.exec_start
= 0;
2739 p
->se
.sum_exec_runtime
= 0;
2740 p
->se
.prev_sum_exec_runtime
= 0;
2741 p
->se
.nr_migrations
= 0;
2743 INIT_LIST_HEAD(&p
->se
.group_node
);
2745 #ifdef CONFIG_SCHEDSTATS
2746 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2749 INIT_LIST_HEAD(&p
->rt
.run_list
);
2751 #ifdef CONFIG_PREEMPT_NOTIFIERS
2752 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2757 * fork()/clone()-time setup:
2759 void sched_fork(struct task_struct
*p
)
2761 unsigned long flags
;
2762 int cpu
= get_cpu();
2766 * We mark the process as running here. This guarantees that
2767 * nobody will actually run it, and a signal or other external
2768 * event cannot wake it up and insert it on the runqueue either.
2770 p
->state
= TASK_RUNNING
;
2773 * Revert to default priority/policy on fork if requested.
2775 if (unlikely(p
->sched_reset_on_fork
)) {
2776 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2777 p
->policy
= SCHED_NORMAL
;
2778 p
->normal_prio
= p
->static_prio
;
2781 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2782 p
->static_prio
= NICE_TO_PRIO(0);
2783 p
->normal_prio
= p
->static_prio
;
2788 * We don't need the reset flag anymore after the fork. It has
2789 * fulfilled its duty:
2791 p
->sched_reset_on_fork
= 0;
2795 * Make sure we do not leak PI boosting priority to the child.
2797 p
->prio
= current
->normal_prio
;
2799 if (!rt_prio(p
->prio
))
2800 p
->sched_class
= &fair_sched_class
;
2802 if (p
->sched_class
->task_fork
)
2803 p
->sched_class
->task_fork(p
);
2806 * The child is not yet in the pid-hash so no cgroup attach races,
2807 * and the cgroup is pinned to this child due to cgroup_fork()
2808 * is ran before sched_fork().
2810 * Silence PROVE_RCU.
2812 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2813 set_task_cpu(p
, cpu
);
2814 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2816 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2817 if (likely(sched_info_on()))
2818 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2820 #if defined(CONFIG_SMP)
2823 #ifdef CONFIG_PREEMPT
2824 /* Want to start with kernel preemption disabled. */
2825 task_thread_info(p
)->preempt_count
= 1;
2828 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2835 * wake_up_new_task - wake up a newly created task for the first time.
2837 * This function will do some initial scheduler statistics housekeeping
2838 * that must be done for every newly created context, then puts the task
2839 * on the runqueue and wakes it.
2841 void wake_up_new_task(struct task_struct
*p
)
2843 unsigned long flags
;
2846 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2849 * Fork balancing, do it here and not earlier because:
2850 * - cpus_allowed can change in the fork path
2851 * - any previously selected cpu might disappear through hotplug
2853 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
2856 rq
= __task_rq_lock(p
);
2857 activate_task(rq
, p
, 0);
2859 trace_sched_wakeup_new(p
, true);
2860 check_preempt_curr(rq
, p
, WF_FORK
);
2862 if (p
->sched_class
->task_woken
)
2863 p
->sched_class
->task_woken(rq
, p
);
2865 task_rq_unlock(rq
, p
, &flags
);
2868 #ifdef CONFIG_PREEMPT_NOTIFIERS
2871 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2872 * @notifier: notifier struct to register
2874 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2876 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2878 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2881 * preempt_notifier_unregister - no longer interested in preemption notifications
2882 * @notifier: notifier struct to unregister
2884 * This is safe to call from within a preemption notifier.
2886 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2888 hlist_del(¬ifier
->link
);
2890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2892 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2894 struct preempt_notifier
*notifier
;
2895 struct hlist_node
*node
;
2897 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2898 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2902 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2903 struct task_struct
*next
)
2905 struct preempt_notifier
*notifier
;
2906 struct hlist_node
*node
;
2908 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2909 notifier
->ops
->sched_out(notifier
, next
);
2912 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2914 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2919 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2920 struct task_struct
*next
)
2924 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2927 * prepare_task_switch - prepare to switch tasks
2928 * @rq: the runqueue preparing to switch
2929 * @prev: the current task that is being switched out
2930 * @next: the task we are going to switch to.
2932 * This is called with the rq lock held and interrupts off. It must
2933 * be paired with a subsequent finish_task_switch after the context
2936 * prepare_task_switch sets up locking and calls architecture specific
2940 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2941 struct task_struct
*next
)
2943 sched_info_switch(prev
, next
);
2944 perf_event_task_sched_out(prev
, next
);
2945 fire_sched_out_preempt_notifiers(prev
, next
);
2946 prepare_lock_switch(rq
, next
);
2947 prepare_arch_switch(next
);
2948 trace_sched_switch(prev
, next
);
2952 * finish_task_switch - clean up after a task-switch
2953 * @rq: runqueue associated with task-switch
2954 * @prev: the thread we just switched away from.
2956 * finish_task_switch must be called after the context switch, paired
2957 * with a prepare_task_switch call before the context switch.
2958 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2959 * and do any other architecture-specific cleanup actions.
2961 * Note that we may have delayed dropping an mm in context_switch(). If
2962 * so, we finish that here outside of the runqueue lock. (Doing it
2963 * with the lock held can cause deadlocks; see schedule() for
2966 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2967 __releases(rq
->lock
)
2969 struct mm_struct
*mm
= rq
->prev_mm
;
2975 * A task struct has one reference for the use as "current".
2976 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2977 * schedule one last time. The schedule call will never return, and
2978 * the scheduled task must drop that reference.
2979 * The test for TASK_DEAD must occur while the runqueue locks are
2980 * still held, otherwise prev could be scheduled on another cpu, die
2981 * there before we look at prev->state, and then the reference would
2983 * Manfred Spraul <manfred@colorfullife.com>
2985 prev_state
= prev
->state
;
2986 finish_arch_switch(prev
);
2987 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2988 local_irq_disable();
2989 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2990 perf_event_task_sched_in(current
);
2991 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2993 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2994 finish_lock_switch(rq
, prev
);
2996 fire_sched_in_preempt_notifiers(current
);
2999 if (unlikely(prev_state
== TASK_DEAD
)) {
3001 * Remove function-return probe instances associated with this
3002 * task and put them back on the free list.
3004 kprobe_flush_task(prev
);
3005 put_task_struct(prev
);
3011 /* assumes rq->lock is held */
3012 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3014 if (prev
->sched_class
->pre_schedule
)
3015 prev
->sched_class
->pre_schedule(rq
, prev
);
3018 /* rq->lock is NOT held, but preemption is disabled */
3019 static inline void post_schedule(struct rq
*rq
)
3021 if (rq
->post_schedule
) {
3022 unsigned long flags
;
3024 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3025 if (rq
->curr
->sched_class
->post_schedule
)
3026 rq
->curr
->sched_class
->post_schedule(rq
);
3027 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3029 rq
->post_schedule
= 0;
3035 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3039 static inline void post_schedule(struct rq
*rq
)
3046 * schedule_tail - first thing a freshly forked thread must call.
3047 * @prev: the thread we just switched away from.
3049 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3050 __releases(rq
->lock
)
3052 struct rq
*rq
= this_rq();
3054 finish_task_switch(rq
, prev
);
3057 * FIXME: do we need to worry about rq being invalidated by the
3062 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3063 /* In this case, finish_task_switch does not reenable preemption */
3066 if (current
->set_child_tid
)
3067 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3071 * context_switch - switch to the new MM and the new
3072 * thread's register state.
3075 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3076 struct task_struct
*next
)
3078 struct mm_struct
*mm
, *oldmm
;
3080 prepare_task_switch(rq
, prev
, next
);
3083 oldmm
= prev
->active_mm
;
3085 * For paravirt, this is coupled with an exit in switch_to to
3086 * combine the page table reload and the switch backend into
3089 arch_start_context_switch(prev
);
3092 next
->active_mm
= oldmm
;
3093 atomic_inc(&oldmm
->mm_count
);
3094 enter_lazy_tlb(oldmm
, next
);
3096 switch_mm(oldmm
, mm
, next
);
3099 prev
->active_mm
= NULL
;
3100 rq
->prev_mm
= oldmm
;
3103 * Since the runqueue lock will be released by the next
3104 * task (which is an invalid locking op but in the case
3105 * of the scheduler it's an obvious special-case), so we
3106 * do an early lockdep release here:
3108 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3109 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3112 /* Here we just switch the register state and the stack. */
3113 switch_to(prev
, next
, prev
);
3117 * this_rq must be evaluated again because prev may have moved
3118 * CPUs since it called schedule(), thus the 'rq' on its stack
3119 * frame will be invalid.
3121 finish_task_switch(this_rq(), prev
);
3125 * nr_running, nr_uninterruptible and nr_context_switches:
3127 * externally visible scheduler statistics: current number of runnable
3128 * threads, current number of uninterruptible-sleeping threads, total
3129 * number of context switches performed since bootup.
3131 unsigned long nr_running(void)
3133 unsigned long i
, sum
= 0;
3135 for_each_online_cpu(i
)
3136 sum
+= cpu_rq(i
)->nr_running
;
3141 unsigned long nr_uninterruptible(void)
3143 unsigned long i
, sum
= 0;
3145 for_each_possible_cpu(i
)
3146 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3149 * Since we read the counters lockless, it might be slightly
3150 * inaccurate. Do not allow it to go below zero though:
3152 if (unlikely((long)sum
< 0))
3158 unsigned long long nr_context_switches(void)
3161 unsigned long long sum
= 0;
3163 for_each_possible_cpu(i
)
3164 sum
+= cpu_rq(i
)->nr_switches
;
3169 unsigned long nr_iowait(void)
3171 unsigned long i
, sum
= 0;
3173 for_each_possible_cpu(i
)
3174 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3179 unsigned long nr_iowait_cpu(int cpu
)
3181 struct rq
*this = cpu_rq(cpu
);
3182 return atomic_read(&this->nr_iowait
);
3185 unsigned long this_cpu_load(void)
3187 struct rq
*this = this_rq();
3188 return this->cpu_load
[0];
3192 /* Variables and functions for calc_load */
3193 static atomic_long_t calc_load_tasks
;
3194 static unsigned long calc_load_update
;
3195 unsigned long avenrun
[3];
3196 EXPORT_SYMBOL(avenrun
);
3198 static long calc_load_fold_active(struct rq
*this_rq
)
3200 long nr_active
, delta
= 0;
3202 nr_active
= this_rq
->nr_running
;
3203 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3205 if (nr_active
!= this_rq
->calc_load_active
) {
3206 delta
= nr_active
- this_rq
->calc_load_active
;
3207 this_rq
->calc_load_active
= nr_active
;
3213 static unsigned long
3214 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3217 load
+= active
* (FIXED_1
- exp
);
3218 load
+= 1UL << (FSHIFT
- 1);
3219 return load
>> FSHIFT
;
3224 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3226 * When making the ILB scale, we should try to pull this in as well.
3228 static atomic_long_t calc_load_tasks_idle
;
3230 static void calc_load_account_idle(struct rq
*this_rq
)
3234 delta
= calc_load_fold_active(this_rq
);
3236 atomic_long_add(delta
, &calc_load_tasks_idle
);
3239 static long calc_load_fold_idle(void)
3244 * Its got a race, we don't care...
3246 if (atomic_long_read(&calc_load_tasks_idle
))
3247 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3253 * fixed_power_int - compute: x^n, in O(log n) time
3255 * @x: base of the power
3256 * @frac_bits: fractional bits of @x
3257 * @n: power to raise @x to.
3259 * By exploiting the relation between the definition of the natural power
3260 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3261 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3262 * (where: n_i \elem {0, 1}, the binary vector representing n),
3263 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3264 * of course trivially computable in O(log_2 n), the length of our binary
3267 static unsigned long
3268 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3270 unsigned long result
= 1UL << frac_bits
;
3275 result
+= 1UL << (frac_bits
- 1);
3276 result
>>= frac_bits
;
3282 x
+= 1UL << (frac_bits
- 1);
3290 * a1 = a0 * e + a * (1 - e)
3292 * a2 = a1 * e + a * (1 - e)
3293 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3294 * = a0 * e^2 + a * (1 - e) * (1 + e)
3296 * a3 = a2 * e + a * (1 - e)
3297 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3298 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3302 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3303 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3304 * = a0 * e^n + a * (1 - e^n)
3306 * [1] application of the geometric series:
3309 * S_n := \Sum x^i = -------------
3312 static unsigned long
3313 calc_load_n(unsigned long load
, unsigned long exp
,
3314 unsigned long active
, unsigned int n
)
3317 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3321 * NO_HZ can leave us missing all per-cpu ticks calling
3322 * calc_load_account_active(), but since an idle CPU folds its delta into
3323 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3324 * in the pending idle delta if our idle period crossed a load cycle boundary.
3326 * Once we've updated the global active value, we need to apply the exponential
3327 * weights adjusted to the number of cycles missed.
3329 static void calc_global_nohz(unsigned long ticks
)
3331 long delta
, active
, n
;
3333 if (time_before(jiffies
, calc_load_update
))
3337 * If we crossed a calc_load_update boundary, make sure to fold
3338 * any pending idle changes, the respective CPUs might have
3339 * missed the tick driven calc_load_account_active() update
3342 delta
= calc_load_fold_idle();
3344 atomic_long_add(delta
, &calc_load_tasks
);
3347 * If we were idle for multiple load cycles, apply them.
3349 if (ticks
>= LOAD_FREQ
) {
3350 n
= ticks
/ LOAD_FREQ
;
3352 active
= atomic_long_read(&calc_load_tasks
);
3353 active
= active
> 0 ? active
* FIXED_1
: 0;
3355 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3356 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3357 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3359 calc_load_update
+= n
* LOAD_FREQ
;
3363 * Its possible the remainder of the above division also crosses
3364 * a LOAD_FREQ period, the regular check in calc_global_load()
3365 * which comes after this will take care of that.
3367 * Consider us being 11 ticks before a cycle completion, and us
3368 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3369 * age us 4 cycles, and the test in calc_global_load() will
3370 * pick up the final one.
3374 static void calc_load_account_idle(struct rq
*this_rq
)
3378 static inline long calc_load_fold_idle(void)
3383 static void calc_global_nohz(unsigned long ticks
)
3389 * get_avenrun - get the load average array
3390 * @loads: pointer to dest load array
3391 * @offset: offset to add
3392 * @shift: shift count to shift the result left
3394 * These values are estimates at best, so no need for locking.
3396 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3398 loads
[0] = (avenrun
[0] + offset
) << shift
;
3399 loads
[1] = (avenrun
[1] + offset
) << shift
;
3400 loads
[2] = (avenrun
[2] + offset
) << shift
;
3404 * calc_load - update the avenrun load estimates 10 ticks after the
3405 * CPUs have updated calc_load_tasks.
3407 void calc_global_load(unsigned long ticks
)
3411 calc_global_nohz(ticks
);
3413 if (time_before(jiffies
, calc_load_update
+ 10))
3416 active
= atomic_long_read(&calc_load_tasks
);
3417 active
= active
> 0 ? active
* FIXED_1
: 0;
3419 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3420 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3421 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3423 calc_load_update
+= LOAD_FREQ
;
3427 * Called from update_cpu_load() to periodically update this CPU's
3430 static void calc_load_account_active(struct rq
*this_rq
)
3434 if (time_before(jiffies
, this_rq
->calc_load_update
))
3437 delta
= calc_load_fold_active(this_rq
);
3438 delta
+= calc_load_fold_idle();
3440 atomic_long_add(delta
, &calc_load_tasks
);
3442 this_rq
->calc_load_update
+= LOAD_FREQ
;
3446 * The exact cpuload at various idx values, calculated at every tick would be
3447 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3449 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3450 * on nth tick when cpu may be busy, then we have:
3451 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3452 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3454 * decay_load_missed() below does efficient calculation of
3455 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3456 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3458 * The calculation is approximated on a 128 point scale.
3459 * degrade_zero_ticks is the number of ticks after which load at any
3460 * particular idx is approximated to be zero.
3461 * degrade_factor is a precomputed table, a row for each load idx.
3462 * Each column corresponds to degradation factor for a power of two ticks,
3463 * based on 128 point scale.
3465 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3466 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3468 * With this power of 2 load factors, we can degrade the load n times
3469 * by looking at 1 bits in n and doing as many mult/shift instead of
3470 * n mult/shifts needed by the exact degradation.
3472 #define DEGRADE_SHIFT 7
3473 static const unsigned char
3474 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3475 static const unsigned char
3476 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3477 {0, 0, 0, 0, 0, 0, 0, 0},
3478 {64, 32, 8, 0, 0, 0, 0, 0},
3479 {96, 72, 40, 12, 1, 0, 0},
3480 {112, 98, 75, 43, 15, 1, 0},
3481 {120, 112, 98, 76, 45, 16, 2} };
3484 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3485 * would be when CPU is idle and so we just decay the old load without
3486 * adding any new load.
3488 static unsigned long
3489 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3493 if (!missed_updates
)
3496 if (missed_updates
>= degrade_zero_ticks
[idx
])
3500 return load
>> missed_updates
;
3502 while (missed_updates
) {
3503 if (missed_updates
% 2)
3504 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3506 missed_updates
>>= 1;
3513 * Update rq->cpu_load[] statistics. This function is usually called every
3514 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3515 * every tick. We fix it up based on jiffies.
3517 static void update_cpu_load(struct rq
*this_rq
)
3519 unsigned long this_load
= this_rq
->load
.weight
;
3520 unsigned long curr_jiffies
= jiffies
;
3521 unsigned long pending_updates
;
3524 this_rq
->nr_load_updates
++;
3526 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3527 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3530 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3531 this_rq
->last_load_update_tick
= curr_jiffies
;
3533 /* Update our load: */
3534 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3535 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3536 unsigned long old_load
, new_load
;
3538 /* scale is effectively 1 << i now, and >> i divides by scale */
3540 old_load
= this_rq
->cpu_load
[i
];
3541 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3542 new_load
= this_load
;
3544 * Round up the averaging division if load is increasing. This
3545 * prevents us from getting stuck on 9 if the load is 10, for
3548 if (new_load
> old_load
)
3549 new_load
+= scale
- 1;
3551 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3554 sched_avg_update(this_rq
);
3557 static void update_cpu_load_active(struct rq
*this_rq
)
3559 update_cpu_load(this_rq
);
3561 calc_load_account_active(this_rq
);
3567 * sched_exec - execve() is a valuable balancing opportunity, because at
3568 * this point the task has the smallest effective memory and cache footprint.
3570 void sched_exec(void)
3572 struct task_struct
*p
= current
;
3573 unsigned long flags
;
3576 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3577 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3578 if (dest_cpu
== smp_processor_id())
3581 if (likely(cpu_active(dest_cpu
))) {
3582 struct migration_arg arg
= { p
, dest_cpu
};
3584 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3585 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3589 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3594 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3596 EXPORT_PER_CPU_SYMBOL(kstat
);
3599 * Return any ns on the sched_clock that have not yet been accounted in
3600 * @p in case that task is currently running.
3602 * Called with task_rq_lock() held on @rq.
3604 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3608 if (task_current(rq
, p
)) {
3609 update_rq_clock(rq
);
3610 ns
= rq
->clock_task
- p
->se
.exec_start
;
3618 unsigned long long task_delta_exec(struct task_struct
*p
)
3620 unsigned long flags
;
3624 rq
= task_rq_lock(p
, &flags
);
3625 ns
= do_task_delta_exec(p
, rq
);
3626 task_rq_unlock(rq
, p
, &flags
);
3632 * Return accounted runtime for the task.
3633 * In case the task is currently running, return the runtime plus current's
3634 * pending runtime that have not been accounted yet.
3636 unsigned long long task_sched_runtime(struct task_struct
*p
)
3638 unsigned long flags
;
3642 rq
= task_rq_lock(p
, &flags
);
3643 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3644 task_rq_unlock(rq
, p
, &flags
);
3650 * Return sum_exec_runtime for the thread group.
3651 * In case the task is currently running, return the sum plus current's
3652 * pending runtime that have not been accounted yet.
3654 * Note that the thread group might have other running tasks as well,
3655 * so the return value not includes other pending runtime that other
3656 * running tasks might have.
3658 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3660 struct task_cputime totals
;
3661 unsigned long flags
;
3665 rq
= task_rq_lock(p
, &flags
);
3666 thread_group_cputime(p
, &totals
);
3667 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3668 task_rq_unlock(rq
, p
, &flags
);
3674 * Account user cpu time to a process.
3675 * @p: the process that the cpu time gets accounted to
3676 * @cputime: the cpu time spent in user space since the last update
3677 * @cputime_scaled: cputime scaled by cpu frequency
3679 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3680 cputime_t cputime_scaled
)
3682 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3685 /* Add user time to process. */
3686 p
->utime
= cputime_add(p
->utime
, cputime
);
3687 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3688 account_group_user_time(p
, cputime
);
3690 /* Add user time to cpustat. */
3691 tmp
= cputime_to_cputime64(cputime
);
3692 if (TASK_NICE(p
) > 0)
3693 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3695 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3697 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3698 /* Account for user time used */
3699 acct_update_integrals(p
);
3703 * Account guest cpu time to a process.
3704 * @p: the process that the cpu time gets accounted to
3705 * @cputime: the cpu time spent in virtual machine since the last update
3706 * @cputime_scaled: cputime scaled by cpu frequency
3708 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3709 cputime_t cputime_scaled
)
3712 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3714 tmp
= cputime_to_cputime64(cputime
);
3716 /* Add guest time to process. */
3717 p
->utime
= cputime_add(p
->utime
, cputime
);
3718 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3719 account_group_user_time(p
, cputime
);
3720 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3722 /* Add guest time to cpustat. */
3723 if (TASK_NICE(p
) > 0) {
3724 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3725 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3727 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3728 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3733 * Account system cpu time to a process and desired cpustat field
3734 * @p: the process that the cpu time gets accounted to
3735 * @cputime: the cpu time spent in kernel space since the last update
3736 * @cputime_scaled: cputime scaled by cpu frequency
3737 * @target_cputime64: pointer to cpustat field that has to be updated
3740 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3741 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3743 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3745 /* Add system time to process. */
3746 p
->stime
= cputime_add(p
->stime
, cputime
);
3747 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3748 account_group_system_time(p
, cputime
);
3750 /* Add system time to cpustat. */
3751 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3752 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3754 /* Account for system time used */
3755 acct_update_integrals(p
);
3759 * Account system cpu time to a process.
3760 * @p: the process that the cpu time gets accounted to
3761 * @hardirq_offset: the offset to subtract from hardirq_count()
3762 * @cputime: the cpu time spent in kernel space since the last update
3763 * @cputime_scaled: cputime scaled by cpu frequency
3765 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3766 cputime_t cputime
, cputime_t cputime_scaled
)
3768 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3769 cputime64_t
*target_cputime64
;
3771 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3772 account_guest_time(p
, cputime
, cputime_scaled
);
3776 if (hardirq_count() - hardirq_offset
)
3777 target_cputime64
= &cpustat
->irq
;
3778 else if (in_serving_softirq())
3779 target_cputime64
= &cpustat
->softirq
;
3781 target_cputime64
= &cpustat
->system
;
3783 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3787 * Account for involuntary wait time.
3788 * @cputime: the cpu time spent in involuntary wait
3790 void account_steal_time(cputime_t cputime
)
3792 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3793 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3795 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3799 * Account for idle time.
3800 * @cputime: the cpu time spent in idle wait
3802 void account_idle_time(cputime_t cputime
)
3804 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3805 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3806 struct rq
*rq
= this_rq();
3808 if (atomic_read(&rq
->nr_iowait
) > 0)
3809 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3811 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3814 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3816 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3818 * Account a tick to a process and cpustat
3819 * @p: the process that the cpu time gets accounted to
3820 * @user_tick: is the tick from userspace
3821 * @rq: the pointer to rq
3823 * Tick demultiplexing follows the order
3824 * - pending hardirq update
3825 * - pending softirq update
3829 * - check for guest_time
3830 * - else account as system_time
3832 * Check for hardirq is done both for system and user time as there is
3833 * no timer going off while we are on hardirq and hence we may never get an
3834 * opportunity to update it solely in system time.
3835 * p->stime and friends are only updated on system time and not on irq
3836 * softirq as those do not count in task exec_runtime any more.
3838 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3841 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3842 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3843 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3845 if (irqtime_account_hi_update()) {
3846 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3847 } else if (irqtime_account_si_update()) {
3848 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3849 } else if (this_cpu_ksoftirqd() == p
) {
3851 * ksoftirqd time do not get accounted in cpu_softirq_time.
3852 * So, we have to handle it separately here.
3853 * Also, p->stime needs to be updated for ksoftirqd.
3855 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3857 } else if (user_tick
) {
3858 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3859 } else if (p
== rq
->idle
) {
3860 account_idle_time(cputime_one_jiffy
);
3861 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3862 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3864 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3869 static void irqtime_account_idle_ticks(int ticks
)
3872 struct rq
*rq
= this_rq();
3874 for (i
= 0; i
< ticks
; i
++)
3875 irqtime_account_process_tick(current
, 0, rq
);
3877 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3878 static void irqtime_account_idle_ticks(int ticks
) {}
3879 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3881 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3884 * Account a single tick of cpu time.
3885 * @p: the process that the cpu time gets accounted to
3886 * @user_tick: indicates if the tick is a user or a system tick
3888 void account_process_tick(struct task_struct
*p
, int user_tick
)
3890 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3891 struct rq
*rq
= this_rq();
3893 if (sched_clock_irqtime
) {
3894 irqtime_account_process_tick(p
, user_tick
, rq
);
3899 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3900 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3901 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3904 account_idle_time(cputime_one_jiffy
);
3908 * Account multiple ticks of steal time.
3909 * @p: the process from which the cpu time has been stolen
3910 * @ticks: number of stolen ticks
3912 void account_steal_ticks(unsigned long ticks
)
3914 account_steal_time(jiffies_to_cputime(ticks
));
3918 * Account multiple ticks of idle time.
3919 * @ticks: number of stolen ticks
3921 void account_idle_ticks(unsigned long ticks
)
3924 if (sched_clock_irqtime
) {
3925 irqtime_account_idle_ticks(ticks
);
3929 account_idle_time(jiffies_to_cputime(ticks
));
3935 * Use precise platform statistics if available:
3937 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3938 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3944 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3946 struct task_cputime cputime
;
3948 thread_group_cputime(p
, &cputime
);
3950 *ut
= cputime
.utime
;
3951 *st
= cputime
.stime
;
3955 #ifndef nsecs_to_cputime
3956 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3959 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3961 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3964 * Use CFS's precise accounting:
3966 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3972 do_div(temp
, total
);
3973 utime
= (cputime_t
)temp
;
3978 * Compare with previous values, to keep monotonicity:
3980 p
->prev_utime
= max(p
->prev_utime
, utime
);
3981 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3983 *ut
= p
->prev_utime
;
3984 *st
= p
->prev_stime
;
3988 * Must be called with siglock held.
3990 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3992 struct signal_struct
*sig
= p
->signal
;
3993 struct task_cputime cputime
;
3994 cputime_t rtime
, utime
, total
;
3996 thread_group_cputime(p
, &cputime
);
3998 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3999 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4004 temp
*= cputime
.utime
;
4005 do_div(temp
, total
);
4006 utime
= (cputime_t
)temp
;
4010 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4011 sig
->prev_stime
= max(sig
->prev_stime
,
4012 cputime_sub(rtime
, sig
->prev_utime
));
4014 *ut
= sig
->prev_utime
;
4015 *st
= sig
->prev_stime
;
4020 * This function gets called by the timer code, with HZ frequency.
4021 * We call it with interrupts disabled.
4023 void scheduler_tick(void)
4025 int cpu
= smp_processor_id();
4026 struct rq
*rq
= cpu_rq(cpu
);
4027 struct task_struct
*curr
= rq
->curr
;
4031 raw_spin_lock(&rq
->lock
);
4032 update_rq_clock(rq
);
4033 update_cpu_load_active(rq
);
4034 curr
->sched_class
->task_tick(rq
, curr
, 0);
4035 raw_spin_unlock(&rq
->lock
);
4037 perf_event_task_tick();
4040 rq
->idle_at_tick
= idle_cpu(cpu
);
4041 trigger_load_balance(rq
, cpu
);
4045 notrace
unsigned long get_parent_ip(unsigned long addr
)
4047 if (in_lock_functions(addr
)) {
4048 addr
= CALLER_ADDR2
;
4049 if (in_lock_functions(addr
))
4050 addr
= CALLER_ADDR3
;
4055 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4056 defined(CONFIG_PREEMPT_TRACER))
4058 void __kprobes
add_preempt_count(int val
)
4060 #ifdef CONFIG_DEBUG_PREEMPT
4064 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4067 preempt_count() += val
;
4068 #ifdef CONFIG_DEBUG_PREEMPT
4070 * Spinlock count overflowing soon?
4072 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4075 if (preempt_count() == val
)
4076 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4078 EXPORT_SYMBOL(add_preempt_count
);
4080 void __kprobes
sub_preempt_count(int val
)
4082 #ifdef CONFIG_DEBUG_PREEMPT
4086 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4089 * Is the spinlock portion underflowing?
4091 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4092 !(preempt_count() & PREEMPT_MASK
)))
4096 if (preempt_count() == val
)
4097 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4098 preempt_count() -= val
;
4100 EXPORT_SYMBOL(sub_preempt_count
);
4105 * Print scheduling while atomic bug:
4107 static noinline
void __schedule_bug(struct task_struct
*prev
)
4109 struct pt_regs
*regs
= get_irq_regs();
4111 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4112 prev
->comm
, prev
->pid
, preempt_count());
4114 debug_show_held_locks(prev
);
4116 if (irqs_disabled())
4117 print_irqtrace_events(prev
);
4126 * Various schedule()-time debugging checks and statistics:
4128 static inline void schedule_debug(struct task_struct
*prev
)
4131 * Test if we are atomic. Since do_exit() needs to call into
4132 * schedule() atomically, we ignore that path for now.
4133 * Otherwise, whine if we are scheduling when we should not be.
4135 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4136 __schedule_bug(prev
);
4138 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4140 schedstat_inc(this_rq(), sched_count
);
4143 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4145 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4146 update_rq_clock(rq
);
4147 prev
->sched_class
->put_prev_task(rq
, prev
);
4151 * Pick up the highest-prio task:
4153 static inline struct task_struct
*
4154 pick_next_task(struct rq
*rq
)
4156 const struct sched_class
*class;
4157 struct task_struct
*p
;
4160 * Optimization: we know that if all tasks are in
4161 * the fair class we can call that function directly:
4163 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4164 p
= fair_sched_class
.pick_next_task(rq
);
4169 for_each_class(class) {
4170 p
= class->pick_next_task(rq
);
4175 BUG(); /* the idle class will always have a runnable task */
4179 * schedule() is the main scheduler function.
4181 asmlinkage
void __sched
schedule(void)
4183 struct task_struct
*prev
, *next
;
4184 unsigned long *switch_count
;
4190 cpu
= smp_processor_id();
4192 rcu_note_context_switch(cpu
);
4195 schedule_debug(prev
);
4197 if (sched_feat(HRTICK
))
4200 raw_spin_lock_irq(&rq
->lock
);
4202 switch_count
= &prev
->nivcsw
;
4203 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4204 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4205 prev
->state
= TASK_RUNNING
;
4207 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4211 * If a worker went to sleep, notify and ask workqueue
4212 * whether it wants to wake up a task to maintain
4215 if (prev
->flags
& PF_WQ_WORKER
) {
4216 struct task_struct
*to_wakeup
;
4218 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4220 try_to_wake_up_local(to_wakeup
);
4224 * If we are going to sleep and we have plugged IO
4225 * queued, make sure to submit it to avoid deadlocks.
4227 if (blk_needs_flush_plug(prev
)) {
4228 raw_spin_unlock(&rq
->lock
);
4229 blk_schedule_flush_plug(prev
);
4230 raw_spin_lock(&rq
->lock
);
4233 switch_count
= &prev
->nvcsw
;
4236 pre_schedule(rq
, prev
);
4238 if (unlikely(!rq
->nr_running
))
4239 idle_balance(cpu
, rq
);
4241 put_prev_task(rq
, prev
);
4242 next
= pick_next_task(rq
);
4243 clear_tsk_need_resched(prev
);
4244 rq
->skip_clock_update
= 0;
4246 if (likely(prev
!= next
)) {
4251 context_switch(rq
, prev
, next
); /* unlocks the rq */
4253 * The context switch have flipped the stack from under us
4254 * and restored the local variables which were saved when
4255 * this task called schedule() in the past. prev == current
4256 * is still correct, but it can be moved to another cpu/rq.
4258 cpu
= smp_processor_id();
4261 raw_spin_unlock_irq(&rq
->lock
);
4265 preempt_enable_no_resched();
4269 EXPORT_SYMBOL(schedule
);
4271 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4273 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4278 if (lock
->owner
!= owner
)
4282 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4283 * lock->owner still matches owner, if that fails, owner might
4284 * point to free()d memory, if it still matches, the rcu_read_lock()
4285 * ensures the memory stays valid.
4289 ret
= owner
->on_cpu
;
4297 * Look out! "owner" is an entirely speculative pointer
4298 * access and not reliable.
4300 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4302 if (!sched_feat(OWNER_SPIN
))
4305 while (owner_running(lock
, owner
)) {
4309 arch_mutex_cpu_relax();
4313 * If the owner changed to another task there is likely
4314 * heavy contention, stop spinning.
4323 #ifdef CONFIG_PREEMPT
4325 * this is the entry point to schedule() from in-kernel preemption
4326 * off of preempt_enable. Kernel preemptions off return from interrupt
4327 * occur there and call schedule directly.
4329 asmlinkage
void __sched notrace
preempt_schedule(void)
4331 struct thread_info
*ti
= current_thread_info();
4334 * If there is a non-zero preempt_count or interrupts are disabled,
4335 * we do not want to preempt the current task. Just return..
4337 if (likely(ti
->preempt_count
|| irqs_disabled()))
4341 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4343 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4346 * Check again in case we missed a preemption opportunity
4347 * between schedule and now.
4350 } while (need_resched());
4352 EXPORT_SYMBOL(preempt_schedule
);
4355 * this is the entry point to schedule() from kernel preemption
4356 * off of irq context.
4357 * Note, that this is called and return with irqs disabled. This will
4358 * protect us against recursive calling from irq.
4360 asmlinkage
void __sched
preempt_schedule_irq(void)
4362 struct thread_info
*ti
= current_thread_info();
4364 /* Catch callers which need to be fixed */
4365 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4368 add_preempt_count(PREEMPT_ACTIVE
);
4371 local_irq_disable();
4372 sub_preempt_count(PREEMPT_ACTIVE
);
4375 * Check again in case we missed a preemption opportunity
4376 * between schedule and now.
4379 } while (need_resched());
4382 #endif /* CONFIG_PREEMPT */
4384 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4387 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4389 EXPORT_SYMBOL(default_wake_function
);
4392 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4393 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4394 * number) then we wake all the non-exclusive tasks and one exclusive task.
4396 * There are circumstances in which we can try to wake a task which has already
4397 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4398 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4400 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4401 int nr_exclusive
, int wake_flags
, void *key
)
4403 wait_queue_t
*curr
, *next
;
4405 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4406 unsigned flags
= curr
->flags
;
4408 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4409 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4415 * __wake_up - wake up threads blocked on a waitqueue.
4417 * @mode: which threads
4418 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4419 * @key: is directly passed to the wakeup function
4421 * It may be assumed that this function implies a write memory barrier before
4422 * changing the task state if and only if any tasks are woken up.
4424 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4425 int nr_exclusive
, void *key
)
4427 unsigned long flags
;
4429 spin_lock_irqsave(&q
->lock
, flags
);
4430 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4431 spin_unlock_irqrestore(&q
->lock
, flags
);
4433 EXPORT_SYMBOL(__wake_up
);
4436 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4438 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4440 __wake_up_common(q
, mode
, 1, 0, NULL
);
4442 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4444 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4446 __wake_up_common(q
, mode
, 1, 0, key
);
4448 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4451 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4453 * @mode: which threads
4454 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4455 * @key: opaque value to be passed to wakeup targets
4457 * The sync wakeup differs that the waker knows that it will schedule
4458 * away soon, so while the target thread will be woken up, it will not
4459 * be migrated to another CPU - ie. the two threads are 'synchronized'
4460 * with each other. This can prevent needless bouncing between CPUs.
4462 * On UP it can prevent extra preemption.
4464 * It may be assumed that this function implies a write memory barrier before
4465 * changing the task state if and only if any tasks are woken up.
4467 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4468 int nr_exclusive
, void *key
)
4470 unsigned long flags
;
4471 int wake_flags
= WF_SYNC
;
4476 if (unlikely(!nr_exclusive
))
4479 spin_lock_irqsave(&q
->lock
, flags
);
4480 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4481 spin_unlock_irqrestore(&q
->lock
, flags
);
4483 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4486 * __wake_up_sync - see __wake_up_sync_key()
4488 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4490 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4492 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4495 * complete: - signals a single thread waiting on this completion
4496 * @x: holds the state of this particular completion
4498 * This will wake up a single thread waiting on this completion. Threads will be
4499 * awakened in the same order in which they were queued.
4501 * See also complete_all(), wait_for_completion() and related routines.
4503 * It may be assumed that this function implies a write memory barrier before
4504 * changing the task state if and only if any tasks are woken up.
4506 void complete(struct completion
*x
)
4508 unsigned long flags
;
4510 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4512 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4513 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4515 EXPORT_SYMBOL(complete
);
4518 * complete_all: - signals all threads waiting on this completion
4519 * @x: holds the state of this particular completion
4521 * This will wake up all threads waiting on this particular completion event.
4523 * It may be assumed that this function implies a write memory barrier before
4524 * changing the task state if and only if any tasks are woken up.
4526 void complete_all(struct completion
*x
)
4528 unsigned long flags
;
4530 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4531 x
->done
+= UINT_MAX
/2;
4532 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4533 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4535 EXPORT_SYMBOL(complete_all
);
4537 static inline long __sched
4538 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4541 DECLARE_WAITQUEUE(wait
, current
);
4543 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4545 if (signal_pending_state(state
, current
)) {
4546 timeout
= -ERESTARTSYS
;
4549 __set_current_state(state
);
4550 spin_unlock_irq(&x
->wait
.lock
);
4551 timeout
= schedule_timeout(timeout
);
4552 spin_lock_irq(&x
->wait
.lock
);
4553 } while (!x
->done
&& timeout
);
4554 __remove_wait_queue(&x
->wait
, &wait
);
4559 return timeout
?: 1;
4563 wait_for_common(struct completion
*x
, long timeout
, int state
)
4567 spin_lock_irq(&x
->wait
.lock
);
4568 timeout
= do_wait_for_common(x
, timeout
, state
);
4569 spin_unlock_irq(&x
->wait
.lock
);
4574 * wait_for_completion: - waits for completion of a task
4575 * @x: holds the state of this particular completion
4577 * This waits to be signaled for completion of a specific task. It is NOT
4578 * interruptible and there is no timeout.
4580 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4581 * and interrupt capability. Also see complete().
4583 void __sched
wait_for_completion(struct completion
*x
)
4585 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4587 EXPORT_SYMBOL(wait_for_completion
);
4590 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4591 * @x: holds the state of this particular completion
4592 * @timeout: timeout value in jiffies
4594 * This waits for either a completion of a specific task to be signaled or for a
4595 * specified timeout to expire. The timeout is in jiffies. It is not
4598 unsigned long __sched
4599 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4601 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4603 EXPORT_SYMBOL(wait_for_completion_timeout
);
4606 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4607 * @x: holds the state of this particular completion
4609 * This waits for completion of a specific task to be signaled. It is
4612 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4614 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4615 if (t
== -ERESTARTSYS
)
4619 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4622 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4623 * @x: holds the state of this particular completion
4624 * @timeout: timeout value in jiffies
4626 * This waits for either a completion of a specific task to be signaled or for a
4627 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4630 wait_for_completion_interruptible_timeout(struct completion
*x
,
4631 unsigned long timeout
)
4633 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4635 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4638 * wait_for_completion_killable: - waits for completion of a task (killable)
4639 * @x: holds the state of this particular completion
4641 * This waits to be signaled for completion of a specific task. It can be
4642 * interrupted by a kill signal.
4644 int __sched
wait_for_completion_killable(struct completion
*x
)
4646 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4647 if (t
== -ERESTARTSYS
)
4651 EXPORT_SYMBOL(wait_for_completion_killable
);
4654 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4655 * @x: holds the state of this particular completion
4656 * @timeout: timeout value in jiffies
4658 * This waits for either a completion of a specific task to be
4659 * signaled or for a specified timeout to expire. It can be
4660 * interrupted by a kill signal. The timeout is in jiffies.
4663 wait_for_completion_killable_timeout(struct completion
*x
,
4664 unsigned long timeout
)
4666 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4668 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4671 * try_wait_for_completion - try to decrement a completion without blocking
4672 * @x: completion structure
4674 * Returns: 0 if a decrement cannot be done without blocking
4675 * 1 if a decrement succeeded.
4677 * If a completion is being used as a counting completion,
4678 * attempt to decrement the counter without blocking. This
4679 * enables us to avoid waiting if the resource the completion
4680 * is protecting is not available.
4682 bool try_wait_for_completion(struct completion
*x
)
4684 unsigned long flags
;
4687 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4692 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4695 EXPORT_SYMBOL(try_wait_for_completion
);
4698 * completion_done - Test to see if a completion has any waiters
4699 * @x: completion structure
4701 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4702 * 1 if there are no waiters.
4705 bool completion_done(struct completion
*x
)
4707 unsigned long flags
;
4710 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4713 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4716 EXPORT_SYMBOL(completion_done
);
4719 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4721 unsigned long flags
;
4724 init_waitqueue_entry(&wait
, current
);
4726 __set_current_state(state
);
4728 spin_lock_irqsave(&q
->lock
, flags
);
4729 __add_wait_queue(q
, &wait
);
4730 spin_unlock(&q
->lock
);
4731 timeout
= schedule_timeout(timeout
);
4732 spin_lock_irq(&q
->lock
);
4733 __remove_wait_queue(q
, &wait
);
4734 spin_unlock_irqrestore(&q
->lock
, flags
);
4739 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4741 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4743 EXPORT_SYMBOL(interruptible_sleep_on
);
4746 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4748 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4750 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4752 void __sched
sleep_on(wait_queue_head_t
*q
)
4754 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4756 EXPORT_SYMBOL(sleep_on
);
4758 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4760 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4762 EXPORT_SYMBOL(sleep_on_timeout
);
4764 #ifdef CONFIG_RT_MUTEXES
4767 * rt_mutex_setprio - set the current priority of a task
4769 * @prio: prio value (kernel-internal form)
4771 * This function changes the 'effective' priority of a task. It does
4772 * not touch ->normal_prio like __setscheduler().
4774 * Used by the rt_mutex code to implement priority inheritance logic.
4776 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4778 int oldprio
, on_rq
, running
;
4780 const struct sched_class
*prev_class
;
4782 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4784 rq
= __task_rq_lock(p
);
4786 trace_sched_pi_setprio(p
, prio
);
4788 prev_class
= p
->sched_class
;
4790 running
= task_current(rq
, p
);
4792 dequeue_task(rq
, p
, 0);
4794 p
->sched_class
->put_prev_task(rq
, p
);
4797 p
->sched_class
= &rt_sched_class
;
4799 p
->sched_class
= &fair_sched_class
;
4804 p
->sched_class
->set_curr_task(rq
);
4806 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4808 check_class_changed(rq
, p
, prev_class
, oldprio
);
4809 __task_rq_unlock(rq
);
4814 void set_user_nice(struct task_struct
*p
, long nice
)
4816 int old_prio
, delta
, on_rq
;
4817 unsigned long flags
;
4820 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4823 * We have to be careful, if called from sys_setpriority(),
4824 * the task might be in the middle of scheduling on another CPU.
4826 rq
= task_rq_lock(p
, &flags
);
4828 * The RT priorities are set via sched_setscheduler(), but we still
4829 * allow the 'normal' nice value to be set - but as expected
4830 * it wont have any effect on scheduling until the task is
4831 * SCHED_FIFO/SCHED_RR:
4833 if (task_has_rt_policy(p
)) {
4834 p
->static_prio
= NICE_TO_PRIO(nice
);
4839 dequeue_task(rq
, p
, 0);
4841 p
->static_prio
= NICE_TO_PRIO(nice
);
4844 p
->prio
= effective_prio(p
);
4845 delta
= p
->prio
- old_prio
;
4848 enqueue_task(rq
, p
, 0);
4850 * If the task increased its priority or is running and
4851 * lowered its priority, then reschedule its CPU:
4853 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4854 resched_task(rq
->curr
);
4857 task_rq_unlock(rq
, p
, &flags
);
4859 EXPORT_SYMBOL(set_user_nice
);
4862 * can_nice - check if a task can reduce its nice value
4866 int can_nice(const struct task_struct
*p
, const int nice
)
4868 /* convert nice value [19,-20] to rlimit style value [1,40] */
4869 int nice_rlim
= 20 - nice
;
4871 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4872 capable(CAP_SYS_NICE
));
4875 #ifdef __ARCH_WANT_SYS_NICE
4878 * sys_nice - change the priority of the current process.
4879 * @increment: priority increment
4881 * sys_setpriority is a more generic, but much slower function that
4882 * does similar things.
4884 SYSCALL_DEFINE1(nice
, int, increment
)
4889 * Setpriority might change our priority at the same moment.
4890 * We don't have to worry. Conceptually one call occurs first
4891 * and we have a single winner.
4893 if (increment
< -40)
4898 nice
= TASK_NICE(current
) + increment
;
4904 if (increment
< 0 && !can_nice(current
, nice
))
4907 retval
= security_task_setnice(current
, nice
);
4911 set_user_nice(current
, nice
);
4918 * task_prio - return the priority value of a given task.
4919 * @p: the task in question.
4921 * This is the priority value as seen by users in /proc.
4922 * RT tasks are offset by -200. Normal tasks are centered
4923 * around 0, value goes from -16 to +15.
4925 int task_prio(const struct task_struct
*p
)
4927 return p
->prio
- MAX_RT_PRIO
;
4931 * task_nice - return the nice value of a given task.
4932 * @p: the task in question.
4934 int task_nice(const struct task_struct
*p
)
4936 return TASK_NICE(p
);
4938 EXPORT_SYMBOL(task_nice
);
4941 * idle_cpu - is a given cpu idle currently?
4942 * @cpu: the processor in question.
4944 int idle_cpu(int cpu
)
4946 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4950 * idle_task - return the idle task for a given cpu.
4951 * @cpu: the processor in question.
4953 struct task_struct
*idle_task(int cpu
)
4955 return cpu_rq(cpu
)->idle
;
4959 * find_process_by_pid - find a process with a matching PID value.
4960 * @pid: the pid in question.
4962 static struct task_struct
*find_process_by_pid(pid_t pid
)
4964 return pid
? find_task_by_vpid(pid
) : current
;
4967 /* Actually do priority change: must hold rq lock. */
4969 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4972 p
->rt_priority
= prio
;
4973 p
->normal_prio
= normal_prio(p
);
4974 /* we are holding p->pi_lock already */
4975 p
->prio
= rt_mutex_getprio(p
);
4976 if (rt_prio(p
->prio
))
4977 p
->sched_class
= &rt_sched_class
;
4979 p
->sched_class
= &fair_sched_class
;
4984 * check the target process has a UID that matches the current process's
4986 static bool check_same_owner(struct task_struct
*p
)
4988 const struct cred
*cred
= current_cred(), *pcred
;
4992 pcred
= __task_cred(p
);
4993 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
4994 match
= (cred
->euid
== pcred
->euid
||
4995 cred
->euid
== pcred
->uid
);
5002 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5003 const struct sched_param
*param
, bool user
)
5005 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5006 unsigned long flags
;
5007 const struct sched_class
*prev_class
;
5011 /* may grab non-irq protected spin_locks */
5012 BUG_ON(in_interrupt());
5014 /* double check policy once rq lock held */
5016 reset_on_fork
= p
->sched_reset_on_fork
;
5017 policy
= oldpolicy
= p
->policy
;
5019 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5020 policy
&= ~SCHED_RESET_ON_FORK
;
5022 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5023 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5024 policy
!= SCHED_IDLE
)
5029 * Valid priorities for SCHED_FIFO and SCHED_RR are
5030 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5031 * SCHED_BATCH and SCHED_IDLE is 0.
5033 if (param
->sched_priority
< 0 ||
5034 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5035 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5037 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5041 * Allow unprivileged RT tasks to decrease priority:
5043 if (user
&& !capable(CAP_SYS_NICE
)) {
5044 if (rt_policy(policy
)) {
5045 unsigned long rlim_rtprio
=
5046 task_rlimit(p
, RLIMIT_RTPRIO
);
5048 /* can't set/change the rt policy */
5049 if (policy
!= p
->policy
&& !rlim_rtprio
)
5052 /* can't increase priority */
5053 if (param
->sched_priority
> p
->rt_priority
&&
5054 param
->sched_priority
> rlim_rtprio
)
5059 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5060 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5062 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5063 if (!can_nice(p
, TASK_NICE(p
)))
5067 /* can't change other user's priorities */
5068 if (!check_same_owner(p
))
5071 /* Normal users shall not reset the sched_reset_on_fork flag */
5072 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5077 retval
= security_task_setscheduler(p
);
5083 * make sure no PI-waiters arrive (or leave) while we are
5084 * changing the priority of the task:
5086 * To be able to change p->policy safely, the appropriate
5087 * runqueue lock must be held.
5089 rq
= task_rq_lock(p
, &flags
);
5092 * Changing the policy of the stop threads its a very bad idea
5094 if (p
== rq
->stop
) {
5095 task_rq_unlock(rq
, p
, &flags
);
5100 * If not changing anything there's no need to proceed further:
5102 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5103 param
->sched_priority
== p
->rt_priority
))) {
5105 __task_rq_unlock(rq
);
5106 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5110 #ifdef CONFIG_RT_GROUP_SCHED
5113 * Do not allow realtime tasks into groups that have no runtime
5116 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5117 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5118 !task_group_is_autogroup(task_group(p
))) {
5119 task_rq_unlock(rq
, p
, &flags
);
5125 /* recheck policy now with rq lock held */
5126 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5127 policy
= oldpolicy
= -1;
5128 task_rq_unlock(rq
, p
, &flags
);
5132 running
= task_current(rq
, p
);
5134 deactivate_task(rq
, p
, 0);
5136 p
->sched_class
->put_prev_task(rq
, p
);
5138 p
->sched_reset_on_fork
= reset_on_fork
;
5141 prev_class
= p
->sched_class
;
5142 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5145 p
->sched_class
->set_curr_task(rq
);
5147 activate_task(rq
, p
, 0);
5149 check_class_changed(rq
, p
, prev_class
, oldprio
);
5150 task_rq_unlock(rq
, p
, &flags
);
5152 rt_mutex_adjust_pi(p
);
5158 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5159 * @p: the task in question.
5160 * @policy: new policy.
5161 * @param: structure containing the new RT priority.
5163 * NOTE that the task may be already dead.
5165 int sched_setscheduler(struct task_struct
*p
, int policy
,
5166 const struct sched_param
*param
)
5168 return __sched_setscheduler(p
, policy
, param
, true);
5170 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5173 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5174 * @p: the task in question.
5175 * @policy: new policy.
5176 * @param: structure containing the new RT priority.
5178 * Just like sched_setscheduler, only don't bother checking if the
5179 * current context has permission. For example, this is needed in
5180 * stop_machine(): we create temporary high priority worker threads,
5181 * but our caller might not have that capability.
5183 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5184 const struct sched_param
*param
)
5186 return __sched_setscheduler(p
, policy
, param
, false);
5190 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5192 struct sched_param lparam
;
5193 struct task_struct
*p
;
5196 if (!param
|| pid
< 0)
5198 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5203 p
= find_process_by_pid(pid
);
5205 retval
= sched_setscheduler(p
, policy
, &lparam
);
5212 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5213 * @pid: the pid in question.
5214 * @policy: new policy.
5215 * @param: structure containing the new RT priority.
5217 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5218 struct sched_param __user
*, param
)
5220 /* negative values for policy are not valid */
5224 return do_sched_setscheduler(pid
, policy
, param
);
5228 * sys_sched_setparam - set/change the RT priority of a thread
5229 * @pid: the pid in question.
5230 * @param: structure containing the new RT priority.
5232 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5234 return do_sched_setscheduler(pid
, -1, param
);
5238 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5239 * @pid: the pid in question.
5241 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5243 struct task_struct
*p
;
5251 p
= find_process_by_pid(pid
);
5253 retval
= security_task_getscheduler(p
);
5256 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5263 * sys_sched_getparam - get the RT priority of a thread
5264 * @pid: the pid in question.
5265 * @param: structure containing the RT priority.
5267 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5269 struct sched_param lp
;
5270 struct task_struct
*p
;
5273 if (!param
|| pid
< 0)
5277 p
= find_process_by_pid(pid
);
5282 retval
= security_task_getscheduler(p
);
5286 lp
.sched_priority
= p
->rt_priority
;
5290 * This one might sleep, we cannot do it with a spinlock held ...
5292 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5301 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5303 cpumask_var_t cpus_allowed
, new_mask
;
5304 struct task_struct
*p
;
5310 p
= find_process_by_pid(pid
);
5317 /* Prevent p going away */
5321 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5325 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5327 goto out_free_cpus_allowed
;
5330 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5333 retval
= security_task_setscheduler(p
);
5337 cpuset_cpus_allowed(p
, cpus_allowed
);
5338 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5340 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5343 cpuset_cpus_allowed(p
, cpus_allowed
);
5344 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5346 * We must have raced with a concurrent cpuset
5347 * update. Just reset the cpus_allowed to the
5348 * cpuset's cpus_allowed
5350 cpumask_copy(new_mask
, cpus_allowed
);
5355 free_cpumask_var(new_mask
);
5356 out_free_cpus_allowed
:
5357 free_cpumask_var(cpus_allowed
);
5364 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5365 struct cpumask
*new_mask
)
5367 if (len
< cpumask_size())
5368 cpumask_clear(new_mask
);
5369 else if (len
> cpumask_size())
5370 len
= cpumask_size();
5372 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5376 * sys_sched_setaffinity - set the cpu affinity of a process
5377 * @pid: pid of the process
5378 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5379 * @user_mask_ptr: user-space pointer to the new cpu mask
5381 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5382 unsigned long __user
*, user_mask_ptr
)
5384 cpumask_var_t new_mask
;
5387 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5390 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5392 retval
= sched_setaffinity(pid
, new_mask
);
5393 free_cpumask_var(new_mask
);
5397 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5399 struct task_struct
*p
;
5400 unsigned long flags
;
5407 p
= find_process_by_pid(pid
);
5411 retval
= security_task_getscheduler(p
);
5415 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5416 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5417 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5427 * sys_sched_getaffinity - get the cpu affinity of a process
5428 * @pid: pid of the process
5429 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5430 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5432 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5433 unsigned long __user
*, user_mask_ptr
)
5438 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5440 if (len
& (sizeof(unsigned long)-1))
5443 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5446 ret
= sched_getaffinity(pid
, mask
);
5448 size_t retlen
= min_t(size_t, len
, cpumask_size());
5450 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5455 free_cpumask_var(mask
);
5461 * sys_sched_yield - yield the current processor to other threads.
5463 * This function yields the current CPU to other tasks. If there are no
5464 * other threads running on this CPU then this function will return.
5466 SYSCALL_DEFINE0(sched_yield
)
5468 struct rq
*rq
= this_rq_lock();
5470 schedstat_inc(rq
, yld_count
);
5471 current
->sched_class
->yield_task(rq
);
5474 * Since we are going to call schedule() anyway, there's
5475 * no need to preempt or enable interrupts:
5477 __release(rq
->lock
);
5478 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5479 do_raw_spin_unlock(&rq
->lock
);
5480 preempt_enable_no_resched();
5487 static inline int should_resched(void)
5489 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5492 static void __cond_resched(void)
5494 add_preempt_count(PREEMPT_ACTIVE
);
5496 sub_preempt_count(PREEMPT_ACTIVE
);
5499 int __sched
_cond_resched(void)
5501 if (should_resched()) {
5507 EXPORT_SYMBOL(_cond_resched
);
5510 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5511 * call schedule, and on return reacquire the lock.
5513 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5514 * operations here to prevent schedule() from being called twice (once via
5515 * spin_unlock(), once by hand).
5517 int __cond_resched_lock(spinlock_t
*lock
)
5519 int resched
= should_resched();
5522 lockdep_assert_held(lock
);
5524 if (spin_needbreak(lock
) || resched
) {
5535 EXPORT_SYMBOL(__cond_resched_lock
);
5537 int __sched
__cond_resched_softirq(void)
5539 BUG_ON(!in_softirq());
5541 if (should_resched()) {
5549 EXPORT_SYMBOL(__cond_resched_softirq
);
5552 * yield - yield the current processor to other threads.
5554 * This is a shortcut for kernel-space yielding - it marks the
5555 * thread runnable and calls sys_sched_yield().
5557 void __sched
yield(void)
5559 set_current_state(TASK_RUNNING
);
5562 EXPORT_SYMBOL(yield
);
5565 * yield_to - yield the current processor to another thread in
5566 * your thread group, or accelerate that thread toward the
5567 * processor it's on.
5569 * @preempt: whether task preemption is allowed or not
5571 * It's the caller's job to ensure that the target task struct
5572 * can't go away on us before we can do any checks.
5574 * Returns true if we indeed boosted the target task.
5576 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5578 struct task_struct
*curr
= current
;
5579 struct rq
*rq
, *p_rq
;
5580 unsigned long flags
;
5583 local_irq_save(flags
);
5588 double_rq_lock(rq
, p_rq
);
5589 while (task_rq(p
) != p_rq
) {
5590 double_rq_unlock(rq
, p_rq
);
5594 if (!curr
->sched_class
->yield_to_task
)
5597 if (curr
->sched_class
!= p
->sched_class
)
5600 if (task_running(p_rq
, p
) || p
->state
)
5603 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5605 schedstat_inc(rq
, yld_count
);
5607 * Make p's CPU reschedule; pick_next_entity takes care of
5610 if (preempt
&& rq
!= p_rq
)
5611 resched_task(p_rq
->curr
);
5615 double_rq_unlock(rq
, p_rq
);
5616 local_irq_restore(flags
);
5623 EXPORT_SYMBOL_GPL(yield_to
);
5626 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5627 * that process accounting knows that this is a task in IO wait state.
5629 void __sched
io_schedule(void)
5631 struct rq
*rq
= raw_rq();
5633 delayacct_blkio_start();
5634 atomic_inc(&rq
->nr_iowait
);
5635 blk_flush_plug(current
);
5636 current
->in_iowait
= 1;
5638 current
->in_iowait
= 0;
5639 atomic_dec(&rq
->nr_iowait
);
5640 delayacct_blkio_end();
5642 EXPORT_SYMBOL(io_schedule
);
5644 long __sched
io_schedule_timeout(long timeout
)
5646 struct rq
*rq
= raw_rq();
5649 delayacct_blkio_start();
5650 atomic_inc(&rq
->nr_iowait
);
5651 blk_flush_plug(current
);
5652 current
->in_iowait
= 1;
5653 ret
= schedule_timeout(timeout
);
5654 current
->in_iowait
= 0;
5655 atomic_dec(&rq
->nr_iowait
);
5656 delayacct_blkio_end();
5661 * sys_sched_get_priority_max - return maximum RT priority.
5662 * @policy: scheduling class.
5664 * this syscall returns the maximum rt_priority that can be used
5665 * by a given scheduling class.
5667 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5674 ret
= MAX_USER_RT_PRIO
-1;
5686 * sys_sched_get_priority_min - return minimum RT priority.
5687 * @policy: scheduling class.
5689 * this syscall returns the minimum rt_priority that can be used
5690 * by a given scheduling class.
5692 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5710 * sys_sched_rr_get_interval - return the default timeslice of a process.
5711 * @pid: pid of the process.
5712 * @interval: userspace pointer to the timeslice value.
5714 * this syscall writes the default timeslice value of a given process
5715 * into the user-space timespec buffer. A value of '0' means infinity.
5717 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5718 struct timespec __user
*, interval
)
5720 struct task_struct
*p
;
5721 unsigned int time_slice
;
5722 unsigned long flags
;
5732 p
= find_process_by_pid(pid
);
5736 retval
= security_task_getscheduler(p
);
5740 rq
= task_rq_lock(p
, &flags
);
5741 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5742 task_rq_unlock(rq
, p
, &flags
);
5745 jiffies_to_timespec(time_slice
, &t
);
5746 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5754 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5756 void sched_show_task(struct task_struct
*p
)
5758 unsigned long free
= 0;
5761 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5762 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5763 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5764 #if BITS_PER_LONG == 32
5765 if (state
== TASK_RUNNING
)
5766 printk(KERN_CONT
" running ");
5768 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5770 if (state
== TASK_RUNNING
)
5771 printk(KERN_CONT
" running task ");
5773 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5775 #ifdef CONFIG_DEBUG_STACK_USAGE
5776 free
= stack_not_used(p
);
5778 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5779 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5780 (unsigned long)task_thread_info(p
)->flags
);
5782 show_stack(p
, NULL
);
5785 void show_state_filter(unsigned long state_filter
)
5787 struct task_struct
*g
, *p
;
5789 #if BITS_PER_LONG == 32
5791 " task PC stack pid father\n");
5794 " task PC stack pid father\n");
5796 read_lock(&tasklist_lock
);
5797 do_each_thread(g
, p
) {
5799 * reset the NMI-timeout, listing all files on a slow
5800 * console might take a lot of time:
5802 touch_nmi_watchdog();
5803 if (!state_filter
|| (p
->state
& state_filter
))
5805 } while_each_thread(g
, p
);
5807 touch_all_softlockup_watchdogs();
5809 #ifdef CONFIG_SCHED_DEBUG
5810 sysrq_sched_debug_show();
5812 read_unlock(&tasklist_lock
);
5814 * Only show locks if all tasks are dumped:
5817 debug_show_all_locks();
5820 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5822 idle
->sched_class
= &idle_sched_class
;
5826 * init_idle - set up an idle thread for a given CPU
5827 * @idle: task in question
5828 * @cpu: cpu the idle task belongs to
5830 * NOTE: this function does not set the idle thread's NEED_RESCHED
5831 * flag, to make booting more robust.
5833 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5835 struct rq
*rq
= cpu_rq(cpu
);
5836 unsigned long flags
;
5838 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5841 idle
->state
= TASK_RUNNING
;
5842 idle
->se
.exec_start
= sched_clock();
5844 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5846 * We're having a chicken and egg problem, even though we are
5847 * holding rq->lock, the cpu isn't yet set to this cpu so the
5848 * lockdep check in task_group() will fail.
5850 * Similar case to sched_fork(). / Alternatively we could
5851 * use task_rq_lock() here and obtain the other rq->lock.
5856 __set_task_cpu(idle
, cpu
);
5859 rq
->curr
= rq
->idle
= idle
;
5860 #if defined(CONFIG_SMP)
5863 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5865 /* Set the preempt count _outside_ the spinlocks! */
5866 task_thread_info(idle
)->preempt_count
= 0;
5869 * The idle tasks have their own, simple scheduling class:
5871 idle
->sched_class
= &idle_sched_class
;
5872 ftrace_graph_init_idle_task(idle
, cpu
);
5876 * In a system that switches off the HZ timer nohz_cpu_mask
5877 * indicates which cpus entered this state. This is used
5878 * in the rcu update to wait only for active cpus. For system
5879 * which do not switch off the HZ timer nohz_cpu_mask should
5880 * always be CPU_BITS_NONE.
5882 cpumask_var_t nohz_cpu_mask
;
5885 * Increase the granularity value when there are more CPUs,
5886 * because with more CPUs the 'effective latency' as visible
5887 * to users decreases. But the relationship is not linear,
5888 * so pick a second-best guess by going with the log2 of the
5891 * This idea comes from the SD scheduler of Con Kolivas:
5893 static int get_update_sysctl_factor(void)
5895 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5896 unsigned int factor
;
5898 switch (sysctl_sched_tunable_scaling
) {
5899 case SCHED_TUNABLESCALING_NONE
:
5902 case SCHED_TUNABLESCALING_LINEAR
:
5905 case SCHED_TUNABLESCALING_LOG
:
5907 factor
= 1 + ilog2(cpus
);
5914 static void update_sysctl(void)
5916 unsigned int factor
= get_update_sysctl_factor();
5918 #define SET_SYSCTL(name) \
5919 (sysctl_##name = (factor) * normalized_sysctl_##name)
5920 SET_SYSCTL(sched_min_granularity
);
5921 SET_SYSCTL(sched_latency
);
5922 SET_SYSCTL(sched_wakeup_granularity
);
5926 static inline void sched_init_granularity(void)
5933 * This is how migration works:
5935 * 1) we invoke migration_cpu_stop() on the target CPU using
5937 * 2) stopper starts to run (implicitly forcing the migrated thread
5939 * 3) it checks whether the migrated task is still in the wrong runqueue.
5940 * 4) if it's in the wrong runqueue then the migration thread removes
5941 * it and puts it into the right queue.
5942 * 5) stopper completes and stop_one_cpu() returns and the migration
5947 * Change a given task's CPU affinity. Migrate the thread to a
5948 * proper CPU and schedule it away if the CPU it's executing on
5949 * is removed from the allowed bitmask.
5951 * NOTE: the caller must have a valid reference to the task, the
5952 * task must not exit() & deallocate itself prematurely. The
5953 * call is not atomic; no spinlocks may be held.
5955 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5957 unsigned long flags
;
5959 unsigned int dest_cpu
;
5962 rq
= task_rq_lock(p
, &flags
);
5964 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
5967 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5972 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
5977 if (p
->sched_class
->set_cpus_allowed
)
5978 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5980 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5981 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5984 /* Can the task run on the task's current CPU? If so, we're done */
5985 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5988 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5990 struct migration_arg arg
= { p
, dest_cpu
};
5991 /* Need help from migration thread: drop lock and wait. */
5992 task_rq_unlock(rq
, p
, &flags
);
5993 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5994 tlb_migrate_finish(p
->mm
);
5998 task_rq_unlock(rq
, p
, &flags
);
6002 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6005 * Move (not current) task off this cpu, onto dest cpu. We're doing
6006 * this because either it can't run here any more (set_cpus_allowed()
6007 * away from this CPU, or CPU going down), or because we're
6008 * attempting to rebalance this task on exec (sched_exec).
6010 * So we race with normal scheduler movements, but that's OK, as long
6011 * as the task is no longer on this CPU.
6013 * Returns non-zero if task was successfully migrated.
6015 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6017 struct rq
*rq_dest
, *rq_src
;
6020 if (unlikely(!cpu_active(dest_cpu
)))
6023 rq_src
= cpu_rq(src_cpu
);
6024 rq_dest
= cpu_rq(dest_cpu
);
6026 raw_spin_lock(&p
->pi_lock
);
6027 double_rq_lock(rq_src
, rq_dest
);
6028 /* Already moved. */
6029 if (task_cpu(p
) != src_cpu
)
6031 /* Affinity changed (again). */
6032 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6036 * If we're not on a rq, the next wake-up will ensure we're
6040 deactivate_task(rq_src
, p
, 0);
6041 set_task_cpu(p
, dest_cpu
);
6042 activate_task(rq_dest
, p
, 0);
6043 check_preempt_curr(rq_dest
, p
, 0);
6048 double_rq_unlock(rq_src
, rq_dest
);
6049 raw_spin_unlock(&p
->pi_lock
);
6054 * migration_cpu_stop - this will be executed by a highprio stopper thread
6055 * and performs thread migration by bumping thread off CPU then
6056 * 'pushing' onto another runqueue.
6058 static int migration_cpu_stop(void *data
)
6060 struct migration_arg
*arg
= data
;
6063 * The original target cpu might have gone down and we might
6064 * be on another cpu but it doesn't matter.
6066 local_irq_disable();
6067 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6072 #ifdef CONFIG_HOTPLUG_CPU
6075 * Ensures that the idle task is using init_mm right before its cpu goes
6078 void idle_task_exit(void)
6080 struct mm_struct
*mm
= current
->active_mm
;
6082 BUG_ON(cpu_online(smp_processor_id()));
6085 switch_mm(mm
, &init_mm
, current
);
6090 * While a dead CPU has no uninterruptible tasks queued at this point,
6091 * it might still have a nonzero ->nr_uninterruptible counter, because
6092 * for performance reasons the counter is not stricly tracking tasks to
6093 * their home CPUs. So we just add the counter to another CPU's counter,
6094 * to keep the global sum constant after CPU-down:
6096 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6098 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6100 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6101 rq_src
->nr_uninterruptible
= 0;
6105 * remove the tasks which were accounted by rq from calc_load_tasks.
6107 static void calc_global_load_remove(struct rq
*rq
)
6109 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6110 rq
->calc_load_active
= 0;
6114 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6115 * try_to_wake_up()->select_task_rq().
6117 * Called with rq->lock held even though we'er in stop_machine() and
6118 * there's no concurrency possible, we hold the required locks anyway
6119 * because of lock validation efforts.
6121 static void migrate_tasks(unsigned int dead_cpu
)
6123 struct rq
*rq
= cpu_rq(dead_cpu
);
6124 struct task_struct
*next
, *stop
= rq
->stop
;
6128 * Fudge the rq selection such that the below task selection loop
6129 * doesn't get stuck on the currently eligible stop task.
6131 * We're currently inside stop_machine() and the rq is either stuck
6132 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6133 * either way we should never end up calling schedule() until we're
6140 * There's this thread running, bail when that's the only
6143 if (rq
->nr_running
== 1)
6146 next
= pick_next_task(rq
);
6148 next
->sched_class
->put_prev_task(rq
, next
);
6150 /* Find suitable destination for @next, with force if needed. */
6151 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6152 raw_spin_unlock(&rq
->lock
);
6154 __migrate_task(next
, dead_cpu
, dest_cpu
);
6156 raw_spin_lock(&rq
->lock
);
6162 #endif /* CONFIG_HOTPLUG_CPU */
6164 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6166 static struct ctl_table sd_ctl_dir
[] = {
6168 .procname
= "sched_domain",
6174 static struct ctl_table sd_ctl_root
[] = {
6176 .procname
= "kernel",
6178 .child
= sd_ctl_dir
,
6183 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6185 struct ctl_table
*entry
=
6186 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6191 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6193 struct ctl_table
*entry
;
6196 * In the intermediate directories, both the child directory and
6197 * procname are dynamically allocated and could fail but the mode
6198 * will always be set. In the lowest directory the names are
6199 * static strings and all have proc handlers.
6201 for (entry
= *tablep
; entry
->mode
; entry
++) {
6203 sd_free_ctl_entry(&entry
->child
);
6204 if (entry
->proc_handler
== NULL
)
6205 kfree(entry
->procname
);
6213 set_table_entry(struct ctl_table
*entry
,
6214 const char *procname
, void *data
, int maxlen
,
6215 mode_t mode
, proc_handler
*proc_handler
)
6217 entry
->procname
= procname
;
6219 entry
->maxlen
= maxlen
;
6221 entry
->proc_handler
= proc_handler
;
6224 static struct ctl_table
*
6225 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6227 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6232 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6233 sizeof(long), 0644, proc_doulongvec_minmax
);
6234 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6235 sizeof(long), 0644, proc_doulongvec_minmax
);
6236 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6237 sizeof(int), 0644, proc_dointvec_minmax
);
6238 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6239 sizeof(int), 0644, proc_dointvec_minmax
);
6240 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6241 sizeof(int), 0644, proc_dointvec_minmax
);
6242 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6243 sizeof(int), 0644, proc_dointvec_minmax
);
6244 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6245 sizeof(int), 0644, proc_dointvec_minmax
);
6246 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6247 sizeof(int), 0644, proc_dointvec_minmax
);
6248 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6249 sizeof(int), 0644, proc_dointvec_minmax
);
6250 set_table_entry(&table
[9], "cache_nice_tries",
6251 &sd
->cache_nice_tries
,
6252 sizeof(int), 0644, proc_dointvec_minmax
);
6253 set_table_entry(&table
[10], "flags", &sd
->flags
,
6254 sizeof(int), 0644, proc_dointvec_minmax
);
6255 set_table_entry(&table
[11], "name", sd
->name
,
6256 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6257 /* &table[12] is terminator */
6262 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6264 struct ctl_table
*entry
, *table
;
6265 struct sched_domain
*sd
;
6266 int domain_num
= 0, i
;
6269 for_each_domain(cpu
, sd
)
6271 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6276 for_each_domain(cpu
, sd
) {
6277 snprintf(buf
, 32, "domain%d", i
);
6278 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6280 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6287 static struct ctl_table_header
*sd_sysctl_header
;
6288 static void register_sched_domain_sysctl(void)
6290 int i
, cpu_num
= num_possible_cpus();
6291 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6294 WARN_ON(sd_ctl_dir
[0].child
);
6295 sd_ctl_dir
[0].child
= entry
;
6300 for_each_possible_cpu(i
) {
6301 snprintf(buf
, 32, "cpu%d", i
);
6302 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6304 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6308 WARN_ON(sd_sysctl_header
);
6309 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6312 /* may be called multiple times per register */
6313 static void unregister_sched_domain_sysctl(void)
6315 if (sd_sysctl_header
)
6316 unregister_sysctl_table(sd_sysctl_header
);
6317 sd_sysctl_header
= NULL
;
6318 if (sd_ctl_dir
[0].child
)
6319 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6322 static void register_sched_domain_sysctl(void)
6325 static void unregister_sched_domain_sysctl(void)
6330 static void set_rq_online(struct rq
*rq
)
6333 const struct sched_class
*class;
6335 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6338 for_each_class(class) {
6339 if (class->rq_online
)
6340 class->rq_online(rq
);
6345 static void set_rq_offline(struct rq
*rq
)
6348 const struct sched_class
*class;
6350 for_each_class(class) {
6351 if (class->rq_offline
)
6352 class->rq_offline(rq
);
6355 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6361 * migration_call - callback that gets triggered when a CPU is added.
6362 * Here we can start up the necessary migration thread for the new CPU.
6364 static int __cpuinit
6365 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6367 int cpu
= (long)hcpu
;
6368 unsigned long flags
;
6369 struct rq
*rq
= cpu_rq(cpu
);
6371 switch (action
& ~CPU_TASKS_FROZEN
) {
6373 case CPU_UP_PREPARE
:
6374 rq
->calc_load_update
= calc_load_update
;
6378 /* Update our root-domain */
6379 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6381 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6385 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6388 #ifdef CONFIG_HOTPLUG_CPU
6390 sched_ttwu_pending();
6391 /* Update our root-domain */
6392 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6394 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6398 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6399 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6401 migrate_nr_uninterruptible(rq
);
6402 calc_global_load_remove(rq
);
6407 update_max_interval();
6413 * Register at high priority so that task migration (migrate_all_tasks)
6414 * happens before everything else. This has to be lower priority than
6415 * the notifier in the perf_event subsystem, though.
6417 static struct notifier_block __cpuinitdata migration_notifier
= {
6418 .notifier_call
= migration_call
,
6419 .priority
= CPU_PRI_MIGRATION
,
6422 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6423 unsigned long action
, void *hcpu
)
6425 switch (action
& ~CPU_TASKS_FROZEN
) {
6427 case CPU_DOWN_FAILED
:
6428 set_cpu_active((long)hcpu
, true);
6435 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6436 unsigned long action
, void *hcpu
)
6438 switch (action
& ~CPU_TASKS_FROZEN
) {
6439 case CPU_DOWN_PREPARE
:
6440 set_cpu_active((long)hcpu
, false);
6447 static int __init
migration_init(void)
6449 void *cpu
= (void *)(long)smp_processor_id();
6452 /* Initialize migration for the boot CPU */
6453 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6454 BUG_ON(err
== NOTIFY_BAD
);
6455 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6456 register_cpu_notifier(&migration_notifier
);
6458 /* Register cpu active notifiers */
6459 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6460 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6464 early_initcall(migration_init
);
6469 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6471 #ifdef CONFIG_SCHED_DEBUG
6473 static __read_mostly
int sched_domain_debug_enabled
;
6475 static int __init
sched_domain_debug_setup(char *str
)
6477 sched_domain_debug_enabled
= 1;
6481 early_param("sched_debug", sched_domain_debug_setup
);
6483 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6484 struct cpumask
*groupmask
)
6486 struct sched_group
*group
= sd
->groups
;
6489 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6490 cpumask_clear(groupmask
);
6492 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6494 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6495 printk("does not load-balance\n");
6497 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6502 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6504 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6505 printk(KERN_ERR
"ERROR: domain->span does not contain "
6508 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6509 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6513 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6517 printk(KERN_ERR
"ERROR: group is NULL\n");
6521 if (!group
->cpu_power
) {
6522 printk(KERN_CONT
"\n");
6523 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6528 if (!cpumask_weight(sched_group_cpus(group
))) {
6529 printk(KERN_CONT
"\n");
6530 printk(KERN_ERR
"ERROR: empty group\n");
6534 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6535 printk(KERN_CONT
"\n");
6536 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6540 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6542 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6544 printk(KERN_CONT
" %s", str
);
6545 if (group
->cpu_power
!= SCHED_POWER_SCALE
) {
6546 printk(KERN_CONT
" (cpu_power = %d)",
6550 group
= group
->next
;
6551 } while (group
!= sd
->groups
);
6552 printk(KERN_CONT
"\n");
6554 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6555 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6558 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6559 printk(KERN_ERR
"ERROR: parent span is not a superset "
6560 "of domain->span\n");
6564 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6568 if (!sched_domain_debug_enabled
)
6572 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6576 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6579 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
6587 #else /* !CONFIG_SCHED_DEBUG */
6588 # define sched_domain_debug(sd, cpu) do { } while (0)
6589 #endif /* CONFIG_SCHED_DEBUG */
6591 static int sd_degenerate(struct sched_domain
*sd
)
6593 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6596 /* Following flags need at least 2 groups */
6597 if (sd
->flags
& (SD_LOAD_BALANCE
|
6598 SD_BALANCE_NEWIDLE
|
6602 SD_SHARE_PKG_RESOURCES
)) {
6603 if (sd
->groups
!= sd
->groups
->next
)
6607 /* Following flags don't use groups */
6608 if (sd
->flags
& (SD_WAKE_AFFINE
))
6615 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6617 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6619 if (sd_degenerate(parent
))
6622 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6625 /* Flags needing groups don't count if only 1 group in parent */
6626 if (parent
->groups
== parent
->groups
->next
) {
6627 pflags
&= ~(SD_LOAD_BALANCE
|
6628 SD_BALANCE_NEWIDLE
|
6632 SD_SHARE_PKG_RESOURCES
);
6633 if (nr_node_ids
== 1)
6634 pflags
&= ~SD_SERIALIZE
;
6636 if (~cflags
& pflags
)
6642 static void free_rootdomain(struct rcu_head
*rcu
)
6644 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
6646 cpupri_cleanup(&rd
->cpupri
);
6647 free_cpumask_var(rd
->rto_mask
);
6648 free_cpumask_var(rd
->online
);
6649 free_cpumask_var(rd
->span
);
6653 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6655 struct root_domain
*old_rd
= NULL
;
6656 unsigned long flags
;
6658 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6663 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6666 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6669 * If we dont want to free the old_rt yet then
6670 * set old_rd to NULL to skip the freeing later
6673 if (!atomic_dec_and_test(&old_rd
->refcount
))
6677 atomic_inc(&rd
->refcount
);
6680 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6681 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6684 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6687 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
6690 static int init_rootdomain(struct root_domain
*rd
)
6692 memset(rd
, 0, sizeof(*rd
));
6694 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6696 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6698 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6701 if (cpupri_init(&rd
->cpupri
) != 0)
6706 free_cpumask_var(rd
->rto_mask
);
6708 free_cpumask_var(rd
->online
);
6710 free_cpumask_var(rd
->span
);
6715 static void init_defrootdomain(void)
6717 init_rootdomain(&def_root_domain
);
6719 atomic_set(&def_root_domain
.refcount
, 1);
6722 static struct root_domain
*alloc_rootdomain(void)
6724 struct root_domain
*rd
;
6726 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6730 if (init_rootdomain(rd
) != 0) {
6738 static void free_sched_domain(struct rcu_head
*rcu
)
6740 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
6741 if (atomic_dec_and_test(&sd
->groups
->ref
))
6746 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
6748 call_rcu(&sd
->rcu
, free_sched_domain
);
6751 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
6753 for (; sd
; sd
= sd
->parent
)
6754 destroy_sched_domain(sd
, cpu
);
6758 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6759 * hold the hotplug lock.
6762 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6764 struct rq
*rq
= cpu_rq(cpu
);
6765 struct sched_domain
*tmp
;
6767 /* Remove the sched domains which do not contribute to scheduling. */
6768 for (tmp
= sd
; tmp
; ) {
6769 struct sched_domain
*parent
= tmp
->parent
;
6773 if (sd_parent_degenerate(tmp
, parent
)) {
6774 tmp
->parent
= parent
->parent
;
6776 parent
->parent
->child
= tmp
;
6777 destroy_sched_domain(parent
, cpu
);
6782 if (sd
&& sd_degenerate(sd
)) {
6785 destroy_sched_domain(tmp
, cpu
);
6790 sched_domain_debug(sd
, cpu
);
6792 rq_attach_root(rq
, rd
);
6794 rcu_assign_pointer(rq
->sd
, sd
);
6795 destroy_sched_domains(tmp
, cpu
);
6798 /* cpus with isolated domains */
6799 static cpumask_var_t cpu_isolated_map
;
6801 /* Setup the mask of cpus configured for isolated domains */
6802 static int __init
isolated_cpu_setup(char *str
)
6804 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6805 cpulist_parse(str
, cpu_isolated_map
);
6809 __setup("isolcpus=", isolated_cpu_setup
);
6811 #define SD_NODES_PER_DOMAIN 16
6816 * find_next_best_node - find the next node to include in a sched_domain
6817 * @node: node whose sched_domain we're building
6818 * @used_nodes: nodes already in the sched_domain
6820 * Find the next node to include in a given scheduling domain. Simply
6821 * finds the closest node not already in the @used_nodes map.
6823 * Should use nodemask_t.
6825 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6827 int i
, n
, val
, min_val
, best_node
= -1;
6831 for (i
= 0; i
< nr_node_ids
; i
++) {
6832 /* Start at @node */
6833 n
= (node
+ i
) % nr_node_ids
;
6835 if (!nr_cpus_node(n
))
6838 /* Skip already used nodes */
6839 if (node_isset(n
, *used_nodes
))
6842 /* Simple min distance search */
6843 val
= node_distance(node
, n
);
6845 if (val
< min_val
) {
6851 if (best_node
!= -1)
6852 node_set(best_node
, *used_nodes
);
6857 * sched_domain_node_span - get a cpumask for a node's sched_domain
6858 * @node: node whose cpumask we're constructing
6859 * @span: resulting cpumask
6861 * Given a node, construct a good cpumask for its sched_domain to span. It
6862 * should be one that prevents unnecessary balancing, but also spreads tasks
6865 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6867 nodemask_t used_nodes
;
6870 cpumask_clear(span
);
6871 nodes_clear(used_nodes
);
6873 cpumask_or(span
, span
, cpumask_of_node(node
));
6874 node_set(node
, used_nodes
);
6876 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6877 int next_node
= find_next_best_node(node
, &used_nodes
);
6880 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6884 static const struct cpumask
*cpu_node_mask(int cpu
)
6886 lockdep_assert_held(&sched_domains_mutex
);
6888 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
6890 return sched_domains_tmpmask
;
6893 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
6895 return cpu_possible_mask
;
6897 #endif /* CONFIG_NUMA */
6899 static const struct cpumask
*cpu_cpu_mask(int cpu
)
6901 return cpumask_of_node(cpu_to_node(cpu
));
6904 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6907 struct sched_domain
**__percpu sd
;
6908 struct sched_group
**__percpu sg
;
6912 struct sched_domain
** __percpu sd
;
6913 struct root_domain
*rd
;
6923 struct sched_domain_topology_level
;
6925 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
6926 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
6928 struct sched_domain_topology_level
{
6929 sched_domain_init_f init
;
6930 sched_domain_mask_f mask
;
6931 struct sd_data data
;
6935 * Assumes the sched_domain tree is fully constructed
6937 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6939 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6940 struct sched_domain
*child
= sd
->child
;
6943 cpu
= cpumask_first(sched_domain_span(child
));
6946 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6952 * build_sched_groups takes the cpumask we wish to span, and a pointer
6953 * to a function which identifies what group(along with sched group) a CPU
6954 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6955 * (due to the fact that we keep track of groups covered with a struct cpumask).
6957 * build_sched_groups will build a circular linked list of the groups
6958 * covered by the given span, and will set each group's ->cpumask correctly,
6959 * and ->cpu_power to 0.
6962 build_sched_groups(struct sched_domain
*sd
)
6964 struct sched_group
*first
= NULL
, *last
= NULL
;
6965 struct sd_data
*sdd
= sd
->private;
6966 const struct cpumask
*span
= sched_domain_span(sd
);
6967 struct cpumask
*covered
;
6970 lockdep_assert_held(&sched_domains_mutex
);
6971 covered
= sched_domains_tmpmask
;
6973 cpumask_clear(covered
);
6975 for_each_cpu(i
, span
) {
6976 struct sched_group
*sg
;
6977 int group
= get_group(i
, sdd
, &sg
);
6980 if (cpumask_test_cpu(i
, covered
))
6983 cpumask_clear(sched_group_cpus(sg
));
6986 for_each_cpu(j
, span
) {
6987 if (get_group(j
, sdd
, NULL
) != group
)
6990 cpumask_set_cpu(j
, covered
);
6991 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7004 * Initialize sched groups cpu_power.
7006 * cpu_power indicates the capacity of sched group, which is used while
7007 * distributing the load between different sched groups in a sched domain.
7008 * Typically cpu_power for all the groups in a sched domain will be same unless
7009 * there are asymmetries in the topology. If there are asymmetries, group
7010 * having more cpu_power will pickup more load compared to the group having
7013 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7015 WARN_ON(!sd
|| !sd
->groups
);
7017 if (cpu
!= group_first_cpu(sd
->groups
))
7020 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
7022 update_group_power(sd
, cpu
);
7026 * Initializers for schedule domains
7027 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7030 #ifdef CONFIG_SCHED_DEBUG
7031 # define SD_INIT_NAME(sd, type) sd->name = #type
7033 # define SD_INIT_NAME(sd, type) do { } while (0)
7036 #define SD_INIT_FUNC(type) \
7037 static noinline struct sched_domain * \
7038 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7040 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7041 *sd = SD_##type##_INIT; \
7042 SD_INIT_NAME(sd, type); \
7043 sd->private = &tl->data; \
7049 SD_INIT_FUNC(ALLNODES
)
7052 #ifdef CONFIG_SCHED_SMT
7053 SD_INIT_FUNC(SIBLING
)
7055 #ifdef CONFIG_SCHED_MC
7058 #ifdef CONFIG_SCHED_BOOK
7062 static int default_relax_domain_level
= -1;
7063 int sched_domain_level_max
;
7065 static int __init
setup_relax_domain_level(char *str
)
7069 val
= simple_strtoul(str
, NULL
, 0);
7070 if (val
< sched_domain_level_max
)
7071 default_relax_domain_level
= val
;
7075 __setup("relax_domain_level=", setup_relax_domain_level
);
7077 static void set_domain_attribute(struct sched_domain
*sd
,
7078 struct sched_domain_attr
*attr
)
7082 if (!attr
|| attr
->relax_domain_level
< 0) {
7083 if (default_relax_domain_level
< 0)
7086 request
= default_relax_domain_level
;
7088 request
= attr
->relax_domain_level
;
7089 if (request
< sd
->level
) {
7090 /* turn off idle balance on this domain */
7091 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7093 /* turn on idle balance on this domain */
7094 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7098 static void __sdt_free(const struct cpumask
*cpu_map
);
7099 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7101 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7102 const struct cpumask
*cpu_map
)
7106 if (!atomic_read(&d
->rd
->refcount
))
7107 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7109 free_percpu(d
->sd
); /* fall through */
7111 __sdt_free(cpu_map
); /* fall through */
7117 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7118 const struct cpumask
*cpu_map
)
7120 memset(d
, 0, sizeof(*d
));
7122 if (__sdt_alloc(cpu_map
))
7123 return sa_sd_storage
;
7124 d
->sd
= alloc_percpu(struct sched_domain
*);
7126 return sa_sd_storage
;
7127 d
->rd
= alloc_rootdomain();
7130 return sa_rootdomain
;
7134 * NULL the sd_data elements we've used to build the sched_domain and
7135 * sched_group structure so that the subsequent __free_domain_allocs()
7136 * will not free the data we're using.
7138 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7140 struct sd_data
*sdd
= sd
->private;
7141 struct sched_group
*sg
= sd
->groups
;
7143 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7144 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7146 if (cpu
== cpumask_first(sched_group_cpus(sg
))) {
7147 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sg
, cpu
) != sg
);
7148 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7152 #ifdef CONFIG_SCHED_SMT
7153 static const struct cpumask
*cpu_smt_mask(int cpu
)
7155 return topology_thread_cpumask(cpu
);
7160 * Topology list, bottom-up.
7162 static struct sched_domain_topology_level default_topology
[] = {
7163 #ifdef CONFIG_SCHED_SMT
7164 { sd_init_SIBLING
, cpu_smt_mask
, },
7166 #ifdef CONFIG_SCHED_MC
7167 { sd_init_MC
, cpu_coregroup_mask
, },
7169 #ifdef CONFIG_SCHED_BOOK
7170 { sd_init_BOOK
, cpu_book_mask
, },
7172 { sd_init_CPU
, cpu_cpu_mask
, },
7174 { sd_init_NODE
, cpu_node_mask
, },
7175 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7180 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7182 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7184 struct sched_domain_topology_level
*tl
;
7187 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7188 struct sd_data
*sdd
= &tl
->data
;
7190 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7194 sdd
->sg
= alloc_percpu(struct sched_group
*);
7198 for_each_cpu(j
, cpu_map
) {
7199 struct sched_domain
*sd
;
7200 struct sched_group
*sg
;
7202 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7203 GFP_KERNEL
, cpu_to_node(j
));
7207 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7209 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7210 GFP_KERNEL
, cpu_to_node(j
));
7214 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7221 static void __sdt_free(const struct cpumask
*cpu_map
)
7223 struct sched_domain_topology_level
*tl
;
7226 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7227 struct sd_data
*sdd
= &tl
->data
;
7229 for_each_cpu(j
, cpu_map
) {
7230 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7231 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7233 free_percpu(sdd
->sd
);
7234 free_percpu(sdd
->sg
);
7238 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7239 struct s_data
*d
, const struct cpumask
*cpu_map
,
7240 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7243 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7247 set_domain_attribute(sd
, attr
);
7248 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7250 sd
->level
= child
->level
+ 1;
7251 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7260 * Build sched domains for a given set of cpus and attach the sched domains
7261 * to the individual cpus
7263 static int build_sched_domains(const struct cpumask
*cpu_map
,
7264 struct sched_domain_attr
*attr
)
7266 enum s_alloc alloc_state
= sa_none
;
7267 struct sched_domain
*sd
;
7269 int i
, ret
= -ENOMEM
;
7271 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7272 if (alloc_state
!= sa_rootdomain
)
7275 /* Set up domains for cpus specified by the cpu_map. */
7276 for_each_cpu(i
, cpu_map
) {
7277 struct sched_domain_topology_level
*tl
;
7280 for (tl
= sched_domain_topology
; tl
->init
; tl
++)
7281 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7286 *per_cpu_ptr(d
.sd
, i
) = sd
;
7289 /* Build the groups for the domains */
7290 for_each_cpu(i
, cpu_map
) {
7291 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7292 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7293 get_group(i
, sd
->private, &sd
->groups
);
7294 atomic_inc(&sd
->groups
->ref
);
7296 if (i
!= cpumask_first(sched_domain_span(sd
)))
7299 build_sched_groups(sd
);
7303 /* Calculate CPU power for physical packages and nodes */
7304 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7305 if (!cpumask_test_cpu(i
, cpu_map
))
7308 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7309 claim_allocations(i
, sd
);
7310 init_sched_groups_power(i
, sd
);
7314 /* Attach the domains */
7316 for_each_cpu(i
, cpu_map
) {
7317 sd
= *per_cpu_ptr(d
.sd
, i
);
7318 cpu_attach_domain(sd
, d
.rd
, i
);
7324 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7328 static cpumask_var_t
*doms_cur
; /* current sched domains */
7329 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7330 static struct sched_domain_attr
*dattr_cur
;
7331 /* attribues of custom domains in 'doms_cur' */
7334 * Special case: If a kmalloc of a doms_cur partition (array of
7335 * cpumask) fails, then fallback to a single sched domain,
7336 * as determined by the single cpumask fallback_doms.
7338 static cpumask_var_t fallback_doms
;
7341 * arch_update_cpu_topology lets virtualized architectures update the
7342 * cpu core maps. It is supposed to return 1 if the topology changed
7343 * or 0 if it stayed the same.
7345 int __attribute__((weak
)) arch_update_cpu_topology(void)
7350 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7353 cpumask_var_t
*doms
;
7355 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7358 for (i
= 0; i
< ndoms
; i
++) {
7359 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7360 free_sched_domains(doms
, i
);
7367 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7370 for (i
= 0; i
< ndoms
; i
++)
7371 free_cpumask_var(doms
[i
]);
7376 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7377 * For now this just excludes isolated cpus, but could be used to
7378 * exclude other special cases in the future.
7380 static int init_sched_domains(const struct cpumask
*cpu_map
)
7384 arch_update_cpu_topology();
7386 doms_cur
= alloc_sched_domains(ndoms_cur
);
7388 doms_cur
= &fallback_doms
;
7389 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7391 err
= build_sched_domains(doms_cur
[0], NULL
);
7392 register_sched_domain_sysctl();
7398 * Detach sched domains from a group of cpus specified in cpu_map
7399 * These cpus will now be attached to the NULL domain
7401 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7406 for_each_cpu(i
, cpu_map
)
7407 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7411 /* handle null as "default" */
7412 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7413 struct sched_domain_attr
*new, int idx_new
)
7415 struct sched_domain_attr tmp
;
7422 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7423 new ? (new + idx_new
) : &tmp
,
7424 sizeof(struct sched_domain_attr
));
7428 * Partition sched domains as specified by the 'ndoms_new'
7429 * cpumasks in the array doms_new[] of cpumasks. This compares
7430 * doms_new[] to the current sched domain partitioning, doms_cur[].
7431 * It destroys each deleted domain and builds each new domain.
7433 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7434 * The masks don't intersect (don't overlap.) We should setup one
7435 * sched domain for each mask. CPUs not in any of the cpumasks will
7436 * not be load balanced. If the same cpumask appears both in the
7437 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7440 * The passed in 'doms_new' should be allocated using
7441 * alloc_sched_domains. This routine takes ownership of it and will
7442 * free_sched_domains it when done with it. If the caller failed the
7443 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7444 * and partition_sched_domains() will fallback to the single partition
7445 * 'fallback_doms', it also forces the domains to be rebuilt.
7447 * If doms_new == NULL it will be replaced with cpu_online_mask.
7448 * ndoms_new == 0 is a special case for destroying existing domains,
7449 * and it will not create the default domain.
7451 * Call with hotplug lock held
7453 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7454 struct sched_domain_attr
*dattr_new
)
7459 mutex_lock(&sched_domains_mutex
);
7461 /* always unregister in case we don't destroy any domains */
7462 unregister_sched_domain_sysctl();
7464 /* Let architecture update cpu core mappings. */
7465 new_topology
= arch_update_cpu_topology();
7467 n
= doms_new
? ndoms_new
: 0;
7469 /* Destroy deleted domains */
7470 for (i
= 0; i
< ndoms_cur
; i
++) {
7471 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7472 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7473 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7476 /* no match - a current sched domain not in new doms_new[] */
7477 detach_destroy_domains(doms_cur
[i
]);
7482 if (doms_new
== NULL
) {
7484 doms_new
= &fallback_doms
;
7485 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7486 WARN_ON_ONCE(dattr_new
);
7489 /* Build new domains */
7490 for (i
= 0; i
< ndoms_new
; i
++) {
7491 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7492 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7493 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7496 /* no match - add a new doms_new */
7497 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7502 /* Remember the new sched domains */
7503 if (doms_cur
!= &fallback_doms
)
7504 free_sched_domains(doms_cur
, ndoms_cur
);
7505 kfree(dattr_cur
); /* kfree(NULL) is safe */
7506 doms_cur
= doms_new
;
7507 dattr_cur
= dattr_new
;
7508 ndoms_cur
= ndoms_new
;
7510 register_sched_domain_sysctl();
7512 mutex_unlock(&sched_domains_mutex
);
7515 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7516 static void reinit_sched_domains(void)
7520 /* Destroy domains first to force the rebuild */
7521 partition_sched_domains(0, NULL
, NULL
);
7523 rebuild_sched_domains();
7527 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7529 unsigned int level
= 0;
7531 if (sscanf(buf
, "%u", &level
) != 1)
7535 * level is always be positive so don't check for
7536 * level < POWERSAVINGS_BALANCE_NONE which is 0
7537 * What happens on 0 or 1 byte write,
7538 * need to check for count as well?
7541 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7545 sched_smt_power_savings
= level
;
7547 sched_mc_power_savings
= level
;
7549 reinit_sched_domains();
7554 #ifdef CONFIG_SCHED_MC
7555 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7556 struct sysdev_class_attribute
*attr
,
7559 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7561 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7562 struct sysdev_class_attribute
*attr
,
7563 const char *buf
, size_t count
)
7565 return sched_power_savings_store(buf
, count
, 0);
7567 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7568 sched_mc_power_savings_show
,
7569 sched_mc_power_savings_store
);
7572 #ifdef CONFIG_SCHED_SMT
7573 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7574 struct sysdev_class_attribute
*attr
,
7577 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7579 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7580 struct sysdev_class_attribute
*attr
,
7581 const char *buf
, size_t count
)
7583 return sched_power_savings_store(buf
, count
, 1);
7585 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7586 sched_smt_power_savings_show
,
7587 sched_smt_power_savings_store
);
7590 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7594 #ifdef CONFIG_SCHED_SMT
7596 err
= sysfs_create_file(&cls
->kset
.kobj
,
7597 &attr_sched_smt_power_savings
.attr
);
7599 #ifdef CONFIG_SCHED_MC
7600 if (!err
&& mc_capable())
7601 err
= sysfs_create_file(&cls
->kset
.kobj
,
7602 &attr_sched_mc_power_savings
.attr
);
7606 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7609 * Update cpusets according to cpu_active mask. If cpusets are
7610 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7611 * around partition_sched_domains().
7613 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7616 switch (action
& ~CPU_TASKS_FROZEN
) {
7618 case CPU_DOWN_FAILED
:
7619 cpuset_update_active_cpus();
7626 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7629 switch (action
& ~CPU_TASKS_FROZEN
) {
7630 case CPU_DOWN_PREPARE
:
7631 cpuset_update_active_cpus();
7638 static int update_runtime(struct notifier_block
*nfb
,
7639 unsigned long action
, void *hcpu
)
7641 int cpu
= (int)(long)hcpu
;
7644 case CPU_DOWN_PREPARE
:
7645 case CPU_DOWN_PREPARE_FROZEN
:
7646 disable_runtime(cpu_rq(cpu
));
7649 case CPU_DOWN_FAILED
:
7650 case CPU_DOWN_FAILED_FROZEN
:
7652 case CPU_ONLINE_FROZEN
:
7653 enable_runtime(cpu_rq(cpu
));
7661 void __init
sched_init_smp(void)
7663 cpumask_var_t non_isolated_cpus
;
7665 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7666 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7669 mutex_lock(&sched_domains_mutex
);
7670 init_sched_domains(cpu_active_mask
);
7671 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7672 if (cpumask_empty(non_isolated_cpus
))
7673 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7674 mutex_unlock(&sched_domains_mutex
);
7677 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7678 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7680 /* RT runtime code needs to handle some hotplug events */
7681 hotcpu_notifier(update_runtime
, 0);
7685 /* Move init over to a non-isolated CPU */
7686 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7688 sched_init_granularity();
7689 free_cpumask_var(non_isolated_cpus
);
7691 init_sched_rt_class();
7694 void __init
sched_init_smp(void)
7696 sched_init_granularity();
7698 #endif /* CONFIG_SMP */
7700 const_debug
unsigned int sysctl_timer_migration
= 1;
7702 int in_sched_functions(unsigned long addr
)
7704 return in_lock_functions(addr
) ||
7705 (addr
>= (unsigned long)__sched_text_start
7706 && addr
< (unsigned long)__sched_text_end
);
7709 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7711 cfs_rq
->tasks_timeline
= RB_ROOT
;
7712 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7713 #ifdef CONFIG_FAIR_GROUP_SCHED
7715 /* allow initial update_cfs_load() to truncate */
7717 cfs_rq
->load_stamp
= 1;
7720 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7723 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7725 struct rt_prio_array
*array
;
7728 array
= &rt_rq
->active
;
7729 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7730 INIT_LIST_HEAD(array
->queue
+ i
);
7731 __clear_bit(i
, array
->bitmap
);
7733 /* delimiter for bitsearch: */
7734 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7736 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7737 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7739 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7743 rt_rq
->rt_nr_migratory
= 0;
7744 rt_rq
->overloaded
= 0;
7745 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7749 rt_rq
->rt_throttled
= 0;
7750 rt_rq
->rt_runtime
= 0;
7751 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7753 #ifdef CONFIG_RT_GROUP_SCHED
7754 rt_rq
->rt_nr_boosted
= 0;
7759 #ifdef CONFIG_FAIR_GROUP_SCHED
7760 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7761 struct sched_entity
*se
, int cpu
,
7762 struct sched_entity
*parent
)
7764 struct rq
*rq
= cpu_rq(cpu
);
7765 tg
->cfs_rq
[cpu
] = cfs_rq
;
7766 init_cfs_rq(cfs_rq
, rq
);
7770 /* se could be NULL for root_task_group */
7775 se
->cfs_rq
= &rq
->cfs
;
7777 se
->cfs_rq
= parent
->my_q
;
7780 update_load_set(&se
->load
, 0);
7781 se
->parent
= parent
;
7785 #ifdef CONFIG_RT_GROUP_SCHED
7786 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7787 struct sched_rt_entity
*rt_se
, int cpu
,
7788 struct sched_rt_entity
*parent
)
7790 struct rq
*rq
= cpu_rq(cpu
);
7792 tg
->rt_rq
[cpu
] = rt_rq
;
7793 init_rt_rq(rt_rq
, rq
);
7795 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7797 tg
->rt_se
[cpu
] = rt_se
;
7802 rt_se
->rt_rq
= &rq
->rt
;
7804 rt_se
->rt_rq
= parent
->my_q
;
7806 rt_se
->my_q
= rt_rq
;
7807 rt_se
->parent
= parent
;
7808 INIT_LIST_HEAD(&rt_se
->run_list
);
7812 void __init
sched_init(void)
7815 unsigned long alloc_size
= 0, ptr
;
7817 #ifdef CONFIG_FAIR_GROUP_SCHED
7818 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7820 #ifdef CONFIG_RT_GROUP_SCHED
7821 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7823 #ifdef CONFIG_CPUMASK_OFFSTACK
7824 alloc_size
+= num_possible_cpus() * cpumask_size();
7827 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7829 #ifdef CONFIG_FAIR_GROUP_SCHED
7830 root_task_group
.se
= (struct sched_entity
**)ptr
;
7831 ptr
+= nr_cpu_ids
* sizeof(void **);
7833 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7834 ptr
+= nr_cpu_ids
* sizeof(void **);
7836 #endif /* CONFIG_FAIR_GROUP_SCHED */
7837 #ifdef CONFIG_RT_GROUP_SCHED
7838 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7839 ptr
+= nr_cpu_ids
* sizeof(void **);
7841 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7842 ptr
+= nr_cpu_ids
* sizeof(void **);
7844 #endif /* CONFIG_RT_GROUP_SCHED */
7845 #ifdef CONFIG_CPUMASK_OFFSTACK
7846 for_each_possible_cpu(i
) {
7847 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7848 ptr
+= cpumask_size();
7850 #endif /* CONFIG_CPUMASK_OFFSTACK */
7854 init_defrootdomain();
7857 init_rt_bandwidth(&def_rt_bandwidth
,
7858 global_rt_period(), global_rt_runtime());
7860 #ifdef CONFIG_RT_GROUP_SCHED
7861 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7862 global_rt_period(), global_rt_runtime());
7863 #endif /* CONFIG_RT_GROUP_SCHED */
7865 #ifdef CONFIG_CGROUP_SCHED
7866 list_add(&root_task_group
.list
, &task_groups
);
7867 INIT_LIST_HEAD(&root_task_group
.children
);
7868 autogroup_init(&init_task
);
7869 #endif /* CONFIG_CGROUP_SCHED */
7871 for_each_possible_cpu(i
) {
7875 raw_spin_lock_init(&rq
->lock
);
7877 rq
->calc_load_active
= 0;
7878 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7879 init_cfs_rq(&rq
->cfs
, rq
);
7880 init_rt_rq(&rq
->rt
, rq
);
7881 #ifdef CONFIG_FAIR_GROUP_SCHED
7882 root_task_group
.shares
= root_task_group_load
;
7883 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7885 * How much cpu bandwidth does root_task_group get?
7887 * In case of task-groups formed thr' the cgroup filesystem, it
7888 * gets 100% of the cpu resources in the system. This overall
7889 * system cpu resource is divided among the tasks of
7890 * root_task_group and its child task-groups in a fair manner,
7891 * based on each entity's (task or task-group's) weight
7892 * (se->load.weight).
7894 * In other words, if root_task_group has 10 tasks of weight
7895 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7896 * then A0's share of the cpu resource is:
7898 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7900 * We achieve this by letting root_task_group's tasks sit
7901 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7903 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7904 #endif /* CONFIG_FAIR_GROUP_SCHED */
7906 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7907 #ifdef CONFIG_RT_GROUP_SCHED
7908 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7909 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7912 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7913 rq
->cpu_load
[j
] = 0;
7915 rq
->last_load_update_tick
= jiffies
;
7920 rq
->cpu_power
= SCHED_POWER_SCALE
;
7921 rq
->post_schedule
= 0;
7922 rq
->active_balance
= 0;
7923 rq
->next_balance
= jiffies
;
7928 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7929 rq_attach_root(rq
, &def_root_domain
);
7931 rq
->nohz_balance_kick
= 0;
7932 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
7936 atomic_set(&rq
->nr_iowait
, 0);
7939 set_load_weight(&init_task
);
7941 #ifdef CONFIG_PREEMPT_NOTIFIERS
7942 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7946 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7949 #ifdef CONFIG_RT_MUTEXES
7950 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7954 * The boot idle thread does lazy MMU switching as well:
7956 atomic_inc(&init_mm
.mm_count
);
7957 enter_lazy_tlb(&init_mm
, current
);
7960 * Make us the idle thread. Technically, schedule() should not be
7961 * called from this thread, however somewhere below it might be,
7962 * but because we are the idle thread, we just pick up running again
7963 * when this runqueue becomes "idle".
7965 init_idle(current
, smp_processor_id());
7967 calc_load_update
= jiffies
+ LOAD_FREQ
;
7970 * During early bootup we pretend to be a normal task:
7972 current
->sched_class
= &fair_sched_class
;
7974 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7975 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7977 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7979 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
7980 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
7981 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
7982 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
7983 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
7985 /* May be allocated at isolcpus cmdline parse time */
7986 if (cpu_isolated_map
== NULL
)
7987 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7990 scheduler_running
= 1;
7993 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7994 static inline int preempt_count_equals(int preempt_offset
)
7996 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7998 return (nested
== preempt_offset
);
8001 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8004 static unsigned long prev_jiffy
; /* ratelimiting */
8006 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8007 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8009 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8011 prev_jiffy
= jiffies
;
8014 "BUG: sleeping function called from invalid context at %s:%d\n",
8017 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8018 in_atomic(), irqs_disabled(),
8019 current
->pid
, current
->comm
);
8021 debug_show_held_locks(current
);
8022 if (irqs_disabled())
8023 print_irqtrace_events(current
);
8027 EXPORT_SYMBOL(__might_sleep
);
8030 #ifdef CONFIG_MAGIC_SYSRQ
8031 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8033 const struct sched_class
*prev_class
= p
->sched_class
;
8034 int old_prio
= p
->prio
;
8039 deactivate_task(rq
, p
, 0);
8040 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8042 activate_task(rq
, p
, 0);
8043 resched_task(rq
->curr
);
8046 check_class_changed(rq
, p
, prev_class
, old_prio
);
8049 void normalize_rt_tasks(void)
8051 struct task_struct
*g
, *p
;
8052 unsigned long flags
;
8055 read_lock_irqsave(&tasklist_lock
, flags
);
8056 do_each_thread(g
, p
) {
8058 * Only normalize user tasks:
8063 p
->se
.exec_start
= 0;
8064 #ifdef CONFIG_SCHEDSTATS
8065 p
->se
.statistics
.wait_start
= 0;
8066 p
->se
.statistics
.sleep_start
= 0;
8067 p
->se
.statistics
.block_start
= 0;
8072 * Renice negative nice level userspace
8075 if (TASK_NICE(p
) < 0 && p
->mm
)
8076 set_user_nice(p
, 0);
8080 raw_spin_lock(&p
->pi_lock
);
8081 rq
= __task_rq_lock(p
);
8083 normalize_task(rq
, p
);
8085 __task_rq_unlock(rq
);
8086 raw_spin_unlock(&p
->pi_lock
);
8087 } while_each_thread(g
, p
);
8089 read_unlock_irqrestore(&tasklist_lock
, flags
);
8092 #endif /* CONFIG_MAGIC_SYSRQ */
8094 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8096 * These functions are only useful for the IA64 MCA handling, or kdb.
8098 * They can only be called when the whole system has been
8099 * stopped - every CPU needs to be quiescent, and no scheduling
8100 * activity can take place. Using them for anything else would
8101 * be a serious bug, and as a result, they aren't even visible
8102 * under any other configuration.
8106 * curr_task - return the current task for a given cpu.
8107 * @cpu: the processor in question.
8109 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8111 struct task_struct
*curr_task(int cpu
)
8113 return cpu_curr(cpu
);
8116 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8120 * set_curr_task - set the current task for a given cpu.
8121 * @cpu: the processor in question.
8122 * @p: the task pointer to set.
8124 * Description: This function must only be used when non-maskable interrupts
8125 * are serviced on a separate stack. It allows the architecture to switch the
8126 * notion of the current task on a cpu in a non-blocking manner. This function
8127 * must be called with all CPU's synchronized, and interrupts disabled, the
8128 * and caller must save the original value of the current task (see
8129 * curr_task() above) and restore that value before reenabling interrupts and
8130 * re-starting the system.
8132 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8134 void set_curr_task(int cpu
, struct task_struct
*p
)
8141 #ifdef CONFIG_FAIR_GROUP_SCHED
8142 static void free_fair_sched_group(struct task_group
*tg
)
8146 for_each_possible_cpu(i
) {
8148 kfree(tg
->cfs_rq
[i
]);
8158 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8160 struct cfs_rq
*cfs_rq
;
8161 struct sched_entity
*se
;
8164 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8167 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8171 tg
->shares
= NICE_0_LOAD
;
8173 for_each_possible_cpu(i
) {
8174 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8175 GFP_KERNEL
, cpu_to_node(i
));
8179 se
= kzalloc_node(sizeof(struct sched_entity
),
8180 GFP_KERNEL
, cpu_to_node(i
));
8184 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8195 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8197 struct rq
*rq
= cpu_rq(cpu
);
8198 unsigned long flags
;
8201 * Only empty task groups can be destroyed; so we can speculatively
8202 * check on_list without danger of it being re-added.
8204 if (!tg
->cfs_rq
[cpu
]->on_list
)
8207 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8208 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8209 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8211 #else /* !CONFG_FAIR_GROUP_SCHED */
8212 static inline void free_fair_sched_group(struct task_group
*tg
)
8217 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8222 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8225 #endif /* CONFIG_FAIR_GROUP_SCHED */
8227 #ifdef CONFIG_RT_GROUP_SCHED
8228 static void free_rt_sched_group(struct task_group
*tg
)
8232 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8234 for_each_possible_cpu(i
) {
8236 kfree(tg
->rt_rq
[i
]);
8238 kfree(tg
->rt_se
[i
]);
8246 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8248 struct rt_rq
*rt_rq
;
8249 struct sched_rt_entity
*rt_se
;
8252 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8255 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8259 init_rt_bandwidth(&tg
->rt_bandwidth
,
8260 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8262 for_each_possible_cpu(i
) {
8263 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8264 GFP_KERNEL
, cpu_to_node(i
));
8268 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8269 GFP_KERNEL
, cpu_to_node(i
));
8273 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8283 #else /* !CONFIG_RT_GROUP_SCHED */
8284 static inline void free_rt_sched_group(struct task_group
*tg
)
8289 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8293 #endif /* CONFIG_RT_GROUP_SCHED */
8295 #ifdef CONFIG_CGROUP_SCHED
8296 static void free_sched_group(struct task_group
*tg
)
8298 free_fair_sched_group(tg
);
8299 free_rt_sched_group(tg
);
8304 /* allocate runqueue etc for a new task group */
8305 struct task_group
*sched_create_group(struct task_group
*parent
)
8307 struct task_group
*tg
;
8308 unsigned long flags
;
8310 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8312 return ERR_PTR(-ENOMEM
);
8314 if (!alloc_fair_sched_group(tg
, parent
))
8317 if (!alloc_rt_sched_group(tg
, parent
))
8320 spin_lock_irqsave(&task_group_lock
, flags
);
8321 list_add_rcu(&tg
->list
, &task_groups
);
8323 WARN_ON(!parent
); /* root should already exist */
8325 tg
->parent
= parent
;
8326 INIT_LIST_HEAD(&tg
->children
);
8327 list_add_rcu(&tg
->siblings
, &parent
->children
);
8328 spin_unlock_irqrestore(&task_group_lock
, flags
);
8333 free_sched_group(tg
);
8334 return ERR_PTR(-ENOMEM
);
8337 /* rcu callback to free various structures associated with a task group */
8338 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8340 /* now it should be safe to free those cfs_rqs */
8341 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8344 /* Destroy runqueue etc associated with a task group */
8345 void sched_destroy_group(struct task_group
*tg
)
8347 unsigned long flags
;
8350 /* end participation in shares distribution */
8351 for_each_possible_cpu(i
)
8352 unregister_fair_sched_group(tg
, i
);
8354 spin_lock_irqsave(&task_group_lock
, flags
);
8355 list_del_rcu(&tg
->list
);
8356 list_del_rcu(&tg
->siblings
);
8357 spin_unlock_irqrestore(&task_group_lock
, flags
);
8359 /* wait for possible concurrent references to cfs_rqs complete */
8360 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8363 /* change task's runqueue when it moves between groups.
8364 * The caller of this function should have put the task in its new group
8365 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8366 * reflect its new group.
8368 void sched_move_task(struct task_struct
*tsk
)
8371 unsigned long flags
;
8374 rq
= task_rq_lock(tsk
, &flags
);
8376 running
= task_current(rq
, tsk
);
8380 dequeue_task(rq
, tsk
, 0);
8381 if (unlikely(running
))
8382 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8384 #ifdef CONFIG_FAIR_GROUP_SCHED
8385 if (tsk
->sched_class
->task_move_group
)
8386 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8389 set_task_rq(tsk
, task_cpu(tsk
));
8391 if (unlikely(running
))
8392 tsk
->sched_class
->set_curr_task(rq
);
8394 enqueue_task(rq
, tsk
, 0);
8396 task_rq_unlock(rq
, tsk
, &flags
);
8398 #endif /* CONFIG_CGROUP_SCHED */
8400 #ifdef CONFIG_FAIR_GROUP_SCHED
8401 static DEFINE_MUTEX(shares_mutex
);
8403 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8406 unsigned long flags
;
8409 * We can't change the weight of the root cgroup.
8414 if (shares
< MIN_SHARES
)
8415 shares
= MIN_SHARES
;
8416 else if (shares
> MAX_SHARES
)
8417 shares
= MAX_SHARES
;
8419 mutex_lock(&shares_mutex
);
8420 if (tg
->shares
== shares
)
8423 tg
->shares
= shares
;
8424 for_each_possible_cpu(i
) {
8425 struct rq
*rq
= cpu_rq(i
);
8426 struct sched_entity
*se
;
8429 /* Propagate contribution to hierarchy */
8430 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8431 for_each_sched_entity(se
)
8432 update_cfs_shares(group_cfs_rq(se
));
8433 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8437 mutex_unlock(&shares_mutex
);
8441 unsigned long sched_group_shares(struct task_group
*tg
)
8447 #ifdef CONFIG_RT_GROUP_SCHED
8449 * Ensure that the real time constraints are schedulable.
8451 static DEFINE_MUTEX(rt_constraints_mutex
);
8453 static unsigned long to_ratio(u64 period
, u64 runtime
)
8455 if (runtime
== RUNTIME_INF
)
8458 return div64_u64(runtime
<< 20, period
);
8461 /* Must be called with tasklist_lock held */
8462 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8464 struct task_struct
*g
, *p
;
8466 do_each_thread(g
, p
) {
8467 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8469 } while_each_thread(g
, p
);
8474 struct rt_schedulable_data
{
8475 struct task_group
*tg
;
8480 static int tg_schedulable(struct task_group
*tg
, void *data
)
8482 struct rt_schedulable_data
*d
= data
;
8483 struct task_group
*child
;
8484 unsigned long total
, sum
= 0;
8485 u64 period
, runtime
;
8487 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8488 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8491 period
= d
->rt_period
;
8492 runtime
= d
->rt_runtime
;
8496 * Cannot have more runtime than the period.
8498 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8502 * Ensure we don't starve existing RT tasks.
8504 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8507 total
= to_ratio(period
, runtime
);
8510 * Nobody can have more than the global setting allows.
8512 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8516 * The sum of our children's runtime should not exceed our own.
8518 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8519 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8520 runtime
= child
->rt_bandwidth
.rt_runtime
;
8522 if (child
== d
->tg
) {
8523 period
= d
->rt_period
;
8524 runtime
= d
->rt_runtime
;
8527 sum
+= to_ratio(period
, runtime
);
8536 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8538 struct rt_schedulable_data data
= {
8540 .rt_period
= period
,
8541 .rt_runtime
= runtime
,
8544 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8547 static int tg_set_bandwidth(struct task_group
*tg
,
8548 u64 rt_period
, u64 rt_runtime
)
8552 mutex_lock(&rt_constraints_mutex
);
8553 read_lock(&tasklist_lock
);
8554 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8558 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8559 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8560 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8562 for_each_possible_cpu(i
) {
8563 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8565 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8566 rt_rq
->rt_runtime
= rt_runtime
;
8567 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8569 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8571 read_unlock(&tasklist_lock
);
8572 mutex_unlock(&rt_constraints_mutex
);
8577 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8579 u64 rt_runtime
, rt_period
;
8581 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8582 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8583 if (rt_runtime_us
< 0)
8584 rt_runtime
= RUNTIME_INF
;
8586 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8589 long sched_group_rt_runtime(struct task_group
*tg
)
8593 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8596 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8597 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8598 return rt_runtime_us
;
8601 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8603 u64 rt_runtime
, rt_period
;
8605 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8606 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8611 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8614 long sched_group_rt_period(struct task_group
*tg
)
8618 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8619 do_div(rt_period_us
, NSEC_PER_USEC
);
8620 return rt_period_us
;
8623 static int sched_rt_global_constraints(void)
8625 u64 runtime
, period
;
8628 if (sysctl_sched_rt_period
<= 0)
8631 runtime
= global_rt_runtime();
8632 period
= global_rt_period();
8635 * Sanity check on the sysctl variables.
8637 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8640 mutex_lock(&rt_constraints_mutex
);
8641 read_lock(&tasklist_lock
);
8642 ret
= __rt_schedulable(NULL
, 0, 0);
8643 read_unlock(&tasklist_lock
);
8644 mutex_unlock(&rt_constraints_mutex
);
8649 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8651 /* Don't accept realtime tasks when there is no way for them to run */
8652 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8658 #else /* !CONFIG_RT_GROUP_SCHED */
8659 static int sched_rt_global_constraints(void)
8661 unsigned long flags
;
8664 if (sysctl_sched_rt_period
<= 0)
8668 * There's always some RT tasks in the root group
8669 * -- migration, kstopmachine etc..
8671 if (sysctl_sched_rt_runtime
== 0)
8674 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8675 for_each_possible_cpu(i
) {
8676 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8678 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8679 rt_rq
->rt_runtime
= global_rt_runtime();
8680 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8682 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8686 #endif /* CONFIG_RT_GROUP_SCHED */
8688 int sched_rt_handler(struct ctl_table
*table
, int write
,
8689 void __user
*buffer
, size_t *lenp
,
8693 int old_period
, old_runtime
;
8694 static DEFINE_MUTEX(mutex
);
8697 old_period
= sysctl_sched_rt_period
;
8698 old_runtime
= sysctl_sched_rt_runtime
;
8700 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8702 if (!ret
&& write
) {
8703 ret
= sched_rt_global_constraints();
8705 sysctl_sched_rt_period
= old_period
;
8706 sysctl_sched_rt_runtime
= old_runtime
;
8708 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8709 def_rt_bandwidth
.rt_period
=
8710 ns_to_ktime(global_rt_period());
8713 mutex_unlock(&mutex
);
8718 #ifdef CONFIG_CGROUP_SCHED
8720 /* return corresponding task_group object of a cgroup */
8721 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8723 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8724 struct task_group
, css
);
8727 static struct cgroup_subsys_state
*
8728 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8730 struct task_group
*tg
, *parent
;
8732 if (!cgrp
->parent
) {
8733 /* This is early initialization for the top cgroup */
8734 return &root_task_group
.css
;
8737 parent
= cgroup_tg(cgrp
->parent
);
8738 tg
= sched_create_group(parent
);
8740 return ERR_PTR(-ENOMEM
);
8746 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8748 struct task_group
*tg
= cgroup_tg(cgrp
);
8750 sched_destroy_group(tg
);
8754 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8756 #ifdef CONFIG_RT_GROUP_SCHED
8757 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8760 /* We don't support RT-tasks being in separate groups */
8761 if (tsk
->sched_class
!= &fair_sched_class
)
8768 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8769 struct task_struct
*tsk
, bool threadgroup
)
8771 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8775 struct task_struct
*c
;
8777 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8778 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8790 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8791 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8794 sched_move_task(tsk
);
8796 struct task_struct
*c
;
8798 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8806 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8807 struct cgroup
*old_cgrp
, struct task_struct
*task
)
8810 * cgroup_exit() is called in the copy_process() failure path.
8811 * Ignore this case since the task hasn't ran yet, this avoids
8812 * trying to poke a half freed task state from generic code.
8814 if (!(task
->flags
& PF_EXITING
))
8817 sched_move_task(task
);
8820 #ifdef CONFIG_FAIR_GROUP_SCHED
8821 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8824 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
8827 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8829 struct task_group
*tg
= cgroup_tg(cgrp
);
8831 return (u64
) scale_load_down(tg
->shares
);
8833 #endif /* CONFIG_FAIR_GROUP_SCHED */
8835 #ifdef CONFIG_RT_GROUP_SCHED
8836 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8839 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8842 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8844 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8847 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8850 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8853 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8855 return sched_group_rt_period(cgroup_tg(cgrp
));
8857 #endif /* CONFIG_RT_GROUP_SCHED */
8859 static struct cftype cpu_files
[] = {
8860 #ifdef CONFIG_FAIR_GROUP_SCHED
8863 .read_u64
= cpu_shares_read_u64
,
8864 .write_u64
= cpu_shares_write_u64
,
8867 #ifdef CONFIG_RT_GROUP_SCHED
8869 .name
= "rt_runtime_us",
8870 .read_s64
= cpu_rt_runtime_read
,
8871 .write_s64
= cpu_rt_runtime_write
,
8874 .name
= "rt_period_us",
8875 .read_u64
= cpu_rt_period_read_uint
,
8876 .write_u64
= cpu_rt_period_write_uint
,
8881 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8883 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8886 struct cgroup_subsys cpu_cgroup_subsys
= {
8888 .create
= cpu_cgroup_create
,
8889 .destroy
= cpu_cgroup_destroy
,
8890 .can_attach
= cpu_cgroup_can_attach
,
8891 .attach
= cpu_cgroup_attach
,
8892 .exit
= cpu_cgroup_exit
,
8893 .populate
= cpu_cgroup_populate
,
8894 .subsys_id
= cpu_cgroup_subsys_id
,
8898 #endif /* CONFIG_CGROUP_SCHED */
8900 #ifdef CONFIG_CGROUP_CPUACCT
8903 * CPU accounting code for task groups.
8905 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8906 * (balbir@in.ibm.com).
8909 /* track cpu usage of a group of tasks and its child groups */
8911 struct cgroup_subsys_state css
;
8912 /* cpuusage holds pointer to a u64-type object on every cpu */
8913 u64 __percpu
*cpuusage
;
8914 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8915 struct cpuacct
*parent
;
8918 struct cgroup_subsys cpuacct_subsys
;
8920 /* return cpu accounting group corresponding to this container */
8921 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8923 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8924 struct cpuacct
, css
);
8927 /* return cpu accounting group to which this task belongs */
8928 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8930 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8931 struct cpuacct
, css
);
8934 /* create a new cpu accounting group */
8935 static struct cgroup_subsys_state
*cpuacct_create(
8936 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8938 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8944 ca
->cpuusage
= alloc_percpu(u64
);
8948 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8949 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8950 goto out_free_counters
;
8953 ca
->parent
= cgroup_ca(cgrp
->parent
);
8959 percpu_counter_destroy(&ca
->cpustat
[i
]);
8960 free_percpu(ca
->cpuusage
);
8964 return ERR_PTR(-ENOMEM
);
8967 /* destroy an existing cpu accounting group */
8969 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8971 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8974 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8975 percpu_counter_destroy(&ca
->cpustat
[i
]);
8976 free_percpu(ca
->cpuusage
);
8980 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8982 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8985 #ifndef CONFIG_64BIT
8987 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8989 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8991 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8999 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9001 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9003 #ifndef CONFIG_64BIT
9005 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9007 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9009 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9015 /* return total cpu usage (in nanoseconds) of a group */
9016 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9018 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9019 u64 totalcpuusage
= 0;
9022 for_each_present_cpu(i
)
9023 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9025 return totalcpuusage
;
9028 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9031 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9040 for_each_present_cpu(i
)
9041 cpuacct_cpuusage_write(ca
, i
, 0);
9047 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9050 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9054 for_each_present_cpu(i
) {
9055 percpu
= cpuacct_cpuusage_read(ca
, i
);
9056 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9058 seq_printf(m
, "\n");
9062 static const char *cpuacct_stat_desc
[] = {
9063 [CPUACCT_STAT_USER
] = "user",
9064 [CPUACCT_STAT_SYSTEM
] = "system",
9067 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9068 struct cgroup_map_cb
*cb
)
9070 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9073 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9074 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9075 val
= cputime64_to_clock_t(val
);
9076 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9081 static struct cftype files
[] = {
9084 .read_u64
= cpuusage_read
,
9085 .write_u64
= cpuusage_write
,
9088 .name
= "usage_percpu",
9089 .read_seq_string
= cpuacct_percpu_seq_read
,
9093 .read_map
= cpuacct_stats_show
,
9097 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9099 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9103 * charge this task's execution time to its accounting group.
9105 * called with rq->lock held.
9107 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9112 if (unlikely(!cpuacct_subsys
.active
))
9115 cpu
= task_cpu(tsk
);
9121 for (; ca
; ca
= ca
->parent
) {
9122 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9123 *cpuusage
+= cputime
;
9130 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9131 * in cputime_t units. As a result, cpuacct_update_stats calls
9132 * percpu_counter_add with values large enough to always overflow the
9133 * per cpu batch limit causing bad SMP scalability.
9135 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9136 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9137 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9140 #define CPUACCT_BATCH \
9141 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9143 #define CPUACCT_BATCH 0
9147 * Charge the system/user time to the task's accounting group.
9149 static void cpuacct_update_stats(struct task_struct
*tsk
,
9150 enum cpuacct_stat_index idx
, cputime_t val
)
9153 int batch
= CPUACCT_BATCH
;
9155 if (unlikely(!cpuacct_subsys
.active
))
9162 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9168 struct cgroup_subsys cpuacct_subsys
= {
9170 .create
= cpuacct_create
,
9171 .destroy
= cpuacct_destroy
,
9172 .populate
= cpuacct_populate
,
9173 .subsys_id
= cpuacct_subsys_id
,
9175 #endif /* CONFIG_CGROUP_CPUACCT */