USB: serial: ftdi_sio: adding support for TavIR STK500
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blob23949739fc257d7b270fc8688158dd746f9de68f
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "bitmap.h"
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 static inline int raid5_bi_phys_segments(struct bio *bio)
105 return bio->bi_phys_segments & 0xffff;
108 static inline int raid5_bi_hw_segments(struct bio *bio)
110 return (bio->bi_phys_segments >> 16) & 0xffff;
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 --bio->bi_phys_segments;
116 return raid5_bi_phys_segments(bio);
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 unsigned short val = raid5_bi_hw_segments(bio);
123 --val;
124 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 return val;
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head *sh)
136 if (sh->ddf_layout)
137 /* ddf always start from first device */
138 return 0;
139 /* md starts just after Q block */
140 if (sh->qd_idx == sh->disks - 1)
141 return 0;
142 else
143 return sh->qd_idx + 1;
145 static inline int raid6_next_disk(int disk, int raid_disks)
147 disk++;
148 return (disk < raid_disks) ? disk : 0;
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152 * We need to map each disk to a 'slot', where the data disks are slot
153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154 * is raid_disks-1. This help does that mapping.
156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157 int *count, int syndrome_disks)
159 int slot = *count;
161 if (sh->ddf_layout)
162 (*count)++;
163 if (idx == sh->pd_idx)
164 return syndrome_disks;
165 if (idx == sh->qd_idx)
166 return syndrome_disks + 1;
167 if (!sh->ddf_layout)
168 (*count)++;
169 return slot;
172 static void return_io(struct bio *return_bi)
174 struct bio *bi = return_bi;
175 while (bi) {
177 return_bi = bi->bi_next;
178 bi->bi_next = NULL;
179 bi->bi_size = 0;
180 bio_endio(bi, 0);
181 bi = return_bi;
185 static void print_raid5_conf (raid5_conf_t *conf);
187 static int stripe_operations_active(struct stripe_head *sh)
189 return sh->check_state || sh->reconstruct_state ||
190 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
191 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 if (atomic_dec_and_test(&sh->count)) {
197 BUG_ON(!list_empty(&sh->lru));
198 BUG_ON(atomic_read(&conf->active_stripes)==0);
199 if (test_bit(STRIPE_HANDLE, &sh->state)) {
200 if (test_bit(STRIPE_DELAYED, &sh->state)) {
201 list_add_tail(&sh->lru, &conf->delayed_list);
202 blk_plug_device(conf->mddev->queue);
203 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0) {
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 blk_plug_device(conf->mddev->queue);
207 } else {
208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 list_add_tail(&sh->lru, &conf->handle_list);
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
213 BUG_ON(stripe_operations_active(sh));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
219 atomic_dec(&conf->active_stripes);
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
222 wake_up(&conf->wait_for_stripe);
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
230 static void release_stripe(struct stripe_head *sh)
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
240 static inline void remove_hash(struct stripe_head *sh)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
245 hlist_del_init(&sh->hash);
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
255 CHECK_DEVLOCK();
256 hlist_add_head(&sh->hash, hp);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274 out:
275 return sh;
278 static void shrink_buffers(struct stripe_head *sh, int num)
280 struct page *p;
281 int i;
283 for (i=0; i<num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
292 static int grow_buffers(struct stripe_head *sh, int num)
294 int i;
296 for (i=0; i<num; i++) {
297 struct page *page;
299 if (!(page = alloc_page(GFP_KERNEL))) {
300 return 1;
302 sh->dev[i].page = page;
304 return 0;
307 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
308 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
309 struct stripe_head *sh);
311 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 raid5_conf_t *conf = sh->raid_conf;
314 int i;
316 BUG_ON(atomic_read(&sh->count) != 0);
317 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318 BUG_ON(stripe_operations_active(sh));
320 CHECK_DEVLOCK();
321 pr_debug("init_stripe called, stripe %llu\n",
322 (unsigned long long)sh->sector);
324 remove_hash(sh);
326 sh->generation = conf->generation - previous;
327 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
328 sh->sector = sector;
329 stripe_set_idx(sector, conf, previous, sh);
330 sh->state = 0;
333 for (i = sh->disks; i--; ) {
334 struct r5dev *dev = &sh->dev[i];
336 if (dev->toread || dev->read || dev->towrite || dev->written ||
337 test_bit(R5_LOCKED, &dev->flags)) {
338 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
339 (unsigned long long)sh->sector, i, dev->toread,
340 dev->read, dev->towrite, dev->written,
341 test_bit(R5_LOCKED, &dev->flags));
342 BUG();
344 dev->flags = 0;
345 raid5_build_block(sh, i, previous);
347 insert_hash(conf, sh);
350 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
351 short generation)
353 struct stripe_head *sh;
354 struct hlist_node *hn;
356 CHECK_DEVLOCK();
357 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
358 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
359 if (sh->sector == sector && sh->generation == generation)
360 return sh;
361 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
362 return NULL;
365 static void unplug_slaves(mddev_t *mddev);
366 static void raid5_unplug_device(struct request_queue *q);
368 static struct stripe_head *
369 get_active_stripe(raid5_conf_t *conf, sector_t sector,
370 int previous, int noblock, int noquiesce)
372 struct stripe_head *sh;
374 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376 spin_lock_irq(&conf->device_lock);
378 do {
379 wait_event_lock_irq(conf->wait_for_stripe,
380 conf->quiesce == 0 || noquiesce,
381 conf->device_lock, /* nothing */);
382 sh = __find_stripe(conf, sector, conf->generation - previous);
383 if (!sh) {
384 if (!conf->inactive_blocked)
385 sh = get_free_stripe(conf);
386 if (noblock && sh == NULL)
387 break;
388 if (!sh) {
389 conf->inactive_blocked = 1;
390 wait_event_lock_irq(conf->wait_for_stripe,
391 !list_empty(&conf->inactive_list) &&
392 (atomic_read(&conf->active_stripes)
393 < (conf->max_nr_stripes *3/4)
394 || !conf->inactive_blocked),
395 conf->device_lock,
396 raid5_unplug_device(conf->mddev->queue)
398 conf->inactive_blocked = 0;
399 } else
400 init_stripe(sh, sector, previous);
401 } else {
402 if (atomic_read(&sh->count)) {
403 BUG_ON(!list_empty(&sh->lru)
404 && !test_bit(STRIPE_EXPANDING, &sh->state));
405 } else {
406 if (!test_bit(STRIPE_HANDLE, &sh->state))
407 atomic_inc(&conf->active_stripes);
408 if (list_empty(&sh->lru) &&
409 !test_bit(STRIPE_EXPANDING, &sh->state))
410 BUG();
411 list_del_init(&sh->lru);
414 } while (sh == NULL);
416 if (sh)
417 atomic_inc(&sh->count);
419 spin_unlock_irq(&conf->device_lock);
420 return sh;
423 static void
424 raid5_end_read_request(struct bio *bi, int error);
425 static void
426 raid5_end_write_request(struct bio *bi, int error);
428 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 raid5_conf_t *conf = sh->raid_conf;
431 int i, disks = sh->disks;
433 might_sleep();
435 for (i = disks; i--; ) {
436 int rw;
437 struct bio *bi;
438 mdk_rdev_t *rdev;
439 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
440 rw = WRITE;
441 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
442 rw = READ;
443 else
444 continue;
446 bi = &sh->dev[i].req;
448 bi->bi_rw = rw;
449 if (rw == WRITE)
450 bi->bi_end_io = raid5_end_write_request;
451 else
452 bi->bi_end_io = raid5_end_read_request;
454 rcu_read_lock();
455 rdev = rcu_dereference(conf->disks[i].rdev);
456 if (rdev && test_bit(Faulty, &rdev->flags))
457 rdev = NULL;
458 if (rdev)
459 atomic_inc(&rdev->nr_pending);
460 rcu_read_unlock();
462 if (rdev) {
463 if (s->syncing || s->expanding || s->expanded)
464 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466 set_bit(STRIPE_IO_STARTED, &sh->state);
468 bi->bi_bdev = rdev->bdev;
469 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
470 __func__, (unsigned long long)sh->sector,
471 bi->bi_rw, i);
472 atomic_inc(&sh->count);
473 bi->bi_sector = sh->sector + rdev->data_offset;
474 bi->bi_flags = 1 << BIO_UPTODATE;
475 bi->bi_vcnt = 1;
476 bi->bi_max_vecs = 1;
477 bi->bi_idx = 0;
478 bi->bi_io_vec = &sh->dev[i].vec;
479 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
480 bi->bi_io_vec[0].bv_offset = 0;
481 bi->bi_size = STRIPE_SIZE;
482 bi->bi_next = NULL;
483 if (rw == WRITE &&
484 test_bit(R5_ReWrite, &sh->dev[i].flags))
485 atomic_add(STRIPE_SECTORS,
486 &rdev->corrected_errors);
487 generic_make_request(bi);
488 } else {
489 if (rw == WRITE)
490 set_bit(STRIPE_DEGRADED, &sh->state);
491 pr_debug("skip op %ld on disc %d for sector %llu\n",
492 bi->bi_rw, i, (unsigned long long)sh->sector);
493 clear_bit(R5_LOCKED, &sh->dev[i].flags);
494 set_bit(STRIPE_HANDLE, &sh->state);
499 static struct dma_async_tx_descriptor *
500 async_copy_data(int frombio, struct bio *bio, struct page *page,
501 sector_t sector, struct dma_async_tx_descriptor *tx)
503 struct bio_vec *bvl;
504 struct page *bio_page;
505 int i;
506 int page_offset;
507 struct async_submit_ctl submit;
508 enum async_tx_flags flags = 0;
510 if (bio->bi_sector >= sector)
511 page_offset = (signed)(bio->bi_sector - sector) * 512;
512 else
513 page_offset = (signed)(sector - bio->bi_sector) * -512;
515 if (frombio)
516 flags |= ASYNC_TX_FENCE;
517 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519 bio_for_each_segment(bvl, bio, i) {
520 int len = bio_iovec_idx(bio, i)->bv_len;
521 int clen;
522 int b_offset = 0;
524 if (page_offset < 0) {
525 b_offset = -page_offset;
526 page_offset += b_offset;
527 len -= b_offset;
530 if (len > 0 && page_offset + len > STRIPE_SIZE)
531 clen = STRIPE_SIZE - page_offset;
532 else
533 clen = len;
535 if (clen > 0) {
536 b_offset += bio_iovec_idx(bio, i)->bv_offset;
537 bio_page = bio_iovec_idx(bio, i)->bv_page;
538 if (frombio)
539 tx = async_memcpy(page, bio_page, page_offset,
540 b_offset, clen, &submit);
541 else
542 tx = async_memcpy(bio_page, page, b_offset,
543 page_offset, clen, &submit);
545 /* chain the operations */
546 submit.depend_tx = tx;
548 if (clen < len) /* hit end of page */
549 break;
550 page_offset += len;
553 return tx;
556 static void ops_complete_biofill(void *stripe_head_ref)
558 struct stripe_head *sh = stripe_head_ref;
559 struct bio *return_bi = NULL;
560 raid5_conf_t *conf = sh->raid_conf;
561 int i;
563 pr_debug("%s: stripe %llu\n", __func__,
564 (unsigned long long)sh->sector);
566 /* clear completed biofills */
567 spin_lock_irq(&conf->device_lock);
568 for (i = sh->disks; i--; ) {
569 struct r5dev *dev = &sh->dev[i];
571 /* acknowledge completion of a biofill operation */
572 /* and check if we need to reply to a read request,
573 * new R5_Wantfill requests are held off until
574 * !STRIPE_BIOFILL_RUN
576 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
577 struct bio *rbi, *rbi2;
579 BUG_ON(!dev->read);
580 rbi = dev->read;
581 dev->read = NULL;
582 while (rbi && rbi->bi_sector <
583 dev->sector + STRIPE_SECTORS) {
584 rbi2 = r5_next_bio(rbi, dev->sector);
585 if (!raid5_dec_bi_phys_segments(rbi)) {
586 rbi->bi_next = return_bi;
587 return_bi = rbi;
589 rbi = rbi2;
593 spin_unlock_irq(&conf->device_lock);
594 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596 return_io(return_bi);
598 set_bit(STRIPE_HANDLE, &sh->state);
599 release_stripe(sh);
602 static void ops_run_biofill(struct stripe_head *sh)
604 struct dma_async_tx_descriptor *tx = NULL;
605 raid5_conf_t *conf = sh->raid_conf;
606 struct async_submit_ctl submit;
607 int i;
609 pr_debug("%s: stripe %llu\n", __func__,
610 (unsigned long long)sh->sector);
612 for (i = sh->disks; i--; ) {
613 struct r5dev *dev = &sh->dev[i];
614 if (test_bit(R5_Wantfill, &dev->flags)) {
615 struct bio *rbi;
616 spin_lock_irq(&conf->device_lock);
617 dev->read = rbi = dev->toread;
618 dev->toread = NULL;
619 spin_unlock_irq(&conf->device_lock);
620 while (rbi && rbi->bi_sector <
621 dev->sector + STRIPE_SECTORS) {
622 tx = async_copy_data(0, rbi, dev->page,
623 dev->sector, tx);
624 rbi = r5_next_bio(rbi, dev->sector);
629 atomic_inc(&sh->count);
630 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
631 async_trigger_callback(&submit);
634 static void mark_target_uptodate(struct stripe_head *sh, int target)
636 struct r5dev *tgt;
638 if (target < 0)
639 return;
641 tgt = &sh->dev[target];
642 set_bit(R5_UPTODATE, &tgt->flags);
643 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
644 clear_bit(R5_Wantcompute, &tgt->flags);
647 static void ops_complete_compute(void *stripe_head_ref)
649 struct stripe_head *sh = stripe_head_ref;
651 pr_debug("%s: stripe %llu\n", __func__,
652 (unsigned long long)sh->sector);
654 /* mark the computed target(s) as uptodate */
655 mark_target_uptodate(sh, sh->ops.target);
656 mark_target_uptodate(sh, sh->ops.target2);
658 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
659 if (sh->check_state == check_state_compute_run)
660 sh->check_state = check_state_compute_result;
661 set_bit(STRIPE_HANDLE, &sh->state);
662 release_stripe(sh);
665 /* return a pointer to the address conversion region of the scribble buffer */
666 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
667 struct raid5_percpu *percpu)
669 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
672 static struct dma_async_tx_descriptor *
673 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 int disks = sh->disks;
676 struct page **xor_srcs = percpu->scribble;
677 int target = sh->ops.target;
678 struct r5dev *tgt = &sh->dev[target];
679 struct page *xor_dest = tgt->page;
680 int count = 0;
681 struct dma_async_tx_descriptor *tx;
682 struct async_submit_ctl submit;
683 int i;
685 pr_debug("%s: stripe %llu block: %d\n",
686 __func__, (unsigned long long)sh->sector, target);
687 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689 for (i = disks; i--; )
690 if (i != target)
691 xor_srcs[count++] = sh->dev[i].page;
693 atomic_inc(&sh->count);
695 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
696 ops_complete_compute, sh, to_addr_conv(sh, percpu));
697 if (unlikely(count == 1))
698 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
699 else
700 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702 return tx;
705 /* set_syndrome_sources - populate source buffers for gen_syndrome
706 * @srcs - (struct page *) array of size sh->disks
707 * @sh - stripe_head to parse
709 * Populates srcs in proper layout order for the stripe and returns the
710 * 'count' of sources to be used in a call to async_gen_syndrome. The P
711 * destination buffer is recorded in srcs[count] and the Q destination
712 * is recorded in srcs[count+1]].
714 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716 int disks = sh->disks;
717 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
718 int d0_idx = raid6_d0(sh);
719 int count;
720 int i;
722 for (i = 0; i < disks; i++)
723 srcs[i] = NULL;
725 count = 0;
726 i = d0_idx;
727 do {
728 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730 srcs[slot] = sh->dev[i].page;
731 i = raid6_next_disk(i, disks);
732 } while (i != d0_idx);
734 return syndrome_disks;
737 static struct dma_async_tx_descriptor *
738 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740 int disks = sh->disks;
741 struct page **blocks = percpu->scribble;
742 int target;
743 int qd_idx = sh->qd_idx;
744 struct dma_async_tx_descriptor *tx;
745 struct async_submit_ctl submit;
746 struct r5dev *tgt;
747 struct page *dest;
748 int i;
749 int count;
751 if (sh->ops.target < 0)
752 target = sh->ops.target2;
753 else if (sh->ops.target2 < 0)
754 target = sh->ops.target;
755 else
756 /* we should only have one valid target */
757 BUG();
758 BUG_ON(target < 0);
759 pr_debug("%s: stripe %llu block: %d\n",
760 __func__, (unsigned long long)sh->sector, target);
762 tgt = &sh->dev[target];
763 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
764 dest = tgt->page;
766 atomic_inc(&sh->count);
768 if (target == qd_idx) {
769 count = set_syndrome_sources(blocks, sh);
770 blocks[count] = NULL; /* regenerating p is not necessary */
771 BUG_ON(blocks[count+1] != dest); /* q should already be set */
772 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
773 ops_complete_compute, sh,
774 to_addr_conv(sh, percpu));
775 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
776 } else {
777 /* Compute any data- or p-drive using XOR */
778 count = 0;
779 for (i = disks; i-- ; ) {
780 if (i == target || i == qd_idx)
781 continue;
782 blocks[count++] = sh->dev[i].page;
785 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
786 NULL, ops_complete_compute, sh,
787 to_addr_conv(sh, percpu));
788 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
791 return tx;
794 static struct dma_async_tx_descriptor *
795 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797 int i, count, disks = sh->disks;
798 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
799 int d0_idx = raid6_d0(sh);
800 int faila = -1, failb = -1;
801 int target = sh->ops.target;
802 int target2 = sh->ops.target2;
803 struct r5dev *tgt = &sh->dev[target];
804 struct r5dev *tgt2 = &sh->dev[target2];
805 struct dma_async_tx_descriptor *tx;
806 struct page **blocks = percpu->scribble;
807 struct async_submit_ctl submit;
809 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
810 __func__, (unsigned long long)sh->sector, target, target2);
811 BUG_ON(target < 0 || target2 < 0);
812 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
813 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815 /* we need to open-code set_syndrome_sources to handle the
816 * slot number conversion for 'faila' and 'failb'
818 for (i = 0; i < disks ; i++)
819 blocks[i] = NULL;
820 count = 0;
821 i = d0_idx;
822 do {
823 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825 blocks[slot] = sh->dev[i].page;
827 if (i == target)
828 faila = slot;
829 if (i == target2)
830 failb = slot;
831 i = raid6_next_disk(i, disks);
832 } while (i != d0_idx);
834 BUG_ON(faila == failb);
835 if (failb < faila)
836 swap(faila, failb);
837 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
838 __func__, (unsigned long long)sh->sector, faila, failb);
840 atomic_inc(&sh->count);
842 if (failb == syndrome_disks+1) {
843 /* Q disk is one of the missing disks */
844 if (faila == syndrome_disks) {
845 /* Missing P+Q, just recompute */
846 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
847 ops_complete_compute, sh,
848 to_addr_conv(sh, percpu));
849 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
850 STRIPE_SIZE, &submit);
851 } else {
852 struct page *dest;
853 int data_target;
854 int qd_idx = sh->qd_idx;
856 /* Missing D+Q: recompute D from P, then recompute Q */
857 if (target == qd_idx)
858 data_target = target2;
859 else
860 data_target = target;
862 count = 0;
863 for (i = disks; i-- ; ) {
864 if (i == data_target || i == qd_idx)
865 continue;
866 blocks[count++] = sh->dev[i].page;
868 dest = sh->dev[data_target].page;
869 init_async_submit(&submit,
870 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
871 NULL, NULL, NULL,
872 to_addr_conv(sh, percpu));
873 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
874 &submit);
876 count = set_syndrome_sources(blocks, sh);
877 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
878 ops_complete_compute, sh,
879 to_addr_conv(sh, percpu));
880 return async_gen_syndrome(blocks, 0, count+2,
881 STRIPE_SIZE, &submit);
883 } else {
884 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
885 ops_complete_compute, sh,
886 to_addr_conv(sh, percpu));
887 if (failb == syndrome_disks) {
888 /* We're missing D+P. */
889 return async_raid6_datap_recov(syndrome_disks+2,
890 STRIPE_SIZE, faila,
891 blocks, &submit);
892 } else {
893 /* We're missing D+D. */
894 return async_raid6_2data_recov(syndrome_disks+2,
895 STRIPE_SIZE, faila, failb,
896 blocks, &submit);
902 static void ops_complete_prexor(void *stripe_head_ref)
904 struct stripe_head *sh = stripe_head_ref;
906 pr_debug("%s: stripe %llu\n", __func__,
907 (unsigned long long)sh->sector);
910 static struct dma_async_tx_descriptor *
911 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
912 struct dma_async_tx_descriptor *tx)
914 int disks = sh->disks;
915 struct page **xor_srcs = percpu->scribble;
916 int count = 0, pd_idx = sh->pd_idx, i;
917 struct async_submit_ctl submit;
919 /* existing parity data subtracted */
920 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922 pr_debug("%s: stripe %llu\n", __func__,
923 (unsigned long long)sh->sector);
925 for (i = disks; i--; ) {
926 struct r5dev *dev = &sh->dev[i];
927 /* Only process blocks that are known to be uptodate */
928 if (test_bit(R5_Wantdrain, &dev->flags))
929 xor_srcs[count++] = dev->page;
932 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
933 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
934 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936 return tx;
939 static struct dma_async_tx_descriptor *
940 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 int disks = sh->disks;
943 int i;
945 pr_debug("%s: stripe %llu\n", __func__,
946 (unsigned long long)sh->sector);
948 for (i = disks; i--; ) {
949 struct r5dev *dev = &sh->dev[i];
950 struct bio *chosen;
952 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
953 struct bio *wbi;
955 spin_lock(&sh->lock);
956 chosen = dev->towrite;
957 dev->towrite = NULL;
958 BUG_ON(dev->written);
959 wbi = dev->written = chosen;
960 spin_unlock(&sh->lock);
962 while (wbi && wbi->bi_sector <
963 dev->sector + STRIPE_SECTORS) {
964 tx = async_copy_data(1, wbi, dev->page,
965 dev->sector, tx);
966 wbi = r5_next_bio(wbi, dev->sector);
971 return tx;
974 static void ops_complete_reconstruct(void *stripe_head_ref)
976 struct stripe_head *sh = stripe_head_ref;
977 int disks = sh->disks;
978 int pd_idx = sh->pd_idx;
979 int qd_idx = sh->qd_idx;
980 int i;
982 pr_debug("%s: stripe %llu\n", __func__,
983 (unsigned long long)sh->sector);
985 for (i = disks; i--; ) {
986 struct r5dev *dev = &sh->dev[i];
988 if (dev->written || i == pd_idx || i == qd_idx)
989 set_bit(R5_UPTODATE, &dev->flags);
992 if (sh->reconstruct_state == reconstruct_state_drain_run)
993 sh->reconstruct_state = reconstruct_state_drain_result;
994 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
995 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
996 else {
997 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
998 sh->reconstruct_state = reconstruct_state_result;
1001 set_bit(STRIPE_HANDLE, &sh->state);
1002 release_stripe(sh);
1005 static void
1006 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1007 struct dma_async_tx_descriptor *tx)
1009 int disks = sh->disks;
1010 struct page **xor_srcs = percpu->scribble;
1011 struct async_submit_ctl submit;
1012 int count = 0, pd_idx = sh->pd_idx, i;
1013 struct page *xor_dest;
1014 int prexor = 0;
1015 unsigned long flags;
1017 pr_debug("%s: stripe %llu\n", __func__,
1018 (unsigned long long)sh->sector);
1020 /* check if prexor is active which means only process blocks
1021 * that are part of a read-modify-write (written)
1023 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1024 prexor = 1;
1025 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1026 for (i = disks; i--; ) {
1027 struct r5dev *dev = &sh->dev[i];
1028 if (dev->written)
1029 xor_srcs[count++] = dev->page;
1031 } else {
1032 xor_dest = sh->dev[pd_idx].page;
1033 for (i = disks; i--; ) {
1034 struct r5dev *dev = &sh->dev[i];
1035 if (i != pd_idx)
1036 xor_srcs[count++] = dev->page;
1040 /* 1/ if we prexor'd then the dest is reused as a source
1041 * 2/ if we did not prexor then we are redoing the parity
1042 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1043 * for the synchronous xor case
1045 flags = ASYNC_TX_ACK |
1046 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048 atomic_inc(&sh->count);
1050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1051 to_addr_conv(sh, percpu));
1052 if (unlikely(count == 1))
1053 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1054 else
1055 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1058 static void
1059 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1060 struct dma_async_tx_descriptor *tx)
1062 struct async_submit_ctl submit;
1063 struct page **blocks = percpu->scribble;
1064 int count;
1066 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068 count = set_syndrome_sources(blocks, sh);
1070 atomic_inc(&sh->count);
1072 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1073 sh, to_addr_conv(sh, percpu));
1074 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1077 static void ops_complete_check(void *stripe_head_ref)
1079 struct stripe_head *sh = stripe_head_ref;
1081 pr_debug("%s: stripe %llu\n", __func__,
1082 (unsigned long long)sh->sector);
1084 sh->check_state = check_state_check_result;
1085 set_bit(STRIPE_HANDLE, &sh->state);
1086 release_stripe(sh);
1089 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 int disks = sh->disks;
1092 int pd_idx = sh->pd_idx;
1093 int qd_idx = sh->qd_idx;
1094 struct page *xor_dest;
1095 struct page **xor_srcs = percpu->scribble;
1096 struct dma_async_tx_descriptor *tx;
1097 struct async_submit_ctl submit;
1098 int count;
1099 int i;
1101 pr_debug("%s: stripe %llu\n", __func__,
1102 (unsigned long long)sh->sector);
1104 count = 0;
1105 xor_dest = sh->dev[pd_idx].page;
1106 xor_srcs[count++] = xor_dest;
1107 for (i = disks; i--; ) {
1108 if (i == pd_idx || i == qd_idx)
1109 continue;
1110 xor_srcs[count++] = sh->dev[i].page;
1113 init_async_submit(&submit, 0, NULL, NULL, NULL,
1114 to_addr_conv(sh, percpu));
1115 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1116 &sh->ops.zero_sum_result, &submit);
1118 atomic_inc(&sh->count);
1119 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1120 tx = async_trigger_callback(&submit);
1123 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125 struct page **srcs = percpu->scribble;
1126 struct async_submit_ctl submit;
1127 int count;
1129 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1130 (unsigned long long)sh->sector, checkp);
1132 count = set_syndrome_sources(srcs, sh);
1133 if (!checkp)
1134 srcs[count] = NULL;
1136 atomic_inc(&sh->count);
1137 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1138 sh, to_addr_conv(sh, percpu));
1139 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1140 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1143 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 int overlap_clear = 0, i, disks = sh->disks;
1146 struct dma_async_tx_descriptor *tx = NULL;
1147 raid5_conf_t *conf = sh->raid_conf;
1148 int level = conf->level;
1149 struct raid5_percpu *percpu;
1150 unsigned long cpu;
1152 cpu = get_cpu();
1153 percpu = per_cpu_ptr(conf->percpu, cpu);
1154 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1155 ops_run_biofill(sh);
1156 overlap_clear++;
1159 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1160 if (level < 6)
1161 tx = ops_run_compute5(sh, percpu);
1162 else {
1163 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1164 tx = ops_run_compute6_1(sh, percpu);
1165 else
1166 tx = ops_run_compute6_2(sh, percpu);
1168 /* terminate the chain if reconstruct is not set to be run */
1169 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1170 async_tx_ack(tx);
1173 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1174 tx = ops_run_prexor(sh, percpu, tx);
1176 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1177 tx = ops_run_biodrain(sh, tx);
1178 overlap_clear++;
1181 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1182 if (level < 6)
1183 ops_run_reconstruct5(sh, percpu, tx);
1184 else
1185 ops_run_reconstruct6(sh, percpu, tx);
1188 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1189 if (sh->check_state == check_state_run)
1190 ops_run_check_p(sh, percpu);
1191 else if (sh->check_state == check_state_run_q)
1192 ops_run_check_pq(sh, percpu, 0);
1193 else if (sh->check_state == check_state_run_pq)
1194 ops_run_check_pq(sh, percpu, 1);
1195 else
1196 BUG();
1199 if (overlap_clear)
1200 for (i = disks; i--; ) {
1201 struct r5dev *dev = &sh->dev[i];
1202 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1203 wake_up(&sh->raid_conf->wait_for_overlap);
1205 put_cpu();
1208 #ifdef CONFIG_MULTICORE_RAID456
1209 static void async_run_ops(void *param, async_cookie_t cookie)
1211 struct stripe_head *sh = param;
1212 unsigned long ops_request = sh->ops.request;
1214 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1215 wake_up(&sh->ops.wait_for_ops);
1217 __raid_run_ops(sh, ops_request);
1218 release_stripe(sh);
1221 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 /* since handle_stripe can be called outside of raid5d context
1224 * we need to ensure sh->ops.request is de-staged before another
1225 * request arrives
1227 wait_event(sh->ops.wait_for_ops,
1228 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1229 sh->ops.request = ops_request;
1231 atomic_inc(&sh->count);
1232 async_schedule(async_run_ops, sh);
1234 #else
1235 #define raid_run_ops __raid_run_ops
1236 #endif
1238 static int grow_one_stripe(raid5_conf_t *conf)
1240 struct stripe_head *sh;
1241 int disks = max(conf->raid_disks, conf->previous_raid_disks);
1242 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1243 if (!sh)
1244 return 0;
1245 memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1246 sh->raid_conf = conf;
1247 spin_lock_init(&sh->lock);
1248 #ifdef CONFIG_MULTICORE_RAID456
1249 init_waitqueue_head(&sh->ops.wait_for_ops);
1250 #endif
1252 if (grow_buffers(sh, disks)) {
1253 shrink_buffers(sh, disks);
1254 kmem_cache_free(conf->slab_cache, sh);
1255 return 0;
1257 /* we just created an active stripe so... */
1258 atomic_set(&sh->count, 1);
1259 atomic_inc(&conf->active_stripes);
1260 INIT_LIST_HEAD(&sh->lru);
1261 release_stripe(sh);
1262 return 1;
1265 static int grow_stripes(raid5_conf_t *conf, int num)
1267 struct kmem_cache *sc;
1268 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270 sprintf(conf->cache_name[0],
1271 "raid%d-%s", conf->level, mdname(conf->mddev));
1272 sprintf(conf->cache_name[1],
1273 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1274 conf->active_name = 0;
1275 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1276 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1277 0, 0, NULL);
1278 if (!sc)
1279 return 1;
1280 conf->slab_cache = sc;
1281 conf->pool_size = devs;
1282 while (num--)
1283 if (!grow_one_stripe(conf))
1284 return 1;
1285 return 0;
1289 * scribble_len - return the required size of the scribble region
1290 * @num - total number of disks in the array
1292 * The size must be enough to contain:
1293 * 1/ a struct page pointer for each device in the array +2
1294 * 2/ room to convert each entry in (1) to its corresponding dma
1295 * (dma_map_page()) or page (page_address()) address.
1297 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1298 * calculate over all devices (not just the data blocks), using zeros in place
1299 * of the P and Q blocks.
1301 static size_t scribble_len(int num)
1303 size_t len;
1305 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307 return len;
1310 static int resize_stripes(raid5_conf_t *conf, int newsize)
1312 /* Make all the stripes able to hold 'newsize' devices.
1313 * New slots in each stripe get 'page' set to a new page.
1315 * This happens in stages:
1316 * 1/ create a new kmem_cache and allocate the required number of
1317 * stripe_heads.
1318 * 2/ gather all the old stripe_heads and tranfer the pages across
1319 * to the new stripe_heads. This will have the side effect of
1320 * freezing the array as once all stripe_heads have been collected,
1321 * no IO will be possible. Old stripe heads are freed once their
1322 * pages have been transferred over, and the old kmem_cache is
1323 * freed when all stripes are done.
1324 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1325 * we simple return a failre status - no need to clean anything up.
1326 * 4/ allocate new pages for the new slots in the new stripe_heads.
1327 * If this fails, we don't bother trying the shrink the
1328 * stripe_heads down again, we just leave them as they are.
1329 * As each stripe_head is processed the new one is released into
1330 * active service.
1332 * Once step2 is started, we cannot afford to wait for a write,
1333 * so we use GFP_NOIO allocations.
1335 struct stripe_head *osh, *nsh;
1336 LIST_HEAD(newstripes);
1337 struct disk_info *ndisks;
1338 unsigned long cpu;
1339 int err;
1340 struct kmem_cache *sc;
1341 int i;
1343 if (newsize <= conf->pool_size)
1344 return 0; /* never bother to shrink */
1346 err = md_allow_write(conf->mddev);
1347 if (err)
1348 return err;
1350 /* Step 1 */
1351 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1352 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1353 0, 0, NULL);
1354 if (!sc)
1355 return -ENOMEM;
1357 for (i = conf->max_nr_stripes; i; i--) {
1358 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1359 if (!nsh)
1360 break;
1362 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364 nsh->raid_conf = conf;
1365 spin_lock_init(&nsh->lock);
1366 #ifdef CONFIG_MULTICORE_RAID456
1367 init_waitqueue_head(&nsh->ops.wait_for_ops);
1368 #endif
1370 list_add(&nsh->lru, &newstripes);
1372 if (i) {
1373 /* didn't get enough, give up */
1374 while (!list_empty(&newstripes)) {
1375 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1376 list_del(&nsh->lru);
1377 kmem_cache_free(sc, nsh);
1379 kmem_cache_destroy(sc);
1380 return -ENOMEM;
1382 /* Step 2 - Must use GFP_NOIO now.
1383 * OK, we have enough stripes, start collecting inactive
1384 * stripes and copying them over
1386 list_for_each_entry(nsh, &newstripes, lru) {
1387 spin_lock_irq(&conf->device_lock);
1388 wait_event_lock_irq(conf->wait_for_stripe,
1389 !list_empty(&conf->inactive_list),
1390 conf->device_lock,
1391 unplug_slaves(conf->mddev)
1393 osh = get_free_stripe(conf);
1394 spin_unlock_irq(&conf->device_lock);
1395 atomic_set(&nsh->count, 1);
1396 for(i=0; i<conf->pool_size; i++)
1397 nsh->dev[i].page = osh->dev[i].page;
1398 for( ; i<newsize; i++)
1399 nsh->dev[i].page = NULL;
1400 kmem_cache_free(conf->slab_cache, osh);
1402 kmem_cache_destroy(conf->slab_cache);
1404 /* Step 3.
1405 * At this point, we are holding all the stripes so the array
1406 * is completely stalled, so now is a good time to resize
1407 * conf->disks and the scribble region
1409 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1410 if (ndisks) {
1411 for (i=0; i<conf->raid_disks; i++)
1412 ndisks[i] = conf->disks[i];
1413 kfree(conf->disks);
1414 conf->disks = ndisks;
1415 } else
1416 err = -ENOMEM;
1418 get_online_cpus();
1419 conf->scribble_len = scribble_len(newsize);
1420 for_each_present_cpu(cpu) {
1421 struct raid5_percpu *percpu;
1422 void *scribble;
1424 percpu = per_cpu_ptr(conf->percpu, cpu);
1425 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427 if (scribble) {
1428 kfree(percpu->scribble);
1429 percpu->scribble = scribble;
1430 } else {
1431 err = -ENOMEM;
1432 break;
1435 put_online_cpus();
1437 /* Step 4, return new stripes to service */
1438 while(!list_empty(&newstripes)) {
1439 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1440 list_del_init(&nsh->lru);
1442 for (i=conf->raid_disks; i < newsize; i++)
1443 if (nsh->dev[i].page == NULL) {
1444 struct page *p = alloc_page(GFP_NOIO);
1445 nsh->dev[i].page = p;
1446 if (!p)
1447 err = -ENOMEM;
1449 release_stripe(nsh);
1451 /* critical section pass, GFP_NOIO no longer needed */
1453 conf->slab_cache = sc;
1454 conf->active_name = 1-conf->active_name;
1455 conf->pool_size = newsize;
1456 return err;
1459 static int drop_one_stripe(raid5_conf_t *conf)
1461 struct stripe_head *sh;
1463 spin_lock_irq(&conf->device_lock);
1464 sh = get_free_stripe(conf);
1465 spin_unlock_irq(&conf->device_lock);
1466 if (!sh)
1467 return 0;
1468 BUG_ON(atomic_read(&sh->count));
1469 shrink_buffers(sh, conf->pool_size);
1470 kmem_cache_free(conf->slab_cache, sh);
1471 atomic_dec(&conf->active_stripes);
1472 return 1;
1475 static void shrink_stripes(raid5_conf_t *conf)
1477 while (drop_one_stripe(conf))
1480 if (conf->slab_cache)
1481 kmem_cache_destroy(conf->slab_cache);
1482 conf->slab_cache = NULL;
1485 static void raid5_end_read_request(struct bio * bi, int error)
1487 struct stripe_head *sh = bi->bi_private;
1488 raid5_conf_t *conf = sh->raid_conf;
1489 int disks = sh->disks, i;
1490 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1491 char b[BDEVNAME_SIZE];
1492 mdk_rdev_t *rdev;
1495 for (i=0 ; i<disks; i++)
1496 if (bi == &sh->dev[i].req)
1497 break;
1499 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1500 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1501 uptodate);
1502 if (i == disks) {
1503 BUG();
1504 return;
1507 if (uptodate) {
1508 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1509 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1510 rdev = conf->disks[i].rdev;
1511 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1512 " (%lu sectors at %llu on %s)\n",
1513 mdname(conf->mddev), STRIPE_SECTORS,
1514 (unsigned long long)(sh->sector
1515 + rdev->data_offset),
1516 bdevname(rdev->bdev, b));
1517 clear_bit(R5_ReadError, &sh->dev[i].flags);
1518 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520 if (atomic_read(&conf->disks[i].rdev->read_errors))
1521 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1522 } else {
1523 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1524 int retry = 0;
1525 rdev = conf->disks[i].rdev;
1527 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1528 atomic_inc(&rdev->read_errors);
1529 if (conf->mddev->degraded >= conf->max_degraded)
1530 printk_rl(KERN_WARNING
1531 "raid5:%s: read error not correctable "
1532 "(sector %llu on %s).\n",
1533 mdname(conf->mddev),
1534 (unsigned long long)(sh->sector
1535 + rdev->data_offset),
1536 bdn);
1537 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1538 /* Oh, no!!! */
1539 printk_rl(KERN_WARNING
1540 "raid5:%s: read error NOT corrected!! "
1541 "(sector %llu on %s).\n",
1542 mdname(conf->mddev),
1543 (unsigned long long)(sh->sector
1544 + rdev->data_offset),
1545 bdn);
1546 else if (atomic_read(&rdev->read_errors)
1547 > conf->max_nr_stripes)
1548 printk(KERN_WARNING
1549 "raid5:%s: Too many read errors, failing device %s.\n",
1550 mdname(conf->mddev), bdn);
1551 else
1552 retry = 1;
1553 if (retry)
1554 set_bit(R5_ReadError, &sh->dev[i].flags);
1555 else {
1556 clear_bit(R5_ReadError, &sh->dev[i].flags);
1557 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1558 md_error(conf->mddev, rdev);
1561 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1562 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1563 set_bit(STRIPE_HANDLE, &sh->state);
1564 release_stripe(sh);
1567 static void raid5_end_write_request(struct bio *bi, int error)
1569 struct stripe_head *sh = bi->bi_private;
1570 raid5_conf_t *conf = sh->raid_conf;
1571 int disks = sh->disks, i;
1572 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574 for (i=0 ; i<disks; i++)
1575 if (bi == &sh->dev[i].req)
1576 break;
1578 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1579 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580 uptodate);
1581 if (i == disks) {
1582 BUG();
1583 return;
1586 if (!uptodate)
1587 md_error(conf->mddev, conf->disks[i].rdev);
1589 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1592 set_bit(STRIPE_HANDLE, &sh->state);
1593 release_stripe(sh);
1597 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601 struct r5dev *dev = &sh->dev[i];
1603 bio_init(&dev->req);
1604 dev->req.bi_io_vec = &dev->vec;
1605 dev->req.bi_vcnt++;
1606 dev->req.bi_max_vecs++;
1607 dev->vec.bv_page = dev->page;
1608 dev->vec.bv_len = STRIPE_SIZE;
1609 dev->vec.bv_offset = 0;
1611 dev->req.bi_sector = sh->sector;
1612 dev->req.bi_private = sh;
1614 dev->flags = 0;
1615 dev->sector = compute_blocknr(sh, i, previous);
1618 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620 char b[BDEVNAME_SIZE];
1621 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1622 pr_debug("raid5: error called\n");
1624 if (!test_bit(Faulty, &rdev->flags)) {
1625 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1626 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1627 unsigned long flags;
1628 spin_lock_irqsave(&conf->device_lock, flags);
1629 mddev->degraded++;
1630 spin_unlock_irqrestore(&conf->device_lock, flags);
1632 * if recovery was running, make sure it aborts.
1634 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 set_bit(Faulty, &rdev->flags);
1637 printk(KERN_ALERT
1638 "raid5: Disk failure on %s, disabling device.\n"
1639 "raid5: Operation continuing on %d devices.\n",
1640 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1645 * Input: a 'big' sector number,
1646 * Output: index of the data and parity disk, and the sector # in them.
1648 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1649 int previous, int *dd_idx,
1650 struct stripe_head *sh)
1652 sector_t stripe, stripe2;
1653 sector_t chunk_number;
1654 unsigned int chunk_offset;
1655 int pd_idx, qd_idx;
1656 int ddf_layout = 0;
1657 sector_t new_sector;
1658 int algorithm = previous ? conf->prev_algo
1659 : conf->algorithm;
1660 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1661 : conf->chunk_sectors;
1662 int raid_disks = previous ? conf->previous_raid_disks
1663 : conf->raid_disks;
1664 int data_disks = raid_disks - conf->max_degraded;
1666 /* First compute the information on this sector */
1669 * Compute the chunk number and the sector offset inside the chunk
1671 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1672 chunk_number = r_sector;
1675 * Compute the stripe number
1677 stripe = chunk_number;
1678 *dd_idx = sector_div(stripe, data_disks);
1679 stripe2 = stripe;
1681 * Select the parity disk based on the user selected algorithm.
1683 pd_idx = qd_idx = ~0;
1684 switch(conf->level) {
1685 case 4:
1686 pd_idx = data_disks;
1687 break;
1688 case 5:
1689 switch (algorithm) {
1690 case ALGORITHM_LEFT_ASYMMETRIC:
1691 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1692 if (*dd_idx >= pd_idx)
1693 (*dd_idx)++;
1694 break;
1695 case ALGORITHM_RIGHT_ASYMMETRIC:
1696 pd_idx = sector_div(stripe2, raid_disks);
1697 if (*dd_idx >= pd_idx)
1698 (*dd_idx)++;
1699 break;
1700 case ALGORITHM_LEFT_SYMMETRIC:
1701 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1702 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1703 break;
1704 case ALGORITHM_RIGHT_SYMMETRIC:
1705 pd_idx = sector_div(stripe2, raid_disks);
1706 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1707 break;
1708 case ALGORITHM_PARITY_0:
1709 pd_idx = 0;
1710 (*dd_idx)++;
1711 break;
1712 case ALGORITHM_PARITY_N:
1713 pd_idx = data_disks;
1714 break;
1715 default:
1716 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1717 algorithm);
1718 BUG();
1720 break;
1721 case 6:
1723 switch (algorithm) {
1724 case ALGORITHM_LEFT_ASYMMETRIC:
1725 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1726 qd_idx = pd_idx + 1;
1727 if (pd_idx == raid_disks-1) {
1728 (*dd_idx)++; /* Q D D D P */
1729 qd_idx = 0;
1730 } else if (*dd_idx >= pd_idx)
1731 (*dd_idx) += 2; /* D D P Q D */
1732 break;
1733 case ALGORITHM_RIGHT_ASYMMETRIC:
1734 pd_idx = sector_div(stripe2, raid_disks);
1735 qd_idx = pd_idx + 1;
1736 if (pd_idx == raid_disks-1) {
1737 (*dd_idx)++; /* Q D D D P */
1738 qd_idx = 0;
1739 } else if (*dd_idx >= pd_idx)
1740 (*dd_idx) += 2; /* D D P Q D */
1741 break;
1742 case ALGORITHM_LEFT_SYMMETRIC:
1743 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1744 qd_idx = (pd_idx + 1) % raid_disks;
1745 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1746 break;
1747 case ALGORITHM_RIGHT_SYMMETRIC:
1748 pd_idx = sector_div(stripe2, raid_disks);
1749 qd_idx = (pd_idx + 1) % raid_disks;
1750 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1751 break;
1753 case ALGORITHM_PARITY_0:
1754 pd_idx = 0;
1755 qd_idx = 1;
1756 (*dd_idx) += 2;
1757 break;
1758 case ALGORITHM_PARITY_N:
1759 pd_idx = data_disks;
1760 qd_idx = data_disks + 1;
1761 break;
1763 case ALGORITHM_ROTATING_ZERO_RESTART:
1764 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1765 * of blocks for computing Q is different.
1767 pd_idx = sector_div(stripe2, raid_disks);
1768 qd_idx = pd_idx + 1;
1769 if (pd_idx == raid_disks-1) {
1770 (*dd_idx)++; /* Q D D D P */
1771 qd_idx = 0;
1772 } else if (*dd_idx >= pd_idx)
1773 (*dd_idx) += 2; /* D D P Q D */
1774 ddf_layout = 1;
1775 break;
1777 case ALGORITHM_ROTATING_N_RESTART:
1778 /* Same a left_asymmetric, by first stripe is
1779 * D D D P Q rather than
1780 * Q D D D P
1782 stripe2 += 1;
1783 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1784 qd_idx = pd_idx + 1;
1785 if (pd_idx == raid_disks-1) {
1786 (*dd_idx)++; /* Q D D D P */
1787 qd_idx = 0;
1788 } else if (*dd_idx >= pd_idx)
1789 (*dd_idx) += 2; /* D D P Q D */
1790 ddf_layout = 1;
1791 break;
1793 case ALGORITHM_ROTATING_N_CONTINUE:
1794 /* Same as left_symmetric but Q is before P */
1795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1796 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1797 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1798 ddf_layout = 1;
1799 break;
1801 case ALGORITHM_LEFT_ASYMMETRIC_6:
1802 /* RAID5 left_asymmetric, with Q on last device */
1803 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1804 if (*dd_idx >= pd_idx)
1805 (*dd_idx)++;
1806 qd_idx = raid_disks - 1;
1807 break;
1809 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1810 pd_idx = sector_div(stripe2, raid_disks-1);
1811 if (*dd_idx >= pd_idx)
1812 (*dd_idx)++;
1813 qd_idx = raid_disks - 1;
1814 break;
1816 case ALGORITHM_LEFT_SYMMETRIC_6:
1817 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1818 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1819 qd_idx = raid_disks - 1;
1820 break;
1822 case ALGORITHM_RIGHT_SYMMETRIC_6:
1823 pd_idx = sector_div(stripe2, raid_disks-1);
1824 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1825 qd_idx = raid_disks - 1;
1826 break;
1828 case ALGORITHM_PARITY_0_6:
1829 pd_idx = 0;
1830 (*dd_idx)++;
1831 qd_idx = raid_disks - 1;
1832 break;
1835 default:
1836 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1837 algorithm);
1838 BUG();
1840 break;
1843 if (sh) {
1844 sh->pd_idx = pd_idx;
1845 sh->qd_idx = qd_idx;
1846 sh->ddf_layout = ddf_layout;
1849 * Finally, compute the new sector number
1851 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1852 return new_sector;
1856 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1858 raid5_conf_t *conf = sh->raid_conf;
1859 int raid_disks = sh->disks;
1860 int data_disks = raid_disks - conf->max_degraded;
1861 sector_t new_sector = sh->sector, check;
1862 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1863 : conf->chunk_sectors;
1864 int algorithm = previous ? conf->prev_algo
1865 : conf->algorithm;
1866 sector_t stripe;
1867 int chunk_offset;
1868 sector_t chunk_number;
1869 int dummy1, dd_idx = i;
1870 sector_t r_sector;
1871 struct stripe_head sh2;
1874 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1875 stripe = new_sector;
1877 if (i == sh->pd_idx)
1878 return 0;
1879 switch(conf->level) {
1880 case 4: break;
1881 case 5:
1882 switch (algorithm) {
1883 case ALGORITHM_LEFT_ASYMMETRIC:
1884 case ALGORITHM_RIGHT_ASYMMETRIC:
1885 if (i > sh->pd_idx)
1886 i--;
1887 break;
1888 case ALGORITHM_LEFT_SYMMETRIC:
1889 case ALGORITHM_RIGHT_SYMMETRIC:
1890 if (i < sh->pd_idx)
1891 i += raid_disks;
1892 i -= (sh->pd_idx + 1);
1893 break;
1894 case ALGORITHM_PARITY_0:
1895 i -= 1;
1896 break;
1897 case ALGORITHM_PARITY_N:
1898 break;
1899 default:
1900 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1901 algorithm);
1902 BUG();
1904 break;
1905 case 6:
1906 if (i == sh->qd_idx)
1907 return 0; /* It is the Q disk */
1908 switch (algorithm) {
1909 case ALGORITHM_LEFT_ASYMMETRIC:
1910 case ALGORITHM_RIGHT_ASYMMETRIC:
1911 case ALGORITHM_ROTATING_ZERO_RESTART:
1912 case ALGORITHM_ROTATING_N_RESTART:
1913 if (sh->pd_idx == raid_disks-1)
1914 i--; /* Q D D D P */
1915 else if (i > sh->pd_idx)
1916 i -= 2; /* D D P Q D */
1917 break;
1918 case ALGORITHM_LEFT_SYMMETRIC:
1919 case ALGORITHM_RIGHT_SYMMETRIC:
1920 if (sh->pd_idx == raid_disks-1)
1921 i--; /* Q D D D P */
1922 else {
1923 /* D D P Q D */
1924 if (i < sh->pd_idx)
1925 i += raid_disks;
1926 i -= (sh->pd_idx + 2);
1928 break;
1929 case ALGORITHM_PARITY_0:
1930 i -= 2;
1931 break;
1932 case ALGORITHM_PARITY_N:
1933 break;
1934 case ALGORITHM_ROTATING_N_CONTINUE:
1935 /* Like left_symmetric, but P is before Q */
1936 if (sh->pd_idx == 0)
1937 i--; /* P D D D Q */
1938 else {
1939 /* D D Q P D */
1940 if (i < sh->pd_idx)
1941 i += raid_disks;
1942 i -= (sh->pd_idx + 1);
1944 break;
1945 case ALGORITHM_LEFT_ASYMMETRIC_6:
1946 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1947 if (i > sh->pd_idx)
1948 i--;
1949 break;
1950 case ALGORITHM_LEFT_SYMMETRIC_6:
1951 case ALGORITHM_RIGHT_SYMMETRIC_6:
1952 if (i < sh->pd_idx)
1953 i += data_disks + 1;
1954 i -= (sh->pd_idx + 1);
1955 break;
1956 case ALGORITHM_PARITY_0_6:
1957 i -= 1;
1958 break;
1959 default:
1960 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1961 algorithm);
1962 BUG();
1964 break;
1967 chunk_number = stripe * data_disks + i;
1968 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1970 check = raid5_compute_sector(conf, r_sector,
1971 previous, &dummy1, &sh2);
1972 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1973 || sh2.qd_idx != sh->qd_idx) {
1974 printk(KERN_ERR "compute_blocknr: map not correct\n");
1975 return 0;
1977 return r_sector;
1981 static void
1982 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1983 int rcw, int expand)
1985 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1986 raid5_conf_t *conf = sh->raid_conf;
1987 int level = conf->level;
1989 if (rcw) {
1990 /* if we are not expanding this is a proper write request, and
1991 * there will be bios with new data to be drained into the
1992 * stripe cache
1994 if (!expand) {
1995 sh->reconstruct_state = reconstruct_state_drain_run;
1996 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997 } else
1998 sh->reconstruct_state = reconstruct_state_run;
2000 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2002 for (i = disks; i--; ) {
2003 struct r5dev *dev = &sh->dev[i];
2005 if (dev->towrite) {
2006 set_bit(R5_LOCKED, &dev->flags);
2007 set_bit(R5_Wantdrain, &dev->flags);
2008 if (!expand)
2009 clear_bit(R5_UPTODATE, &dev->flags);
2010 s->locked++;
2013 if (s->locked + conf->max_degraded == disks)
2014 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2015 atomic_inc(&conf->pending_full_writes);
2016 } else {
2017 BUG_ON(level == 6);
2018 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2019 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2021 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2022 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2023 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2024 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2026 for (i = disks; i--; ) {
2027 struct r5dev *dev = &sh->dev[i];
2028 if (i == pd_idx)
2029 continue;
2031 if (dev->towrite &&
2032 (test_bit(R5_UPTODATE, &dev->flags) ||
2033 test_bit(R5_Wantcompute, &dev->flags))) {
2034 set_bit(R5_Wantdrain, &dev->flags);
2035 set_bit(R5_LOCKED, &dev->flags);
2036 clear_bit(R5_UPTODATE, &dev->flags);
2037 s->locked++;
2042 /* keep the parity disk(s) locked while asynchronous operations
2043 * are in flight
2045 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2046 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2047 s->locked++;
2049 if (level == 6) {
2050 int qd_idx = sh->qd_idx;
2051 struct r5dev *dev = &sh->dev[qd_idx];
2053 set_bit(R5_LOCKED, &dev->flags);
2054 clear_bit(R5_UPTODATE, &dev->flags);
2055 s->locked++;
2058 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2059 __func__, (unsigned long long)sh->sector,
2060 s->locked, s->ops_request);
2064 * Each stripe/dev can have one or more bion attached.
2065 * toread/towrite point to the first in a chain.
2066 * The bi_next chain must be in order.
2068 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2070 struct bio **bip;
2071 raid5_conf_t *conf = sh->raid_conf;
2072 int firstwrite=0;
2074 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2075 (unsigned long long)bi->bi_sector,
2076 (unsigned long long)sh->sector);
2079 spin_lock(&sh->lock);
2080 spin_lock_irq(&conf->device_lock);
2081 if (forwrite) {
2082 bip = &sh->dev[dd_idx].towrite;
2083 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2084 firstwrite = 1;
2085 } else
2086 bip = &sh->dev[dd_idx].toread;
2087 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2088 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089 goto overlap;
2090 bip = & (*bip)->bi_next;
2092 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2093 goto overlap;
2095 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2096 if (*bip)
2097 bi->bi_next = *bip;
2098 *bip = bi;
2099 bi->bi_phys_segments++;
2100 spin_unlock_irq(&conf->device_lock);
2101 spin_unlock(&sh->lock);
2103 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2104 (unsigned long long)bi->bi_sector,
2105 (unsigned long long)sh->sector, dd_idx);
2107 if (conf->mddev->bitmap && firstwrite) {
2108 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109 STRIPE_SECTORS, 0);
2110 sh->bm_seq = conf->seq_flush+1;
2111 set_bit(STRIPE_BIT_DELAY, &sh->state);
2114 if (forwrite) {
2115 /* check if page is covered */
2116 sector_t sector = sh->dev[dd_idx].sector;
2117 for (bi=sh->dev[dd_idx].towrite;
2118 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2119 bi && bi->bi_sector <= sector;
2120 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2121 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2122 sector = bi->bi_sector + (bi->bi_size>>9);
2124 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2125 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2127 return 1;
2129 overlap:
2130 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2131 spin_unlock_irq(&conf->device_lock);
2132 spin_unlock(&sh->lock);
2133 return 0;
2136 static void end_reshape(raid5_conf_t *conf);
2138 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2139 struct stripe_head *sh)
2141 int sectors_per_chunk =
2142 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2143 int dd_idx;
2144 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2145 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2147 raid5_compute_sector(conf,
2148 stripe * (disks - conf->max_degraded)
2149 *sectors_per_chunk + chunk_offset,
2150 previous,
2151 &dd_idx, sh);
2154 static void
2155 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2156 struct stripe_head_state *s, int disks,
2157 struct bio **return_bi)
2159 int i;
2160 for (i = disks; i--; ) {
2161 struct bio *bi;
2162 int bitmap_end = 0;
2164 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2165 mdk_rdev_t *rdev;
2166 rcu_read_lock();
2167 rdev = rcu_dereference(conf->disks[i].rdev);
2168 if (rdev && test_bit(In_sync, &rdev->flags))
2169 /* multiple read failures in one stripe */
2170 md_error(conf->mddev, rdev);
2171 rcu_read_unlock();
2173 spin_lock_irq(&conf->device_lock);
2174 /* fail all writes first */
2175 bi = sh->dev[i].towrite;
2176 sh->dev[i].towrite = NULL;
2177 if (bi) {
2178 s->to_write--;
2179 bitmap_end = 1;
2182 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183 wake_up(&conf->wait_for_overlap);
2185 while (bi && bi->bi_sector <
2186 sh->dev[i].sector + STRIPE_SECTORS) {
2187 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2188 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2189 if (!raid5_dec_bi_phys_segments(bi)) {
2190 md_write_end(conf->mddev);
2191 bi->bi_next = *return_bi;
2192 *return_bi = bi;
2194 bi = nextbi;
2196 /* and fail all 'written' */
2197 bi = sh->dev[i].written;
2198 sh->dev[i].written = NULL;
2199 if (bi) bitmap_end = 1;
2200 while (bi && bi->bi_sector <
2201 sh->dev[i].sector + STRIPE_SECTORS) {
2202 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2203 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2204 if (!raid5_dec_bi_phys_segments(bi)) {
2205 md_write_end(conf->mddev);
2206 bi->bi_next = *return_bi;
2207 *return_bi = bi;
2209 bi = bi2;
2212 /* fail any reads if this device is non-operational and
2213 * the data has not reached the cache yet.
2215 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2216 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2217 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2218 bi = sh->dev[i].toread;
2219 sh->dev[i].toread = NULL;
2220 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2221 wake_up(&conf->wait_for_overlap);
2222 if (bi) s->to_read--;
2223 while (bi && bi->bi_sector <
2224 sh->dev[i].sector + STRIPE_SECTORS) {
2225 struct bio *nextbi =
2226 r5_next_bio(bi, sh->dev[i].sector);
2227 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2228 if (!raid5_dec_bi_phys_segments(bi)) {
2229 bi->bi_next = *return_bi;
2230 *return_bi = bi;
2232 bi = nextbi;
2235 spin_unlock_irq(&conf->device_lock);
2236 if (bitmap_end)
2237 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2238 STRIPE_SECTORS, 0, 0);
2241 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2242 if (atomic_dec_and_test(&conf->pending_full_writes))
2243 md_wakeup_thread(conf->mddev->thread);
2246 /* fetch_block5 - checks the given member device to see if its data needs
2247 * to be read or computed to satisfy a request.
2249 * Returns 1 when no more member devices need to be checked, otherwise returns
2250 * 0 to tell the loop in handle_stripe_fill5 to continue
2252 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2253 int disk_idx, int disks)
2255 struct r5dev *dev = &sh->dev[disk_idx];
2256 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2258 /* is the data in this block needed, and can we get it? */
2259 if (!test_bit(R5_LOCKED, &dev->flags) &&
2260 !test_bit(R5_UPTODATE, &dev->flags) &&
2261 (dev->toread ||
2262 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2263 s->syncing || s->expanding ||
2264 (s->failed &&
2265 (failed_dev->toread ||
2266 (failed_dev->towrite &&
2267 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2268 /* We would like to get this block, possibly by computing it,
2269 * otherwise read it if the backing disk is insync
2271 if ((s->uptodate == disks - 1) &&
2272 (s->failed && disk_idx == s->failed_num)) {
2273 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2274 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2275 set_bit(R5_Wantcompute, &dev->flags);
2276 sh->ops.target = disk_idx;
2277 sh->ops.target2 = -1;
2278 s->req_compute = 1;
2279 /* Careful: from this point on 'uptodate' is in the eye
2280 * of raid_run_ops which services 'compute' operations
2281 * before writes. R5_Wantcompute flags a block that will
2282 * be R5_UPTODATE by the time it is needed for a
2283 * subsequent operation.
2285 s->uptodate++;
2286 return 1; /* uptodate + compute == disks */
2287 } else if (test_bit(R5_Insync, &dev->flags)) {
2288 set_bit(R5_LOCKED, &dev->flags);
2289 set_bit(R5_Wantread, &dev->flags);
2290 s->locked++;
2291 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2292 s->syncing);
2296 return 0;
2300 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2302 static void handle_stripe_fill5(struct stripe_head *sh,
2303 struct stripe_head_state *s, int disks)
2305 int i;
2307 /* look for blocks to read/compute, skip this if a compute
2308 * is already in flight, or if the stripe contents are in the
2309 * midst of changing due to a write
2311 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2312 !sh->reconstruct_state)
2313 for (i = disks; i--; )
2314 if (fetch_block5(sh, s, i, disks))
2315 break;
2316 set_bit(STRIPE_HANDLE, &sh->state);
2319 /* fetch_block6 - checks the given member device to see if its data needs
2320 * to be read or computed to satisfy a request.
2322 * Returns 1 when no more member devices need to be checked, otherwise returns
2323 * 0 to tell the loop in handle_stripe_fill6 to continue
2325 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2326 struct r6_state *r6s, int disk_idx, int disks)
2328 struct r5dev *dev = &sh->dev[disk_idx];
2329 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2330 &sh->dev[r6s->failed_num[1]] };
2332 if (!test_bit(R5_LOCKED, &dev->flags) &&
2333 !test_bit(R5_UPTODATE, &dev->flags) &&
2334 (dev->toread ||
2335 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2336 s->syncing || s->expanding ||
2337 (s->failed >= 1 &&
2338 (fdev[0]->toread || s->to_write)) ||
2339 (s->failed >= 2 &&
2340 (fdev[1]->toread || s->to_write)))) {
2341 /* we would like to get this block, possibly by computing it,
2342 * otherwise read it if the backing disk is insync
2344 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2345 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2346 if ((s->uptodate == disks - 1) &&
2347 (s->failed && (disk_idx == r6s->failed_num[0] ||
2348 disk_idx == r6s->failed_num[1]))) {
2349 /* have disk failed, and we're requested to fetch it;
2350 * do compute it
2352 pr_debug("Computing stripe %llu block %d\n",
2353 (unsigned long long)sh->sector, disk_idx);
2354 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 set_bit(R5_Wantcompute, &dev->flags);
2357 sh->ops.target = disk_idx;
2358 sh->ops.target2 = -1; /* no 2nd target */
2359 s->req_compute = 1;
2360 s->uptodate++;
2361 return 1;
2362 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363 /* Computing 2-failure is *very* expensive; only
2364 * do it if failed >= 2
2366 int other;
2367 for (other = disks; other--; ) {
2368 if (other == disk_idx)
2369 continue;
2370 if (!test_bit(R5_UPTODATE,
2371 &sh->dev[other].flags))
2372 break;
2374 BUG_ON(other < 0);
2375 pr_debug("Computing stripe %llu blocks %d,%d\n",
2376 (unsigned long long)sh->sector,
2377 disk_idx, other);
2378 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382 sh->ops.target = disk_idx;
2383 sh->ops.target2 = other;
2384 s->uptodate += 2;
2385 s->req_compute = 1;
2386 return 1;
2387 } else if (test_bit(R5_Insync, &dev->flags)) {
2388 set_bit(R5_LOCKED, &dev->flags);
2389 set_bit(R5_Wantread, &dev->flags);
2390 s->locked++;
2391 pr_debug("Reading block %d (sync=%d)\n",
2392 disk_idx, s->syncing);
2396 return 0;
2400 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2402 static void handle_stripe_fill6(struct stripe_head *sh,
2403 struct stripe_head_state *s, struct r6_state *r6s,
2404 int disks)
2406 int i;
2408 /* look for blocks to read/compute, skip this if a compute
2409 * is already in flight, or if the stripe contents are in the
2410 * midst of changing due to a write
2412 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413 !sh->reconstruct_state)
2414 for (i = disks; i--; )
2415 if (fetch_block6(sh, s, r6s, i, disks))
2416 break;
2417 set_bit(STRIPE_HANDLE, &sh->state);
2421 /* handle_stripe_clean_event
2422 * any written block on an uptodate or failed drive can be returned.
2423 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424 * never LOCKED, so we don't need to test 'failed' directly.
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427 struct stripe_head *sh, int disks, struct bio **return_bi)
2429 int i;
2430 struct r5dev *dev;
2432 for (i = disks; i--; )
2433 if (sh->dev[i].written) {
2434 dev = &sh->dev[i];
2435 if (!test_bit(R5_LOCKED, &dev->flags) &&
2436 test_bit(R5_UPTODATE, &dev->flags)) {
2437 /* We can return any write requests */
2438 struct bio *wbi, *wbi2;
2439 int bitmap_end = 0;
2440 pr_debug("Return write for disc %d\n", i);
2441 spin_lock_irq(&conf->device_lock);
2442 wbi = dev->written;
2443 dev->written = NULL;
2444 while (wbi && wbi->bi_sector <
2445 dev->sector + STRIPE_SECTORS) {
2446 wbi2 = r5_next_bio(wbi, dev->sector);
2447 if (!raid5_dec_bi_phys_segments(wbi)) {
2448 md_write_end(conf->mddev);
2449 wbi->bi_next = *return_bi;
2450 *return_bi = wbi;
2452 wbi = wbi2;
2454 if (dev->towrite == NULL)
2455 bitmap_end = 1;
2456 spin_unlock_irq(&conf->device_lock);
2457 if (bitmap_end)
2458 bitmap_endwrite(conf->mddev->bitmap,
2459 sh->sector,
2460 STRIPE_SECTORS,
2461 !test_bit(STRIPE_DEGRADED, &sh->state),
2466 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467 if (atomic_dec_and_test(&conf->pending_full_writes))
2468 md_wakeup_thread(conf->mddev->thread);
2471 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2474 int rmw = 0, rcw = 0, i;
2475 for (i = disks; i--; ) {
2476 /* would I have to read this buffer for read_modify_write */
2477 struct r5dev *dev = &sh->dev[i];
2478 if ((dev->towrite || i == sh->pd_idx) &&
2479 !test_bit(R5_LOCKED, &dev->flags) &&
2480 !(test_bit(R5_UPTODATE, &dev->flags) ||
2481 test_bit(R5_Wantcompute, &dev->flags))) {
2482 if (test_bit(R5_Insync, &dev->flags))
2483 rmw++;
2484 else
2485 rmw += 2*disks; /* cannot read it */
2487 /* Would I have to read this buffer for reconstruct_write */
2488 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489 !test_bit(R5_LOCKED, &dev->flags) &&
2490 !(test_bit(R5_UPTODATE, &dev->flags) ||
2491 test_bit(R5_Wantcompute, &dev->flags))) {
2492 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493 else
2494 rcw += 2*disks;
2497 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498 (unsigned long long)sh->sector, rmw, rcw);
2499 set_bit(STRIPE_HANDLE, &sh->state);
2500 if (rmw < rcw && rmw > 0)
2501 /* prefer read-modify-write, but need to get some data */
2502 for (i = disks; i--; ) {
2503 struct r5dev *dev = &sh->dev[i];
2504 if ((dev->towrite || i == sh->pd_idx) &&
2505 !test_bit(R5_LOCKED, &dev->flags) &&
2506 !(test_bit(R5_UPTODATE, &dev->flags) ||
2507 test_bit(R5_Wantcompute, &dev->flags)) &&
2508 test_bit(R5_Insync, &dev->flags)) {
2509 if (
2510 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511 pr_debug("Read_old block "
2512 "%d for r-m-w\n", i);
2513 set_bit(R5_LOCKED, &dev->flags);
2514 set_bit(R5_Wantread, &dev->flags);
2515 s->locked++;
2516 } else {
2517 set_bit(STRIPE_DELAYED, &sh->state);
2518 set_bit(STRIPE_HANDLE, &sh->state);
2522 if (rcw <= rmw && rcw > 0)
2523 /* want reconstruct write, but need to get some data */
2524 for (i = disks; i--; ) {
2525 struct r5dev *dev = &sh->dev[i];
2526 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527 i != sh->pd_idx &&
2528 !test_bit(R5_LOCKED, &dev->flags) &&
2529 !(test_bit(R5_UPTODATE, &dev->flags) ||
2530 test_bit(R5_Wantcompute, &dev->flags)) &&
2531 test_bit(R5_Insync, &dev->flags)) {
2532 if (
2533 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534 pr_debug("Read_old block "
2535 "%d for Reconstruct\n", i);
2536 set_bit(R5_LOCKED, &dev->flags);
2537 set_bit(R5_Wantread, &dev->flags);
2538 s->locked++;
2539 } else {
2540 set_bit(STRIPE_DELAYED, &sh->state);
2541 set_bit(STRIPE_HANDLE, &sh->state);
2545 /* now if nothing is locked, and if we have enough data,
2546 * we can start a write request
2548 /* since handle_stripe can be called at any time we need to handle the
2549 * case where a compute block operation has been submitted and then a
2550 * subsequent call wants to start a write request. raid_run_ops only
2551 * handles the case where compute block and reconstruct are requested
2552 * simultaneously. If this is not the case then new writes need to be
2553 * held off until the compute completes.
2555 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558 schedule_reconstruction(sh, s, rcw == 0, 0);
2561 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562 struct stripe_head *sh, struct stripe_head_state *s,
2563 struct r6_state *r6s, int disks)
2565 int rcw = 0, pd_idx = sh->pd_idx, i;
2566 int qd_idx = sh->qd_idx;
2568 set_bit(STRIPE_HANDLE, &sh->state);
2569 for (i = disks; i--; ) {
2570 struct r5dev *dev = &sh->dev[i];
2571 /* check if we haven't enough data */
2572 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573 i != pd_idx && i != qd_idx &&
2574 !test_bit(R5_LOCKED, &dev->flags) &&
2575 !(test_bit(R5_UPTODATE, &dev->flags) ||
2576 test_bit(R5_Wantcompute, &dev->flags))) {
2577 rcw++;
2578 if (!test_bit(R5_Insync, &dev->flags))
2579 continue; /* it's a failed drive */
2581 if (
2582 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583 pr_debug("Read_old stripe %llu "
2584 "block %d for Reconstruct\n",
2585 (unsigned long long)sh->sector, i);
2586 set_bit(R5_LOCKED, &dev->flags);
2587 set_bit(R5_Wantread, &dev->flags);
2588 s->locked++;
2589 } else {
2590 pr_debug("Request delayed stripe %llu "
2591 "block %d for Reconstruct\n",
2592 (unsigned long long)sh->sector, i);
2593 set_bit(STRIPE_DELAYED, &sh->state);
2594 set_bit(STRIPE_HANDLE, &sh->state);
2598 /* now if nothing is locked, and if we have enough data, we can start a
2599 * write request
2601 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602 s->locked == 0 && rcw == 0 &&
2603 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604 schedule_reconstruction(sh, s, 1, 0);
2608 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609 struct stripe_head_state *s, int disks)
2611 struct r5dev *dev = NULL;
2613 set_bit(STRIPE_HANDLE, &sh->state);
2615 switch (sh->check_state) {
2616 case check_state_idle:
2617 /* start a new check operation if there are no failures */
2618 if (s->failed == 0) {
2619 BUG_ON(s->uptodate != disks);
2620 sh->check_state = check_state_run;
2621 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2623 s->uptodate--;
2624 break;
2626 dev = &sh->dev[s->failed_num];
2627 /* fall through */
2628 case check_state_compute_result:
2629 sh->check_state = check_state_idle;
2630 if (!dev)
2631 dev = &sh->dev[sh->pd_idx];
2633 /* check that a write has not made the stripe insync */
2634 if (test_bit(STRIPE_INSYNC, &sh->state))
2635 break;
2637 /* either failed parity check, or recovery is happening */
2638 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639 BUG_ON(s->uptodate != disks);
2641 set_bit(R5_LOCKED, &dev->flags);
2642 s->locked++;
2643 set_bit(R5_Wantwrite, &dev->flags);
2645 clear_bit(STRIPE_DEGRADED, &sh->state);
2646 set_bit(STRIPE_INSYNC, &sh->state);
2647 break;
2648 case check_state_run:
2649 break; /* we will be called again upon completion */
2650 case check_state_check_result:
2651 sh->check_state = check_state_idle;
2653 /* if a failure occurred during the check operation, leave
2654 * STRIPE_INSYNC not set and let the stripe be handled again
2656 if (s->failed)
2657 break;
2659 /* handle a successful check operation, if parity is correct
2660 * we are done. Otherwise update the mismatch count and repair
2661 * parity if !MD_RECOVERY_CHECK
2663 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664 /* parity is correct (on disc,
2665 * not in buffer any more)
2667 set_bit(STRIPE_INSYNC, &sh->state);
2668 else {
2669 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671 /* don't try to repair!! */
2672 set_bit(STRIPE_INSYNC, &sh->state);
2673 else {
2674 sh->check_state = check_state_compute_run;
2675 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677 set_bit(R5_Wantcompute,
2678 &sh->dev[sh->pd_idx].flags);
2679 sh->ops.target = sh->pd_idx;
2680 sh->ops.target2 = -1;
2681 s->uptodate++;
2684 break;
2685 case check_state_compute_run:
2686 break;
2687 default:
2688 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689 __func__, sh->check_state,
2690 (unsigned long long) sh->sector);
2691 BUG();
2696 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697 struct stripe_head_state *s,
2698 struct r6_state *r6s, int disks)
2700 int pd_idx = sh->pd_idx;
2701 int qd_idx = sh->qd_idx;
2702 struct r5dev *dev;
2704 set_bit(STRIPE_HANDLE, &sh->state);
2706 BUG_ON(s->failed > 2);
2708 /* Want to check and possibly repair P and Q.
2709 * However there could be one 'failed' device, in which
2710 * case we can only check one of them, possibly using the
2711 * other to generate missing data
2714 switch (sh->check_state) {
2715 case check_state_idle:
2716 /* start a new check operation if there are < 2 failures */
2717 if (s->failed == r6s->q_failed) {
2718 /* The only possible failed device holds Q, so it
2719 * makes sense to check P (If anything else were failed,
2720 * we would have used P to recreate it).
2722 sh->check_state = check_state_run;
2724 if (!r6s->q_failed && s->failed < 2) {
2725 /* Q is not failed, and we didn't use it to generate
2726 * anything, so it makes sense to check it
2728 if (sh->check_state == check_state_run)
2729 sh->check_state = check_state_run_pq;
2730 else
2731 sh->check_state = check_state_run_q;
2734 /* discard potentially stale zero_sum_result */
2735 sh->ops.zero_sum_result = 0;
2737 if (sh->check_state == check_state_run) {
2738 /* async_xor_zero_sum destroys the contents of P */
2739 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740 s->uptodate--;
2742 if (sh->check_state >= check_state_run &&
2743 sh->check_state <= check_state_run_pq) {
2744 /* async_syndrome_zero_sum preserves P and Q, so
2745 * no need to mark them !uptodate here
2747 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748 break;
2751 /* we have 2-disk failure */
2752 BUG_ON(s->failed != 2);
2753 /* fall through */
2754 case check_state_compute_result:
2755 sh->check_state = check_state_idle;
2757 /* check that a write has not made the stripe insync */
2758 if (test_bit(STRIPE_INSYNC, &sh->state))
2759 break;
2761 /* now write out any block on a failed drive,
2762 * or P or Q if they were recomputed
2764 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765 if (s->failed == 2) {
2766 dev = &sh->dev[r6s->failed_num[1]];
2767 s->locked++;
2768 set_bit(R5_LOCKED, &dev->flags);
2769 set_bit(R5_Wantwrite, &dev->flags);
2771 if (s->failed >= 1) {
2772 dev = &sh->dev[r6s->failed_num[0]];
2773 s->locked++;
2774 set_bit(R5_LOCKED, &dev->flags);
2775 set_bit(R5_Wantwrite, &dev->flags);
2777 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778 dev = &sh->dev[pd_idx];
2779 s->locked++;
2780 set_bit(R5_LOCKED, &dev->flags);
2781 set_bit(R5_Wantwrite, &dev->flags);
2783 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784 dev = &sh->dev[qd_idx];
2785 s->locked++;
2786 set_bit(R5_LOCKED, &dev->flags);
2787 set_bit(R5_Wantwrite, &dev->flags);
2789 clear_bit(STRIPE_DEGRADED, &sh->state);
2791 set_bit(STRIPE_INSYNC, &sh->state);
2792 break;
2793 case check_state_run:
2794 case check_state_run_q:
2795 case check_state_run_pq:
2796 break; /* we will be called again upon completion */
2797 case check_state_check_result:
2798 sh->check_state = check_state_idle;
2800 /* handle a successful check operation, if parity is correct
2801 * we are done. Otherwise update the mismatch count and repair
2802 * parity if !MD_RECOVERY_CHECK
2804 if (sh->ops.zero_sum_result == 0) {
2805 /* both parities are correct */
2806 if (!s->failed)
2807 set_bit(STRIPE_INSYNC, &sh->state);
2808 else {
2809 /* in contrast to the raid5 case we can validate
2810 * parity, but still have a failure to write
2811 * back
2813 sh->check_state = check_state_compute_result;
2814 /* Returning at this point means that we may go
2815 * off and bring p and/or q uptodate again so
2816 * we make sure to check zero_sum_result again
2817 * to verify if p or q need writeback
2820 } else {
2821 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823 /* don't try to repair!! */
2824 set_bit(STRIPE_INSYNC, &sh->state);
2825 else {
2826 int *target = &sh->ops.target;
2828 sh->ops.target = -1;
2829 sh->ops.target2 = -1;
2830 sh->check_state = check_state_compute_run;
2831 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834 set_bit(R5_Wantcompute,
2835 &sh->dev[pd_idx].flags);
2836 *target = pd_idx;
2837 target = &sh->ops.target2;
2838 s->uptodate++;
2840 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841 set_bit(R5_Wantcompute,
2842 &sh->dev[qd_idx].flags);
2843 *target = qd_idx;
2844 s->uptodate++;
2848 break;
2849 case check_state_compute_run:
2850 break;
2851 default:
2852 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853 __func__, sh->check_state,
2854 (unsigned long long) sh->sector);
2855 BUG();
2859 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2860 struct r6_state *r6s)
2862 int i;
2864 /* We have read all the blocks in this stripe and now we need to
2865 * copy some of them into a target stripe for expand.
2867 struct dma_async_tx_descriptor *tx = NULL;
2868 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2869 for (i = 0; i < sh->disks; i++)
2870 if (i != sh->pd_idx && i != sh->qd_idx) {
2871 int dd_idx, j;
2872 struct stripe_head *sh2;
2873 struct async_submit_ctl submit;
2875 sector_t bn = compute_blocknr(sh, i, 1);
2876 sector_t s = raid5_compute_sector(conf, bn, 0,
2877 &dd_idx, NULL);
2878 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2879 if (sh2 == NULL)
2880 /* so far only the early blocks of this stripe
2881 * have been requested. When later blocks
2882 * get requested, we will try again
2884 continue;
2885 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2886 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2887 /* must have already done this block */
2888 release_stripe(sh2);
2889 continue;
2892 /* place all the copies on one channel */
2893 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2894 tx = async_memcpy(sh2->dev[dd_idx].page,
2895 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2896 &submit);
2898 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2899 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2900 for (j = 0; j < conf->raid_disks; j++)
2901 if (j != sh2->pd_idx &&
2902 (!r6s || j != sh2->qd_idx) &&
2903 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904 break;
2905 if (j == conf->raid_disks) {
2906 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2907 set_bit(STRIPE_HANDLE, &sh2->state);
2909 release_stripe(sh2);
2912 /* done submitting copies, wait for them to complete */
2913 if (tx) {
2914 async_tx_ack(tx);
2915 dma_wait_for_async_tx(tx);
2921 * handle_stripe - do things to a stripe.
2923 * We lock the stripe and then examine the state of various bits
2924 * to see what needs to be done.
2925 * Possible results:
2926 * return some read request which now have data
2927 * return some write requests which are safely on disc
2928 * schedule a read on some buffers
2929 * schedule a write of some buffers
2930 * return confirmation of parity correctness
2932 * buffers are taken off read_list or write_list, and bh_cache buffers
2933 * get BH_Lock set before the stripe lock is released.
2937 static void handle_stripe5(struct stripe_head *sh)
2939 raid5_conf_t *conf = sh->raid_conf;
2940 int disks = sh->disks, i;
2941 struct bio *return_bi = NULL;
2942 struct stripe_head_state s;
2943 struct r5dev *dev;
2944 mdk_rdev_t *blocked_rdev = NULL;
2945 int prexor;
2947 memset(&s, 0, sizeof(s));
2948 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2949 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2950 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2951 sh->reconstruct_state);
2953 spin_lock(&sh->lock);
2954 clear_bit(STRIPE_HANDLE, &sh->state);
2955 clear_bit(STRIPE_DELAYED, &sh->state);
2957 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2958 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2959 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2961 /* Now to look around and see what can be done */
2962 rcu_read_lock();
2963 for (i=disks; i--; ) {
2964 mdk_rdev_t *rdev;
2966 dev = &sh->dev[i];
2967 clear_bit(R5_Insync, &dev->flags);
2969 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2970 "written %p\n", i, dev->flags, dev->toread, dev->read,
2971 dev->towrite, dev->written);
2973 /* maybe we can request a biofill operation
2975 * new wantfill requests are only permitted while
2976 * ops_complete_biofill is guaranteed to be inactive
2978 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2979 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2980 set_bit(R5_Wantfill, &dev->flags);
2982 /* now count some things */
2983 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2984 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2985 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2987 if (test_bit(R5_Wantfill, &dev->flags))
2988 s.to_fill++;
2989 else if (dev->toread)
2990 s.to_read++;
2991 if (dev->towrite) {
2992 s.to_write++;
2993 if (!test_bit(R5_OVERWRITE, &dev->flags))
2994 s.non_overwrite++;
2996 if (dev->written)
2997 s.written++;
2998 rdev = rcu_dereference(conf->disks[i].rdev);
2999 if (blocked_rdev == NULL &&
3000 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3001 blocked_rdev = rdev;
3002 atomic_inc(&rdev->nr_pending);
3004 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3005 /* The ReadError flag will just be confusing now */
3006 clear_bit(R5_ReadError, &dev->flags);
3007 clear_bit(R5_ReWrite, &dev->flags);
3009 if (!rdev || !test_bit(In_sync, &rdev->flags)
3010 || test_bit(R5_ReadError, &dev->flags)) {
3011 s.failed++;
3012 s.failed_num = i;
3013 } else
3014 set_bit(R5_Insync, &dev->flags);
3016 rcu_read_unlock();
3018 if (unlikely(blocked_rdev)) {
3019 if (s.syncing || s.expanding || s.expanded ||
3020 s.to_write || s.written) {
3021 set_bit(STRIPE_HANDLE, &sh->state);
3022 goto unlock;
3024 /* There is nothing for the blocked_rdev to block */
3025 rdev_dec_pending(blocked_rdev, conf->mddev);
3026 blocked_rdev = NULL;
3029 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3030 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3031 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3034 pr_debug("locked=%d uptodate=%d to_read=%d"
3035 " to_write=%d failed=%d failed_num=%d\n",
3036 s.locked, s.uptodate, s.to_read, s.to_write,
3037 s.failed, s.failed_num);
3038 /* check if the array has lost two devices and, if so, some requests might
3039 * need to be failed
3041 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3042 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3043 if (s.failed > 1 && s.syncing) {
3044 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3045 clear_bit(STRIPE_SYNCING, &sh->state);
3046 s.syncing = 0;
3049 /* might be able to return some write requests if the parity block
3050 * is safe, or on a failed drive
3052 dev = &sh->dev[sh->pd_idx];
3053 if ( s.written &&
3054 ((test_bit(R5_Insync, &dev->flags) &&
3055 !test_bit(R5_LOCKED, &dev->flags) &&
3056 test_bit(R5_UPTODATE, &dev->flags)) ||
3057 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3058 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3060 /* Now we might consider reading some blocks, either to check/generate
3061 * parity, or to satisfy requests
3062 * or to load a block that is being partially written.
3064 if (s.to_read || s.non_overwrite ||
3065 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3066 handle_stripe_fill5(sh, &s, disks);
3068 /* Now we check to see if any write operations have recently
3069 * completed
3071 prexor = 0;
3072 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3073 prexor = 1;
3074 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3075 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3076 sh->reconstruct_state = reconstruct_state_idle;
3078 /* All the 'written' buffers and the parity block are ready to
3079 * be written back to disk
3081 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3082 for (i = disks; i--; ) {
3083 dev = &sh->dev[i];
3084 if (test_bit(R5_LOCKED, &dev->flags) &&
3085 (i == sh->pd_idx || dev->written)) {
3086 pr_debug("Writing block %d\n", i);
3087 set_bit(R5_Wantwrite, &dev->flags);
3088 if (prexor)
3089 continue;
3090 if (!test_bit(R5_Insync, &dev->flags) ||
3091 (i == sh->pd_idx && s.failed == 0))
3092 set_bit(STRIPE_INSYNC, &sh->state);
3095 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3096 atomic_dec(&conf->preread_active_stripes);
3097 if (atomic_read(&conf->preread_active_stripes) <
3098 IO_THRESHOLD)
3099 md_wakeup_thread(conf->mddev->thread);
3103 /* Now to consider new write requests and what else, if anything
3104 * should be read. We do not handle new writes when:
3105 * 1/ A 'write' operation (copy+xor) is already in flight.
3106 * 2/ A 'check' operation is in flight, as it may clobber the parity
3107 * block.
3109 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3110 handle_stripe_dirtying5(conf, sh, &s, disks);
3112 /* maybe we need to check and possibly fix the parity for this stripe
3113 * Any reads will already have been scheduled, so we just see if enough
3114 * data is available. The parity check is held off while parity
3115 * dependent operations are in flight.
3117 if (sh->check_state ||
3118 (s.syncing && s.locked == 0 &&
3119 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3120 !test_bit(STRIPE_INSYNC, &sh->state)))
3121 handle_parity_checks5(conf, sh, &s, disks);
3123 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3124 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3125 clear_bit(STRIPE_SYNCING, &sh->state);
3128 /* If the failed drive is just a ReadError, then we might need to progress
3129 * the repair/check process
3131 if (s.failed == 1 && !conf->mddev->ro &&
3132 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3133 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3134 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3136 dev = &sh->dev[s.failed_num];
3137 if (!test_bit(R5_ReWrite, &dev->flags)) {
3138 set_bit(R5_Wantwrite, &dev->flags);
3139 set_bit(R5_ReWrite, &dev->flags);
3140 set_bit(R5_LOCKED, &dev->flags);
3141 s.locked++;
3142 } else {
3143 /* let's read it back */
3144 set_bit(R5_Wantread, &dev->flags);
3145 set_bit(R5_LOCKED, &dev->flags);
3146 s.locked++;
3150 /* Finish reconstruct operations initiated by the expansion process */
3151 if (sh->reconstruct_state == reconstruct_state_result) {
3152 struct stripe_head *sh2
3153 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3154 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3155 /* sh cannot be written until sh2 has been read.
3156 * so arrange for sh to be delayed a little
3158 set_bit(STRIPE_DELAYED, &sh->state);
3159 set_bit(STRIPE_HANDLE, &sh->state);
3160 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3161 &sh2->state))
3162 atomic_inc(&conf->preread_active_stripes);
3163 release_stripe(sh2);
3164 goto unlock;
3166 if (sh2)
3167 release_stripe(sh2);
3169 sh->reconstruct_state = reconstruct_state_idle;
3170 clear_bit(STRIPE_EXPANDING, &sh->state);
3171 for (i = conf->raid_disks; i--; ) {
3172 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3173 set_bit(R5_LOCKED, &sh->dev[i].flags);
3174 s.locked++;
3178 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3179 !sh->reconstruct_state) {
3180 /* Need to write out all blocks after computing parity */
3181 sh->disks = conf->raid_disks;
3182 stripe_set_idx(sh->sector, conf, 0, sh);
3183 schedule_reconstruction(sh, &s, 1, 1);
3184 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3185 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3186 atomic_dec(&conf->reshape_stripes);
3187 wake_up(&conf->wait_for_overlap);
3188 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3191 if (s.expanding && s.locked == 0 &&
3192 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3193 handle_stripe_expansion(conf, sh, NULL);
3195 unlock:
3196 spin_unlock(&sh->lock);
3198 /* wait for this device to become unblocked */
3199 if (unlikely(blocked_rdev))
3200 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3202 if (s.ops_request)
3203 raid_run_ops(sh, s.ops_request);
3205 ops_run_io(sh, &s);
3207 return_io(return_bi);
3210 static void handle_stripe6(struct stripe_head *sh)
3212 raid5_conf_t *conf = sh->raid_conf;
3213 int disks = sh->disks;
3214 struct bio *return_bi = NULL;
3215 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3216 struct stripe_head_state s;
3217 struct r6_state r6s;
3218 struct r5dev *dev, *pdev, *qdev;
3219 mdk_rdev_t *blocked_rdev = NULL;
3221 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3222 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3223 (unsigned long long)sh->sector, sh->state,
3224 atomic_read(&sh->count), pd_idx, qd_idx,
3225 sh->check_state, sh->reconstruct_state);
3226 memset(&s, 0, sizeof(s));
3228 spin_lock(&sh->lock);
3229 clear_bit(STRIPE_HANDLE, &sh->state);
3230 clear_bit(STRIPE_DELAYED, &sh->state);
3232 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3233 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3234 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3235 /* Now to look around and see what can be done */
3237 rcu_read_lock();
3238 for (i=disks; i--; ) {
3239 mdk_rdev_t *rdev;
3240 dev = &sh->dev[i];
3241 clear_bit(R5_Insync, &dev->flags);
3243 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3244 i, dev->flags, dev->toread, dev->towrite, dev->written);
3245 /* maybe we can reply to a read
3247 * new wantfill requests are only permitted while
3248 * ops_complete_biofill is guaranteed to be inactive
3250 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3251 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3252 set_bit(R5_Wantfill, &dev->flags);
3254 /* now count some things */
3255 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3256 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3257 if (test_bit(R5_Wantcompute, &dev->flags)) {
3258 s.compute++;
3259 BUG_ON(s.compute > 2);
3262 if (test_bit(R5_Wantfill, &dev->flags)) {
3263 s.to_fill++;
3264 } else if (dev->toread)
3265 s.to_read++;
3266 if (dev->towrite) {
3267 s.to_write++;
3268 if (!test_bit(R5_OVERWRITE, &dev->flags))
3269 s.non_overwrite++;
3271 if (dev->written)
3272 s.written++;
3273 rdev = rcu_dereference(conf->disks[i].rdev);
3274 if (blocked_rdev == NULL &&
3275 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3276 blocked_rdev = rdev;
3277 atomic_inc(&rdev->nr_pending);
3279 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3280 /* The ReadError flag will just be confusing now */
3281 clear_bit(R5_ReadError, &dev->flags);
3282 clear_bit(R5_ReWrite, &dev->flags);
3284 if (!rdev || !test_bit(In_sync, &rdev->flags)
3285 || test_bit(R5_ReadError, &dev->flags)) {
3286 if (s.failed < 2)
3287 r6s.failed_num[s.failed] = i;
3288 s.failed++;
3289 } else
3290 set_bit(R5_Insync, &dev->flags);
3292 rcu_read_unlock();
3294 if (unlikely(blocked_rdev)) {
3295 if (s.syncing || s.expanding || s.expanded ||
3296 s.to_write || s.written) {
3297 set_bit(STRIPE_HANDLE, &sh->state);
3298 goto unlock;
3300 /* There is nothing for the blocked_rdev to block */
3301 rdev_dec_pending(blocked_rdev, conf->mddev);
3302 blocked_rdev = NULL;
3305 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3306 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3307 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3310 pr_debug("locked=%d uptodate=%d to_read=%d"
3311 " to_write=%d failed=%d failed_num=%d,%d\n",
3312 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3313 r6s.failed_num[0], r6s.failed_num[1]);
3314 /* check if the array has lost >2 devices and, if so, some requests
3315 * might need to be failed
3317 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3318 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3319 if (s.failed > 2 && s.syncing) {
3320 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3321 clear_bit(STRIPE_SYNCING, &sh->state);
3322 s.syncing = 0;
3326 * might be able to return some write requests if the parity blocks
3327 * are safe, or on a failed drive
3329 pdev = &sh->dev[pd_idx];
3330 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3331 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3332 qdev = &sh->dev[qd_idx];
3333 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3334 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3336 if ( s.written &&
3337 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3338 && !test_bit(R5_LOCKED, &pdev->flags)
3339 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3340 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3341 && !test_bit(R5_LOCKED, &qdev->flags)
3342 && test_bit(R5_UPTODATE, &qdev->flags)))))
3343 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3345 /* Now we might consider reading some blocks, either to check/generate
3346 * parity, or to satisfy requests
3347 * or to load a block that is being partially written.
3349 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3350 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3351 handle_stripe_fill6(sh, &s, &r6s, disks);
3353 /* Now we check to see if any write operations have recently
3354 * completed
3356 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3357 int qd_idx = sh->qd_idx;
3359 sh->reconstruct_state = reconstruct_state_idle;
3360 /* All the 'written' buffers and the parity blocks are ready to
3361 * be written back to disk
3363 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3364 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3365 for (i = disks; i--; ) {
3366 dev = &sh->dev[i];
3367 if (test_bit(R5_LOCKED, &dev->flags) &&
3368 (i == sh->pd_idx || i == qd_idx ||
3369 dev->written)) {
3370 pr_debug("Writing block %d\n", i);
3371 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3372 set_bit(R5_Wantwrite, &dev->flags);
3373 if (!test_bit(R5_Insync, &dev->flags) ||
3374 ((i == sh->pd_idx || i == qd_idx) &&
3375 s.failed == 0))
3376 set_bit(STRIPE_INSYNC, &sh->state);
3379 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3380 atomic_dec(&conf->preread_active_stripes);
3381 if (atomic_read(&conf->preread_active_stripes) <
3382 IO_THRESHOLD)
3383 md_wakeup_thread(conf->mddev->thread);
3387 /* Now to consider new write requests and what else, if anything
3388 * should be read. We do not handle new writes when:
3389 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3390 * 2/ A 'check' operation is in flight, as it may clobber the parity
3391 * block.
3393 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3394 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3396 /* maybe we need to check and possibly fix the parity for this stripe
3397 * Any reads will already have been scheduled, so we just see if enough
3398 * data is available. The parity check is held off while parity
3399 * dependent operations are in flight.
3401 if (sh->check_state ||
3402 (s.syncing && s.locked == 0 &&
3403 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3404 !test_bit(STRIPE_INSYNC, &sh->state)))
3405 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3407 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3408 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3409 clear_bit(STRIPE_SYNCING, &sh->state);
3412 /* If the failed drives are just a ReadError, then we might need
3413 * to progress the repair/check process
3415 if (s.failed <= 2 && !conf->mddev->ro)
3416 for (i = 0; i < s.failed; i++) {
3417 dev = &sh->dev[r6s.failed_num[i]];
3418 if (test_bit(R5_ReadError, &dev->flags)
3419 && !test_bit(R5_LOCKED, &dev->flags)
3420 && test_bit(R5_UPTODATE, &dev->flags)
3422 if (!test_bit(R5_ReWrite, &dev->flags)) {
3423 set_bit(R5_Wantwrite, &dev->flags);
3424 set_bit(R5_ReWrite, &dev->flags);
3425 set_bit(R5_LOCKED, &dev->flags);
3426 s.locked++;
3427 } else {
3428 /* let's read it back */
3429 set_bit(R5_Wantread, &dev->flags);
3430 set_bit(R5_LOCKED, &dev->flags);
3431 s.locked++;
3436 /* Finish reconstruct operations initiated by the expansion process */
3437 if (sh->reconstruct_state == reconstruct_state_result) {
3438 sh->reconstruct_state = reconstruct_state_idle;
3439 clear_bit(STRIPE_EXPANDING, &sh->state);
3440 for (i = conf->raid_disks; i--; ) {
3441 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3442 set_bit(R5_LOCKED, &sh->dev[i].flags);
3443 s.locked++;
3447 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3448 !sh->reconstruct_state) {
3449 struct stripe_head *sh2
3450 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3451 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3452 /* sh cannot be written until sh2 has been read.
3453 * so arrange for sh to be delayed a little
3455 set_bit(STRIPE_DELAYED, &sh->state);
3456 set_bit(STRIPE_HANDLE, &sh->state);
3457 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3458 &sh2->state))
3459 atomic_inc(&conf->preread_active_stripes);
3460 release_stripe(sh2);
3461 goto unlock;
3463 if (sh2)
3464 release_stripe(sh2);
3466 /* Need to write out all blocks after computing P&Q */
3467 sh->disks = conf->raid_disks;
3468 stripe_set_idx(sh->sector, conf, 0, sh);
3469 schedule_reconstruction(sh, &s, 1, 1);
3470 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3471 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3472 atomic_dec(&conf->reshape_stripes);
3473 wake_up(&conf->wait_for_overlap);
3474 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3477 if (s.expanding && s.locked == 0 &&
3478 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3479 handle_stripe_expansion(conf, sh, &r6s);
3481 unlock:
3482 spin_unlock(&sh->lock);
3484 /* wait for this device to become unblocked */
3485 if (unlikely(blocked_rdev))
3486 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3488 if (s.ops_request)
3489 raid_run_ops(sh, s.ops_request);
3491 ops_run_io(sh, &s);
3493 return_io(return_bi);
3496 static void handle_stripe(struct stripe_head *sh)
3498 if (sh->raid_conf->level == 6)
3499 handle_stripe6(sh);
3500 else
3501 handle_stripe5(sh);
3504 static void raid5_activate_delayed(raid5_conf_t *conf)
3506 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3507 while (!list_empty(&conf->delayed_list)) {
3508 struct list_head *l = conf->delayed_list.next;
3509 struct stripe_head *sh;
3510 sh = list_entry(l, struct stripe_head, lru);
3511 list_del_init(l);
3512 clear_bit(STRIPE_DELAYED, &sh->state);
3513 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3514 atomic_inc(&conf->preread_active_stripes);
3515 list_add_tail(&sh->lru, &conf->hold_list);
3517 } else
3518 blk_plug_device(conf->mddev->queue);
3521 static void activate_bit_delay(raid5_conf_t *conf)
3523 /* device_lock is held */
3524 struct list_head head;
3525 list_add(&head, &conf->bitmap_list);
3526 list_del_init(&conf->bitmap_list);
3527 while (!list_empty(&head)) {
3528 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3529 list_del_init(&sh->lru);
3530 atomic_inc(&sh->count);
3531 __release_stripe(conf, sh);
3535 static void unplug_slaves(mddev_t *mddev)
3537 raid5_conf_t *conf = mddev->private;
3538 int i;
3539 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3541 rcu_read_lock();
3542 for (i = 0; i < devs; i++) {
3543 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3544 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3545 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3547 atomic_inc(&rdev->nr_pending);
3548 rcu_read_unlock();
3550 blk_unplug(r_queue);
3552 rdev_dec_pending(rdev, mddev);
3553 rcu_read_lock();
3556 rcu_read_unlock();
3559 static void raid5_unplug_device(struct request_queue *q)
3561 mddev_t *mddev = q->queuedata;
3562 raid5_conf_t *conf = mddev->private;
3563 unsigned long flags;
3565 spin_lock_irqsave(&conf->device_lock, flags);
3567 if (blk_remove_plug(q)) {
3568 conf->seq_flush++;
3569 raid5_activate_delayed(conf);
3571 md_wakeup_thread(mddev->thread);
3573 spin_unlock_irqrestore(&conf->device_lock, flags);
3575 unplug_slaves(mddev);
3578 static int raid5_congested(void *data, int bits)
3580 mddev_t *mddev = data;
3581 raid5_conf_t *conf = mddev->private;
3583 /* No difference between reads and writes. Just check
3584 * how busy the stripe_cache is
3587 if (mddev_congested(mddev, bits))
3588 return 1;
3589 if (conf->inactive_blocked)
3590 return 1;
3591 if (conf->quiesce)
3592 return 1;
3593 if (list_empty_careful(&conf->inactive_list))
3594 return 1;
3596 return 0;
3599 /* We want read requests to align with chunks where possible,
3600 * but write requests don't need to.
3602 static int raid5_mergeable_bvec(struct request_queue *q,
3603 struct bvec_merge_data *bvm,
3604 struct bio_vec *biovec)
3606 mddev_t *mddev = q->queuedata;
3607 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3608 int max;
3609 unsigned int chunk_sectors = mddev->chunk_sectors;
3610 unsigned int bio_sectors = bvm->bi_size >> 9;
3612 if ((bvm->bi_rw & 1) == WRITE)
3613 return biovec->bv_len; /* always allow writes to be mergeable */
3615 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3616 chunk_sectors = mddev->new_chunk_sectors;
3617 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3618 if (max < 0) max = 0;
3619 if (max <= biovec->bv_len && bio_sectors == 0)
3620 return biovec->bv_len;
3621 else
3622 return max;
3626 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3628 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3629 unsigned int chunk_sectors = mddev->chunk_sectors;
3630 unsigned int bio_sectors = bio->bi_size >> 9;
3632 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3633 chunk_sectors = mddev->new_chunk_sectors;
3634 return chunk_sectors >=
3635 ((sector & (chunk_sectors - 1)) + bio_sectors);
3639 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3640 * later sampled by raid5d.
3642 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3644 unsigned long flags;
3646 spin_lock_irqsave(&conf->device_lock, flags);
3648 bi->bi_next = conf->retry_read_aligned_list;
3649 conf->retry_read_aligned_list = bi;
3651 spin_unlock_irqrestore(&conf->device_lock, flags);
3652 md_wakeup_thread(conf->mddev->thread);
3656 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3658 struct bio *bi;
3660 bi = conf->retry_read_aligned;
3661 if (bi) {
3662 conf->retry_read_aligned = NULL;
3663 return bi;
3665 bi = conf->retry_read_aligned_list;
3666 if(bi) {
3667 conf->retry_read_aligned_list = bi->bi_next;
3668 bi->bi_next = NULL;
3670 * this sets the active strip count to 1 and the processed
3671 * strip count to zero (upper 8 bits)
3673 bi->bi_phys_segments = 1; /* biased count of active stripes */
3676 return bi;
3681 * The "raid5_align_endio" should check if the read succeeded and if it
3682 * did, call bio_endio on the original bio (having bio_put the new bio
3683 * first).
3684 * If the read failed..
3686 static void raid5_align_endio(struct bio *bi, int error)
3688 struct bio* raid_bi = bi->bi_private;
3689 mddev_t *mddev;
3690 raid5_conf_t *conf;
3691 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3692 mdk_rdev_t *rdev;
3694 bio_put(bi);
3696 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3697 conf = mddev->private;
3698 rdev = (void*)raid_bi->bi_next;
3699 raid_bi->bi_next = NULL;
3701 rdev_dec_pending(rdev, conf->mddev);
3703 if (!error && uptodate) {
3704 bio_endio(raid_bi, 0);
3705 if (atomic_dec_and_test(&conf->active_aligned_reads))
3706 wake_up(&conf->wait_for_stripe);
3707 return;
3711 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3713 add_bio_to_retry(raid_bi, conf);
3716 static int bio_fits_rdev(struct bio *bi)
3718 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3720 if ((bi->bi_size>>9) > queue_max_sectors(q))
3721 return 0;
3722 blk_recount_segments(q, bi);
3723 if (bi->bi_phys_segments > queue_max_phys_segments(q))
3724 return 0;
3726 if (q->merge_bvec_fn)
3727 /* it's too hard to apply the merge_bvec_fn at this stage,
3728 * just just give up
3730 return 0;
3732 return 1;
3736 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3738 mddev_t *mddev = q->queuedata;
3739 raid5_conf_t *conf = mddev->private;
3740 unsigned int dd_idx;
3741 struct bio* align_bi;
3742 mdk_rdev_t *rdev;
3744 if (!in_chunk_boundary(mddev, raid_bio)) {
3745 pr_debug("chunk_aligned_read : non aligned\n");
3746 return 0;
3749 * use bio_clone to make a copy of the bio
3751 align_bi = bio_clone(raid_bio, GFP_NOIO);
3752 if (!align_bi)
3753 return 0;
3755 * set bi_end_io to a new function, and set bi_private to the
3756 * original bio.
3758 align_bi->bi_end_io = raid5_align_endio;
3759 align_bi->bi_private = raid_bio;
3761 * compute position
3763 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3765 &dd_idx, NULL);
3767 rcu_read_lock();
3768 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3769 if (rdev && test_bit(In_sync, &rdev->flags)) {
3770 atomic_inc(&rdev->nr_pending);
3771 rcu_read_unlock();
3772 raid_bio->bi_next = (void*)rdev;
3773 align_bi->bi_bdev = rdev->bdev;
3774 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3775 align_bi->bi_sector += rdev->data_offset;
3777 if (!bio_fits_rdev(align_bi)) {
3778 /* too big in some way */
3779 bio_put(align_bi);
3780 rdev_dec_pending(rdev, mddev);
3781 return 0;
3784 spin_lock_irq(&conf->device_lock);
3785 wait_event_lock_irq(conf->wait_for_stripe,
3786 conf->quiesce == 0,
3787 conf->device_lock, /* nothing */);
3788 atomic_inc(&conf->active_aligned_reads);
3789 spin_unlock_irq(&conf->device_lock);
3791 generic_make_request(align_bi);
3792 return 1;
3793 } else {
3794 rcu_read_unlock();
3795 bio_put(align_bi);
3796 return 0;
3800 /* __get_priority_stripe - get the next stripe to process
3802 * Full stripe writes are allowed to pass preread active stripes up until
3803 * the bypass_threshold is exceeded. In general the bypass_count
3804 * increments when the handle_list is handled before the hold_list; however, it
3805 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3806 * stripe with in flight i/o. The bypass_count will be reset when the
3807 * head of the hold_list has changed, i.e. the head was promoted to the
3808 * handle_list.
3810 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3812 struct stripe_head *sh;
3814 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3815 __func__,
3816 list_empty(&conf->handle_list) ? "empty" : "busy",
3817 list_empty(&conf->hold_list) ? "empty" : "busy",
3818 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3820 if (!list_empty(&conf->handle_list)) {
3821 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3823 if (list_empty(&conf->hold_list))
3824 conf->bypass_count = 0;
3825 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3826 if (conf->hold_list.next == conf->last_hold)
3827 conf->bypass_count++;
3828 else {
3829 conf->last_hold = conf->hold_list.next;
3830 conf->bypass_count -= conf->bypass_threshold;
3831 if (conf->bypass_count < 0)
3832 conf->bypass_count = 0;
3835 } else if (!list_empty(&conf->hold_list) &&
3836 ((conf->bypass_threshold &&
3837 conf->bypass_count > conf->bypass_threshold) ||
3838 atomic_read(&conf->pending_full_writes) == 0)) {
3839 sh = list_entry(conf->hold_list.next,
3840 typeof(*sh), lru);
3841 conf->bypass_count -= conf->bypass_threshold;
3842 if (conf->bypass_count < 0)
3843 conf->bypass_count = 0;
3844 } else
3845 return NULL;
3847 list_del_init(&sh->lru);
3848 atomic_inc(&sh->count);
3849 BUG_ON(atomic_read(&sh->count) != 1);
3850 return sh;
3853 static int make_request(struct request_queue *q, struct bio * bi)
3855 mddev_t *mddev = q->queuedata;
3856 raid5_conf_t *conf = mddev->private;
3857 int dd_idx;
3858 sector_t new_sector;
3859 sector_t logical_sector, last_sector;
3860 struct stripe_head *sh;
3861 const int rw = bio_data_dir(bi);
3862 int cpu, remaining;
3864 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3865 bio_endio(bi, -EOPNOTSUPP);
3866 return 0;
3869 md_write_start(mddev, bi);
3871 cpu = part_stat_lock();
3872 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3873 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3874 bio_sectors(bi));
3875 part_stat_unlock();
3877 if (rw == READ &&
3878 mddev->reshape_position == MaxSector &&
3879 chunk_aligned_read(q,bi))
3880 return 0;
3882 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3883 last_sector = bi->bi_sector + (bi->bi_size>>9);
3884 bi->bi_next = NULL;
3885 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3887 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3888 DEFINE_WAIT(w);
3889 int disks, data_disks;
3890 int previous;
3892 retry:
3893 previous = 0;
3894 disks = conf->raid_disks;
3895 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3896 if (unlikely(conf->reshape_progress != MaxSector)) {
3897 /* spinlock is needed as reshape_progress may be
3898 * 64bit on a 32bit platform, and so it might be
3899 * possible to see a half-updated value
3900 * Ofcourse reshape_progress could change after
3901 * the lock is dropped, so once we get a reference
3902 * to the stripe that we think it is, we will have
3903 * to check again.
3905 spin_lock_irq(&conf->device_lock);
3906 if (mddev->delta_disks < 0
3907 ? logical_sector < conf->reshape_progress
3908 : logical_sector >= conf->reshape_progress) {
3909 disks = conf->previous_raid_disks;
3910 previous = 1;
3911 } else {
3912 if (mddev->delta_disks < 0
3913 ? logical_sector < conf->reshape_safe
3914 : logical_sector >= conf->reshape_safe) {
3915 spin_unlock_irq(&conf->device_lock);
3916 schedule();
3917 goto retry;
3920 spin_unlock_irq(&conf->device_lock);
3922 data_disks = disks - conf->max_degraded;
3924 new_sector = raid5_compute_sector(conf, logical_sector,
3925 previous,
3926 &dd_idx, NULL);
3927 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3928 (unsigned long long)new_sector,
3929 (unsigned long long)logical_sector);
3931 sh = get_active_stripe(conf, new_sector, previous,
3932 (bi->bi_rw&RWA_MASK), 0);
3933 if (sh) {
3934 if (unlikely(previous)) {
3935 /* expansion might have moved on while waiting for a
3936 * stripe, so we must do the range check again.
3937 * Expansion could still move past after this
3938 * test, but as we are holding a reference to
3939 * 'sh', we know that if that happens,
3940 * STRIPE_EXPANDING will get set and the expansion
3941 * won't proceed until we finish with the stripe.
3943 int must_retry = 0;
3944 spin_lock_irq(&conf->device_lock);
3945 if (mddev->delta_disks < 0
3946 ? logical_sector >= conf->reshape_progress
3947 : logical_sector < conf->reshape_progress)
3948 /* mismatch, need to try again */
3949 must_retry = 1;
3950 spin_unlock_irq(&conf->device_lock);
3951 if (must_retry) {
3952 release_stripe(sh);
3953 schedule();
3954 goto retry;
3958 if (bio_data_dir(bi) == WRITE &&
3959 logical_sector >= mddev->suspend_lo &&
3960 logical_sector < mddev->suspend_hi) {
3961 release_stripe(sh);
3962 /* As the suspend_* range is controlled by
3963 * userspace, we want an interruptible
3964 * wait.
3966 flush_signals(current);
3967 prepare_to_wait(&conf->wait_for_overlap,
3968 &w, TASK_INTERRUPTIBLE);
3969 if (logical_sector >= mddev->suspend_lo &&
3970 logical_sector < mddev->suspend_hi)
3971 schedule();
3972 goto retry;
3975 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3976 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3977 /* Stripe is busy expanding or
3978 * add failed due to overlap. Flush everything
3979 * and wait a while
3981 raid5_unplug_device(mddev->queue);
3982 release_stripe(sh);
3983 schedule();
3984 goto retry;
3986 finish_wait(&conf->wait_for_overlap, &w);
3987 set_bit(STRIPE_HANDLE, &sh->state);
3988 clear_bit(STRIPE_DELAYED, &sh->state);
3989 release_stripe(sh);
3990 } else {
3991 /* cannot get stripe for read-ahead, just give-up */
3992 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3993 finish_wait(&conf->wait_for_overlap, &w);
3994 break;
3998 spin_lock_irq(&conf->device_lock);
3999 remaining = raid5_dec_bi_phys_segments(bi);
4000 spin_unlock_irq(&conf->device_lock);
4001 if (remaining == 0) {
4003 if ( rw == WRITE )
4004 md_write_end(mddev);
4006 bio_endio(bi, 0);
4008 return 0;
4011 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4013 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4015 /* reshaping is quite different to recovery/resync so it is
4016 * handled quite separately ... here.
4018 * On each call to sync_request, we gather one chunk worth of
4019 * destination stripes and flag them as expanding.
4020 * Then we find all the source stripes and request reads.
4021 * As the reads complete, handle_stripe will copy the data
4022 * into the destination stripe and release that stripe.
4024 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4025 struct stripe_head *sh;
4026 sector_t first_sector, last_sector;
4027 int raid_disks = conf->previous_raid_disks;
4028 int data_disks = raid_disks - conf->max_degraded;
4029 int new_data_disks = conf->raid_disks - conf->max_degraded;
4030 int i;
4031 int dd_idx;
4032 sector_t writepos, readpos, safepos;
4033 sector_t stripe_addr;
4034 int reshape_sectors;
4035 struct list_head stripes;
4037 if (sector_nr == 0) {
4038 /* If restarting in the middle, skip the initial sectors */
4039 if (mddev->delta_disks < 0 &&
4040 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4041 sector_nr = raid5_size(mddev, 0, 0)
4042 - conf->reshape_progress;
4043 } else if (mddev->delta_disks >= 0 &&
4044 conf->reshape_progress > 0)
4045 sector_nr = conf->reshape_progress;
4046 sector_div(sector_nr, new_data_disks);
4047 if (sector_nr) {
4048 mddev->curr_resync_completed = sector_nr;
4049 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4050 *skipped = 1;
4051 return sector_nr;
4055 /* We need to process a full chunk at a time.
4056 * If old and new chunk sizes differ, we need to process the
4057 * largest of these
4059 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4060 reshape_sectors = mddev->new_chunk_sectors;
4061 else
4062 reshape_sectors = mddev->chunk_sectors;
4064 /* we update the metadata when there is more than 3Meg
4065 * in the block range (that is rather arbitrary, should
4066 * probably be time based) or when the data about to be
4067 * copied would over-write the source of the data at
4068 * the front of the range.
4069 * i.e. one new_stripe along from reshape_progress new_maps
4070 * to after where reshape_safe old_maps to
4072 writepos = conf->reshape_progress;
4073 sector_div(writepos, new_data_disks);
4074 readpos = conf->reshape_progress;
4075 sector_div(readpos, data_disks);
4076 safepos = conf->reshape_safe;
4077 sector_div(safepos, data_disks);
4078 if (mddev->delta_disks < 0) {
4079 writepos -= min_t(sector_t, reshape_sectors, writepos);
4080 readpos += reshape_sectors;
4081 safepos += reshape_sectors;
4082 } else {
4083 writepos += reshape_sectors;
4084 readpos -= min_t(sector_t, reshape_sectors, readpos);
4085 safepos -= min_t(sector_t, reshape_sectors, safepos);
4088 /* 'writepos' is the most advanced device address we might write.
4089 * 'readpos' is the least advanced device address we might read.
4090 * 'safepos' is the least address recorded in the metadata as having
4091 * been reshaped.
4092 * If 'readpos' is behind 'writepos', then there is no way that we can
4093 * ensure safety in the face of a crash - that must be done by userspace
4094 * making a backup of the data. So in that case there is no particular
4095 * rush to update metadata.
4096 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4097 * update the metadata to advance 'safepos' to match 'readpos' so that
4098 * we can be safe in the event of a crash.
4099 * So we insist on updating metadata if safepos is behind writepos and
4100 * readpos is beyond writepos.
4101 * In any case, update the metadata every 10 seconds.
4102 * Maybe that number should be configurable, but I'm not sure it is
4103 * worth it.... maybe it could be a multiple of safemode_delay???
4105 if ((mddev->delta_disks < 0
4106 ? (safepos > writepos && readpos < writepos)
4107 : (safepos < writepos && readpos > writepos)) ||
4108 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4109 /* Cannot proceed until we've updated the superblock... */
4110 wait_event(conf->wait_for_overlap,
4111 atomic_read(&conf->reshape_stripes)==0);
4112 mddev->reshape_position = conf->reshape_progress;
4113 mddev->curr_resync_completed = mddev->curr_resync;
4114 conf->reshape_checkpoint = jiffies;
4115 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4116 md_wakeup_thread(mddev->thread);
4117 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4118 kthread_should_stop());
4119 spin_lock_irq(&conf->device_lock);
4120 conf->reshape_safe = mddev->reshape_position;
4121 spin_unlock_irq(&conf->device_lock);
4122 wake_up(&conf->wait_for_overlap);
4123 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4126 if (mddev->delta_disks < 0) {
4127 BUG_ON(conf->reshape_progress == 0);
4128 stripe_addr = writepos;
4129 BUG_ON((mddev->dev_sectors &
4130 ~((sector_t)reshape_sectors - 1))
4131 - reshape_sectors - stripe_addr
4132 != sector_nr);
4133 } else {
4134 BUG_ON(writepos != sector_nr + reshape_sectors);
4135 stripe_addr = sector_nr;
4137 INIT_LIST_HEAD(&stripes);
4138 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4139 int j;
4140 int skipped_disk = 0;
4141 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4142 set_bit(STRIPE_EXPANDING, &sh->state);
4143 atomic_inc(&conf->reshape_stripes);
4144 /* If any of this stripe is beyond the end of the old
4145 * array, then we need to zero those blocks
4147 for (j=sh->disks; j--;) {
4148 sector_t s;
4149 if (j == sh->pd_idx)
4150 continue;
4151 if (conf->level == 6 &&
4152 j == sh->qd_idx)
4153 continue;
4154 s = compute_blocknr(sh, j, 0);
4155 if (s < raid5_size(mddev, 0, 0)) {
4156 skipped_disk = 1;
4157 continue;
4159 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4160 set_bit(R5_Expanded, &sh->dev[j].flags);
4161 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4163 if (!skipped_disk) {
4164 set_bit(STRIPE_EXPAND_READY, &sh->state);
4165 set_bit(STRIPE_HANDLE, &sh->state);
4167 list_add(&sh->lru, &stripes);
4169 spin_lock_irq(&conf->device_lock);
4170 if (mddev->delta_disks < 0)
4171 conf->reshape_progress -= reshape_sectors * new_data_disks;
4172 else
4173 conf->reshape_progress += reshape_sectors * new_data_disks;
4174 spin_unlock_irq(&conf->device_lock);
4175 /* Ok, those stripe are ready. We can start scheduling
4176 * reads on the source stripes.
4177 * The source stripes are determined by mapping the first and last
4178 * block on the destination stripes.
4180 first_sector =
4181 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4182 1, &dd_idx, NULL);
4183 last_sector =
4184 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4185 * new_data_disks - 1),
4186 1, &dd_idx, NULL);
4187 if (last_sector >= mddev->dev_sectors)
4188 last_sector = mddev->dev_sectors - 1;
4189 while (first_sector <= last_sector) {
4190 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4191 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4192 set_bit(STRIPE_HANDLE, &sh->state);
4193 release_stripe(sh);
4194 first_sector += STRIPE_SECTORS;
4196 /* Now that the sources are clearly marked, we can release
4197 * the destination stripes
4199 while (!list_empty(&stripes)) {
4200 sh = list_entry(stripes.next, struct stripe_head, lru);
4201 list_del_init(&sh->lru);
4202 release_stripe(sh);
4204 /* If this takes us to the resync_max point where we have to pause,
4205 * then we need to write out the superblock.
4207 sector_nr += reshape_sectors;
4208 if ((sector_nr - mddev->curr_resync_completed) * 2
4209 >= mddev->resync_max - mddev->curr_resync_completed) {
4210 /* Cannot proceed until we've updated the superblock... */
4211 wait_event(conf->wait_for_overlap,
4212 atomic_read(&conf->reshape_stripes) == 0);
4213 mddev->reshape_position = conf->reshape_progress;
4214 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4215 conf->reshape_checkpoint = jiffies;
4216 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4217 md_wakeup_thread(mddev->thread);
4218 wait_event(mddev->sb_wait,
4219 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4220 || kthread_should_stop());
4221 spin_lock_irq(&conf->device_lock);
4222 conf->reshape_safe = mddev->reshape_position;
4223 spin_unlock_irq(&conf->device_lock);
4224 wake_up(&conf->wait_for_overlap);
4225 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4227 return reshape_sectors;
4230 /* FIXME go_faster isn't used */
4231 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4233 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4234 struct stripe_head *sh;
4235 sector_t max_sector = mddev->dev_sectors;
4236 int sync_blocks;
4237 int still_degraded = 0;
4238 int i;
4240 if (sector_nr >= max_sector) {
4241 /* just being told to finish up .. nothing much to do */
4242 unplug_slaves(mddev);
4244 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4245 end_reshape(conf);
4246 return 0;
4249 if (mddev->curr_resync < max_sector) /* aborted */
4250 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4251 &sync_blocks, 1);
4252 else /* completed sync */
4253 conf->fullsync = 0;
4254 bitmap_close_sync(mddev->bitmap);
4256 return 0;
4259 /* Allow raid5_quiesce to complete */
4260 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4262 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4263 return reshape_request(mddev, sector_nr, skipped);
4265 /* No need to check resync_max as we never do more than one
4266 * stripe, and as resync_max will always be on a chunk boundary,
4267 * if the check in md_do_sync didn't fire, there is no chance
4268 * of overstepping resync_max here
4271 /* if there is too many failed drives and we are trying
4272 * to resync, then assert that we are finished, because there is
4273 * nothing we can do.
4275 if (mddev->degraded >= conf->max_degraded &&
4276 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4277 sector_t rv = mddev->dev_sectors - sector_nr;
4278 *skipped = 1;
4279 return rv;
4281 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4282 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4283 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4284 /* we can skip this block, and probably more */
4285 sync_blocks /= STRIPE_SECTORS;
4286 *skipped = 1;
4287 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4291 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4293 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4294 if (sh == NULL) {
4295 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4296 /* make sure we don't swamp the stripe cache if someone else
4297 * is trying to get access
4299 schedule_timeout_uninterruptible(1);
4301 /* Need to check if array will still be degraded after recovery/resync
4302 * We don't need to check the 'failed' flag as when that gets set,
4303 * recovery aborts.
4305 for (i = 0; i < conf->raid_disks; i++)
4306 if (conf->disks[i].rdev == NULL)
4307 still_degraded = 1;
4309 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4311 spin_lock(&sh->lock);
4312 set_bit(STRIPE_SYNCING, &sh->state);
4313 clear_bit(STRIPE_INSYNC, &sh->state);
4314 spin_unlock(&sh->lock);
4316 handle_stripe(sh);
4317 release_stripe(sh);
4319 return STRIPE_SECTORS;
4322 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4324 /* We may not be able to submit a whole bio at once as there
4325 * may not be enough stripe_heads available.
4326 * We cannot pre-allocate enough stripe_heads as we may need
4327 * more than exist in the cache (if we allow ever large chunks).
4328 * So we do one stripe head at a time and record in
4329 * ->bi_hw_segments how many have been done.
4331 * We *know* that this entire raid_bio is in one chunk, so
4332 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4334 struct stripe_head *sh;
4335 int dd_idx;
4336 sector_t sector, logical_sector, last_sector;
4337 int scnt = 0;
4338 int remaining;
4339 int handled = 0;
4341 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4342 sector = raid5_compute_sector(conf, logical_sector,
4343 0, &dd_idx, NULL);
4344 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4346 for (; logical_sector < last_sector;
4347 logical_sector += STRIPE_SECTORS,
4348 sector += STRIPE_SECTORS,
4349 scnt++) {
4351 if (scnt < raid5_bi_hw_segments(raid_bio))
4352 /* already done this stripe */
4353 continue;
4355 sh = get_active_stripe(conf, sector, 0, 1, 0);
4357 if (!sh) {
4358 /* failed to get a stripe - must wait */
4359 raid5_set_bi_hw_segments(raid_bio, scnt);
4360 conf->retry_read_aligned = raid_bio;
4361 return handled;
4364 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4365 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4366 release_stripe(sh);
4367 raid5_set_bi_hw_segments(raid_bio, scnt);
4368 conf->retry_read_aligned = raid_bio;
4369 return handled;
4372 handle_stripe(sh);
4373 release_stripe(sh);
4374 handled++;
4376 spin_lock_irq(&conf->device_lock);
4377 remaining = raid5_dec_bi_phys_segments(raid_bio);
4378 spin_unlock_irq(&conf->device_lock);
4379 if (remaining == 0)
4380 bio_endio(raid_bio, 0);
4381 if (atomic_dec_and_test(&conf->active_aligned_reads))
4382 wake_up(&conf->wait_for_stripe);
4383 return handled;
4388 * This is our raid5 kernel thread.
4390 * We scan the hash table for stripes which can be handled now.
4391 * During the scan, completed stripes are saved for us by the interrupt
4392 * handler, so that they will not have to wait for our next wakeup.
4394 static void raid5d(mddev_t *mddev)
4396 struct stripe_head *sh;
4397 raid5_conf_t *conf = mddev->private;
4398 int handled;
4400 pr_debug("+++ raid5d active\n");
4402 md_check_recovery(mddev);
4404 handled = 0;
4405 spin_lock_irq(&conf->device_lock);
4406 while (1) {
4407 struct bio *bio;
4409 if (conf->seq_flush != conf->seq_write) {
4410 int seq = conf->seq_flush;
4411 spin_unlock_irq(&conf->device_lock);
4412 bitmap_unplug(mddev->bitmap);
4413 spin_lock_irq(&conf->device_lock);
4414 conf->seq_write = seq;
4415 activate_bit_delay(conf);
4418 while ((bio = remove_bio_from_retry(conf))) {
4419 int ok;
4420 spin_unlock_irq(&conf->device_lock);
4421 ok = retry_aligned_read(conf, bio);
4422 spin_lock_irq(&conf->device_lock);
4423 if (!ok)
4424 break;
4425 handled++;
4428 sh = __get_priority_stripe(conf);
4430 if (!sh)
4431 break;
4432 spin_unlock_irq(&conf->device_lock);
4434 handled++;
4435 handle_stripe(sh);
4436 release_stripe(sh);
4437 cond_resched();
4439 spin_lock_irq(&conf->device_lock);
4441 pr_debug("%d stripes handled\n", handled);
4443 spin_unlock_irq(&conf->device_lock);
4445 async_tx_issue_pending_all();
4446 unplug_slaves(mddev);
4448 pr_debug("--- raid5d inactive\n");
4451 static ssize_t
4452 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4454 raid5_conf_t *conf = mddev->private;
4455 if (conf)
4456 return sprintf(page, "%d\n", conf->max_nr_stripes);
4457 else
4458 return 0;
4461 static ssize_t
4462 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4464 raid5_conf_t *conf = mddev->private;
4465 unsigned long new;
4466 int err;
4468 if (len >= PAGE_SIZE)
4469 return -EINVAL;
4470 if (!conf)
4471 return -ENODEV;
4473 if (strict_strtoul(page, 10, &new))
4474 return -EINVAL;
4475 if (new <= 16 || new > 32768)
4476 return -EINVAL;
4477 while (new < conf->max_nr_stripes) {
4478 if (drop_one_stripe(conf))
4479 conf->max_nr_stripes--;
4480 else
4481 break;
4483 err = md_allow_write(mddev);
4484 if (err)
4485 return err;
4486 while (new > conf->max_nr_stripes) {
4487 if (grow_one_stripe(conf))
4488 conf->max_nr_stripes++;
4489 else break;
4491 return len;
4494 static struct md_sysfs_entry
4495 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4496 raid5_show_stripe_cache_size,
4497 raid5_store_stripe_cache_size);
4499 static ssize_t
4500 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4502 raid5_conf_t *conf = mddev->private;
4503 if (conf)
4504 return sprintf(page, "%d\n", conf->bypass_threshold);
4505 else
4506 return 0;
4509 static ssize_t
4510 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4512 raid5_conf_t *conf = mddev->private;
4513 unsigned long new;
4514 if (len >= PAGE_SIZE)
4515 return -EINVAL;
4516 if (!conf)
4517 return -ENODEV;
4519 if (strict_strtoul(page, 10, &new))
4520 return -EINVAL;
4521 if (new > conf->max_nr_stripes)
4522 return -EINVAL;
4523 conf->bypass_threshold = new;
4524 return len;
4527 static struct md_sysfs_entry
4528 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4529 S_IRUGO | S_IWUSR,
4530 raid5_show_preread_threshold,
4531 raid5_store_preread_threshold);
4533 static ssize_t
4534 stripe_cache_active_show(mddev_t *mddev, char *page)
4536 raid5_conf_t *conf = mddev->private;
4537 if (conf)
4538 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4539 else
4540 return 0;
4543 static struct md_sysfs_entry
4544 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4546 static struct attribute *raid5_attrs[] = {
4547 &raid5_stripecache_size.attr,
4548 &raid5_stripecache_active.attr,
4549 &raid5_preread_bypass_threshold.attr,
4550 NULL,
4552 static struct attribute_group raid5_attrs_group = {
4553 .name = NULL,
4554 .attrs = raid5_attrs,
4557 static sector_t
4558 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4560 raid5_conf_t *conf = mddev->private;
4562 if (!sectors)
4563 sectors = mddev->dev_sectors;
4564 if (!raid_disks)
4565 /* size is defined by the smallest of previous and new size */
4566 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4568 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4569 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4570 return sectors * (raid_disks - conf->max_degraded);
4573 static void raid5_free_percpu(raid5_conf_t *conf)
4575 struct raid5_percpu *percpu;
4576 unsigned long cpu;
4578 if (!conf->percpu)
4579 return;
4581 get_online_cpus();
4582 for_each_possible_cpu(cpu) {
4583 percpu = per_cpu_ptr(conf->percpu, cpu);
4584 safe_put_page(percpu->spare_page);
4585 kfree(percpu->scribble);
4587 #ifdef CONFIG_HOTPLUG_CPU
4588 unregister_cpu_notifier(&conf->cpu_notify);
4589 #endif
4590 put_online_cpus();
4592 free_percpu(conf->percpu);
4595 static void free_conf(raid5_conf_t *conf)
4597 shrink_stripes(conf);
4598 raid5_free_percpu(conf);
4599 kfree(conf->disks);
4600 kfree(conf->stripe_hashtbl);
4601 kfree(conf);
4604 #ifdef CONFIG_HOTPLUG_CPU
4605 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4606 void *hcpu)
4608 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4609 long cpu = (long)hcpu;
4610 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4612 switch (action) {
4613 case CPU_UP_PREPARE:
4614 case CPU_UP_PREPARE_FROZEN:
4615 if (conf->level == 6 && !percpu->spare_page)
4616 percpu->spare_page = alloc_page(GFP_KERNEL);
4617 if (!percpu->scribble)
4618 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4620 if (!percpu->scribble ||
4621 (conf->level == 6 && !percpu->spare_page)) {
4622 safe_put_page(percpu->spare_page);
4623 kfree(percpu->scribble);
4624 pr_err("%s: failed memory allocation for cpu%ld\n",
4625 __func__, cpu);
4626 return NOTIFY_BAD;
4628 break;
4629 case CPU_DEAD:
4630 case CPU_DEAD_FROZEN:
4631 safe_put_page(percpu->spare_page);
4632 kfree(percpu->scribble);
4633 percpu->spare_page = NULL;
4634 percpu->scribble = NULL;
4635 break;
4636 default:
4637 break;
4639 return NOTIFY_OK;
4641 #endif
4643 static int raid5_alloc_percpu(raid5_conf_t *conf)
4645 unsigned long cpu;
4646 struct page *spare_page;
4647 struct raid5_percpu *allcpus;
4648 void *scribble;
4649 int err;
4651 allcpus = alloc_percpu(struct raid5_percpu);
4652 if (!allcpus)
4653 return -ENOMEM;
4654 conf->percpu = allcpus;
4656 get_online_cpus();
4657 err = 0;
4658 for_each_present_cpu(cpu) {
4659 if (conf->level == 6) {
4660 spare_page = alloc_page(GFP_KERNEL);
4661 if (!spare_page) {
4662 err = -ENOMEM;
4663 break;
4665 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4667 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4668 if (!scribble) {
4669 err = -ENOMEM;
4670 break;
4672 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4674 #ifdef CONFIG_HOTPLUG_CPU
4675 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4676 conf->cpu_notify.priority = 0;
4677 if (err == 0)
4678 err = register_cpu_notifier(&conf->cpu_notify);
4679 #endif
4680 put_online_cpus();
4682 return err;
4685 static raid5_conf_t *setup_conf(mddev_t *mddev)
4687 raid5_conf_t *conf;
4688 int raid_disk, memory, max_disks;
4689 mdk_rdev_t *rdev;
4690 struct disk_info *disk;
4692 if (mddev->new_level != 5
4693 && mddev->new_level != 4
4694 && mddev->new_level != 6) {
4695 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4696 mdname(mddev), mddev->new_level);
4697 return ERR_PTR(-EIO);
4699 if ((mddev->new_level == 5
4700 && !algorithm_valid_raid5(mddev->new_layout)) ||
4701 (mddev->new_level == 6
4702 && !algorithm_valid_raid6(mddev->new_layout))) {
4703 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4704 mdname(mddev), mddev->new_layout);
4705 return ERR_PTR(-EIO);
4707 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4708 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4709 mdname(mddev), mddev->raid_disks);
4710 return ERR_PTR(-EINVAL);
4713 if (!mddev->new_chunk_sectors ||
4714 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4715 !is_power_of_2(mddev->new_chunk_sectors)) {
4716 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4717 mddev->new_chunk_sectors << 9, mdname(mddev));
4718 return ERR_PTR(-EINVAL);
4721 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4722 if (conf == NULL)
4723 goto abort;
4724 spin_lock_init(&conf->device_lock);
4725 init_waitqueue_head(&conf->wait_for_stripe);
4726 init_waitqueue_head(&conf->wait_for_overlap);
4727 INIT_LIST_HEAD(&conf->handle_list);
4728 INIT_LIST_HEAD(&conf->hold_list);
4729 INIT_LIST_HEAD(&conf->delayed_list);
4730 INIT_LIST_HEAD(&conf->bitmap_list);
4731 INIT_LIST_HEAD(&conf->inactive_list);
4732 atomic_set(&conf->active_stripes, 0);
4733 atomic_set(&conf->preread_active_stripes, 0);
4734 atomic_set(&conf->active_aligned_reads, 0);
4735 conf->bypass_threshold = BYPASS_THRESHOLD;
4737 conf->raid_disks = mddev->raid_disks;
4738 if (mddev->reshape_position == MaxSector)
4739 conf->previous_raid_disks = mddev->raid_disks;
4740 else
4741 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4742 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4743 conf->scribble_len = scribble_len(max_disks);
4745 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4746 GFP_KERNEL);
4747 if (!conf->disks)
4748 goto abort;
4750 conf->mddev = mddev;
4752 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4753 goto abort;
4755 conf->level = mddev->new_level;
4756 if (raid5_alloc_percpu(conf) != 0)
4757 goto abort;
4759 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4761 list_for_each_entry(rdev, &mddev->disks, same_set) {
4762 raid_disk = rdev->raid_disk;
4763 if (raid_disk >= max_disks
4764 || raid_disk < 0)
4765 continue;
4766 disk = conf->disks + raid_disk;
4768 disk->rdev = rdev;
4770 if (test_bit(In_sync, &rdev->flags)) {
4771 char b[BDEVNAME_SIZE];
4772 printk(KERN_INFO "raid5: device %s operational as raid"
4773 " disk %d\n", bdevname(rdev->bdev,b),
4774 raid_disk);
4775 } else
4776 /* Cannot rely on bitmap to complete recovery */
4777 conf->fullsync = 1;
4780 conf->chunk_sectors = mddev->new_chunk_sectors;
4781 conf->level = mddev->new_level;
4782 if (conf->level == 6)
4783 conf->max_degraded = 2;
4784 else
4785 conf->max_degraded = 1;
4786 conf->algorithm = mddev->new_layout;
4787 conf->max_nr_stripes = NR_STRIPES;
4788 conf->reshape_progress = mddev->reshape_position;
4789 if (conf->reshape_progress != MaxSector) {
4790 conf->prev_chunk_sectors = mddev->chunk_sectors;
4791 conf->prev_algo = mddev->layout;
4794 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4795 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4796 if (grow_stripes(conf, conf->max_nr_stripes)) {
4797 printk(KERN_ERR
4798 "raid5: couldn't allocate %dkB for buffers\n", memory);
4799 goto abort;
4800 } else
4801 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4802 memory, mdname(mddev));
4804 conf->thread = md_register_thread(raid5d, mddev, NULL);
4805 if (!conf->thread) {
4806 printk(KERN_ERR
4807 "raid5: couldn't allocate thread for %s\n",
4808 mdname(mddev));
4809 goto abort;
4812 return conf;
4814 abort:
4815 if (conf) {
4816 free_conf(conf);
4817 return ERR_PTR(-EIO);
4818 } else
4819 return ERR_PTR(-ENOMEM);
4823 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4825 switch (algo) {
4826 case ALGORITHM_PARITY_0:
4827 if (raid_disk < max_degraded)
4828 return 1;
4829 break;
4830 case ALGORITHM_PARITY_N:
4831 if (raid_disk >= raid_disks - max_degraded)
4832 return 1;
4833 break;
4834 case ALGORITHM_PARITY_0_6:
4835 if (raid_disk == 0 ||
4836 raid_disk == raid_disks - 1)
4837 return 1;
4838 break;
4839 case ALGORITHM_LEFT_ASYMMETRIC_6:
4840 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4841 case ALGORITHM_LEFT_SYMMETRIC_6:
4842 case ALGORITHM_RIGHT_SYMMETRIC_6:
4843 if (raid_disk == raid_disks - 1)
4844 return 1;
4846 return 0;
4849 static int run(mddev_t *mddev)
4851 raid5_conf_t *conf;
4852 int working_disks = 0, chunk_size;
4853 int dirty_parity_disks = 0;
4854 mdk_rdev_t *rdev;
4855 sector_t reshape_offset = 0;
4857 if (mddev->recovery_cp != MaxSector)
4858 printk(KERN_NOTICE "raid5: %s is not clean"
4859 " -- starting background reconstruction\n",
4860 mdname(mddev));
4861 if (mddev->reshape_position != MaxSector) {
4862 /* Check that we can continue the reshape.
4863 * Currently only disks can change, it must
4864 * increase, and we must be past the point where
4865 * a stripe over-writes itself
4867 sector_t here_new, here_old;
4868 int old_disks;
4869 int max_degraded = (mddev->level == 6 ? 2 : 1);
4871 if (mddev->new_level != mddev->level) {
4872 printk(KERN_ERR "raid5: %s: unsupported reshape "
4873 "required - aborting.\n",
4874 mdname(mddev));
4875 return -EINVAL;
4877 old_disks = mddev->raid_disks - mddev->delta_disks;
4878 /* reshape_position must be on a new-stripe boundary, and one
4879 * further up in new geometry must map after here in old
4880 * geometry.
4882 here_new = mddev->reshape_position;
4883 if (sector_div(here_new, mddev->new_chunk_sectors *
4884 (mddev->raid_disks - max_degraded))) {
4885 printk(KERN_ERR "raid5: reshape_position not "
4886 "on a stripe boundary\n");
4887 return -EINVAL;
4889 reshape_offset = here_new * mddev->new_chunk_sectors;
4890 /* here_new is the stripe we will write to */
4891 here_old = mddev->reshape_position;
4892 sector_div(here_old, mddev->chunk_sectors *
4893 (old_disks-max_degraded));
4894 /* here_old is the first stripe that we might need to read
4895 * from */
4896 if (mddev->delta_disks == 0) {
4897 /* We cannot be sure it is safe to start an in-place
4898 * reshape. It is only safe if user-space if monitoring
4899 * and taking constant backups.
4900 * mdadm always starts a situation like this in
4901 * readonly mode so it can take control before
4902 * allowing any writes. So just check for that.
4904 if ((here_new * mddev->new_chunk_sectors !=
4905 here_old * mddev->chunk_sectors) ||
4906 mddev->ro == 0) {
4907 printk(KERN_ERR "raid5: in-place reshape must be started"
4908 " in read-only mode - aborting\n");
4909 return -EINVAL;
4911 } else if (mddev->delta_disks < 0
4912 ? (here_new * mddev->new_chunk_sectors <=
4913 here_old * mddev->chunk_sectors)
4914 : (here_new * mddev->new_chunk_sectors >=
4915 here_old * mddev->chunk_sectors)) {
4916 /* Reading from the same stripe as writing to - bad */
4917 printk(KERN_ERR "raid5: reshape_position too early for "
4918 "auto-recovery - aborting.\n");
4919 return -EINVAL;
4921 printk(KERN_INFO "raid5: reshape will continue\n");
4922 /* OK, we should be able to continue; */
4923 } else {
4924 BUG_ON(mddev->level != mddev->new_level);
4925 BUG_ON(mddev->layout != mddev->new_layout);
4926 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4927 BUG_ON(mddev->delta_disks != 0);
4930 if (mddev->private == NULL)
4931 conf = setup_conf(mddev);
4932 else
4933 conf = mddev->private;
4935 if (IS_ERR(conf))
4936 return PTR_ERR(conf);
4938 mddev->thread = conf->thread;
4939 conf->thread = NULL;
4940 mddev->private = conf;
4943 * 0 for a fully functional array, 1 or 2 for a degraded array.
4945 list_for_each_entry(rdev, &mddev->disks, same_set) {
4946 if (rdev->raid_disk < 0)
4947 continue;
4948 if (test_bit(In_sync, &rdev->flags))
4949 working_disks++;
4950 /* This disc is not fully in-sync. However if it
4951 * just stored parity (beyond the recovery_offset),
4952 * when we don't need to be concerned about the
4953 * array being dirty.
4954 * When reshape goes 'backwards', we never have
4955 * partially completed devices, so we only need
4956 * to worry about reshape going forwards.
4958 /* Hack because v0.91 doesn't store recovery_offset properly. */
4959 if (mddev->major_version == 0 &&
4960 mddev->minor_version > 90)
4961 rdev->recovery_offset = reshape_offset;
4963 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4964 rdev->raid_disk, working_disks, conf->prev_algo,
4965 conf->previous_raid_disks, conf->max_degraded,
4966 conf->algorithm, conf->raid_disks,
4967 only_parity(rdev->raid_disk,
4968 conf->prev_algo,
4969 conf->previous_raid_disks,
4970 conf->max_degraded),
4971 only_parity(rdev->raid_disk,
4972 conf->algorithm,
4973 conf->raid_disks,
4974 conf->max_degraded));
4975 if (rdev->recovery_offset < reshape_offset) {
4976 /* We need to check old and new layout */
4977 if (!only_parity(rdev->raid_disk,
4978 conf->algorithm,
4979 conf->raid_disks,
4980 conf->max_degraded))
4981 continue;
4983 if (!only_parity(rdev->raid_disk,
4984 conf->prev_algo,
4985 conf->previous_raid_disks,
4986 conf->max_degraded))
4987 continue;
4988 dirty_parity_disks++;
4991 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4992 - working_disks);
4994 if (mddev->degraded > conf->max_degraded) {
4995 printk(KERN_ERR "raid5: not enough operational devices for %s"
4996 " (%d/%d failed)\n",
4997 mdname(mddev), mddev->degraded, conf->raid_disks);
4998 goto abort;
5001 /* device size must be a multiple of chunk size */
5002 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5003 mddev->resync_max_sectors = mddev->dev_sectors;
5005 if (mddev->degraded > dirty_parity_disks &&
5006 mddev->recovery_cp != MaxSector) {
5007 if (mddev->ok_start_degraded)
5008 printk(KERN_WARNING
5009 "raid5: starting dirty degraded array: %s"
5010 "- data corruption possible.\n",
5011 mdname(mddev));
5012 else {
5013 printk(KERN_ERR
5014 "raid5: cannot start dirty degraded array for %s\n",
5015 mdname(mddev));
5016 goto abort;
5020 if (mddev->degraded == 0)
5021 printk("raid5: raid level %d set %s active with %d out of %d"
5022 " devices, algorithm %d\n", conf->level, mdname(mddev),
5023 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5024 mddev->new_layout);
5025 else
5026 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5027 " out of %d devices, algorithm %d\n", conf->level,
5028 mdname(mddev), mddev->raid_disks - mddev->degraded,
5029 mddev->raid_disks, mddev->new_layout);
5031 print_raid5_conf(conf);
5033 if (conf->reshape_progress != MaxSector) {
5034 printk("...ok start reshape thread\n");
5035 conf->reshape_safe = conf->reshape_progress;
5036 atomic_set(&conf->reshape_stripes, 0);
5037 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5038 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5039 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5040 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5041 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5042 "reshape");
5045 /* read-ahead size must cover two whole stripes, which is
5046 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5049 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5050 int stripe = data_disks *
5051 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5052 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5053 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5056 /* Ok, everything is just fine now */
5057 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5058 printk(KERN_WARNING
5059 "raid5: failed to create sysfs attributes for %s\n",
5060 mdname(mddev));
5062 mddev->queue->queue_lock = &conf->device_lock;
5064 mddev->queue->unplug_fn = raid5_unplug_device;
5065 mddev->queue->backing_dev_info.congested_data = mddev;
5066 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5068 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5070 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5071 chunk_size = mddev->chunk_sectors << 9;
5072 blk_queue_io_min(mddev->queue, chunk_size);
5073 blk_queue_io_opt(mddev->queue, chunk_size *
5074 (conf->raid_disks - conf->max_degraded));
5076 list_for_each_entry(rdev, &mddev->disks, same_set)
5077 disk_stack_limits(mddev->gendisk, rdev->bdev,
5078 rdev->data_offset << 9);
5080 return 0;
5081 abort:
5082 md_unregister_thread(mddev->thread);
5083 mddev->thread = NULL;
5084 if (conf) {
5085 print_raid5_conf(conf);
5086 free_conf(conf);
5088 mddev->private = NULL;
5089 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5090 return -EIO;
5095 static int stop(mddev_t *mddev)
5097 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5099 md_unregister_thread(mddev->thread);
5100 mddev->thread = NULL;
5101 mddev->queue->backing_dev_info.congested_fn = NULL;
5102 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5103 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5104 free_conf(conf);
5105 mddev->private = NULL;
5106 return 0;
5109 #ifdef DEBUG
5110 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5112 int i;
5114 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5115 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5116 seq_printf(seq, "sh %llu, count %d.\n",
5117 (unsigned long long)sh->sector, atomic_read(&sh->count));
5118 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5119 for (i = 0; i < sh->disks; i++) {
5120 seq_printf(seq, "(cache%d: %p %ld) ",
5121 i, sh->dev[i].page, sh->dev[i].flags);
5123 seq_printf(seq, "\n");
5126 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5128 struct stripe_head *sh;
5129 struct hlist_node *hn;
5130 int i;
5132 spin_lock_irq(&conf->device_lock);
5133 for (i = 0; i < NR_HASH; i++) {
5134 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5135 if (sh->raid_conf != conf)
5136 continue;
5137 print_sh(seq, sh);
5140 spin_unlock_irq(&conf->device_lock);
5142 #endif
5144 static void status(struct seq_file *seq, mddev_t *mddev)
5146 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5147 int i;
5149 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5150 mddev->chunk_sectors / 2, mddev->layout);
5151 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5152 for (i = 0; i < conf->raid_disks; i++)
5153 seq_printf (seq, "%s",
5154 conf->disks[i].rdev &&
5155 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5156 seq_printf (seq, "]");
5157 #ifdef DEBUG
5158 seq_printf (seq, "\n");
5159 printall(seq, conf);
5160 #endif
5163 static void print_raid5_conf (raid5_conf_t *conf)
5165 int i;
5166 struct disk_info *tmp;
5168 printk("RAID5 conf printout:\n");
5169 if (!conf) {
5170 printk("(conf==NULL)\n");
5171 return;
5173 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5174 conf->raid_disks - conf->mddev->degraded);
5176 for (i = 0; i < conf->raid_disks; i++) {
5177 char b[BDEVNAME_SIZE];
5178 tmp = conf->disks + i;
5179 if (tmp->rdev)
5180 printk(" disk %d, o:%d, dev:%s\n",
5181 i, !test_bit(Faulty, &tmp->rdev->flags),
5182 bdevname(tmp->rdev->bdev,b));
5186 static int raid5_spare_active(mddev_t *mddev)
5188 int i;
5189 raid5_conf_t *conf = mddev->private;
5190 struct disk_info *tmp;
5192 for (i = 0; i < conf->raid_disks; i++) {
5193 tmp = conf->disks + i;
5194 if (tmp->rdev
5195 && !test_bit(Faulty, &tmp->rdev->flags)
5196 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5197 unsigned long flags;
5198 spin_lock_irqsave(&conf->device_lock, flags);
5199 mddev->degraded--;
5200 spin_unlock_irqrestore(&conf->device_lock, flags);
5203 print_raid5_conf(conf);
5204 return 0;
5207 static int raid5_remove_disk(mddev_t *mddev, int number)
5209 raid5_conf_t *conf = mddev->private;
5210 int err = 0;
5211 mdk_rdev_t *rdev;
5212 struct disk_info *p = conf->disks + number;
5214 print_raid5_conf(conf);
5215 rdev = p->rdev;
5216 if (rdev) {
5217 if (number >= conf->raid_disks &&
5218 conf->reshape_progress == MaxSector)
5219 clear_bit(In_sync, &rdev->flags);
5221 if (test_bit(In_sync, &rdev->flags) ||
5222 atomic_read(&rdev->nr_pending)) {
5223 err = -EBUSY;
5224 goto abort;
5226 /* Only remove non-faulty devices if recovery
5227 * isn't possible.
5229 if (!test_bit(Faulty, &rdev->flags) &&
5230 mddev->degraded <= conf->max_degraded &&
5231 number < conf->raid_disks) {
5232 err = -EBUSY;
5233 goto abort;
5235 p->rdev = NULL;
5236 synchronize_rcu();
5237 if (atomic_read(&rdev->nr_pending)) {
5238 /* lost the race, try later */
5239 err = -EBUSY;
5240 p->rdev = rdev;
5243 abort:
5245 print_raid5_conf(conf);
5246 return err;
5249 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5251 raid5_conf_t *conf = mddev->private;
5252 int err = -EEXIST;
5253 int disk;
5254 struct disk_info *p;
5255 int first = 0;
5256 int last = conf->raid_disks - 1;
5258 if (mddev->degraded > conf->max_degraded)
5259 /* no point adding a device */
5260 return -EINVAL;
5262 if (rdev->raid_disk >= 0)
5263 first = last = rdev->raid_disk;
5266 * find the disk ... but prefer rdev->saved_raid_disk
5267 * if possible.
5269 if (rdev->saved_raid_disk >= 0 &&
5270 rdev->saved_raid_disk >= first &&
5271 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5272 disk = rdev->saved_raid_disk;
5273 else
5274 disk = first;
5275 for ( ; disk <= last ; disk++)
5276 if ((p=conf->disks + disk)->rdev == NULL) {
5277 clear_bit(In_sync, &rdev->flags);
5278 rdev->raid_disk = disk;
5279 err = 0;
5280 if (rdev->saved_raid_disk != disk)
5281 conf->fullsync = 1;
5282 rcu_assign_pointer(p->rdev, rdev);
5283 break;
5285 print_raid5_conf(conf);
5286 return err;
5289 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5291 /* no resync is happening, and there is enough space
5292 * on all devices, so we can resize.
5293 * We need to make sure resync covers any new space.
5294 * If the array is shrinking we should possibly wait until
5295 * any io in the removed space completes, but it hardly seems
5296 * worth it.
5298 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5299 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5300 mddev->raid_disks));
5301 if (mddev->array_sectors >
5302 raid5_size(mddev, sectors, mddev->raid_disks))
5303 return -EINVAL;
5304 set_capacity(mddev->gendisk, mddev->array_sectors);
5305 mddev->changed = 1;
5306 revalidate_disk(mddev->gendisk);
5307 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5308 mddev->recovery_cp = mddev->dev_sectors;
5309 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5311 mddev->dev_sectors = sectors;
5312 mddev->resync_max_sectors = sectors;
5313 return 0;
5316 static int check_stripe_cache(mddev_t *mddev)
5318 /* Can only proceed if there are plenty of stripe_heads.
5319 * We need a minimum of one full stripe,, and for sensible progress
5320 * it is best to have about 4 times that.
5321 * If we require 4 times, then the default 256 4K stripe_heads will
5322 * allow for chunk sizes up to 256K, which is probably OK.
5323 * If the chunk size is greater, user-space should request more
5324 * stripe_heads first.
5326 raid5_conf_t *conf = mddev->private;
5327 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5328 > conf->max_nr_stripes ||
5329 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5330 > conf->max_nr_stripes) {
5331 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
5332 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5333 / STRIPE_SIZE)*4);
5334 return 0;
5336 return 1;
5339 static int check_reshape(mddev_t *mddev)
5341 raid5_conf_t *conf = mddev->private;
5343 if (mddev->delta_disks == 0 &&
5344 mddev->new_layout == mddev->layout &&
5345 mddev->new_chunk_sectors == mddev->chunk_sectors)
5346 return 0; /* nothing to do */
5347 if (mddev->bitmap)
5348 /* Cannot grow a bitmap yet */
5349 return -EBUSY;
5350 if (mddev->degraded > conf->max_degraded)
5351 return -EINVAL;
5352 if (mddev->delta_disks < 0) {
5353 /* We might be able to shrink, but the devices must
5354 * be made bigger first.
5355 * For raid6, 4 is the minimum size.
5356 * Otherwise 2 is the minimum
5358 int min = 2;
5359 if (mddev->level == 6)
5360 min = 4;
5361 if (mddev->raid_disks + mddev->delta_disks < min)
5362 return -EINVAL;
5365 if (!check_stripe_cache(mddev))
5366 return -ENOSPC;
5368 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5371 static int raid5_start_reshape(mddev_t *mddev)
5373 raid5_conf_t *conf = mddev->private;
5374 mdk_rdev_t *rdev;
5375 int spares = 0;
5376 int added_devices = 0;
5377 unsigned long flags;
5379 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5380 return -EBUSY;
5382 if (!check_stripe_cache(mddev))
5383 return -ENOSPC;
5385 list_for_each_entry(rdev, &mddev->disks, same_set)
5386 if (rdev->raid_disk < 0 &&
5387 !test_bit(Faulty, &rdev->flags))
5388 spares++;
5390 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5391 /* Not enough devices even to make a degraded array
5392 * of that size
5394 return -EINVAL;
5396 /* Refuse to reduce size of the array. Any reductions in
5397 * array size must be through explicit setting of array_size
5398 * attribute.
5400 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5401 < mddev->array_sectors) {
5402 printk(KERN_ERR "md: %s: array size must be reduced "
5403 "before number of disks\n", mdname(mddev));
5404 return -EINVAL;
5407 atomic_set(&conf->reshape_stripes, 0);
5408 spin_lock_irq(&conf->device_lock);
5409 conf->previous_raid_disks = conf->raid_disks;
5410 conf->raid_disks += mddev->delta_disks;
5411 conf->prev_chunk_sectors = conf->chunk_sectors;
5412 conf->chunk_sectors = mddev->new_chunk_sectors;
5413 conf->prev_algo = conf->algorithm;
5414 conf->algorithm = mddev->new_layout;
5415 if (mddev->delta_disks < 0)
5416 conf->reshape_progress = raid5_size(mddev, 0, 0);
5417 else
5418 conf->reshape_progress = 0;
5419 conf->reshape_safe = conf->reshape_progress;
5420 conf->generation++;
5421 spin_unlock_irq(&conf->device_lock);
5423 /* Add some new drives, as many as will fit.
5424 * We know there are enough to make the newly sized array work.
5426 list_for_each_entry(rdev, &mddev->disks, same_set)
5427 if (rdev->raid_disk < 0 &&
5428 !test_bit(Faulty, &rdev->flags)) {
5429 if (raid5_add_disk(mddev, rdev) == 0) {
5430 char nm[20];
5431 if (rdev->raid_disk >= conf->previous_raid_disks) {
5432 set_bit(In_sync, &rdev->flags);
5433 added_devices++;
5434 } else
5435 rdev->recovery_offset = 0;
5436 sprintf(nm, "rd%d", rdev->raid_disk);
5437 if (sysfs_create_link(&mddev->kobj,
5438 &rdev->kobj, nm))
5439 printk(KERN_WARNING
5440 "raid5: failed to create "
5441 " link %s for %s\n",
5442 nm, mdname(mddev));
5443 } else
5444 break;
5447 /* When a reshape changes the number of devices, ->degraded
5448 * is measured against the large of the pre and post number of
5449 * devices.*/
5450 if (mddev->delta_disks > 0) {
5451 spin_lock_irqsave(&conf->device_lock, flags);
5452 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5453 - added_devices;
5454 spin_unlock_irqrestore(&conf->device_lock, flags);
5456 mddev->raid_disks = conf->raid_disks;
5457 mddev->reshape_position = conf->reshape_progress;
5458 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5460 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5461 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5462 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5463 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5464 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5465 "reshape");
5466 if (!mddev->sync_thread) {
5467 mddev->recovery = 0;
5468 spin_lock_irq(&conf->device_lock);
5469 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5470 conf->reshape_progress = MaxSector;
5471 spin_unlock_irq(&conf->device_lock);
5472 return -EAGAIN;
5474 conf->reshape_checkpoint = jiffies;
5475 md_wakeup_thread(mddev->sync_thread);
5476 md_new_event(mddev);
5477 return 0;
5480 /* This is called from the reshape thread and should make any
5481 * changes needed in 'conf'
5483 static void end_reshape(raid5_conf_t *conf)
5486 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5488 spin_lock_irq(&conf->device_lock);
5489 conf->previous_raid_disks = conf->raid_disks;
5490 conf->reshape_progress = MaxSector;
5491 spin_unlock_irq(&conf->device_lock);
5492 wake_up(&conf->wait_for_overlap);
5494 /* read-ahead size must cover two whole stripes, which is
5495 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5498 int data_disks = conf->raid_disks - conf->max_degraded;
5499 int stripe = data_disks * ((conf->chunk_sectors << 9)
5500 / PAGE_SIZE);
5501 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5502 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5507 /* This is called from the raid5d thread with mddev_lock held.
5508 * It makes config changes to the device.
5510 static void raid5_finish_reshape(mddev_t *mddev)
5512 raid5_conf_t *conf = mddev->private;
5514 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5516 if (mddev->delta_disks > 0) {
5517 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5518 set_capacity(mddev->gendisk, mddev->array_sectors);
5519 mddev->changed = 1;
5520 revalidate_disk(mddev->gendisk);
5521 } else {
5522 int d;
5523 mddev->degraded = conf->raid_disks;
5524 for (d = 0; d < conf->raid_disks ; d++)
5525 if (conf->disks[d].rdev &&
5526 test_bit(In_sync,
5527 &conf->disks[d].rdev->flags))
5528 mddev->degraded--;
5529 for (d = conf->raid_disks ;
5530 d < conf->raid_disks - mddev->delta_disks;
5531 d++) {
5532 mdk_rdev_t *rdev = conf->disks[d].rdev;
5533 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5534 char nm[20];
5535 sprintf(nm, "rd%d", rdev->raid_disk);
5536 sysfs_remove_link(&mddev->kobj, nm);
5537 rdev->raid_disk = -1;
5541 mddev->layout = conf->algorithm;
5542 mddev->chunk_sectors = conf->chunk_sectors;
5543 mddev->reshape_position = MaxSector;
5544 mddev->delta_disks = 0;
5548 static void raid5_quiesce(mddev_t *mddev, int state)
5550 raid5_conf_t *conf = mddev->private;
5552 switch(state) {
5553 case 2: /* resume for a suspend */
5554 wake_up(&conf->wait_for_overlap);
5555 break;
5557 case 1: /* stop all writes */
5558 spin_lock_irq(&conf->device_lock);
5559 /* '2' tells resync/reshape to pause so that all
5560 * active stripes can drain
5562 conf->quiesce = 2;
5563 wait_event_lock_irq(conf->wait_for_stripe,
5564 atomic_read(&conf->active_stripes) == 0 &&
5565 atomic_read(&conf->active_aligned_reads) == 0,
5566 conf->device_lock, /* nothing */);
5567 conf->quiesce = 1;
5568 spin_unlock_irq(&conf->device_lock);
5569 /* allow reshape to continue */
5570 wake_up(&conf->wait_for_overlap);
5571 break;
5573 case 0: /* re-enable writes */
5574 spin_lock_irq(&conf->device_lock);
5575 conf->quiesce = 0;
5576 wake_up(&conf->wait_for_stripe);
5577 wake_up(&conf->wait_for_overlap);
5578 spin_unlock_irq(&conf->device_lock);
5579 break;
5584 static void *raid5_takeover_raid1(mddev_t *mddev)
5586 int chunksect;
5588 if (mddev->raid_disks != 2 ||
5589 mddev->degraded > 1)
5590 return ERR_PTR(-EINVAL);
5592 /* Should check if there are write-behind devices? */
5594 chunksect = 64*2; /* 64K by default */
5596 /* The array must be an exact multiple of chunksize */
5597 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5598 chunksect >>= 1;
5600 if ((chunksect<<9) < STRIPE_SIZE)
5601 /* array size does not allow a suitable chunk size */
5602 return ERR_PTR(-EINVAL);
5604 mddev->new_level = 5;
5605 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5606 mddev->new_chunk_sectors = chunksect;
5608 return setup_conf(mddev);
5611 static void *raid5_takeover_raid6(mddev_t *mddev)
5613 int new_layout;
5615 switch (mddev->layout) {
5616 case ALGORITHM_LEFT_ASYMMETRIC_6:
5617 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5618 break;
5619 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5620 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5621 break;
5622 case ALGORITHM_LEFT_SYMMETRIC_6:
5623 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5624 break;
5625 case ALGORITHM_RIGHT_SYMMETRIC_6:
5626 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5627 break;
5628 case ALGORITHM_PARITY_0_6:
5629 new_layout = ALGORITHM_PARITY_0;
5630 break;
5631 case ALGORITHM_PARITY_N:
5632 new_layout = ALGORITHM_PARITY_N;
5633 break;
5634 default:
5635 return ERR_PTR(-EINVAL);
5637 mddev->new_level = 5;
5638 mddev->new_layout = new_layout;
5639 mddev->delta_disks = -1;
5640 mddev->raid_disks -= 1;
5641 return setup_conf(mddev);
5645 static int raid5_check_reshape(mddev_t *mddev)
5647 /* For a 2-drive array, the layout and chunk size can be changed
5648 * immediately as not restriping is needed.
5649 * For larger arrays we record the new value - after validation
5650 * to be used by a reshape pass.
5652 raid5_conf_t *conf = mddev->private;
5653 int new_chunk = mddev->new_chunk_sectors;
5655 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5656 return -EINVAL;
5657 if (new_chunk > 0) {
5658 if (!is_power_of_2(new_chunk))
5659 return -EINVAL;
5660 if (new_chunk < (PAGE_SIZE>>9))
5661 return -EINVAL;
5662 if (mddev->array_sectors & (new_chunk-1))
5663 /* not factor of array size */
5664 return -EINVAL;
5667 /* They look valid */
5669 if (mddev->raid_disks == 2) {
5670 /* can make the change immediately */
5671 if (mddev->new_layout >= 0) {
5672 conf->algorithm = mddev->new_layout;
5673 mddev->layout = mddev->new_layout;
5675 if (new_chunk > 0) {
5676 conf->chunk_sectors = new_chunk ;
5677 mddev->chunk_sectors = new_chunk;
5679 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5680 md_wakeup_thread(mddev->thread);
5682 return check_reshape(mddev);
5685 static int raid6_check_reshape(mddev_t *mddev)
5687 int new_chunk = mddev->new_chunk_sectors;
5689 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5690 return -EINVAL;
5691 if (new_chunk > 0) {
5692 if (!is_power_of_2(new_chunk))
5693 return -EINVAL;
5694 if (new_chunk < (PAGE_SIZE >> 9))
5695 return -EINVAL;
5696 if (mddev->array_sectors & (new_chunk-1))
5697 /* not factor of array size */
5698 return -EINVAL;
5701 /* They look valid */
5702 return check_reshape(mddev);
5705 static void *raid5_takeover(mddev_t *mddev)
5707 /* raid5 can take over:
5708 * raid0 - if all devices are the same - make it a raid4 layout
5709 * raid1 - if there are two drives. We need to know the chunk size
5710 * raid4 - trivial - just use a raid4 layout.
5711 * raid6 - Providing it is a *_6 layout
5714 if (mddev->level == 1)
5715 return raid5_takeover_raid1(mddev);
5716 if (mddev->level == 4) {
5717 mddev->new_layout = ALGORITHM_PARITY_N;
5718 mddev->new_level = 5;
5719 return setup_conf(mddev);
5721 if (mddev->level == 6)
5722 return raid5_takeover_raid6(mddev);
5724 return ERR_PTR(-EINVAL);
5728 static struct mdk_personality raid5_personality;
5730 static void *raid6_takeover(mddev_t *mddev)
5732 /* Currently can only take over a raid5. We map the
5733 * personality to an equivalent raid6 personality
5734 * with the Q block at the end.
5736 int new_layout;
5738 if (mddev->pers != &raid5_personality)
5739 return ERR_PTR(-EINVAL);
5740 if (mddev->degraded > 1)
5741 return ERR_PTR(-EINVAL);
5742 if (mddev->raid_disks > 253)
5743 return ERR_PTR(-EINVAL);
5744 if (mddev->raid_disks < 3)
5745 return ERR_PTR(-EINVAL);
5747 switch (mddev->layout) {
5748 case ALGORITHM_LEFT_ASYMMETRIC:
5749 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5750 break;
5751 case ALGORITHM_RIGHT_ASYMMETRIC:
5752 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5753 break;
5754 case ALGORITHM_LEFT_SYMMETRIC:
5755 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5756 break;
5757 case ALGORITHM_RIGHT_SYMMETRIC:
5758 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5759 break;
5760 case ALGORITHM_PARITY_0:
5761 new_layout = ALGORITHM_PARITY_0_6;
5762 break;
5763 case ALGORITHM_PARITY_N:
5764 new_layout = ALGORITHM_PARITY_N;
5765 break;
5766 default:
5767 return ERR_PTR(-EINVAL);
5769 mddev->new_level = 6;
5770 mddev->new_layout = new_layout;
5771 mddev->delta_disks = 1;
5772 mddev->raid_disks += 1;
5773 return setup_conf(mddev);
5777 static struct mdk_personality raid6_personality =
5779 .name = "raid6",
5780 .level = 6,
5781 .owner = THIS_MODULE,
5782 .make_request = make_request,
5783 .run = run,
5784 .stop = stop,
5785 .status = status,
5786 .error_handler = error,
5787 .hot_add_disk = raid5_add_disk,
5788 .hot_remove_disk= raid5_remove_disk,
5789 .spare_active = raid5_spare_active,
5790 .sync_request = sync_request,
5791 .resize = raid5_resize,
5792 .size = raid5_size,
5793 .check_reshape = raid6_check_reshape,
5794 .start_reshape = raid5_start_reshape,
5795 .finish_reshape = raid5_finish_reshape,
5796 .quiesce = raid5_quiesce,
5797 .takeover = raid6_takeover,
5799 static struct mdk_personality raid5_personality =
5801 .name = "raid5",
5802 .level = 5,
5803 .owner = THIS_MODULE,
5804 .make_request = make_request,
5805 .run = run,
5806 .stop = stop,
5807 .status = status,
5808 .error_handler = error,
5809 .hot_add_disk = raid5_add_disk,
5810 .hot_remove_disk= raid5_remove_disk,
5811 .spare_active = raid5_spare_active,
5812 .sync_request = sync_request,
5813 .resize = raid5_resize,
5814 .size = raid5_size,
5815 .check_reshape = raid5_check_reshape,
5816 .start_reshape = raid5_start_reshape,
5817 .finish_reshape = raid5_finish_reshape,
5818 .quiesce = raid5_quiesce,
5819 .takeover = raid5_takeover,
5822 static struct mdk_personality raid4_personality =
5824 .name = "raid4",
5825 .level = 4,
5826 .owner = THIS_MODULE,
5827 .make_request = make_request,
5828 .run = run,
5829 .stop = stop,
5830 .status = status,
5831 .error_handler = error,
5832 .hot_add_disk = raid5_add_disk,
5833 .hot_remove_disk= raid5_remove_disk,
5834 .spare_active = raid5_spare_active,
5835 .sync_request = sync_request,
5836 .resize = raid5_resize,
5837 .size = raid5_size,
5838 .check_reshape = raid5_check_reshape,
5839 .start_reshape = raid5_start_reshape,
5840 .finish_reshape = raid5_finish_reshape,
5841 .quiesce = raid5_quiesce,
5844 static int __init raid5_init(void)
5846 register_md_personality(&raid6_personality);
5847 register_md_personality(&raid5_personality);
5848 register_md_personality(&raid4_personality);
5849 return 0;
5852 static void raid5_exit(void)
5854 unregister_md_personality(&raid6_personality);
5855 unregister_md_personality(&raid5_personality);
5856 unregister_md_personality(&raid4_personality);
5859 module_init(raid5_init);
5860 module_exit(raid5_exit);
5861 MODULE_LICENSE("GPL");
5862 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5863 MODULE_ALIAS("md-raid5");
5864 MODULE_ALIAS("md-raid4");
5865 MODULE_ALIAS("md-level-5");
5866 MODULE_ALIAS("md-level-4");
5867 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5868 MODULE_ALIAS("md-raid6");
5869 MODULE_ALIAS("md-level-6");
5871 /* This used to be two separate modules, they were: */
5872 MODULE_ALIAS("raid5");
5873 MODULE_ALIAS("raid6");