eCryptfs: Fix metadata in xattr feature regression
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ecryptfs / crypto.c
blobc907f6f493511c4bbeff3ca1669911c52b36e5a9
1 /**
2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 struct page *dst_page, int dst_offset,
42 struct page *src_page, int src_offset, int size,
43 unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 struct page *dst_page, int dst_offset,
47 struct page *src_page, int src_offset, int size,
48 unsigned char *iv);
50 /**
51 * ecryptfs_to_hex
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 int x;
61 for (x = 0; x < src_size; x++)
62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
65 /**
66 * ecryptfs_from_hex
67 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * size (src_size / 2)
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 int x;
75 char tmp[3] = { 0, };
77 for (x = 0; x < dst_size; x++) {
78 tmp[0] = src[x * 2];
79 tmp[1] = src[x * 2 + 1];
80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
84 /**
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
94 static int ecryptfs_calculate_md5(char *dst,
95 struct ecryptfs_crypt_stat *crypt_stat,
96 char *src, int len)
98 struct scatterlist sg;
99 struct hash_desc desc = {
100 .tfm = crypt_stat->hash_tfm,
101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 int rc = 0;
105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 sg_init_one(&sg, (u8 *)src, len);
107 if (!desc.tfm) {
108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 CRYPTO_ALG_ASYNC);
110 if (IS_ERR(desc.tfm)) {
111 rc = PTR_ERR(desc.tfm);
112 ecryptfs_printk(KERN_ERR, "Error attempting to "
113 "allocate crypto context; rc = [%d]\n",
114 rc);
115 goto out;
117 crypt_stat->hash_tfm = desc.tfm;
119 rc = crypto_hash_init(&desc);
120 if (rc) {
121 printk(KERN_ERR
122 "%s: Error initializing crypto hash; rc = [%d]\n",
123 __func__, rc);
124 goto out;
126 rc = crypto_hash_update(&desc, &sg, len);
127 if (rc) {
128 printk(KERN_ERR
129 "%s: Error updating crypto hash; rc = [%d]\n",
130 __func__, rc);
131 goto out;
133 rc = crypto_hash_final(&desc, dst);
134 if (rc) {
135 printk(KERN_ERR
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
137 __func__, rc);
138 goto out;
140 out:
141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 return rc;
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 char *cipher_name,
147 char *chaining_modifier)
149 int cipher_name_len = strlen(cipher_name);
150 int chaining_modifier_len = strlen(chaining_modifier);
151 int algified_name_len;
152 int rc;
154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 if (!(*algified_name)) {
157 rc = -ENOMEM;
158 goto out;
160 snprintf((*algified_name), algified_name_len, "%s(%s)",
161 chaining_modifier, cipher_name);
162 rc = 0;
163 out:
164 return rc;
168 * ecryptfs_derive_iv
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
171 * @offset: Offset of the extent whose IV we are to derive
173 * Generate the initialization vector from the given root IV and page
174 * offset.
176 * Returns zero on success; non-zero on error.
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 loff_t offset)
181 int rc = 0;
182 char dst[MD5_DIGEST_SIZE];
183 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 if (unlikely(ecryptfs_verbosity > 0)) {
186 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 memset((src + crypt_stat->iv_bytes), 0, 16);
195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 if (unlikely(ecryptfs_verbosity > 0)) {
197 ecryptfs_printk(KERN_DEBUG, "source:\n");
198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 (crypt_stat->iv_bytes + 16));
202 if (rc) {
203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
205 goto out;
207 memcpy(iv, dst, crypt_stat->iv_bytes);
208 if (unlikely(ecryptfs_verbosity > 0)) {
209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 out:
213 return rc;
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 * Initialize the crypt_stat structure.
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 mutex_init(&crypt_stat->keysig_list_mutex);
228 mutex_init(&crypt_stat->cs_mutex);
229 mutex_init(&crypt_stat->cs_tfm_mutex);
230 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
235 * ecryptfs_destroy_crypt_stat
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 * Releases all memory associated with a crypt_stat struct.
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 if (crypt_stat->tfm)
245 crypto_free_blkcipher(crypt_stat->tfm);
246 if (crypt_stat->hash_tfm)
247 crypto_free_hash(crypt_stat->hash_tfm);
248 list_for_each_entry_safe(key_sig, key_sig_tmp,
249 &crypt_stat->keysig_list, crypt_stat_list) {
250 list_del(&key_sig->crypt_stat_list);
251 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
256 void ecryptfs_destroy_mount_crypt_stat(
257 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
262 return;
263 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
264 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
265 &mount_crypt_stat->global_auth_tok_list,
266 mount_crypt_stat_list) {
267 list_del(&auth_tok->mount_crypt_stat_list);
268 mount_crypt_stat->num_global_auth_toks--;
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
289 * Returns the number of scatterlist structs in array used
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
299 sg_init_table(sg, sg_size);
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
304 if (sg)
305 sg_set_page(&sg[i], pg, 0, offset);
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
308 if (sg)
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
312 } else {
313 if (sg)
314 sg[i].length = size;
315 addr += size;
316 size = 0;
318 i++;
320 if (size > 0)
321 return -ENOMEM;
322 return i;
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
333 * Returns the number of bytes encrypted; negative value on error
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
338 unsigned char *iv)
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
342 .info = iv,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
345 int rc = 0;
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349 if (unlikely(ecryptfs_verbosity > 0)) {
350 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
362 if (rc) {
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 rc);
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 rc = -EINVAL;
367 goto out;
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 out:
373 return rc;
377 * ecryptfs_lower_offset_for_extent
379 * Convert an eCryptfs page index into a lower byte offset
381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
384 (*offset) = ecryptfs_lower_header_size(crypt_stat)
385 + (crypt_stat->extent_size * extent_num);
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
391 * @page
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
397 * Encrypts one extent of data.
399 * Return zero on success; non-zero otherwise
401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
403 struct page *page,
404 unsigned long extent_offset)
406 loff_t extent_base;
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 int rc;
410 extent_base = (((loff_t)page->index)
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
414 if (rc) {
415 ecryptfs_printk(KERN_ERR, "Error attempting to "
416 "derive IV for extent [0x%.16x]; "
417 "rc = [%d]\n", (extent_base + extent_offset),
418 rc);
419 goto out;
421 if (unlikely(ecryptfs_verbosity > 0)) {
422 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423 "with iv:\n");
424 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
425 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426 "encryption:\n");
427 ecryptfs_dump_hex((char *)
428 (page_address(page)
429 + (extent_offset * crypt_stat->extent_size)),
432 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433 page, (extent_offset
434 * crypt_stat->extent_size),
435 crypt_stat->extent_size, extent_iv);
436 if (rc < 0) {
437 printk(KERN_ERR "%s: Error attempting to encrypt page with "
438 "page->index = [%ld], extent_offset = [%ld]; "
439 "rc = [%d]\n", __func__, page->index, extent_offset,
440 rc);
441 goto out;
443 rc = 0;
444 if (unlikely(ecryptfs_verbosity > 0)) {
445 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
446 "rc = [%d]\n", (extent_base + extent_offset),
447 rc);
448 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449 "encryption:\n");
450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
452 out:
453 return rc;
457 * ecryptfs_encrypt_page
458 * @page: Page mapped from the eCryptfs inode for the file; contains
459 * decrypted content that needs to be encrypted (to a temporary
460 * page; not in place) and written out to the lower file
462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463 * that eCryptfs pages may straddle the lower pages -- for instance,
464 * if the file was created on a machine with an 8K page size
465 * (resulting in an 8K header), and then the file is copied onto a
466 * host with a 32K page size, then when reading page 0 of the eCryptfs
467 * file, 24K of page 0 of the lower file will be read and decrypted,
468 * and then 8K of page 1 of the lower file will be read and decrypted.
470 * Returns zero on success; negative on error
472 int ecryptfs_encrypt_page(struct page *page)
474 struct inode *ecryptfs_inode;
475 struct ecryptfs_crypt_stat *crypt_stat;
476 char *enc_extent_virt;
477 struct page *enc_extent_page = NULL;
478 loff_t extent_offset;
479 int rc = 0;
481 ecryptfs_inode = page->mapping->host;
482 crypt_stat =
483 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
484 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
485 enc_extent_page = alloc_page(GFP_USER);
486 if (!enc_extent_page) {
487 rc = -ENOMEM;
488 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
489 "encrypted extent\n");
490 goto out;
492 enc_extent_virt = kmap(enc_extent_page);
493 for (extent_offset = 0;
494 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
495 extent_offset++) {
496 loff_t offset;
498 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
499 extent_offset);
500 if (rc) {
501 printk(KERN_ERR "%s: Error encrypting extent; "
502 "rc = [%d]\n", __func__, rc);
503 goto out;
505 ecryptfs_lower_offset_for_extent(
506 &offset, ((((loff_t)page->index)
507 * (PAGE_CACHE_SIZE
508 / crypt_stat->extent_size))
509 + extent_offset), crypt_stat);
510 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
511 offset, crypt_stat->extent_size);
512 if (rc < 0) {
513 ecryptfs_printk(KERN_ERR, "Error attempting "
514 "to write lower page; rc = [%d]"
515 "\n", rc);
516 goto out;
519 rc = 0;
520 out:
521 if (enc_extent_page) {
522 kunmap(enc_extent_page);
523 __free_page(enc_extent_page);
525 return rc;
528 static int ecryptfs_decrypt_extent(struct page *page,
529 struct ecryptfs_crypt_stat *crypt_stat,
530 struct page *enc_extent_page,
531 unsigned long extent_offset)
533 loff_t extent_base;
534 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
535 int rc;
537 extent_base = (((loff_t)page->index)
538 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
539 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
540 (extent_base + extent_offset));
541 if (rc) {
542 ecryptfs_printk(KERN_ERR, "Error attempting to "
543 "derive IV for extent [0x%.16x]; "
544 "rc = [%d]\n", (extent_base + extent_offset),
545 rc);
546 goto out;
548 if (unlikely(ecryptfs_verbosity > 0)) {
549 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
550 "with iv:\n");
551 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
552 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
553 "decryption:\n");
554 ecryptfs_dump_hex((char *)
555 (page_address(enc_extent_page)
556 + (extent_offset * crypt_stat->extent_size)),
559 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
560 (extent_offset
561 * crypt_stat->extent_size),
562 enc_extent_page, 0,
563 crypt_stat->extent_size, extent_iv);
564 if (rc < 0) {
565 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
566 "page->index = [%ld], extent_offset = [%ld]; "
567 "rc = [%d]\n", __func__, page->index, extent_offset,
568 rc);
569 goto out;
571 rc = 0;
572 if (unlikely(ecryptfs_verbosity > 0)) {
573 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
574 "rc = [%d]\n", (extent_base + extent_offset),
575 rc);
576 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
577 "decryption:\n");
578 ecryptfs_dump_hex((char *)(page_address(page)
579 + (extent_offset
580 * crypt_stat->extent_size)), 8);
582 out:
583 return rc;
587 * ecryptfs_decrypt_page
588 * @page: Page mapped from the eCryptfs inode for the file; data read
589 * and decrypted from the lower file will be written into this
590 * page
592 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
593 * that eCryptfs pages may straddle the lower pages -- for instance,
594 * if the file was created on a machine with an 8K page size
595 * (resulting in an 8K header), and then the file is copied onto a
596 * host with a 32K page size, then when reading page 0 of the eCryptfs
597 * file, 24K of page 0 of the lower file will be read and decrypted,
598 * and then 8K of page 1 of the lower file will be read and decrypted.
600 * Returns zero on success; negative on error
602 int ecryptfs_decrypt_page(struct page *page)
604 struct inode *ecryptfs_inode;
605 struct ecryptfs_crypt_stat *crypt_stat;
606 char *enc_extent_virt;
607 struct page *enc_extent_page = NULL;
608 unsigned long extent_offset;
609 int rc = 0;
611 ecryptfs_inode = page->mapping->host;
612 crypt_stat =
613 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
614 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
615 enc_extent_page = alloc_page(GFP_USER);
616 if (!enc_extent_page) {
617 rc = -ENOMEM;
618 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
619 "encrypted extent\n");
620 goto out;
622 enc_extent_virt = kmap(enc_extent_page);
623 for (extent_offset = 0;
624 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
625 extent_offset++) {
626 loff_t offset;
628 ecryptfs_lower_offset_for_extent(
629 &offset, ((page->index * (PAGE_CACHE_SIZE
630 / crypt_stat->extent_size))
631 + extent_offset), crypt_stat);
632 rc = ecryptfs_read_lower(enc_extent_virt, offset,
633 crypt_stat->extent_size,
634 ecryptfs_inode);
635 if (rc < 0) {
636 ecryptfs_printk(KERN_ERR, "Error attempting "
637 "to read lower page; rc = [%d]"
638 "\n", rc);
639 goto out;
641 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
642 extent_offset);
643 if (rc) {
644 printk(KERN_ERR "%s: Error encrypting extent; "
645 "rc = [%d]\n", __func__, rc);
646 goto out;
649 out:
650 if (enc_extent_page) {
651 kunmap(enc_extent_page);
652 __free_page(enc_extent_page);
654 return rc;
658 * decrypt_scatterlist
659 * @crypt_stat: Cryptographic context
660 * @dest_sg: The destination scatterlist to decrypt into
661 * @src_sg: The source scatterlist to decrypt from
662 * @size: The number of bytes to decrypt
663 * @iv: The initialization vector to use for the decryption
665 * Returns the number of bytes decrypted; negative value on error
667 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
668 struct scatterlist *dest_sg,
669 struct scatterlist *src_sg, int size,
670 unsigned char *iv)
672 struct blkcipher_desc desc = {
673 .tfm = crypt_stat->tfm,
674 .info = iv,
675 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
677 int rc = 0;
679 /* Consider doing this once, when the file is opened */
680 mutex_lock(&crypt_stat->cs_tfm_mutex);
681 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
682 crypt_stat->key_size);
683 if (rc) {
684 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
685 rc);
686 mutex_unlock(&crypt_stat->cs_tfm_mutex);
687 rc = -EINVAL;
688 goto out;
690 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
691 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
692 mutex_unlock(&crypt_stat->cs_tfm_mutex);
693 if (rc) {
694 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
695 rc);
696 goto out;
698 rc = size;
699 out:
700 return rc;
704 * ecryptfs_encrypt_page_offset
705 * @crypt_stat: The cryptographic context
706 * @dst_page: The page to encrypt into
707 * @dst_offset: The offset in the page to encrypt into
708 * @src_page: The page to encrypt from
709 * @src_offset: The offset in the page to encrypt from
710 * @size: The number of bytes to encrypt
711 * @iv: The initialization vector to use for the encryption
713 * Returns the number of bytes encrypted
715 static int
716 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
717 struct page *dst_page, int dst_offset,
718 struct page *src_page, int src_offset, int size,
719 unsigned char *iv)
721 struct scatterlist src_sg, dst_sg;
723 sg_init_table(&src_sg, 1);
724 sg_init_table(&dst_sg, 1);
726 sg_set_page(&src_sg, src_page, size, src_offset);
727 sg_set_page(&dst_sg, dst_page, size, dst_offset);
728 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
732 * ecryptfs_decrypt_page_offset
733 * @crypt_stat: The cryptographic context
734 * @dst_page: The page to decrypt into
735 * @dst_offset: The offset in the page to decrypt into
736 * @src_page: The page to decrypt from
737 * @src_offset: The offset in the page to decrypt from
738 * @size: The number of bytes to decrypt
739 * @iv: The initialization vector to use for the decryption
741 * Returns the number of bytes decrypted
743 static int
744 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
745 struct page *dst_page, int dst_offset,
746 struct page *src_page, int src_offset, int size,
747 unsigned char *iv)
749 struct scatterlist src_sg, dst_sg;
751 sg_init_table(&src_sg, 1);
752 sg_set_page(&src_sg, src_page, size, src_offset);
754 sg_init_table(&dst_sg, 1);
755 sg_set_page(&dst_sg, dst_page, size, dst_offset);
757 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
760 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
763 * ecryptfs_init_crypt_ctx
764 * @crypt_stat: Uninitilized crypt stats structure
766 * Initialize the crypto context.
768 * TODO: Performance: Keep a cache of initialized cipher contexts;
769 * only init if needed
771 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
773 char *full_alg_name;
774 int rc = -EINVAL;
776 if (!crypt_stat->cipher) {
777 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
778 goto out;
780 ecryptfs_printk(KERN_DEBUG,
781 "Initializing cipher [%s]; strlen = [%d]; "
782 "key_size_bits = [%d]\n",
783 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
784 crypt_stat->key_size << 3);
785 if (crypt_stat->tfm) {
786 rc = 0;
787 goto out;
789 mutex_lock(&crypt_stat->cs_tfm_mutex);
790 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
791 crypt_stat->cipher, "cbc");
792 if (rc)
793 goto out_unlock;
794 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
795 CRYPTO_ALG_ASYNC);
796 kfree(full_alg_name);
797 if (IS_ERR(crypt_stat->tfm)) {
798 rc = PTR_ERR(crypt_stat->tfm);
799 crypt_stat->tfm = NULL;
800 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
801 "Error initializing cipher [%s]\n",
802 crypt_stat->cipher);
803 goto out_unlock;
805 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
806 rc = 0;
807 out_unlock:
808 mutex_unlock(&crypt_stat->cs_tfm_mutex);
809 out:
810 return rc;
813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
815 int extent_size_tmp;
817 crypt_stat->extent_mask = 0xFFFFFFFF;
818 crypt_stat->extent_shift = 0;
819 if (crypt_stat->extent_size == 0)
820 return;
821 extent_size_tmp = crypt_stat->extent_size;
822 while ((extent_size_tmp & 0x01) == 0) {
823 extent_size_tmp >>= 1;
824 crypt_stat->extent_mask <<= 1;
825 crypt_stat->extent_shift++;
829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
831 /* Default values; may be overwritten as we are parsing the
832 * packets. */
833 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
834 set_extent_mask_and_shift(crypt_stat);
835 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
836 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
837 crypt_stat->num_header_bytes_at_front =
838 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
839 else {
840 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
841 crypt_stat->num_header_bytes_at_front =
842 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
843 else
844 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
849 * ecryptfs_compute_root_iv
850 * @crypt_stats
852 * On error, sets the root IV to all 0's.
854 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
856 int rc = 0;
857 char dst[MD5_DIGEST_SIZE];
859 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
860 BUG_ON(crypt_stat->iv_bytes <= 0);
861 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
862 rc = -EINVAL;
863 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
864 "cannot generate root IV\n");
865 goto out;
867 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
868 crypt_stat->key_size);
869 if (rc) {
870 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
871 "MD5 while generating root IV\n");
872 goto out;
874 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
875 out:
876 if (rc) {
877 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
878 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
880 return rc;
883 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
885 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
886 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
887 ecryptfs_compute_root_iv(crypt_stat);
888 if (unlikely(ecryptfs_verbosity > 0)) {
889 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
890 ecryptfs_dump_hex(crypt_stat->key,
891 crypt_stat->key_size);
896 * ecryptfs_copy_mount_wide_flags_to_inode_flags
897 * @crypt_stat: The inode's cryptographic context
898 * @mount_crypt_stat: The mount point's cryptographic context
900 * This function propagates the mount-wide flags to individual inode
901 * flags.
903 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
904 struct ecryptfs_crypt_stat *crypt_stat,
905 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
907 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
908 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
909 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
910 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
911 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
912 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
913 if (mount_crypt_stat->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
916 else if (mount_crypt_stat->flags
917 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
918 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 struct ecryptfs_crypt_stat *crypt_stat,
924 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
926 struct ecryptfs_global_auth_tok *global_auth_tok;
927 int rc = 0;
929 mutex_lock(&crypt_stat->keysig_list_mutex);
930 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
932 list_for_each_entry(global_auth_tok,
933 &mount_crypt_stat->global_auth_tok_list,
934 mount_crypt_stat_list) {
935 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
936 continue;
937 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
938 if (rc) {
939 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
940 goto out;
944 out:
945 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
946 mutex_unlock(&crypt_stat->keysig_list_mutex);
947 return rc;
951 * ecryptfs_set_default_crypt_stat_vals
952 * @crypt_stat: The inode's cryptographic context
953 * @mount_crypt_stat: The mount point's cryptographic context
955 * Default values in the event that policy does not override them.
957 static void ecryptfs_set_default_crypt_stat_vals(
958 struct ecryptfs_crypt_stat *crypt_stat,
959 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
961 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
962 mount_crypt_stat);
963 ecryptfs_set_default_sizes(crypt_stat);
964 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
965 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
966 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
967 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
968 crypt_stat->mount_crypt_stat = mount_crypt_stat;
972 * ecryptfs_new_file_context
973 * @ecryptfs_dentry: The eCryptfs dentry
975 * If the crypto context for the file has not yet been established,
976 * this is where we do that. Establishing a new crypto context
977 * involves the following decisions:
978 * - What cipher to use?
979 * - What set of authentication tokens to use?
980 * Here we just worry about getting enough information into the
981 * authentication tokens so that we know that they are available.
982 * We associate the available authentication tokens with the new file
983 * via the set of signatures in the crypt_stat struct. Later, when
984 * the headers are actually written out, we may again defer to
985 * userspace to perform the encryption of the session key; for the
986 * foreseeable future, this will be the case with public key packets.
988 * Returns zero on success; non-zero otherwise
990 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
992 struct ecryptfs_crypt_stat *crypt_stat =
993 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
994 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
995 &ecryptfs_superblock_to_private(
996 ecryptfs_dentry->d_sb)->mount_crypt_stat;
997 int cipher_name_len;
998 int rc = 0;
1000 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1001 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1002 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1003 mount_crypt_stat);
1004 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1005 mount_crypt_stat);
1006 if (rc) {
1007 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1008 "to the inode key sigs; rc = [%d]\n", rc);
1009 goto out;
1011 cipher_name_len =
1012 strlen(mount_crypt_stat->global_default_cipher_name);
1013 memcpy(crypt_stat->cipher,
1014 mount_crypt_stat->global_default_cipher_name,
1015 cipher_name_len);
1016 crypt_stat->cipher[cipher_name_len] = '\0';
1017 crypt_stat->key_size =
1018 mount_crypt_stat->global_default_cipher_key_size;
1019 ecryptfs_generate_new_key(crypt_stat);
1020 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1021 if (rc)
1022 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1023 "context for cipher [%s]: rc = [%d]\n",
1024 crypt_stat->cipher, rc);
1025 out:
1026 return rc;
1030 * contains_ecryptfs_marker - check for the ecryptfs marker
1031 * @data: The data block in which to check
1033 * Returns one if marker found; zero if not found
1035 static int contains_ecryptfs_marker(char *data)
1037 u32 m_1, m_2;
1039 m_1 = get_unaligned_be32(data);
1040 m_2 = get_unaligned_be32(data + 4);
1041 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1042 return 1;
1043 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1044 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1045 MAGIC_ECRYPTFS_MARKER);
1046 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1047 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1048 return 0;
1051 struct ecryptfs_flag_map_elem {
1052 u32 file_flag;
1053 u32 local_flag;
1056 /* Add support for additional flags by adding elements here. */
1057 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1058 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1059 {0x00000002, ECRYPTFS_ENCRYPTED},
1060 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1061 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1065 * ecryptfs_process_flags
1066 * @crypt_stat: The cryptographic context
1067 * @page_virt: Source data to be parsed
1068 * @bytes_read: Updated with the number of bytes read
1070 * Returns zero on success; non-zero if the flag set is invalid
1072 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1073 char *page_virt, int *bytes_read)
1075 int rc = 0;
1076 int i;
1077 u32 flags;
1079 flags = get_unaligned_be32(page_virt);
1080 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1081 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1082 if (flags & ecryptfs_flag_map[i].file_flag) {
1083 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1084 } else
1085 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1086 /* Version is in top 8 bits of the 32-bit flag vector */
1087 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1088 (*bytes_read) = 4;
1089 return rc;
1093 * write_ecryptfs_marker
1094 * @page_virt: The pointer to in a page to begin writing the marker
1095 * @written: Number of bytes written
1097 * Marker = 0x3c81b7f5
1099 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1101 u32 m_1, m_2;
1103 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1104 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1105 put_unaligned_be32(m_1, page_virt);
1106 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1107 put_unaligned_be32(m_2, page_virt);
1108 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1111 static void
1112 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1113 size_t *written)
1115 u32 flags = 0;
1116 int i;
1118 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1119 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121 flags |= ecryptfs_flag_map[i].file_flag;
1122 /* Version is in top 8 bits of the 32-bit flag vector */
1123 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1124 put_unaligned_be32(flags, page_virt);
1125 (*written) = 4;
1128 struct ecryptfs_cipher_code_str_map_elem {
1129 char cipher_str[16];
1130 u8 cipher_code;
1133 /* Add support for additional ciphers by adding elements here. The
1134 * cipher_code is whatever OpenPGP applicatoins use to identify the
1135 * ciphers. List in order of probability. */
1136 static struct ecryptfs_cipher_code_str_map_elem
1137 ecryptfs_cipher_code_str_map[] = {
1138 {"aes",RFC2440_CIPHER_AES_128 },
1139 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1140 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1141 {"cast5", RFC2440_CIPHER_CAST_5},
1142 {"twofish", RFC2440_CIPHER_TWOFISH},
1143 {"cast6", RFC2440_CIPHER_CAST_6},
1144 {"aes", RFC2440_CIPHER_AES_192},
1145 {"aes", RFC2440_CIPHER_AES_256}
1149 * ecryptfs_code_for_cipher_string
1150 * @cipher_name: The string alias for the cipher
1151 * @key_bytes: Length of key in bytes; used for AES code selection
1153 * Returns zero on no match, or the cipher code on match
1155 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1157 int i;
1158 u8 code = 0;
1159 struct ecryptfs_cipher_code_str_map_elem *map =
1160 ecryptfs_cipher_code_str_map;
1162 if (strcmp(cipher_name, "aes") == 0) {
1163 switch (key_bytes) {
1164 case 16:
1165 code = RFC2440_CIPHER_AES_128;
1166 break;
1167 case 24:
1168 code = RFC2440_CIPHER_AES_192;
1169 break;
1170 case 32:
1171 code = RFC2440_CIPHER_AES_256;
1173 } else {
1174 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1175 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1176 code = map[i].cipher_code;
1177 break;
1180 return code;
1184 * ecryptfs_cipher_code_to_string
1185 * @str: Destination to write out the cipher name
1186 * @cipher_code: The code to convert to cipher name string
1188 * Returns zero on success
1190 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1192 int rc = 0;
1193 int i;
1195 str[0] = '\0';
1196 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1197 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1198 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1199 if (str[0] == '\0') {
1200 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1201 "[%d]\n", cipher_code);
1202 rc = -EINVAL;
1204 return rc;
1207 int ecryptfs_read_and_validate_header_region(char *data,
1208 struct inode *ecryptfs_inode)
1210 struct ecryptfs_crypt_stat *crypt_stat =
1211 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212 int rc;
1214 if (crypt_stat->extent_size == 0)
1215 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1216 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1217 ecryptfs_inode);
1218 if (rc < 0) {
1219 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1220 __func__, rc);
1221 goto out;
1223 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1224 rc = -EINVAL;
1225 } else
1226 rc = 0;
1227 out:
1228 return rc;
1231 void
1232 ecryptfs_write_header_metadata(char *virt,
1233 struct ecryptfs_crypt_stat *crypt_stat,
1234 size_t *written)
1236 u32 header_extent_size;
1237 u16 num_header_extents_at_front;
1239 header_extent_size = (u32)crypt_stat->extent_size;
1240 num_header_extents_at_front =
1241 (u16)(crypt_stat->num_header_bytes_at_front
1242 / crypt_stat->extent_size);
1243 put_unaligned_be32(header_extent_size, virt);
1244 virt += 4;
1245 put_unaligned_be16(num_header_extents_at_front, virt);
1246 (*written) = 6;
1249 struct kmem_cache *ecryptfs_header_cache_1;
1250 struct kmem_cache *ecryptfs_header_cache_2;
1253 * ecryptfs_write_headers_virt
1254 * @page_virt: The virtual address to write the headers to
1255 * @max: The size of memory allocated at page_virt
1256 * @size: Set to the number of bytes written by this function
1257 * @crypt_stat: The cryptographic context
1258 * @ecryptfs_dentry: The eCryptfs dentry
1260 * Format version: 1
1262 * Header Extent:
1263 * Octets 0-7: Unencrypted file size (big-endian)
1264 * Octets 8-15: eCryptfs special marker
1265 * Octets 16-19: Flags
1266 * Octet 16: File format version number (between 0 and 255)
1267 * Octets 17-18: Reserved
1268 * Octet 19: Bit 1 (lsb): Reserved
1269 * Bit 2: Encrypted?
1270 * Bits 3-8: Reserved
1271 * Octets 20-23: Header extent size (big-endian)
1272 * Octets 24-25: Number of header extents at front of file
1273 * (big-endian)
1274 * Octet 26: Begin RFC 2440 authentication token packet set
1275 * Data Extent 0:
1276 * Lower data (CBC encrypted)
1277 * Data Extent 1:
1278 * Lower data (CBC encrypted)
1279 * ...
1281 * Returns zero on success
1283 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1284 size_t *size,
1285 struct ecryptfs_crypt_stat *crypt_stat,
1286 struct dentry *ecryptfs_dentry)
1288 int rc;
1289 size_t written;
1290 size_t offset;
1292 offset = ECRYPTFS_FILE_SIZE_BYTES;
1293 write_ecryptfs_marker((page_virt + offset), &written);
1294 offset += written;
1295 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1296 offset += written;
1297 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1298 &written);
1299 offset += written;
1300 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1301 ecryptfs_dentry, &written,
1302 max - offset);
1303 if (rc)
1304 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1305 "set; rc = [%d]\n", rc);
1306 if (size) {
1307 offset += written;
1308 *size = offset;
1310 return rc;
1313 static int
1314 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1315 char *virt, size_t virt_len)
1317 int rc;
1319 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1320 0, virt_len);
1321 if (rc < 0)
1322 printk(KERN_ERR "%s: Error attempting to write header "
1323 "information to lower file; rc = [%d]\n", __func__, rc);
1324 else
1325 rc = 0;
1326 return rc;
1329 static int
1330 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1331 char *page_virt, size_t size)
1333 int rc;
1335 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1336 size, 0);
1337 return rc;
1340 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1341 unsigned int order)
1343 struct page *page;
1345 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1346 if (page)
1347 return (unsigned long) page_address(page);
1348 return 0;
1352 * ecryptfs_write_metadata
1353 * @ecryptfs_dentry: The eCryptfs dentry
1355 * Write the file headers out. This will likely involve a userspace
1356 * callout, in which the session key is encrypted with one or more
1357 * public keys and/or the passphrase necessary to do the encryption is
1358 * retrieved via a prompt. Exactly what happens at this point should
1359 * be policy-dependent.
1361 * Returns zero on success; non-zero on error
1363 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1365 struct ecryptfs_crypt_stat *crypt_stat =
1366 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1367 unsigned int order;
1368 char *virt;
1369 size_t virt_len;
1370 size_t size = 0;
1371 int rc = 0;
1373 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1374 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1375 printk(KERN_ERR "Key is invalid; bailing out\n");
1376 rc = -EINVAL;
1377 goto out;
1379 } else {
1380 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1381 __func__);
1382 rc = -EINVAL;
1383 goto out;
1385 virt_len = crypt_stat->num_header_bytes_at_front;
1386 order = get_order(virt_len);
1387 /* Released in this function */
1388 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1389 if (!virt) {
1390 printk(KERN_ERR "%s: Out of memory\n", __func__);
1391 rc = -ENOMEM;
1392 goto out;
1394 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1395 ecryptfs_dentry);
1396 if (unlikely(rc)) {
1397 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1398 __func__, rc);
1399 goto out_free;
1401 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1402 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1403 size);
1404 else
1405 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1406 virt_len);
1407 if (rc) {
1408 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1409 "rc = [%d]\n", __func__, rc);
1410 goto out_free;
1412 out_free:
1413 free_pages((unsigned long)virt, order);
1414 out:
1415 return rc;
1418 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1419 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1420 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1421 char *virt, int *bytes_read,
1422 int validate_header_size)
1424 int rc = 0;
1425 u32 header_extent_size;
1426 u16 num_header_extents_at_front;
1428 header_extent_size = get_unaligned_be32(virt);
1429 virt += sizeof(__be32);
1430 num_header_extents_at_front = get_unaligned_be16(virt);
1431 crypt_stat->num_header_bytes_at_front =
1432 (((size_t)num_header_extents_at_front
1433 * (size_t)header_extent_size));
1434 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1435 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1436 && (crypt_stat->num_header_bytes_at_front
1437 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1438 rc = -EINVAL;
1439 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1440 crypt_stat->num_header_bytes_at_front);
1442 return rc;
1446 * set_default_header_data
1447 * @crypt_stat: The cryptographic context
1449 * For version 0 file format; this function is only for backwards
1450 * compatibility for files created with the prior versions of
1451 * eCryptfs.
1453 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1455 crypt_stat->num_header_bytes_at_front =
1456 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1460 * ecryptfs_read_headers_virt
1461 * @page_virt: The virtual address into which to read the headers
1462 * @crypt_stat: The cryptographic context
1463 * @ecryptfs_dentry: The eCryptfs dentry
1464 * @validate_header_size: Whether to validate the header size while reading
1466 * Read/parse the header data. The header format is detailed in the
1467 * comment block for the ecryptfs_write_headers_virt() function.
1469 * Returns zero on success
1471 static int ecryptfs_read_headers_virt(char *page_virt,
1472 struct ecryptfs_crypt_stat *crypt_stat,
1473 struct dentry *ecryptfs_dentry,
1474 int validate_header_size)
1476 int rc = 0;
1477 int offset;
1478 int bytes_read;
1480 ecryptfs_set_default_sizes(crypt_stat);
1481 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1482 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1483 offset = ECRYPTFS_FILE_SIZE_BYTES;
1484 rc = contains_ecryptfs_marker(page_virt + offset);
1485 if (rc == 0) {
1486 rc = -EINVAL;
1487 goto out;
1489 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1490 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1491 &bytes_read);
1492 if (rc) {
1493 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1494 goto out;
1496 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1497 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1498 "file version [%d] is supported by this "
1499 "version of eCryptfs\n",
1500 crypt_stat->file_version,
1501 ECRYPTFS_SUPPORTED_FILE_VERSION);
1502 rc = -EINVAL;
1503 goto out;
1505 offset += bytes_read;
1506 if (crypt_stat->file_version >= 1) {
1507 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1508 &bytes_read, validate_header_size);
1509 if (rc) {
1510 ecryptfs_printk(KERN_WARNING, "Error reading header "
1511 "metadata; rc = [%d]\n", rc);
1513 offset += bytes_read;
1514 } else
1515 set_default_header_data(crypt_stat);
1516 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1517 ecryptfs_dentry);
1518 out:
1519 return rc;
1523 * ecryptfs_read_xattr_region
1524 * @page_virt: The vitual address into which to read the xattr data
1525 * @ecryptfs_inode: The eCryptfs inode
1527 * Attempts to read the crypto metadata from the extended attribute
1528 * region of the lower file.
1530 * Returns zero on success; non-zero on error
1532 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1534 struct dentry *lower_dentry =
1535 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1536 ssize_t size;
1537 int rc = 0;
1539 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1540 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1541 if (size < 0) {
1542 if (unlikely(ecryptfs_verbosity > 0))
1543 printk(KERN_INFO "Error attempting to read the [%s] "
1544 "xattr from the lower file; return value = "
1545 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1546 rc = -EINVAL;
1547 goto out;
1549 out:
1550 return rc;
1553 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1554 struct dentry *ecryptfs_dentry)
1556 int rc;
1558 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1559 if (rc)
1560 goto out;
1561 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1562 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1563 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1564 rc = -EINVAL;
1566 out:
1567 return rc;
1571 * ecryptfs_read_metadata
1573 * Common entry point for reading file metadata. From here, we could
1574 * retrieve the header information from the header region of the file,
1575 * the xattr region of the file, or some other repostory that is
1576 * stored separately from the file itself. The current implementation
1577 * supports retrieving the metadata information from the file contents
1578 * and from the xattr region.
1580 * Returns zero if valid headers found and parsed; non-zero otherwise
1582 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1584 int rc = 0;
1585 char *page_virt = NULL;
1586 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1587 struct ecryptfs_crypt_stat *crypt_stat =
1588 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1589 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1590 &ecryptfs_superblock_to_private(
1591 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1593 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1594 mount_crypt_stat);
1595 /* Read the first page from the underlying file */
1596 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1597 if (!page_virt) {
1598 rc = -ENOMEM;
1599 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1600 __func__);
1601 goto out;
1603 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1604 ecryptfs_inode);
1605 if (rc >= 0)
1606 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1607 ecryptfs_dentry,
1608 ECRYPTFS_VALIDATE_HEADER_SIZE);
1609 if (rc) {
1610 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1611 if (rc) {
1612 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1613 "file header region or xattr region\n");
1614 rc = -EINVAL;
1615 goto out;
1617 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1618 ecryptfs_dentry,
1619 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1620 if (rc) {
1621 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1622 "file xattr region either\n");
1623 rc = -EINVAL;
1625 if (crypt_stat->mount_crypt_stat->flags
1626 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1627 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1628 } else {
1629 printk(KERN_WARNING "Attempt to access file with "
1630 "crypto metadata only in the extended attribute "
1631 "region, but eCryptfs was mounted without "
1632 "xattr support enabled. eCryptfs will not treat "
1633 "this like an encrypted file.\n");
1634 rc = -EINVAL;
1637 out:
1638 if (page_virt) {
1639 memset(page_virt, 0, PAGE_CACHE_SIZE);
1640 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1642 return rc;
1646 * ecryptfs_encrypt_filename - encrypt filename
1648 * CBC-encrypts the filename. We do not want to encrypt the same
1649 * filename with the same key and IV, which may happen with hard
1650 * links, so we prepend random bits to each filename.
1652 * Returns zero on success; non-zero otherwise
1654 static int
1655 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1656 struct ecryptfs_crypt_stat *crypt_stat,
1657 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1659 int rc = 0;
1661 filename->encrypted_filename = NULL;
1662 filename->encrypted_filename_size = 0;
1663 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1664 || (mount_crypt_stat && (mount_crypt_stat->flags
1665 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1666 size_t packet_size;
1667 size_t remaining_bytes;
1669 rc = ecryptfs_write_tag_70_packet(
1670 NULL, NULL,
1671 &filename->encrypted_filename_size,
1672 mount_crypt_stat, NULL,
1673 filename->filename_size);
1674 if (rc) {
1675 printk(KERN_ERR "%s: Error attempting to get packet "
1676 "size for tag 72; rc = [%d]\n", __func__,
1677 rc);
1678 filename->encrypted_filename_size = 0;
1679 goto out;
1681 filename->encrypted_filename =
1682 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1683 if (!filename->encrypted_filename) {
1684 printk(KERN_ERR "%s: Out of memory whilst attempting "
1685 "to kmalloc [%zd] bytes\n", __func__,
1686 filename->encrypted_filename_size);
1687 rc = -ENOMEM;
1688 goto out;
1690 remaining_bytes = filename->encrypted_filename_size;
1691 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1692 &remaining_bytes,
1693 &packet_size,
1694 mount_crypt_stat,
1695 filename->filename,
1696 filename->filename_size);
1697 if (rc) {
1698 printk(KERN_ERR "%s: Error attempting to generate "
1699 "tag 70 packet; rc = [%d]\n", __func__,
1700 rc);
1701 kfree(filename->encrypted_filename);
1702 filename->encrypted_filename = NULL;
1703 filename->encrypted_filename_size = 0;
1704 goto out;
1706 filename->encrypted_filename_size = packet_size;
1707 } else {
1708 printk(KERN_ERR "%s: No support for requested filename "
1709 "encryption method in this release\n", __func__);
1710 rc = -EOPNOTSUPP;
1711 goto out;
1713 out:
1714 return rc;
1717 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1718 const char *name, size_t name_size)
1720 int rc = 0;
1722 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1723 if (!(*copied_name)) {
1724 rc = -ENOMEM;
1725 goto out;
1727 memcpy((void *)(*copied_name), (void *)name, name_size);
1728 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1729 * in printing out the
1730 * string in debug
1731 * messages */
1732 (*copied_name_size) = name_size;
1733 out:
1734 return rc;
1738 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1739 * @key_tfm: Crypto context for key material, set by this function
1740 * @cipher_name: Name of the cipher
1741 * @key_size: Size of the key in bytes
1743 * Returns zero on success. Any crypto_tfm structs allocated here
1744 * should be released by other functions, such as on a superblock put
1745 * event, regardless of whether this function succeeds for fails.
1747 static int
1748 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1749 char *cipher_name, size_t *key_size)
1751 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1752 char *full_alg_name = NULL;
1753 int rc;
1755 *key_tfm = NULL;
1756 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1757 rc = -EINVAL;
1758 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1759 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1760 goto out;
1762 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1763 "ecb");
1764 if (rc)
1765 goto out;
1766 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1767 if (IS_ERR(*key_tfm)) {
1768 rc = PTR_ERR(*key_tfm);
1769 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1770 "[%s]; rc = [%d]\n", full_alg_name, rc);
1771 goto out;
1773 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1774 if (*key_size == 0) {
1775 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1777 *key_size = alg->max_keysize;
1779 get_random_bytes(dummy_key, *key_size);
1780 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1781 if (rc) {
1782 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1783 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1784 rc);
1785 rc = -EINVAL;
1786 goto out;
1788 out:
1789 kfree(full_alg_name);
1790 return rc;
1793 struct kmem_cache *ecryptfs_key_tfm_cache;
1794 static struct list_head key_tfm_list;
1795 struct mutex key_tfm_list_mutex;
1797 int ecryptfs_init_crypto(void)
1799 mutex_init(&key_tfm_list_mutex);
1800 INIT_LIST_HEAD(&key_tfm_list);
1801 return 0;
1805 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1807 * Called only at module unload time
1809 int ecryptfs_destroy_crypto(void)
1811 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1813 mutex_lock(&key_tfm_list_mutex);
1814 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1815 key_tfm_list) {
1816 list_del(&key_tfm->key_tfm_list);
1817 if (key_tfm->key_tfm)
1818 crypto_free_blkcipher(key_tfm->key_tfm);
1819 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1821 mutex_unlock(&key_tfm_list_mutex);
1822 return 0;
1826 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1827 size_t key_size)
1829 struct ecryptfs_key_tfm *tmp_tfm;
1830 int rc = 0;
1832 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1834 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1835 if (key_tfm != NULL)
1836 (*key_tfm) = tmp_tfm;
1837 if (!tmp_tfm) {
1838 rc = -ENOMEM;
1839 printk(KERN_ERR "Error attempting to allocate from "
1840 "ecryptfs_key_tfm_cache\n");
1841 goto out;
1843 mutex_init(&tmp_tfm->key_tfm_mutex);
1844 strncpy(tmp_tfm->cipher_name, cipher_name,
1845 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1846 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1847 tmp_tfm->key_size = key_size;
1848 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1849 tmp_tfm->cipher_name,
1850 &tmp_tfm->key_size);
1851 if (rc) {
1852 printk(KERN_ERR "Error attempting to initialize key TFM "
1853 "cipher with name = [%s]; rc = [%d]\n",
1854 tmp_tfm->cipher_name, rc);
1855 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1856 if (key_tfm != NULL)
1857 (*key_tfm) = NULL;
1858 goto out;
1860 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1861 out:
1862 return rc;
1866 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1867 * @cipher_name: the name of the cipher to search for
1868 * @key_tfm: set to corresponding tfm if found
1870 * Searches for cached key_tfm matching @cipher_name
1871 * Must be called with &key_tfm_list_mutex held
1872 * Returns 1 if found, with @key_tfm set
1873 * Returns 0 if not found, with @key_tfm set to NULL
1875 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1877 struct ecryptfs_key_tfm *tmp_key_tfm;
1879 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1881 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1882 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1883 if (key_tfm)
1884 (*key_tfm) = tmp_key_tfm;
1885 return 1;
1888 if (key_tfm)
1889 (*key_tfm) = NULL;
1890 return 0;
1894 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1896 * @tfm: set to cached tfm found, or new tfm created
1897 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1898 * @cipher_name: the name of the cipher to search for and/or add
1900 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1901 * Searches for cached item first, and creates new if not found.
1902 * Returns 0 on success, non-zero if adding new cipher failed
1904 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1905 struct mutex **tfm_mutex,
1906 char *cipher_name)
1908 struct ecryptfs_key_tfm *key_tfm;
1909 int rc = 0;
1911 (*tfm) = NULL;
1912 (*tfm_mutex) = NULL;
1914 mutex_lock(&key_tfm_list_mutex);
1915 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1916 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1917 if (rc) {
1918 printk(KERN_ERR "Error adding new key_tfm to list; "
1919 "rc = [%d]\n", rc);
1920 goto out;
1923 (*tfm) = key_tfm->key_tfm;
1924 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1925 out:
1926 mutex_unlock(&key_tfm_list_mutex);
1927 return rc;
1930 /* 64 characters forming a 6-bit target field */
1931 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1932 "EFGHIJKLMNOPQRST"
1933 "UVWXYZabcdefghij"
1934 "klmnopqrstuvwxyz");
1936 /* We could either offset on every reverse map or just pad some 0x00's
1937 * at the front here */
1938 static const unsigned char filename_rev_map[] = {
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1942 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1943 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1944 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1945 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1946 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1947 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1948 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1949 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1950 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1951 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1952 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1953 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1954 0x3D, 0x3E, 0x3F
1958 * ecryptfs_encode_for_filename
1959 * @dst: Destination location for encoded filename
1960 * @dst_size: Size of the encoded filename in bytes
1961 * @src: Source location for the filename to encode
1962 * @src_size: Size of the source in bytes
1964 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1965 unsigned char *src, size_t src_size)
1967 size_t num_blocks;
1968 size_t block_num = 0;
1969 size_t dst_offset = 0;
1970 unsigned char last_block[3];
1972 if (src_size == 0) {
1973 (*dst_size) = 0;
1974 goto out;
1976 num_blocks = (src_size / 3);
1977 if ((src_size % 3) == 0) {
1978 memcpy(last_block, (&src[src_size - 3]), 3);
1979 } else {
1980 num_blocks++;
1981 last_block[2] = 0x00;
1982 switch (src_size % 3) {
1983 case 1:
1984 last_block[0] = src[src_size - 1];
1985 last_block[1] = 0x00;
1986 break;
1987 case 2:
1988 last_block[0] = src[src_size - 2];
1989 last_block[1] = src[src_size - 1];
1992 (*dst_size) = (num_blocks * 4);
1993 if (!dst)
1994 goto out;
1995 while (block_num < num_blocks) {
1996 unsigned char *src_block;
1997 unsigned char dst_block[4];
1999 if (block_num == (num_blocks - 1))
2000 src_block = last_block;
2001 else
2002 src_block = &src[block_num * 3];
2003 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2004 dst_block[1] = (((src_block[0] << 4) & 0x30)
2005 | ((src_block[1] >> 4) & 0x0F));
2006 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2007 | ((src_block[2] >> 6) & 0x03));
2008 dst_block[3] = (src_block[2] & 0x3F);
2009 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2010 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2011 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2012 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2013 block_num++;
2015 out:
2016 return;
2020 * ecryptfs_decode_from_filename
2021 * @dst: If NULL, this function only sets @dst_size and returns. If
2022 * non-NULL, this function decodes the encoded octets in @src
2023 * into the memory that @dst points to.
2024 * @dst_size: Set to the size of the decoded string.
2025 * @src: The encoded set of octets to decode.
2026 * @src_size: The size of the encoded set of octets to decode.
2028 static void
2029 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2030 const unsigned char *src, size_t src_size)
2032 u8 current_bit_offset = 0;
2033 size_t src_byte_offset = 0;
2034 size_t dst_byte_offset = 0;
2036 if (dst == NULL) {
2037 /* Not exact; conservatively long. Every block of 4
2038 * encoded characters decodes into a block of 3
2039 * decoded characters. This segment of code provides
2040 * the caller with the maximum amount of allocated
2041 * space that @dst will need to point to in a
2042 * subsequent call. */
2043 (*dst_size) = (((src_size + 1) * 3) / 4);
2044 goto out;
2046 while (src_byte_offset < src_size) {
2047 unsigned char src_byte =
2048 filename_rev_map[(int)src[src_byte_offset]];
2050 switch (current_bit_offset) {
2051 case 0:
2052 dst[dst_byte_offset] = (src_byte << 2);
2053 current_bit_offset = 6;
2054 break;
2055 case 6:
2056 dst[dst_byte_offset++] |= (src_byte >> 4);
2057 dst[dst_byte_offset] = ((src_byte & 0xF)
2058 << 4);
2059 current_bit_offset = 4;
2060 break;
2061 case 4:
2062 dst[dst_byte_offset++] |= (src_byte >> 2);
2063 dst[dst_byte_offset] = (src_byte << 6);
2064 current_bit_offset = 2;
2065 break;
2066 case 2:
2067 dst[dst_byte_offset++] |= (src_byte);
2068 dst[dst_byte_offset] = 0;
2069 current_bit_offset = 0;
2070 break;
2072 src_byte_offset++;
2074 (*dst_size) = dst_byte_offset;
2075 out:
2076 return;
2080 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2081 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2082 * @name: The plaintext name
2083 * @length: The length of the plaintext
2084 * @encoded_name: The encypted name
2086 * Encrypts and encodes a filename into something that constitutes a
2087 * valid filename for a filesystem, with printable characters.
2089 * We assume that we have a properly initialized crypto context,
2090 * pointed to by crypt_stat->tfm.
2092 * Returns zero on success; non-zero on otherwise
2094 int ecryptfs_encrypt_and_encode_filename(
2095 char **encoded_name,
2096 size_t *encoded_name_size,
2097 struct ecryptfs_crypt_stat *crypt_stat,
2098 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2099 const char *name, size_t name_size)
2101 size_t encoded_name_no_prefix_size;
2102 int rc = 0;
2104 (*encoded_name) = NULL;
2105 (*encoded_name_size) = 0;
2106 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2107 || (mount_crypt_stat && (mount_crypt_stat->flags
2108 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2109 struct ecryptfs_filename *filename;
2111 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2112 if (!filename) {
2113 printk(KERN_ERR "%s: Out of memory whilst attempting "
2114 "to kzalloc [%zd] bytes\n", __func__,
2115 sizeof(*filename));
2116 rc = -ENOMEM;
2117 goto out;
2119 filename->filename = (char *)name;
2120 filename->filename_size = name_size;
2121 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2122 mount_crypt_stat);
2123 if (rc) {
2124 printk(KERN_ERR "%s: Error attempting to encrypt "
2125 "filename; rc = [%d]\n", __func__, rc);
2126 kfree(filename);
2127 goto out;
2129 ecryptfs_encode_for_filename(
2130 NULL, &encoded_name_no_prefix_size,
2131 filename->encrypted_filename,
2132 filename->encrypted_filename_size);
2133 if ((crypt_stat && (crypt_stat->flags
2134 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2135 || (mount_crypt_stat
2136 && (mount_crypt_stat->flags
2137 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2138 (*encoded_name_size) =
2139 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2140 + encoded_name_no_prefix_size);
2141 else
2142 (*encoded_name_size) =
2143 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2144 + encoded_name_no_prefix_size);
2145 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2146 if (!(*encoded_name)) {
2147 printk(KERN_ERR "%s: Out of memory whilst attempting "
2148 "to kzalloc [%zd] bytes\n", __func__,
2149 (*encoded_name_size));
2150 rc = -ENOMEM;
2151 kfree(filename->encrypted_filename);
2152 kfree(filename);
2153 goto out;
2155 if ((crypt_stat && (crypt_stat->flags
2156 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2157 || (mount_crypt_stat
2158 && (mount_crypt_stat->flags
2159 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2160 memcpy((*encoded_name),
2161 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2162 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2163 ecryptfs_encode_for_filename(
2164 ((*encoded_name)
2165 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2166 &encoded_name_no_prefix_size,
2167 filename->encrypted_filename,
2168 filename->encrypted_filename_size);
2169 (*encoded_name_size) =
2170 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2171 + encoded_name_no_prefix_size);
2172 (*encoded_name)[(*encoded_name_size)] = '\0';
2173 (*encoded_name_size)++;
2174 } else {
2175 rc = -EOPNOTSUPP;
2177 if (rc) {
2178 printk(KERN_ERR "%s: Error attempting to encode "
2179 "encrypted filename; rc = [%d]\n", __func__,
2180 rc);
2181 kfree((*encoded_name));
2182 (*encoded_name) = NULL;
2183 (*encoded_name_size) = 0;
2185 kfree(filename->encrypted_filename);
2186 kfree(filename);
2187 } else {
2188 rc = ecryptfs_copy_filename(encoded_name,
2189 encoded_name_size,
2190 name, name_size);
2192 out:
2193 return rc;
2197 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2198 * @plaintext_name: The plaintext name
2199 * @plaintext_name_size: The plaintext name size
2200 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2201 * @name: The filename in cipher text
2202 * @name_size: The cipher text name size
2204 * Decrypts and decodes the filename.
2206 * Returns zero on error; non-zero otherwise
2208 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2209 size_t *plaintext_name_size,
2210 struct dentry *ecryptfs_dir_dentry,
2211 const char *name, size_t name_size)
2213 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2214 &ecryptfs_superblock_to_private(
2215 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2216 char *decoded_name;
2217 size_t decoded_name_size;
2218 size_t packet_size;
2219 int rc = 0;
2221 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2222 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2223 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2224 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2225 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2226 const char *orig_name = name;
2227 size_t orig_name_size = name_size;
2229 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2230 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2231 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2232 name, name_size);
2233 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2234 if (!decoded_name) {
2235 printk(KERN_ERR "%s: Out of memory whilst attempting "
2236 "to kmalloc [%zd] bytes\n", __func__,
2237 decoded_name_size);
2238 rc = -ENOMEM;
2239 goto out;
2241 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2242 name, name_size);
2243 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2244 plaintext_name_size,
2245 &packet_size,
2246 mount_crypt_stat,
2247 decoded_name,
2248 decoded_name_size);
2249 if (rc) {
2250 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2251 "from filename; copying through filename "
2252 "as-is\n", __func__);
2253 rc = ecryptfs_copy_filename(plaintext_name,
2254 plaintext_name_size,
2255 orig_name, orig_name_size);
2256 goto out_free;
2258 } else {
2259 rc = ecryptfs_copy_filename(plaintext_name,
2260 plaintext_name_size,
2261 name, name_size);
2262 goto out;
2264 out_free:
2265 kfree(decoded_name);
2266 out:
2267 return rc;