rt2x00: Fix dead queue when skb allocation failed
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blobe5e8ba3bf228f06e980025c844a250e411000c7f
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
35 * Radio control handlers.
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
39 int status;
42 * Don't enable the radio twice.
43 * And check if the hardware button has been disabled.
45 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46 return 0;
49 * Initialize all data queues.
51 rt2x00queue_init_queues(rt2x00dev);
54 * Enable radio.
56 status =
57 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58 if (status)
59 return status;
61 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
63 rt2x00leds_led_radio(rt2x00dev, true);
64 rt2x00led_led_activity(rt2x00dev, true);
66 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
69 * Enable RX.
71 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
74 * Start watchdog monitoring.
76 rt2x00link_start_watchdog(rt2x00dev);
79 * Start the TX queues.
81 ieee80211_wake_queues(rt2x00dev->hw);
83 return 0;
86 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
88 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
89 return;
92 * Stop the TX queues in mac80211.
94 ieee80211_stop_queues(rt2x00dev->hw);
95 rt2x00queue_stop_queues(rt2x00dev);
98 * Stop watchdog monitoring.
100 rt2x00link_stop_watchdog(rt2x00dev);
103 * Disable RX.
105 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
108 * Disable radio.
110 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
111 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
112 rt2x00led_led_activity(rt2x00dev, false);
113 rt2x00leds_led_radio(rt2x00dev, false);
116 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
119 * When we are disabling the RX, we should also stop the link tuner.
121 if (state == STATE_RADIO_RX_OFF)
122 rt2x00link_stop_tuner(rt2x00dev);
124 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
127 * When we are enabling the RX, we should also start the link tuner.
129 if (state == STATE_RADIO_RX_ON)
130 rt2x00link_start_tuner(rt2x00dev);
133 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
134 struct ieee80211_vif *vif)
136 struct rt2x00_dev *rt2x00dev = data;
137 struct rt2x00_intf *intf = vif_to_intf(vif);
138 int delayed_flags;
141 * Copy all data we need during this action under the protection
142 * of a spinlock. Otherwise race conditions might occur which results
143 * into an invalid configuration.
145 spin_lock(&intf->lock);
147 delayed_flags = intf->delayed_flags;
148 intf->delayed_flags = 0;
150 spin_unlock(&intf->lock);
153 * It is possible the radio was disabled while the work had been
154 * scheduled. If that happens we should return here immediately,
155 * note that in the spinlock protected area above the delayed_flags
156 * have been cleared correctly.
158 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
159 return;
161 if (delayed_flags & DELAYED_UPDATE_BEACON)
162 rt2x00queue_update_beacon(rt2x00dev, vif, true);
165 static void rt2x00lib_intf_scheduled(struct work_struct *work)
167 struct rt2x00_dev *rt2x00dev =
168 container_of(work, struct rt2x00_dev, intf_work);
171 * Iterate over each interface and perform the
172 * requested configurations.
174 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
175 rt2x00lib_intf_scheduled_iter,
176 rt2x00dev);
180 * Interrupt context handlers.
182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183 struct ieee80211_vif *vif)
185 struct rt2x00_dev *rt2x00dev = data;
186 struct sk_buff *skb;
189 * Only AP mode interfaces do broad- and multicast buffering
191 if (vif->type != NL80211_IFTYPE_AP)
192 return;
195 * Send out buffered broad- and multicast frames
197 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198 while (skb) {
199 rt2x00mac_tx(rt2x00dev->hw, skb);
200 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
204 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
205 struct ieee80211_vif *vif)
207 struct rt2x00_dev *rt2x00dev = data;
209 if (vif->type != NL80211_IFTYPE_AP &&
210 vif->type != NL80211_IFTYPE_ADHOC &&
211 vif->type != NL80211_IFTYPE_MESH_POINT &&
212 vif->type != NL80211_IFTYPE_WDS)
213 return;
215 rt2x00queue_update_beacon(rt2x00dev, vif, true);
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
220 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221 return;
223 /* send buffered bc/mc frames out for every bssid */
224 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
225 rt2x00lib_bc_buffer_iter,
226 rt2x00dev);
228 * Devices with pre tbtt interrupt don't need to update the beacon
229 * here as they will fetch the next beacon directly prior to
230 * transmission.
232 if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
233 return;
235 /* fetch next beacon */
236 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
237 rt2x00lib_beaconupdate_iter,
238 rt2x00dev);
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
244 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245 return;
247 /* fetch next beacon */
248 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
249 rt2x00lib_beaconupdate_iter,
250 rt2x00dev);
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
254 void rt2x00lib_dmadone(struct queue_entry *entry)
256 rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
258 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
260 void rt2x00lib_txdone(struct queue_entry *entry,
261 struct txdone_entry_desc *txdesc)
263 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
264 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
265 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
266 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
267 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
268 u8 rate_idx, rate_flags, retry_rates;
269 u8 skbdesc_flags = skbdesc->flags;
270 unsigned int i;
271 bool success;
274 * Unmap the skb.
276 rt2x00queue_unmap_skb(entry);
279 * Remove the extra tx headroom from the skb.
281 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
284 * Signal that the TX descriptor is no longer in the skb.
286 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
289 * Remove L2 padding which was added during
291 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
292 rt2x00queue_remove_l2pad(entry->skb, header_length);
295 * If the IV/EIV data was stripped from the frame before it was
296 * passed to the hardware, we should now reinsert it again because
297 * mac80211 will expect the same data to be present it the
298 * frame as it was passed to us.
300 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
301 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
304 * Send frame to debugfs immediately, after this call is completed
305 * we are going to overwrite the skb->cb array.
307 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
310 * Determine if the frame has been successfully transmitted.
312 success =
313 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
314 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
317 * Update TX statistics.
319 rt2x00dev->link.qual.tx_success += success;
320 rt2x00dev->link.qual.tx_failed += !success;
322 rate_idx = skbdesc->tx_rate_idx;
323 rate_flags = skbdesc->tx_rate_flags;
324 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
325 (txdesc->retry + 1) : 1;
328 * Initialize TX status
330 memset(&tx_info->status, 0, sizeof(tx_info->status));
331 tx_info->status.ack_signal = 0;
334 * Frame was send with retries, hardware tried
335 * different rates to send out the frame, at each
336 * retry it lowered the rate 1 step except when the
337 * lowest rate was used.
339 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
340 tx_info->status.rates[i].idx = rate_idx - i;
341 tx_info->status.rates[i].flags = rate_flags;
343 if (rate_idx - i == 0) {
345 * The lowest rate (index 0) was used until the
346 * number of max retries was reached.
348 tx_info->status.rates[i].count = retry_rates - i;
349 i++;
350 break;
352 tx_info->status.rates[i].count = 1;
354 if (i < (IEEE80211_TX_MAX_RATES - 1))
355 tx_info->status.rates[i].idx = -1; /* terminate */
357 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
358 if (success)
359 tx_info->flags |= IEEE80211_TX_STAT_ACK;
360 else
361 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
365 * Every single frame has it's own tx status, hence report
366 * every frame as ampdu of size 1.
368 * TODO: if we can find out how many frames were aggregated
369 * by the hw we could provide the real ampdu_len to mac80211
370 * which would allow the rc algorithm to better decide on
371 * which rates are suitable.
373 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
374 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
375 tx_info->status.ampdu_len = 1;
376 tx_info->status.ampdu_ack_len = success ? 1 : 0;
379 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
380 if (success)
381 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
382 else
383 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
387 * Only send the status report to mac80211 when it's a frame
388 * that originated in mac80211. If this was a extra frame coming
389 * through a mac80211 library call (RTS/CTS) then we should not
390 * send the status report back.
392 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
393 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
394 else
395 dev_kfree_skb_any(entry->skb);
398 * Make this entry available for reuse.
400 entry->skb = NULL;
401 entry->flags = 0;
403 rt2x00dev->ops->lib->clear_entry(entry);
405 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
408 * If the data queue was below the threshold before the txdone
409 * handler we must make sure the packet queue in the mac80211 stack
410 * is reenabled when the txdone handler has finished.
412 if (!rt2x00queue_threshold(entry->queue))
413 ieee80211_wake_queue(rt2x00dev->hw, qid);
415 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
417 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
419 struct txdone_entry_desc txdesc;
421 txdesc.flags = 0;
422 __set_bit(status, &txdesc.flags);
423 txdesc.retry = 0;
425 rt2x00lib_txdone(entry, &txdesc);
427 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
429 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
430 struct rxdone_entry_desc *rxdesc)
432 struct ieee80211_supported_band *sband;
433 const struct rt2x00_rate *rate;
434 unsigned int i;
435 int signal = rxdesc->signal;
436 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
438 switch (rxdesc->rate_mode) {
439 case RATE_MODE_CCK:
440 case RATE_MODE_OFDM:
442 * For non-HT rates the MCS value needs to contain the
443 * actually used rate modulation (CCK or OFDM).
445 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
446 signal = RATE_MCS(rxdesc->rate_mode, signal);
448 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
449 for (i = 0; i < sband->n_bitrates; i++) {
450 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
451 if (((type == RXDONE_SIGNAL_PLCP) &&
452 (rate->plcp == signal)) ||
453 ((type == RXDONE_SIGNAL_BITRATE) &&
454 (rate->bitrate == signal)) ||
455 ((type == RXDONE_SIGNAL_MCS) &&
456 (rate->mcs == signal))) {
457 return i;
460 break;
461 case RATE_MODE_HT_MIX:
462 case RATE_MODE_HT_GREENFIELD:
463 if (signal >= 0 && signal <= 76)
464 return signal;
465 break;
466 default:
467 break;
470 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
471 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
472 rxdesc->rate_mode, signal, type);
473 return 0;
476 void rt2x00lib_rxdone(struct queue_entry *entry)
478 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
479 struct rxdone_entry_desc rxdesc;
480 struct sk_buff *skb;
481 struct ieee80211_rx_status *rx_status;
482 unsigned int header_length;
483 int rate_idx;
485 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
486 goto submit_entry;
489 * Allocate a new sk_buffer. If no new buffer available, drop the
490 * received frame and reuse the existing buffer.
492 skb = rt2x00queue_alloc_rxskb(entry);
493 if (!skb)
494 goto submit_entry;
497 * Unmap the skb.
499 rt2x00queue_unmap_skb(entry);
502 * Extract the RXD details.
504 memset(&rxdesc, 0, sizeof(rxdesc));
505 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
508 * The data behind the ieee80211 header must be
509 * aligned on a 4 byte boundary.
511 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
514 * Hardware might have stripped the IV/EIV/ICV data,
515 * in that case it is possible that the data was
516 * provided separately (through hardware descriptor)
517 * in which case we should reinsert the data into the frame.
519 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
520 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
521 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
522 &rxdesc);
523 else if (header_length &&
524 (rxdesc.size > header_length) &&
525 (rxdesc.dev_flags & RXDONE_L2PAD))
526 rt2x00queue_remove_l2pad(entry->skb, header_length);
527 else
528 rt2x00queue_align_payload(entry->skb, header_length);
530 /* Trim buffer to correct size */
531 skb_trim(entry->skb, rxdesc.size);
534 * Translate the signal to the correct bitrate index.
536 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
537 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
538 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
539 rxdesc.flags |= RX_FLAG_HT;
542 * Update extra components
544 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
545 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
546 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
549 * Initialize RX status information, and send frame
550 * to mac80211.
552 rx_status = IEEE80211_SKB_RXCB(entry->skb);
553 rx_status->mactime = rxdesc.timestamp;
554 rx_status->band = rt2x00dev->curr_band;
555 rx_status->freq = rt2x00dev->curr_freq;
556 rx_status->rate_idx = rate_idx;
557 rx_status->signal = rxdesc.rssi;
558 rx_status->flag = rxdesc.flags;
559 rx_status->antenna = rt2x00dev->link.ant.active.rx;
561 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
564 * Replace the skb with the freshly allocated one.
566 entry->skb = skb;
568 submit_entry:
569 rt2x00dev->ops->lib->clear_entry(entry);
570 rt2x00queue_index_inc(entry->queue, Q_INDEX);
571 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
573 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
576 * Driver initialization handlers.
578 const struct rt2x00_rate rt2x00_supported_rates[12] = {
580 .flags = DEV_RATE_CCK,
581 .bitrate = 10,
582 .ratemask = BIT(0),
583 .plcp = 0x00,
584 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
587 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
588 .bitrate = 20,
589 .ratemask = BIT(1),
590 .plcp = 0x01,
591 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
594 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
595 .bitrate = 55,
596 .ratemask = BIT(2),
597 .plcp = 0x02,
598 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
601 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
602 .bitrate = 110,
603 .ratemask = BIT(3),
604 .plcp = 0x03,
605 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
608 .flags = DEV_RATE_OFDM,
609 .bitrate = 60,
610 .ratemask = BIT(4),
611 .plcp = 0x0b,
612 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
615 .flags = DEV_RATE_OFDM,
616 .bitrate = 90,
617 .ratemask = BIT(5),
618 .plcp = 0x0f,
619 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
622 .flags = DEV_RATE_OFDM,
623 .bitrate = 120,
624 .ratemask = BIT(6),
625 .plcp = 0x0a,
626 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
629 .flags = DEV_RATE_OFDM,
630 .bitrate = 180,
631 .ratemask = BIT(7),
632 .plcp = 0x0e,
633 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
636 .flags = DEV_RATE_OFDM,
637 .bitrate = 240,
638 .ratemask = BIT(8),
639 .plcp = 0x09,
640 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
643 .flags = DEV_RATE_OFDM,
644 .bitrate = 360,
645 .ratemask = BIT(9),
646 .plcp = 0x0d,
647 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
650 .flags = DEV_RATE_OFDM,
651 .bitrate = 480,
652 .ratemask = BIT(10),
653 .plcp = 0x08,
654 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
657 .flags = DEV_RATE_OFDM,
658 .bitrate = 540,
659 .ratemask = BIT(11),
660 .plcp = 0x0c,
661 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
665 static void rt2x00lib_channel(struct ieee80211_channel *entry,
666 const int channel, const int tx_power,
667 const int value)
669 entry->center_freq = ieee80211_channel_to_frequency(channel);
670 entry->hw_value = value;
671 entry->max_power = tx_power;
672 entry->max_antenna_gain = 0xff;
675 static void rt2x00lib_rate(struct ieee80211_rate *entry,
676 const u16 index, const struct rt2x00_rate *rate)
678 entry->flags = 0;
679 entry->bitrate = rate->bitrate;
680 entry->hw_value =index;
681 entry->hw_value_short = index;
683 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
684 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
687 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
688 struct hw_mode_spec *spec)
690 struct ieee80211_hw *hw = rt2x00dev->hw;
691 struct ieee80211_channel *channels;
692 struct ieee80211_rate *rates;
693 unsigned int num_rates;
694 unsigned int i;
696 num_rates = 0;
697 if (spec->supported_rates & SUPPORT_RATE_CCK)
698 num_rates += 4;
699 if (spec->supported_rates & SUPPORT_RATE_OFDM)
700 num_rates += 8;
702 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
703 if (!channels)
704 return -ENOMEM;
706 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
707 if (!rates)
708 goto exit_free_channels;
711 * Initialize Rate list.
713 for (i = 0; i < num_rates; i++)
714 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
717 * Initialize Channel list.
719 for (i = 0; i < spec->num_channels; i++) {
720 rt2x00lib_channel(&channels[i],
721 spec->channels[i].channel,
722 spec->channels_info[i].max_power, i);
726 * Intitialize 802.11b, 802.11g
727 * Rates: CCK, OFDM.
728 * Channels: 2.4 GHz
730 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
731 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
732 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
733 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
734 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
735 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
736 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
737 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
738 &spec->ht, sizeof(spec->ht));
742 * Intitialize 802.11a
743 * Rates: OFDM.
744 * Channels: OFDM, UNII, HiperLAN2.
746 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
747 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
748 spec->num_channels - 14;
749 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
750 num_rates - 4;
751 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
752 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
753 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
754 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
755 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
756 &spec->ht, sizeof(spec->ht));
759 return 0;
761 exit_free_channels:
762 kfree(channels);
763 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
764 return -ENOMEM;
767 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
769 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
770 ieee80211_unregister_hw(rt2x00dev->hw);
772 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
773 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
774 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
775 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
776 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
779 kfree(rt2x00dev->spec.channels_info);
782 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
784 struct hw_mode_spec *spec = &rt2x00dev->spec;
785 int status;
787 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
788 return 0;
791 * Initialize HW modes.
793 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
794 if (status)
795 return status;
798 * Initialize HW fields.
800 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
803 * Initialize extra TX headroom required.
805 rt2x00dev->hw->extra_tx_headroom =
806 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
807 rt2x00dev->ops->extra_tx_headroom);
810 * Take TX headroom required for alignment into account.
812 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
813 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
814 else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
815 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
818 * Allocate tx status FIFO for driver use.
820 if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags) &&
821 rt2x00dev->ops->lib->txstatus_tasklet) {
823 * Allocate txstatus fifo and tasklet, we use a size of 512
824 * for the kfifo which is big enough to store 512/4=128 tx
825 * status reports. In the worst case (tx status for all tx
826 * queues gets reported before we've got a chance to handle
827 * them) 24*4=384 tx status reports need to be cached.
829 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
830 GFP_KERNEL);
831 if (status)
832 return status;
834 /* tasklet for processing the tx status reports. */
835 tasklet_init(&rt2x00dev->txstatus_tasklet,
836 rt2x00dev->ops->lib->txstatus_tasklet,
837 (unsigned long)rt2x00dev);
842 * Register HW.
844 status = ieee80211_register_hw(rt2x00dev->hw);
845 if (status)
846 return status;
848 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
850 return 0;
854 * Initialization/uninitialization handlers.
856 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
858 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
859 return;
862 * Unregister extra components.
864 rt2x00rfkill_unregister(rt2x00dev);
867 * Allow the HW to uninitialize.
869 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
872 * Free allocated queue entries.
874 rt2x00queue_uninitialize(rt2x00dev);
877 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
879 int status;
881 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
882 return 0;
885 * Allocate all queue entries.
887 status = rt2x00queue_initialize(rt2x00dev);
888 if (status)
889 return status;
892 * Initialize the device.
894 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
895 if (status) {
896 rt2x00queue_uninitialize(rt2x00dev);
897 return status;
900 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
903 * Register the extra components.
905 rt2x00rfkill_register(rt2x00dev);
907 return 0;
910 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
912 int retval;
914 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
915 return 0;
918 * If this is the first interface which is added,
919 * we should load the firmware now.
921 retval = rt2x00lib_load_firmware(rt2x00dev);
922 if (retval)
923 return retval;
926 * Initialize the device.
928 retval = rt2x00lib_initialize(rt2x00dev);
929 if (retval)
930 return retval;
932 rt2x00dev->intf_ap_count = 0;
933 rt2x00dev->intf_sta_count = 0;
934 rt2x00dev->intf_associated = 0;
936 /* Enable the radio */
937 retval = rt2x00lib_enable_radio(rt2x00dev);
938 if (retval)
939 return retval;
941 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
943 return 0;
946 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
948 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
949 return;
952 * Perhaps we can add something smarter here,
953 * but for now just disabling the radio should do.
955 rt2x00lib_disable_radio(rt2x00dev);
957 rt2x00dev->intf_ap_count = 0;
958 rt2x00dev->intf_sta_count = 0;
959 rt2x00dev->intf_associated = 0;
963 * driver allocation handlers.
965 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
967 int retval = -ENOMEM;
969 mutex_init(&rt2x00dev->csr_mutex);
971 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
974 * Make room for rt2x00_intf inside the per-interface
975 * structure ieee80211_vif.
977 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
980 * Determine which operating modes are supported, all modes
981 * which require beaconing, depend on the availability of
982 * beacon entries.
984 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
985 if (rt2x00dev->ops->bcn->entry_num > 0)
986 rt2x00dev->hw->wiphy->interface_modes |=
987 BIT(NL80211_IFTYPE_ADHOC) |
988 BIT(NL80211_IFTYPE_AP) |
989 BIT(NL80211_IFTYPE_MESH_POINT) |
990 BIT(NL80211_IFTYPE_WDS);
993 * Initialize configuration work.
995 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
998 * Let the driver probe the device to detect the capabilities.
1000 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1001 if (retval) {
1002 ERROR(rt2x00dev, "Failed to allocate device.\n");
1003 goto exit;
1007 * Allocate queue array.
1009 retval = rt2x00queue_allocate(rt2x00dev);
1010 if (retval)
1011 goto exit;
1014 * Initialize ieee80211 structure.
1016 retval = rt2x00lib_probe_hw(rt2x00dev);
1017 if (retval) {
1018 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1019 goto exit;
1023 * Register extra components.
1025 rt2x00link_register(rt2x00dev);
1026 rt2x00leds_register(rt2x00dev);
1027 rt2x00debug_register(rt2x00dev);
1029 return 0;
1031 exit:
1032 rt2x00lib_remove_dev(rt2x00dev);
1034 return retval;
1036 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1038 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1040 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1043 * Disable radio.
1045 rt2x00lib_disable_radio(rt2x00dev);
1048 * Stop all work.
1050 cancel_work_sync(&rt2x00dev->intf_work);
1051 cancel_work_sync(&rt2x00dev->rxdone_work);
1052 cancel_work_sync(&rt2x00dev->txdone_work);
1055 * Free the tx status fifo.
1057 kfifo_free(&rt2x00dev->txstatus_fifo);
1060 * Kill the tx status tasklet.
1062 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1065 * Uninitialize device.
1067 rt2x00lib_uninitialize(rt2x00dev);
1070 * Free extra components
1072 rt2x00debug_deregister(rt2x00dev);
1073 rt2x00leds_unregister(rt2x00dev);
1076 * Free ieee80211_hw memory.
1078 rt2x00lib_remove_hw(rt2x00dev);
1081 * Free firmware image.
1083 rt2x00lib_free_firmware(rt2x00dev);
1086 * Free queue structures.
1088 rt2x00queue_free(rt2x00dev);
1090 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1093 * Device state handlers
1095 #ifdef CONFIG_PM
1096 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1098 NOTICE(rt2x00dev, "Going to sleep.\n");
1101 * Prevent mac80211 from accessing driver while suspended.
1103 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1104 return 0;
1107 * Cleanup as much as possible.
1109 rt2x00lib_uninitialize(rt2x00dev);
1112 * Suspend/disable extra components.
1114 rt2x00leds_suspend(rt2x00dev);
1115 rt2x00debug_deregister(rt2x00dev);
1118 * Set device mode to sleep for power management,
1119 * on some hardware this call seems to consistently fail.
1120 * From the specifications it is hard to tell why it fails,
1121 * and if this is a "bad thing".
1122 * Overall it is safe to just ignore the failure and
1123 * continue suspending. The only downside is that the
1124 * device will not be in optimal power save mode, but with
1125 * the radio and the other components already disabled the
1126 * device is as good as disabled.
1128 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1129 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1130 "continue suspending.\n");
1132 return 0;
1134 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1136 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1138 NOTICE(rt2x00dev, "Waking up.\n");
1141 * Restore/enable extra components.
1143 rt2x00debug_register(rt2x00dev);
1144 rt2x00leds_resume(rt2x00dev);
1147 * We are ready again to receive requests from mac80211.
1149 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1151 return 0;
1153 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1154 #endif /* CONFIG_PM */
1157 * rt2x00lib module information.
1159 MODULE_AUTHOR(DRV_PROJECT);
1160 MODULE_VERSION(DRV_VERSION);
1161 MODULE_DESCRIPTION("rt2x00 library");
1162 MODULE_LICENSE("GPL");