rt2x00: Decrease association time for USB devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blob0d79278a0a190e8ee4368af3764024d82b8f6930
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
56 head_size = 4;
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 head_size += 8;
65 tail_size += 8;
69 * Allocate skbuffer.
71 skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 if (!skb)
73 return NULL;
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
83 * Populate skbdesc.
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
97 return skb;
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
128 void rt2x00queue_free_skb(struct queue_entry *entry)
130 if (!entry->skb)
131 return;
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
138 void rt2x00queue_align_frame(struct sk_buff *skb)
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
143 if (!align)
144 return;
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
153 unsigned int payload_length = skb->len - header_length;
154 unsigned int header_align = ALIGN_SIZE(skb, 0);
155 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
159 * Adjust the header alignment if the payload needs to be moved more
160 * than the header.
162 if (payload_align > header_align)
163 header_align += 4;
165 /* There is nothing to do if no alignment is needed */
166 if (!header_align)
167 return;
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb, header_align);
173 * Move the header.
175 memmove(skb->data, skb->data + header_align, header_length);
177 /* Move the payload, if present and if required */
178 if (payload_length && payload_align)
179 memmove(skb->data + header_length + l2pad,
180 skb->data + header_length + l2pad + payload_align,
181 payload_length);
183 /* Trim the skb to the correct size */
184 skb_trim(skb, header_length + l2pad + payload_length);
187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
193 unsigned int l2pad = (skb->len > header_length) ?
194 L2PAD_SIZE(header_length) : 0;
196 if (!l2pad)
197 return;
199 memmove(skb->data + l2pad, skb->data, header_length);
200 skb_pull(skb, l2pad);
203 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
204 struct txentry_desc *txdesc)
206 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
207 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
208 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
209 unsigned long irqflags;
211 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
212 return;
214 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216 if (!test_bit(REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->cap_flags))
217 return;
220 * The hardware is not able to insert a sequence number. Assign a
221 * software generated one here.
223 * This is wrong because beacons are not getting sequence
224 * numbers assigned properly.
226 * A secondary problem exists for drivers that cannot toggle
227 * sequence counting per-frame, since those will override the
228 * sequence counter given by mac80211.
230 spin_lock_irqsave(&intf->seqlock, irqflags);
232 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
233 intf->seqno += 0x10;
234 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
235 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
237 spin_unlock_irqrestore(&intf->seqlock, irqflags);
241 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
242 struct txentry_desc *txdesc,
243 const struct rt2x00_rate *hwrate)
245 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
246 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
247 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
248 unsigned int data_length;
249 unsigned int duration;
250 unsigned int residual;
253 * Determine with what IFS priority this frame should be send.
254 * Set ifs to IFS_SIFS when the this is not the first fragment,
255 * or this fragment came after RTS/CTS.
257 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
258 txdesc->u.plcp.ifs = IFS_BACKOFF;
259 else
260 txdesc->u.plcp.ifs = IFS_SIFS;
262 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
263 data_length = entry->skb->len + 4;
264 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
267 * PLCP setup
268 * Length calculation depends on OFDM/CCK rate.
270 txdesc->u.plcp.signal = hwrate->plcp;
271 txdesc->u.plcp.service = 0x04;
273 if (hwrate->flags & DEV_RATE_OFDM) {
274 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
275 txdesc->u.plcp.length_low = data_length & 0x3f;
276 } else {
278 * Convert length to microseconds.
280 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
281 duration = GET_DURATION(data_length, hwrate->bitrate);
283 if (residual != 0) {
284 duration++;
287 * Check if we need to set the Length Extension
289 if (hwrate->bitrate == 110 && residual <= 30)
290 txdesc->u.plcp.service |= 0x80;
293 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
294 txdesc->u.plcp.length_low = duration & 0xff;
297 * When preamble is enabled we should set the
298 * preamble bit for the signal.
300 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
301 txdesc->u.plcp.signal |= 0x08;
305 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
306 struct txentry_desc *txdesc)
308 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
309 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
310 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
311 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
312 struct ieee80211_rate *rate;
313 const struct rt2x00_rate *hwrate = NULL;
315 memset(txdesc, 0, sizeof(*txdesc));
318 * Header and frame information.
320 txdesc->length = entry->skb->len;
321 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
324 * Check whether this frame is to be acked.
326 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
327 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
330 * Check if this is a RTS/CTS frame
332 if (ieee80211_is_rts(hdr->frame_control) ||
333 ieee80211_is_cts(hdr->frame_control)) {
334 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
335 if (ieee80211_is_rts(hdr->frame_control))
336 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
337 else
338 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
339 if (tx_info->control.rts_cts_rate_idx >= 0)
340 rate =
341 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
345 * Determine retry information.
347 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
348 if (txdesc->retry_limit >= rt2x00dev->long_retry)
349 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
352 * Check if more fragments are pending
354 if (ieee80211_has_morefrags(hdr->frame_control)) {
355 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
356 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
360 * Check if more frames (!= fragments) are pending
362 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
363 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
366 * Beacons and probe responses require the tsf timestamp
367 * to be inserted into the frame.
369 if (ieee80211_is_beacon(hdr->frame_control) ||
370 ieee80211_is_probe_resp(hdr->frame_control))
371 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
373 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
374 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
375 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
378 * Determine rate modulation.
380 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
381 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
382 else if (txrate->flags & IEEE80211_TX_RC_MCS)
383 txdesc->rate_mode = RATE_MODE_HT_MIX;
384 else {
385 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
386 hwrate = rt2x00_get_rate(rate->hw_value);
387 if (hwrate->flags & DEV_RATE_OFDM)
388 txdesc->rate_mode = RATE_MODE_OFDM;
389 else
390 txdesc->rate_mode = RATE_MODE_CCK;
394 * Apply TX descriptor handling by components
396 rt2x00crypto_create_tx_descriptor(entry, txdesc);
397 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
399 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
400 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
401 else
402 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
405 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
406 struct txentry_desc *txdesc)
408 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
411 * This should not happen, we already checked the entry
412 * was ours. When the hardware disagrees there has been
413 * a queue corruption!
415 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
416 rt2x00dev->ops->lib->get_entry_state(entry))) {
417 ERROR(rt2x00dev,
418 "Corrupt queue %d, accessing entry which is not ours.\n"
419 "Please file bug report to %s.\n",
420 entry->queue->qid, DRV_PROJECT);
421 return -EINVAL;
425 * Add the requested extra tx headroom in front of the skb.
427 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
428 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
431 * Call the driver's write_tx_data function, if it exists.
433 if (rt2x00dev->ops->lib->write_tx_data)
434 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
437 * Map the skb to DMA.
439 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
440 rt2x00queue_map_txskb(entry);
442 return 0;
445 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
446 struct txentry_desc *txdesc)
448 struct data_queue *queue = entry->queue;
450 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
453 * All processing on the frame has been completed, this means
454 * it is now ready to be dumped to userspace through debugfs.
456 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
459 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
460 struct txentry_desc *txdesc)
463 * Check if we need to kick the queue, there are however a few rules
464 * 1) Don't kick unless this is the last in frame in a burst.
465 * When the burst flag is set, this frame is always followed
466 * by another frame which in some way are related to eachother.
467 * This is true for fragments, RTS or CTS-to-self frames.
468 * 2) Rule 1 can be broken when the available entries
469 * in the queue are less then a certain threshold.
471 if (rt2x00queue_threshold(queue) ||
472 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
473 queue->rt2x00dev->ops->lib->kick_queue(queue);
476 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
477 bool local)
479 struct ieee80211_tx_info *tx_info;
480 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
481 struct txentry_desc txdesc;
482 struct skb_frame_desc *skbdesc;
483 u8 rate_idx, rate_flags;
485 if (unlikely(rt2x00queue_full(queue))) {
486 ERROR(queue->rt2x00dev,
487 "Dropping frame due to full tx queue %d.\n", queue->qid);
488 return -ENOBUFS;
491 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
492 &entry->flags))) {
493 ERROR(queue->rt2x00dev,
494 "Arrived at non-free entry in the non-full queue %d.\n"
495 "Please file bug report to %s.\n",
496 queue->qid, DRV_PROJECT);
497 return -EINVAL;
501 * Copy all TX descriptor information into txdesc,
502 * after that we are free to use the skb->cb array
503 * for our information.
505 entry->skb = skb;
506 rt2x00queue_create_tx_descriptor(entry, &txdesc);
509 * All information is retrieved from the skb->cb array,
510 * now we should claim ownership of the driver part of that
511 * array, preserving the bitrate index and flags.
513 tx_info = IEEE80211_SKB_CB(skb);
514 rate_idx = tx_info->control.rates[0].idx;
515 rate_flags = tx_info->control.rates[0].flags;
516 skbdesc = get_skb_frame_desc(skb);
517 memset(skbdesc, 0, sizeof(*skbdesc));
518 skbdesc->entry = entry;
519 skbdesc->tx_rate_idx = rate_idx;
520 skbdesc->tx_rate_flags = rate_flags;
522 if (local)
523 skbdesc->flags |= SKBDESC_NOT_MAC80211;
526 * When hardware encryption is supported, and this frame
527 * is to be encrypted, we should strip the IV/EIV data from
528 * the frame so we can provide it to the driver separately.
530 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
531 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
532 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
533 rt2x00crypto_tx_copy_iv(skb, &txdesc);
534 else
535 rt2x00crypto_tx_remove_iv(skb, &txdesc);
539 * When DMA allocation is required we should guarentee to the
540 * driver that the DMA is aligned to a 4-byte boundary.
541 * However some drivers require L2 padding to pad the payload
542 * rather then the header. This could be a requirement for
543 * PCI and USB devices, while header alignment only is valid
544 * for PCI devices.
546 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
547 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
548 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
549 rt2x00queue_align_frame(entry->skb);
552 * It could be possible that the queue was corrupted and this
553 * call failed. Since we always return NETDEV_TX_OK to mac80211,
554 * this frame will simply be dropped.
556 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
557 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
558 entry->skb = NULL;
559 return -EIO;
562 set_bit(ENTRY_DATA_PENDING, &entry->flags);
564 rt2x00queue_index_inc(entry, Q_INDEX);
565 rt2x00queue_write_tx_descriptor(entry, &txdesc);
566 rt2x00queue_kick_tx_queue(queue, &txdesc);
568 return 0;
571 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
572 struct ieee80211_vif *vif)
574 struct rt2x00_intf *intf = vif_to_intf(vif);
576 if (unlikely(!intf->beacon))
577 return -ENOBUFS;
579 mutex_lock(&intf->beacon_skb_mutex);
582 * Clean up the beacon skb.
584 rt2x00queue_free_skb(intf->beacon);
587 * Clear beacon (single bssid devices don't need to clear the beacon
588 * since the beacon queue will get stopped anyway).
590 if (rt2x00dev->ops->lib->clear_beacon)
591 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
593 mutex_unlock(&intf->beacon_skb_mutex);
595 return 0;
598 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
599 struct ieee80211_vif *vif)
601 struct rt2x00_intf *intf = vif_to_intf(vif);
602 struct skb_frame_desc *skbdesc;
603 struct txentry_desc txdesc;
605 if (unlikely(!intf->beacon))
606 return -ENOBUFS;
609 * Clean up the beacon skb.
611 rt2x00queue_free_skb(intf->beacon);
613 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
614 if (!intf->beacon->skb)
615 return -ENOMEM;
618 * Copy all TX descriptor information into txdesc,
619 * after that we are free to use the skb->cb array
620 * for our information.
622 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
625 * Fill in skb descriptor
627 skbdesc = get_skb_frame_desc(intf->beacon->skb);
628 memset(skbdesc, 0, sizeof(*skbdesc));
629 skbdesc->entry = intf->beacon;
632 * Send beacon to hardware.
634 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
636 return 0;
640 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
641 struct ieee80211_vif *vif)
643 struct rt2x00_intf *intf = vif_to_intf(vif);
644 int ret;
646 mutex_lock(&intf->beacon_skb_mutex);
647 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
648 mutex_unlock(&intf->beacon_skb_mutex);
650 return ret;
653 bool rt2x00queue_for_each_entry(struct data_queue *queue,
654 enum queue_index start,
655 enum queue_index end,
656 void *data,
657 bool (*fn)(struct queue_entry *entry,
658 void *data))
660 unsigned long irqflags;
661 unsigned int index_start;
662 unsigned int index_end;
663 unsigned int i;
665 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
666 ERROR(queue->rt2x00dev,
667 "Entry requested from invalid index range (%d - %d)\n",
668 start, end);
669 return true;
673 * Only protect the range we are going to loop over,
674 * if during our loop a extra entry is set to pending
675 * it should not be kicked during this run, since it
676 * is part of another TX operation.
678 spin_lock_irqsave(&queue->index_lock, irqflags);
679 index_start = queue->index[start];
680 index_end = queue->index[end];
681 spin_unlock_irqrestore(&queue->index_lock, irqflags);
684 * Start from the TX done pointer, this guarentees that we will
685 * send out all frames in the correct order.
687 if (index_start < index_end) {
688 for (i = index_start; i < index_end; i++) {
689 if (fn(&queue->entries[i], data))
690 return true;
692 } else {
693 for (i = index_start; i < queue->limit; i++) {
694 if (fn(&queue->entries[i], data))
695 return true;
698 for (i = 0; i < index_end; i++) {
699 if (fn(&queue->entries[i], data))
700 return true;
704 return false;
706 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
708 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
709 enum queue_index index)
711 struct queue_entry *entry;
712 unsigned long irqflags;
714 if (unlikely(index >= Q_INDEX_MAX)) {
715 ERROR(queue->rt2x00dev,
716 "Entry requested from invalid index type (%d)\n", index);
717 return NULL;
720 spin_lock_irqsave(&queue->index_lock, irqflags);
722 entry = &queue->entries[queue->index[index]];
724 spin_unlock_irqrestore(&queue->index_lock, irqflags);
726 return entry;
728 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
730 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
732 struct data_queue *queue = entry->queue;
733 unsigned long irqflags;
735 if (unlikely(index >= Q_INDEX_MAX)) {
736 ERROR(queue->rt2x00dev,
737 "Index change on invalid index type (%d)\n", index);
738 return;
741 spin_lock_irqsave(&queue->index_lock, irqflags);
743 queue->index[index]++;
744 if (queue->index[index] >= queue->limit)
745 queue->index[index] = 0;
747 entry->last_action = jiffies;
749 if (index == Q_INDEX) {
750 queue->length++;
751 } else if (index == Q_INDEX_DONE) {
752 queue->length--;
753 queue->count++;
756 spin_unlock_irqrestore(&queue->index_lock, irqflags);
759 void rt2x00queue_pause_queue(struct data_queue *queue)
761 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
762 !test_bit(QUEUE_STARTED, &queue->flags) ||
763 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
764 return;
766 switch (queue->qid) {
767 case QID_AC_VO:
768 case QID_AC_VI:
769 case QID_AC_BE:
770 case QID_AC_BK:
772 * For TX queues, we have to disable the queue
773 * inside mac80211.
775 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
776 break;
777 default:
778 break;
781 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
783 void rt2x00queue_unpause_queue(struct data_queue *queue)
785 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
786 !test_bit(QUEUE_STARTED, &queue->flags) ||
787 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
788 return;
790 switch (queue->qid) {
791 case QID_AC_VO:
792 case QID_AC_VI:
793 case QID_AC_BE:
794 case QID_AC_BK:
796 * For TX queues, we have to enable the queue
797 * inside mac80211.
799 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
800 break;
801 case QID_RX:
803 * For RX we need to kick the queue now in order to
804 * receive frames.
806 queue->rt2x00dev->ops->lib->kick_queue(queue);
807 default:
808 break;
811 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
813 void rt2x00queue_start_queue(struct data_queue *queue)
815 mutex_lock(&queue->status_lock);
817 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
818 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
819 mutex_unlock(&queue->status_lock);
820 return;
823 set_bit(QUEUE_PAUSED, &queue->flags);
825 queue->rt2x00dev->ops->lib->start_queue(queue);
827 rt2x00queue_unpause_queue(queue);
829 mutex_unlock(&queue->status_lock);
831 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
833 void rt2x00queue_stop_queue(struct data_queue *queue)
835 mutex_lock(&queue->status_lock);
837 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
838 mutex_unlock(&queue->status_lock);
839 return;
842 rt2x00queue_pause_queue(queue);
844 queue->rt2x00dev->ops->lib->stop_queue(queue);
846 mutex_unlock(&queue->status_lock);
848 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
850 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
852 bool started;
853 bool tx_queue =
854 (queue->qid == QID_AC_VO) ||
855 (queue->qid == QID_AC_VI) ||
856 (queue->qid == QID_AC_BE) ||
857 (queue->qid == QID_AC_BK);
859 mutex_lock(&queue->status_lock);
862 * If the queue has been started, we must stop it temporarily
863 * to prevent any new frames to be queued on the device. If
864 * we are not dropping the pending frames, the queue must
865 * only be stopped in the software and not the hardware,
866 * otherwise the queue will never become empty on its own.
868 started = test_bit(QUEUE_STARTED, &queue->flags);
869 if (started) {
871 * Pause the queue
873 rt2x00queue_pause_queue(queue);
876 * If we are not supposed to drop any pending
877 * frames, this means we must force a start (=kick)
878 * to the queue to make sure the hardware will
879 * start transmitting.
881 if (!drop && tx_queue)
882 queue->rt2x00dev->ops->lib->kick_queue(queue);
886 * Check if driver supports flushing, if that is the case we can
887 * defer the flushing to the driver. Otherwise we must use the
888 * alternative which just waits for the queue to become empty.
890 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
891 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
894 * The queue flush has failed...
896 if (unlikely(!rt2x00queue_empty(queue)))
897 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
900 * Restore the queue to the previous status
902 if (started)
903 rt2x00queue_unpause_queue(queue);
905 mutex_unlock(&queue->status_lock);
907 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
909 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
911 struct data_queue *queue;
914 * rt2x00queue_start_queue will call ieee80211_wake_queue
915 * for each queue after is has been properly initialized.
917 tx_queue_for_each(rt2x00dev, queue)
918 rt2x00queue_start_queue(queue);
920 rt2x00queue_start_queue(rt2x00dev->rx);
922 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
924 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
926 struct data_queue *queue;
929 * rt2x00queue_stop_queue will call ieee80211_stop_queue
930 * as well, but we are completely shutting doing everything
931 * now, so it is much safer to stop all TX queues at once,
932 * and use rt2x00queue_stop_queue for cleaning up.
934 ieee80211_stop_queues(rt2x00dev->hw);
936 tx_queue_for_each(rt2x00dev, queue)
937 rt2x00queue_stop_queue(queue);
939 rt2x00queue_stop_queue(rt2x00dev->rx);
941 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
943 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
945 struct data_queue *queue;
947 tx_queue_for_each(rt2x00dev, queue)
948 rt2x00queue_flush_queue(queue, drop);
950 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
952 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
954 static void rt2x00queue_reset(struct data_queue *queue)
956 unsigned long irqflags;
957 unsigned int i;
959 spin_lock_irqsave(&queue->index_lock, irqflags);
961 queue->count = 0;
962 queue->length = 0;
964 for (i = 0; i < Q_INDEX_MAX; i++)
965 queue->index[i] = 0;
967 spin_unlock_irqrestore(&queue->index_lock, irqflags);
970 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
972 struct data_queue *queue;
973 unsigned int i;
975 queue_for_each(rt2x00dev, queue) {
976 rt2x00queue_reset(queue);
978 for (i = 0; i < queue->limit; i++)
979 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
983 static int rt2x00queue_alloc_entries(struct data_queue *queue,
984 const struct data_queue_desc *qdesc)
986 struct queue_entry *entries;
987 unsigned int entry_size;
988 unsigned int i;
990 rt2x00queue_reset(queue);
992 queue->limit = qdesc->entry_num;
993 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
994 queue->data_size = qdesc->data_size;
995 queue->desc_size = qdesc->desc_size;
998 * Allocate all queue entries.
1000 entry_size = sizeof(*entries) + qdesc->priv_size;
1001 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1002 if (!entries)
1003 return -ENOMEM;
1005 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1006 (((char *)(__base)) + ((__limit) * (__esize)) + \
1007 ((__index) * (__psize)))
1009 for (i = 0; i < queue->limit; i++) {
1010 entries[i].flags = 0;
1011 entries[i].queue = queue;
1012 entries[i].skb = NULL;
1013 entries[i].entry_idx = i;
1014 entries[i].priv_data =
1015 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1016 sizeof(*entries), qdesc->priv_size);
1019 #undef QUEUE_ENTRY_PRIV_OFFSET
1021 queue->entries = entries;
1023 return 0;
1026 static void rt2x00queue_free_skbs(struct data_queue *queue)
1028 unsigned int i;
1030 if (!queue->entries)
1031 return;
1033 for (i = 0; i < queue->limit; i++) {
1034 rt2x00queue_free_skb(&queue->entries[i]);
1038 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1040 unsigned int i;
1041 struct sk_buff *skb;
1043 for (i = 0; i < queue->limit; i++) {
1044 skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1045 if (!skb)
1046 return -ENOMEM;
1047 queue->entries[i].skb = skb;
1050 return 0;
1053 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1055 struct data_queue *queue;
1056 int status;
1058 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1059 if (status)
1060 goto exit;
1062 tx_queue_for_each(rt2x00dev, queue) {
1063 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1064 if (status)
1065 goto exit;
1068 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1069 if (status)
1070 goto exit;
1072 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1073 status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1074 rt2x00dev->ops->atim);
1075 if (status)
1076 goto exit;
1079 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1080 if (status)
1081 goto exit;
1083 return 0;
1085 exit:
1086 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1088 rt2x00queue_uninitialize(rt2x00dev);
1090 return status;
1093 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1095 struct data_queue *queue;
1097 rt2x00queue_free_skbs(rt2x00dev->rx);
1099 queue_for_each(rt2x00dev, queue) {
1100 kfree(queue->entries);
1101 queue->entries = NULL;
1105 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1106 struct data_queue *queue, enum data_queue_qid qid)
1108 mutex_init(&queue->status_lock);
1109 spin_lock_init(&queue->index_lock);
1111 queue->rt2x00dev = rt2x00dev;
1112 queue->qid = qid;
1113 queue->txop = 0;
1114 queue->aifs = 2;
1115 queue->cw_min = 5;
1116 queue->cw_max = 10;
1119 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1121 struct data_queue *queue;
1122 enum data_queue_qid qid;
1123 unsigned int req_atim =
1124 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1127 * We need the following queues:
1128 * RX: 1
1129 * TX: ops->tx_queues
1130 * Beacon: 1
1131 * Atim: 1 (if required)
1133 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1135 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1136 if (!queue) {
1137 ERROR(rt2x00dev, "Queue allocation failed.\n");
1138 return -ENOMEM;
1142 * Initialize pointers
1144 rt2x00dev->rx = queue;
1145 rt2x00dev->tx = &queue[1];
1146 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1147 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1150 * Initialize queue parameters.
1151 * RX: qid = QID_RX
1152 * TX: qid = QID_AC_VO + index
1153 * TX: cw_min: 2^5 = 32.
1154 * TX: cw_max: 2^10 = 1024.
1155 * BCN: qid = QID_BEACON
1156 * ATIM: qid = QID_ATIM
1158 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1160 qid = QID_AC_VO;
1161 tx_queue_for_each(rt2x00dev, queue)
1162 rt2x00queue_init(rt2x00dev, queue, qid++);
1164 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1165 if (req_atim)
1166 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1168 return 0;
1171 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1173 kfree(rt2x00dev->rx);
1174 rt2x00dev->rx = NULL;
1175 rt2x00dev->tx = NULL;
1176 rt2x00dev->bcn = NULL;