2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 #include <linux/compat.h>
41 #include <asm/kmap_types.h>
42 #include <asm/uaccess.h>
45 #define dprintk printk
47 #define dprintk(x...) do { ; } while (0)
50 /*------ sysctl variables----*/
51 static DEFINE_SPINLOCK(aio_nr_lock
);
52 unsigned long aio_nr
; /* current system wide number of aio requests */
53 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
54 /*----end sysctl variables---*/
56 static struct kmem_cache
*kiocb_cachep
;
57 static struct kmem_cache
*kioctx_cachep
;
59 static struct workqueue_struct
*aio_wq
;
61 /* Used for rare fput completion. */
62 static void aio_fput_routine(struct work_struct
*);
63 static DECLARE_WORK(fput_work
, aio_fput_routine
);
65 static DEFINE_SPINLOCK(fput_lock
);
66 static LIST_HEAD(fput_head
);
68 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */
69 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS)
70 struct aio_batch_entry
{
71 struct hlist_node list
;
72 struct address_space
*mapping
;
76 static void aio_kick_handler(struct work_struct
*);
77 static void aio_queue_work(struct kioctx
*);
80 * Creates the slab caches used by the aio routines, panic on
81 * failure as this is done early during the boot sequence.
83 static int __init
aio_setup(void)
85 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
86 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
88 aio_wq
= alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
89 abe_pool
= mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry
));
90 BUG_ON(!aio_wq
|| !abe_pool
);
92 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
96 __initcall(aio_setup
);
98 static void aio_free_ring(struct kioctx
*ctx
)
100 struct aio_ring_info
*info
= &ctx
->ring_info
;
103 for (i
=0; i
<info
->nr_pages
; i
++)
104 put_page(info
->ring_pages
[i
]);
106 if (info
->mmap_size
) {
107 down_write(&ctx
->mm
->mmap_sem
);
108 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
109 up_write(&ctx
->mm
->mmap_sem
);
112 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
113 kfree(info
->ring_pages
);
114 info
->ring_pages
= NULL
;
118 static int aio_setup_ring(struct kioctx
*ctx
)
120 struct aio_ring
*ring
;
121 struct aio_ring_info
*info
= &ctx
->ring_info
;
122 unsigned nr_events
= ctx
->max_reqs
;
126 /* Compensate for the ring buffer's head/tail overlap entry */
127 nr_events
+= 2; /* 1 is required, 2 for good luck */
129 size
= sizeof(struct aio_ring
);
130 size
+= sizeof(struct io_event
) * nr_events
;
131 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
136 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
139 info
->ring_pages
= info
->internal_pages
;
140 if (nr_pages
> AIO_RING_PAGES
) {
141 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
142 if (!info
->ring_pages
)
146 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
147 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
148 down_write(&ctx
->mm
->mmap_sem
);
149 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
150 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
152 if (IS_ERR((void *)info
->mmap_base
)) {
153 up_write(&ctx
->mm
->mmap_sem
);
159 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
160 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
161 info
->mmap_base
, nr_pages
,
162 1, 0, info
->ring_pages
, NULL
);
163 up_write(&ctx
->mm
->mmap_sem
);
165 if (unlikely(info
->nr_pages
!= nr_pages
)) {
170 ctx
->user_id
= info
->mmap_base
;
172 info
->nr
= nr_events
; /* trusted copy */
174 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
175 ring
->nr
= nr_events
; /* user copy */
176 ring
->id
= ctx
->user_id
;
177 ring
->head
= ring
->tail
= 0;
178 ring
->magic
= AIO_RING_MAGIC
;
179 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
180 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
181 ring
->header_length
= sizeof(struct aio_ring
);
182 kunmap_atomic(ring
, KM_USER0
);
188 /* aio_ring_event: returns a pointer to the event at the given index from
189 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
191 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
192 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
195 #define aio_ring_event(info, nr, km) ({ \
196 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
197 struct io_event *__event; \
198 __event = kmap_atomic( \
199 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200 __event += pos % AIO_EVENTS_PER_PAGE; \
204 #define put_aio_ring_event(event, km) do { \
205 struct io_event *__event = (event); \
207 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
210 static void ctx_rcu_free(struct rcu_head
*head
)
212 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
213 unsigned nr_events
= ctx
->max_reqs
;
215 kmem_cache_free(kioctx_cachep
, ctx
);
218 spin_lock(&aio_nr_lock
);
219 BUG_ON(aio_nr
- nr_events
> aio_nr
);
221 spin_unlock(&aio_nr_lock
);
226 * Called when the last user of an aio context has gone away,
227 * and the struct needs to be freed.
229 static void __put_ioctx(struct kioctx
*ctx
)
231 BUG_ON(ctx
->reqs_active
);
233 cancel_delayed_work(&ctx
->wq
);
234 cancel_work_sync(&ctx
->wq
.work
);
238 pr_debug("__put_ioctx: freeing %p\n", ctx
);
239 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
242 static inline void get_ioctx(struct kioctx
*kioctx
)
244 BUG_ON(atomic_read(&kioctx
->users
) <= 0);
245 atomic_inc(&kioctx
->users
);
248 static inline int try_get_ioctx(struct kioctx
*kioctx
)
250 return atomic_inc_not_zero(&kioctx
->users
);
253 static inline void put_ioctx(struct kioctx
*kioctx
)
255 BUG_ON(atomic_read(&kioctx
->users
) <= 0);
256 if (unlikely(atomic_dec_and_test(&kioctx
->users
)))
261 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
263 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
265 struct mm_struct
*mm
;
269 /* Prevent overflows */
270 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
271 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
272 pr_debug("ENOMEM: nr_events too high\n");
273 return ERR_PTR(-EINVAL
);
276 if ((unsigned long)nr_events
> aio_max_nr
)
277 return ERR_PTR(-EAGAIN
);
279 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
281 return ERR_PTR(-ENOMEM
);
283 ctx
->max_reqs
= nr_events
;
284 mm
= ctx
->mm
= current
->mm
;
285 atomic_inc(&mm
->mm_count
);
287 atomic_set(&ctx
->users
, 1);
288 spin_lock_init(&ctx
->ctx_lock
);
289 spin_lock_init(&ctx
->ring_info
.ring_lock
);
290 init_waitqueue_head(&ctx
->wait
);
292 INIT_LIST_HEAD(&ctx
->active_reqs
);
293 INIT_LIST_HEAD(&ctx
->run_list
);
294 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
296 if (aio_setup_ring(ctx
) < 0)
299 /* limit the number of system wide aios */
301 spin_lock_bh(&aio_nr_lock
);
302 if (aio_nr
+ nr_events
> aio_max_nr
||
303 aio_nr
+ nr_events
< aio_nr
)
306 aio_nr
+= ctx
->max_reqs
;
307 spin_unlock_bh(&aio_nr_lock
);
308 if (ctx
->max_reqs
|| did_sync
)
311 /* wait for rcu callbacks to have completed before giving up */
314 ctx
->max_reqs
= nr_events
;
317 if (ctx
->max_reqs
== 0)
320 /* now link into global list. */
321 spin_lock(&mm
->ioctx_lock
);
322 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
323 spin_unlock(&mm
->ioctx_lock
);
325 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
326 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
331 return ERR_PTR(-EAGAIN
);
335 kmem_cache_free(kioctx_cachep
, ctx
);
336 ctx
= ERR_PTR(-ENOMEM
);
338 dprintk("aio: error allocating ioctx %p\n", ctx
);
343 * Cancels all outstanding aio requests on an aio context. Used
344 * when the processes owning a context have all exited to encourage
345 * the rapid destruction of the kioctx.
347 static void aio_cancel_all(struct kioctx
*ctx
)
349 int (*cancel
)(struct kiocb
*, struct io_event
*);
351 spin_lock_irq(&ctx
->ctx_lock
);
353 while (!list_empty(&ctx
->active_reqs
)) {
354 struct list_head
*pos
= ctx
->active_reqs
.next
;
355 struct kiocb
*iocb
= list_kiocb(pos
);
356 list_del_init(&iocb
->ki_list
);
357 cancel
= iocb
->ki_cancel
;
358 kiocbSetCancelled(iocb
);
361 spin_unlock_irq(&ctx
->ctx_lock
);
363 spin_lock_irq(&ctx
->ctx_lock
);
366 spin_unlock_irq(&ctx
->ctx_lock
);
369 static void wait_for_all_aios(struct kioctx
*ctx
)
371 struct task_struct
*tsk
= current
;
372 DECLARE_WAITQUEUE(wait
, tsk
);
374 spin_lock_irq(&ctx
->ctx_lock
);
375 if (!ctx
->reqs_active
)
378 add_wait_queue(&ctx
->wait
, &wait
);
379 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
380 while (ctx
->reqs_active
) {
381 spin_unlock_irq(&ctx
->ctx_lock
);
383 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
384 spin_lock_irq(&ctx
->ctx_lock
);
386 __set_task_state(tsk
, TASK_RUNNING
);
387 remove_wait_queue(&ctx
->wait
, &wait
);
390 spin_unlock_irq(&ctx
->ctx_lock
);
393 /* wait_on_sync_kiocb:
394 * Waits on the given sync kiocb to complete.
396 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
398 while (iocb
->ki_users
) {
399 set_current_state(TASK_UNINTERRUPTIBLE
);
404 __set_current_state(TASK_RUNNING
);
405 return iocb
->ki_user_data
;
407 EXPORT_SYMBOL(wait_on_sync_kiocb
);
409 /* exit_aio: called when the last user of mm goes away. At this point,
410 * there is no way for any new requests to be submited or any of the
411 * io_* syscalls to be called on the context. However, there may be
412 * outstanding requests which hold references to the context; as they
413 * go away, they will call put_ioctx and release any pinned memory
414 * associated with the request (held via struct page * references).
416 void exit_aio(struct mm_struct
*mm
)
420 while (!hlist_empty(&mm
->ioctx_list
)) {
421 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
422 hlist_del_rcu(&ctx
->list
);
426 wait_for_all_aios(ctx
);
428 * Ensure we don't leave the ctx on the aio_wq
430 cancel_work_sync(&ctx
->wq
.work
);
432 if (1 != atomic_read(&ctx
->users
))
434 "exit_aio:ioctx still alive: %d %d %d\n",
435 atomic_read(&ctx
->users
), ctx
->dead
,
442 * Allocate a slot for an aio request. Increments the users count
443 * of the kioctx so that the kioctx stays around until all requests are
444 * complete. Returns NULL if no requests are free.
446 * Returns with kiocb->users set to 2. The io submit code path holds
447 * an extra reference while submitting the i/o.
448 * This prevents races between the aio code path referencing the
449 * req (after submitting it) and aio_complete() freeing the req.
451 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
453 struct kiocb
*req
= NULL
;
454 struct aio_ring
*ring
;
457 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
465 req
->ki_cancel
= NULL
;
466 req
->ki_retry
= NULL
;
469 req
->ki_iovec
= NULL
;
470 INIT_LIST_HEAD(&req
->ki_run_list
);
471 req
->ki_eventfd
= NULL
;
473 /* Check if the completion queue has enough free space to
474 * accept an event from this io.
476 spin_lock_irq(&ctx
->ctx_lock
);
477 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
478 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
479 list_add(&req
->ki_list
, &ctx
->active_reqs
);
483 kunmap_atomic(ring
, KM_USER0
);
484 spin_unlock_irq(&ctx
->ctx_lock
);
487 kmem_cache_free(kiocb_cachep
, req
);
494 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
497 /* Handle a potential starvation case -- should be exceedingly rare as
498 * requests will be stuck on fput_head only if the aio_fput_routine is
499 * delayed and the requests were the last user of the struct file.
501 req
= __aio_get_req(ctx
);
502 if (unlikely(NULL
== req
)) {
503 aio_fput_routine(NULL
);
504 req
= __aio_get_req(ctx
);
509 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
511 assert_spin_locked(&ctx
->ctx_lock
);
513 if (req
->ki_eventfd
!= NULL
)
514 eventfd_ctx_put(req
->ki_eventfd
);
517 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
518 kfree(req
->ki_iovec
);
519 kmem_cache_free(kiocb_cachep
, req
);
522 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
523 wake_up_all(&ctx
->wait
);
526 static void aio_fput_routine(struct work_struct
*data
)
528 spin_lock_irq(&fput_lock
);
529 while (likely(!list_empty(&fput_head
))) {
530 struct kiocb
*req
= list_kiocb(fput_head
.next
);
531 struct kioctx
*ctx
= req
->ki_ctx
;
533 list_del(&req
->ki_list
);
534 spin_unlock_irq(&fput_lock
);
536 /* Complete the fput(s) */
537 if (req
->ki_filp
!= NULL
)
540 /* Link the iocb into the context's free list */
541 spin_lock_irq(&ctx
->ctx_lock
);
542 really_put_req(ctx
, req
);
543 spin_unlock_irq(&ctx
->ctx_lock
);
546 spin_lock_irq(&fput_lock
);
548 spin_unlock_irq(&fput_lock
);
552 * Returns true if this put was the last user of the request.
554 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
556 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
557 req
, atomic_long_read(&req
->ki_filp
->f_count
));
559 assert_spin_locked(&ctx
->ctx_lock
);
562 BUG_ON(req
->ki_users
< 0);
563 if (likely(req
->ki_users
))
565 list_del(&req
->ki_list
); /* remove from active_reqs */
566 req
->ki_cancel
= NULL
;
567 req
->ki_retry
= NULL
;
570 * Try to optimize the aio and eventfd file* puts, by avoiding to
571 * schedule work in case it is not final fput() time. In normal cases,
572 * we would not be holding the last reference to the file*, so
573 * this function will be executed w/out any aio kthread wakeup.
575 if (unlikely(!fput_atomic(req
->ki_filp
))) {
577 spin_lock(&fput_lock
);
578 list_add(&req
->ki_list
, &fput_head
);
579 spin_unlock(&fput_lock
);
580 schedule_work(&fput_work
);
583 really_put_req(ctx
, req
);
589 * Returns true if this put was the last user of the kiocb,
590 * false if the request is still in use.
592 int aio_put_req(struct kiocb
*req
)
594 struct kioctx
*ctx
= req
->ki_ctx
;
596 spin_lock_irq(&ctx
->ctx_lock
);
597 ret
= __aio_put_req(ctx
, req
);
598 spin_unlock_irq(&ctx
->ctx_lock
);
601 EXPORT_SYMBOL(aio_put_req
);
603 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
605 struct mm_struct
*mm
= current
->mm
;
606 struct kioctx
*ctx
, *ret
= NULL
;
607 struct hlist_node
*n
;
611 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
613 * RCU protects us against accessing freed memory but
614 * we have to be careful not to get a reference when the
615 * reference count already dropped to 0 (ctx->dead test
616 * is unreliable because of races).
618 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
&& try_get_ioctx(ctx
)){
629 * Queue up a kiocb to be retried. Assumes that the kiocb
630 * has already been marked as kicked, and places it on
631 * the retry run list for the corresponding ioctx, if it
632 * isn't already queued. Returns 1 if it actually queued
633 * the kiocb (to tell the caller to activate the work
634 * queue to process it), or 0, if it found that it was
637 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
639 struct kioctx
*ctx
= iocb
->ki_ctx
;
641 assert_spin_locked(&ctx
->ctx_lock
);
643 if (list_empty(&iocb
->ki_run_list
)) {
644 list_add_tail(&iocb
->ki_run_list
,
652 * This is the core aio execution routine. It is
653 * invoked both for initial i/o submission and
654 * subsequent retries via the aio_kick_handler.
655 * Expects to be invoked with iocb->ki_ctx->lock
656 * already held. The lock is released and reacquired
657 * as needed during processing.
659 * Calls the iocb retry method (already setup for the
660 * iocb on initial submission) for operation specific
661 * handling, but takes care of most of common retry
662 * execution details for a given iocb. The retry method
663 * needs to be non-blocking as far as possible, to avoid
664 * holding up other iocbs waiting to be serviced by the
665 * retry kernel thread.
667 * The trickier parts in this code have to do with
668 * ensuring that only one retry instance is in progress
669 * for a given iocb at any time. Providing that guarantee
670 * simplifies the coding of individual aio operations as
671 * it avoids various potential races.
673 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
675 struct kioctx
*ctx
= iocb
->ki_ctx
;
676 ssize_t (*retry
)(struct kiocb
*);
679 if (!(retry
= iocb
->ki_retry
)) {
680 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
685 * We don't want the next retry iteration for this
686 * operation to start until this one has returned and
687 * updated the iocb state. However, wait_queue functions
688 * can trigger a kick_iocb from interrupt context in the
689 * meantime, indicating that data is available for the next
690 * iteration. We want to remember that and enable the
691 * next retry iteration _after_ we are through with
694 * So, in order to be able to register a "kick", but
695 * prevent it from being queued now, we clear the kick
696 * flag, but make the kick code *think* that the iocb is
697 * still on the run list until we are actually done.
698 * When we are done with this iteration, we check if
699 * the iocb was kicked in the meantime and if so, queue
703 kiocbClearKicked(iocb
);
706 * This is so that aio_complete knows it doesn't need to
707 * pull the iocb off the run list (We can't just call
708 * INIT_LIST_HEAD because we don't want a kick_iocb to
709 * queue this on the run list yet)
711 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
712 spin_unlock_irq(&ctx
->ctx_lock
);
714 /* Quit retrying if the i/o has been cancelled */
715 if (kiocbIsCancelled(iocb
)) {
717 aio_complete(iocb
, ret
, 0);
718 /* must not access the iocb after this */
723 * Now we are all set to call the retry method in async
728 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
730 * There's no easy way to restart the syscall since other AIO's
731 * may be already running. Just fail this IO with EINTR.
733 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
734 ret
== -ERESTARTNOHAND
|| ret
== -ERESTART_RESTARTBLOCK
))
736 aio_complete(iocb
, ret
, 0);
739 spin_lock_irq(&ctx
->ctx_lock
);
741 if (-EIOCBRETRY
== ret
) {
743 * OK, now that we are done with this iteration
744 * and know that there is more left to go,
745 * this is where we let go so that a subsequent
746 * "kick" can start the next iteration
749 /* will make __queue_kicked_iocb succeed from here on */
750 INIT_LIST_HEAD(&iocb
->ki_run_list
);
751 /* we must queue the next iteration ourselves, if it
752 * has already been kicked */
753 if (kiocbIsKicked(iocb
)) {
754 __queue_kicked_iocb(iocb
);
757 * __queue_kicked_iocb will always return 1 here, because
758 * iocb->ki_run_list is empty at this point so it should
759 * be safe to unconditionally queue the context into the
770 * Process all pending retries queued on the ioctx
772 * Assumes it is operating within the aio issuer's mm
775 static int __aio_run_iocbs(struct kioctx
*ctx
)
778 struct list_head run_list
;
780 assert_spin_locked(&ctx
->ctx_lock
);
782 list_replace_init(&ctx
->run_list
, &run_list
);
783 while (!list_empty(&run_list
)) {
784 iocb
= list_entry(run_list
.next
, struct kiocb
,
786 list_del(&iocb
->ki_run_list
);
788 * Hold an extra reference while retrying i/o.
790 iocb
->ki_users
++; /* grab extra reference */
792 __aio_put_req(ctx
, iocb
);
794 if (!list_empty(&ctx
->run_list
))
799 static void aio_queue_work(struct kioctx
* ctx
)
801 unsigned long timeout
;
803 * if someone is waiting, get the work started right
804 * away, otherwise, use a longer delay
807 if (waitqueue_active(&ctx
->wait
))
811 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
816 * Process all pending retries queued on the ioctx
817 * run list, and keep running them until the list
819 * Assumes it is operating within the aio issuer's mm context.
821 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
823 spin_lock_irq(&ctx
->ctx_lock
);
824 while (__aio_run_iocbs(ctx
))
826 spin_unlock_irq(&ctx
->ctx_lock
);
831 * Work queue handler triggered to process pending
832 * retries on an ioctx. Takes on the aio issuer's
833 * mm context before running the iocbs, so that
834 * copy_xxx_user operates on the issuer's address
836 * Run on aiod's context.
838 static void aio_kick_handler(struct work_struct
*work
)
840 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
841 mm_segment_t oldfs
= get_fs();
842 struct mm_struct
*mm
;
847 spin_lock_irq(&ctx
->ctx_lock
);
848 requeue
=__aio_run_iocbs(ctx
);
850 spin_unlock_irq(&ctx
->ctx_lock
);
854 * we're in a worker thread already, don't use queue_delayed_work,
857 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
862 * Called by kick_iocb to queue the kiocb for retry
863 * and if required activate the aio work queue to process
866 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
868 struct kioctx
*ctx
= iocb
->ki_ctx
;
872 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
873 /* set this inside the lock so that we can't race with aio_run_iocb()
874 * testing it and putting the iocb on the run list under the lock */
875 if (!kiocbTryKick(iocb
))
876 run
= __queue_kicked_iocb(iocb
);
877 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
884 * Called typically from a wait queue callback context
885 * to trigger a retry of the iocb.
886 * The retry is usually executed by aio workqueue
887 * threads (See aio_kick_handler).
889 void kick_iocb(struct kiocb
*iocb
)
891 /* sync iocbs are easy: they can only ever be executing from a
893 if (is_sync_kiocb(iocb
)) {
894 kiocbSetKicked(iocb
);
895 wake_up_process(iocb
->ki_obj
.tsk
);
899 try_queue_kicked_iocb(iocb
);
901 EXPORT_SYMBOL(kick_iocb
);
904 * Called when the io request on the given iocb is complete.
905 * Returns true if this is the last user of the request. The
906 * only other user of the request can be the cancellation code.
908 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
910 struct kioctx
*ctx
= iocb
->ki_ctx
;
911 struct aio_ring_info
*info
;
912 struct aio_ring
*ring
;
913 struct io_event
*event
;
919 * Special case handling for sync iocbs:
920 * - events go directly into the iocb for fast handling
921 * - the sync task with the iocb in its stack holds the single iocb
922 * ref, no other paths have a way to get another ref
923 * - the sync task helpfully left a reference to itself in the iocb
925 if (is_sync_kiocb(iocb
)) {
926 BUG_ON(iocb
->ki_users
!= 1);
927 iocb
->ki_user_data
= res
;
929 wake_up_process(iocb
->ki_obj
.tsk
);
933 info
= &ctx
->ring_info
;
935 /* add a completion event to the ring buffer.
936 * must be done holding ctx->ctx_lock to prevent
937 * other code from messing with the tail
938 * pointer since we might be called from irq
941 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
943 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
944 list_del_init(&iocb
->ki_run_list
);
947 * cancelled requests don't get events, userland was given one
948 * when the event got cancelled.
950 if (kiocbIsCancelled(iocb
))
953 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
956 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
957 if (++tail
>= info
->nr
)
960 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
961 event
->data
= iocb
->ki_user_data
;
965 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
966 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
969 /* after flagging the request as done, we
970 * must never even look at it again
972 smp_wmb(); /* make event visible before updating tail */
977 put_aio_ring_event(event
, KM_IRQ0
);
978 kunmap_atomic(ring
, KM_IRQ1
);
980 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
983 * Check if the user asked us to deliver the result through an
984 * eventfd. The eventfd_signal() function is safe to be called
987 if (iocb
->ki_eventfd
!= NULL
)
988 eventfd_signal(iocb
->ki_eventfd
, 1);
991 /* everything turned out well, dispose of the aiocb. */
992 ret
= __aio_put_req(ctx
, iocb
);
995 * We have to order our ring_info tail store above and test
996 * of the wait list below outside the wait lock. This is
997 * like in wake_up_bit() where clearing a bit has to be
998 * ordered with the unlocked test.
1002 if (waitqueue_active(&ctx
->wait
))
1003 wake_up(&ctx
->wait
);
1005 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1008 EXPORT_SYMBOL(aio_complete
);
1011 * Pull an event off of the ioctx's event ring. Returns the number of
1012 * events fetched (0 or 1 ;-)
1013 * FIXME: make this use cmpxchg.
1014 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1016 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1018 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1019 struct aio_ring
*ring
;
1023 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1024 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1025 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1026 (unsigned long)ring
->nr
);
1028 if (ring
->head
== ring
->tail
)
1031 spin_lock(&info
->ring_lock
);
1033 head
= ring
->head
% info
->nr
;
1034 if (head
!= ring
->tail
) {
1035 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1037 head
= (head
+ 1) % info
->nr
;
1038 smp_mb(); /* finish reading the event before updatng the head */
1041 put_aio_ring_event(evp
, KM_USER1
);
1043 spin_unlock(&info
->ring_lock
);
1046 kunmap_atomic(ring
, KM_USER0
);
1047 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1048 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1052 struct aio_timeout
{
1053 struct timer_list timer
;
1055 struct task_struct
*p
;
1058 static void timeout_func(unsigned long data
)
1060 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1063 wake_up_process(to
->p
);
1066 static inline void init_timeout(struct aio_timeout
*to
)
1068 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1073 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1074 const struct timespec
*ts
)
1076 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1077 if (time_after(to
->timer
.expires
, jiffies
))
1078 add_timer(&to
->timer
);
1083 static inline void clear_timeout(struct aio_timeout
*to
)
1085 del_singleshot_timer_sync(&to
->timer
);
1088 static int read_events(struct kioctx
*ctx
,
1089 long min_nr
, long nr
,
1090 struct io_event __user
*event
,
1091 struct timespec __user
*timeout
)
1093 long start_jiffies
= jiffies
;
1094 struct task_struct
*tsk
= current
;
1095 DECLARE_WAITQUEUE(wait
, tsk
);
1098 struct io_event ent
;
1099 struct aio_timeout to
;
1102 /* needed to zero any padding within an entry (there shouldn't be
1103 * any, but C is fun!
1105 memset(&ent
, 0, sizeof(ent
));
1108 while (likely(i
< nr
)) {
1109 ret
= aio_read_evt(ctx
, &ent
);
1110 if (unlikely(ret
<= 0))
1113 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1114 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1116 /* Could we split the check in two? */
1118 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1119 dprintk("aio: lost an event due to EFAULT.\n");
1124 /* Good, event copied to userland, update counts. */
1136 /* racey check, but it gets redone */
1137 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1139 aio_run_all_iocbs(ctx
);
1147 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1150 set_timeout(start_jiffies
, &to
, &ts
);
1153 while (likely(i
< nr
)) {
1154 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1156 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1157 ret
= aio_read_evt(ctx
, &ent
);
1162 if (unlikely(ctx
->dead
)) {
1166 if (to
.timed_out
) /* Only check after read evt */
1168 /* Try to only show up in io wait if there are ops
1170 if (ctx
->reqs_active
)
1174 if (signal_pending(tsk
)) {
1178 /*ret = aio_read_evt(ctx, &ent);*/
1181 set_task_state(tsk
, TASK_RUNNING
);
1182 remove_wait_queue(&ctx
->wait
, &wait
);
1184 if (unlikely(ret
<= 0))
1188 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1189 dprintk("aio: lost an event due to EFAULT.\n");
1193 /* Good, event copied to userland, update counts. */
1201 destroy_timer_on_stack(&to
.timer
);
1205 /* Take an ioctx and remove it from the list of ioctx's. Protects
1206 * against races with itself via ->dead.
1208 static void io_destroy(struct kioctx
*ioctx
)
1210 struct mm_struct
*mm
= current
->mm
;
1213 /* delete the entry from the list is someone else hasn't already */
1214 spin_lock(&mm
->ioctx_lock
);
1215 was_dead
= ioctx
->dead
;
1217 hlist_del_rcu(&ioctx
->list
);
1218 spin_unlock(&mm
->ioctx_lock
);
1220 dprintk("aio_release(%p)\n", ioctx
);
1221 if (likely(!was_dead
))
1222 put_ioctx(ioctx
); /* twice for the list */
1224 aio_cancel_all(ioctx
);
1225 wait_for_all_aios(ioctx
);
1228 * Wake up any waiters. The setting of ctx->dead must be seen
1229 * by other CPUs at this point. Right now, we rely on the
1230 * locking done by the above calls to ensure this consistency.
1232 wake_up_all(&ioctx
->wait
);
1233 put_ioctx(ioctx
); /* once for the lookup */
1237 * Create an aio_context capable of receiving at least nr_events.
1238 * ctxp must not point to an aio_context that already exists, and
1239 * must be initialized to 0 prior to the call. On successful
1240 * creation of the aio_context, *ctxp is filled in with the resulting
1241 * handle. May fail with -EINVAL if *ctxp is not initialized,
1242 * if the specified nr_events exceeds internal limits. May fail
1243 * with -EAGAIN if the specified nr_events exceeds the user's limit
1244 * of available events. May fail with -ENOMEM if insufficient kernel
1245 * resources are available. May fail with -EFAULT if an invalid
1246 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1249 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1251 struct kioctx
*ioctx
= NULL
;
1255 ret
= get_user(ctx
, ctxp
);
1260 if (unlikely(ctx
|| nr_events
== 0)) {
1261 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1266 ioctx
= ioctx_alloc(nr_events
);
1267 ret
= PTR_ERR(ioctx
);
1268 if (!IS_ERR(ioctx
)) {
1269 ret
= put_user(ioctx
->user_id
, ctxp
);
1273 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1282 * Destroy the aio_context specified. May cancel any outstanding
1283 * AIOs and block on completion. Will fail with -ENOSYS if not
1284 * implemented. May fail with -EINVAL if the context pointed to
1287 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1289 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1290 if (likely(NULL
!= ioctx
)) {
1294 pr_debug("EINVAL: io_destroy: invalid context id\n");
1298 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1300 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1304 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1305 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1306 iov
->iov_base
+= this;
1307 iov
->iov_len
-= this;
1308 iocb
->ki_left
-= this;
1310 if (iov
->iov_len
== 0) {
1316 /* the caller should not have done more io than what fit in
1317 * the remaining iovecs */
1318 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1321 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1323 struct file
*file
= iocb
->ki_filp
;
1324 struct address_space
*mapping
= file
->f_mapping
;
1325 struct inode
*inode
= mapping
->host
;
1326 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1327 unsigned long, loff_t
);
1329 unsigned short opcode
;
1331 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1332 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1333 rw_op
= file
->f_op
->aio_read
;
1334 opcode
= IOCB_CMD_PREADV
;
1336 rw_op
= file
->f_op
->aio_write
;
1337 opcode
= IOCB_CMD_PWRITEV
;
1340 /* This matches the pread()/pwrite() logic */
1341 if (iocb
->ki_pos
< 0)
1345 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1346 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1349 aio_advance_iovec(iocb
, ret
);
1351 /* retry all partial writes. retry partial reads as long as its a
1353 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1354 (opcode
== IOCB_CMD_PWRITEV
||
1355 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1357 /* This means we must have transferred all that we could */
1358 /* No need to retry anymore */
1359 if ((ret
== 0) || (iocb
->ki_left
== 0))
1360 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1362 /* If we managed to write some out we return that, rather than
1363 * the eventual error. */
1364 if (opcode
== IOCB_CMD_PWRITEV
1365 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1366 && iocb
->ki_nbytes
- iocb
->ki_left
)
1367 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1372 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1374 struct file
*file
= iocb
->ki_filp
;
1375 ssize_t ret
= -EINVAL
;
1377 if (file
->f_op
->aio_fsync
)
1378 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1382 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1384 struct file
*file
= iocb
->ki_filp
;
1385 ssize_t ret
= -EINVAL
;
1387 if (file
->f_op
->aio_fsync
)
1388 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1392 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
, bool compat
)
1396 #ifdef CONFIG_COMPAT
1398 ret
= compat_rw_copy_check_uvector(type
,
1399 (struct compat_iovec __user
*)kiocb
->ki_buf
,
1400 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1404 ret
= rw_copy_check_uvector(type
,
1405 (struct iovec __user
*)kiocb
->ki_buf
,
1406 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1411 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1412 kiocb
->ki_cur_seg
= 0;
1413 /* ki_nbytes/left now reflect bytes instead of segs */
1414 kiocb
->ki_nbytes
= ret
;
1415 kiocb
->ki_left
= ret
;
1422 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1424 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1425 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1426 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1427 kiocb
->ki_nr_segs
= 1;
1428 kiocb
->ki_cur_seg
= 0;
1434 * Performs the initial checks and aio retry method
1435 * setup for the kiocb at the time of io submission.
1437 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
, bool compat
)
1439 struct file
*file
= kiocb
->ki_filp
;
1442 switch (kiocb
->ki_opcode
) {
1443 case IOCB_CMD_PREAD
:
1445 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1448 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1451 ret
= security_file_permission(file
, MAY_READ
);
1454 ret
= aio_setup_single_vector(kiocb
);
1458 if (file
->f_op
->aio_read
)
1459 kiocb
->ki_retry
= aio_rw_vect_retry
;
1461 case IOCB_CMD_PWRITE
:
1463 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1466 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1469 ret
= security_file_permission(file
, MAY_WRITE
);
1472 ret
= aio_setup_single_vector(kiocb
);
1476 if (file
->f_op
->aio_write
)
1477 kiocb
->ki_retry
= aio_rw_vect_retry
;
1479 case IOCB_CMD_PREADV
:
1481 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1483 ret
= security_file_permission(file
, MAY_READ
);
1486 ret
= aio_setup_vectored_rw(READ
, kiocb
, compat
);
1490 if (file
->f_op
->aio_read
)
1491 kiocb
->ki_retry
= aio_rw_vect_retry
;
1493 case IOCB_CMD_PWRITEV
:
1495 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1497 ret
= security_file_permission(file
, MAY_WRITE
);
1500 ret
= aio_setup_vectored_rw(WRITE
, kiocb
, compat
);
1504 if (file
->f_op
->aio_write
)
1505 kiocb
->ki_retry
= aio_rw_vect_retry
;
1507 case IOCB_CMD_FDSYNC
:
1509 if (file
->f_op
->aio_fsync
)
1510 kiocb
->ki_retry
= aio_fdsync
;
1512 case IOCB_CMD_FSYNC
:
1514 if (file
->f_op
->aio_fsync
)
1515 kiocb
->ki_retry
= aio_fsync
;
1518 dprintk("EINVAL: io_submit: no operation provided\n");
1522 if (!kiocb
->ki_retry
)
1528 static void aio_batch_add(struct address_space
*mapping
,
1529 struct hlist_head
*batch_hash
)
1531 struct aio_batch_entry
*abe
;
1532 struct hlist_node
*pos
;
1535 bucket
= hash_ptr(mapping
, AIO_BATCH_HASH_BITS
);
1536 hlist_for_each_entry(abe
, pos
, &batch_hash
[bucket
], list
) {
1537 if (abe
->mapping
== mapping
)
1541 abe
= mempool_alloc(abe_pool
, GFP_KERNEL
);
1544 * we should be using igrab here, but
1545 * we don't want to hammer on the global
1546 * inode spinlock just to take an extra
1547 * reference on a file that we must already
1548 * have a reference to.
1550 * When we're called, we always have a reference
1551 * on the file, so we must always have a reference
1552 * on the inode, so ihold() is safe here.
1554 ihold(mapping
->host
);
1555 abe
->mapping
= mapping
;
1556 hlist_add_head(&abe
->list
, &batch_hash
[bucket
]);
1560 static void aio_batch_free(struct hlist_head
*batch_hash
)
1562 struct aio_batch_entry
*abe
;
1563 struct hlist_node
*pos
, *n
;
1566 for (i
= 0; i
< AIO_BATCH_HASH_SIZE
; i
++) {
1567 hlist_for_each_entry_safe(abe
, pos
, n
, &batch_hash
[i
], list
) {
1568 blk_run_address_space(abe
->mapping
);
1569 iput(abe
->mapping
->host
);
1570 hlist_del(&abe
->list
);
1571 mempool_free(abe
, abe_pool
);
1576 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1577 struct iocb
*iocb
, struct hlist_head
*batch_hash
,
1584 /* enforce forwards compatibility on users */
1585 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1586 pr_debug("EINVAL: io_submit: reserve field set\n");
1590 /* prevent overflows */
1592 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1593 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1594 ((ssize_t
)iocb
->aio_nbytes
< 0)
1596 pr_debug("EINVAL: io_submit: overflow check\n");
1600 file
= fget(iocb
->aio_fildes
);
1601 if (unlikely(!file
))
1604 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1605 if (unlikely(!req
)) {
1609 req
->ki_filp
= file
;
1610 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1612 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1613 * instance of the file* now. The file descriptor must be
1614 * an eventfd() fd, and will be signaled for each completed
1615 * event using the eventfd_signal() function.
1617 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1618 if (IS_ERR(req
->ki_eventfd
)) {
1619 ret
= PTR_ERR(req
->ki_eventfd
);
1620 req
->ki_eventfd
= NULL
;
1625 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1626 if (unlikely(ret
)) {
1627 dprintk("EFAULT: aio_key\n");
1631 req
->ki_obj
.user
= user_iocb
;
1632 req
->ki_user_data
= iocb
->aio_data
;
1633 req
->ki_pos
= iocb
->aio_offset
;
1635 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1636 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1637 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1639 ret
= aio_setup_iocb(req
, compat
);
1644 spin_lock_irq(&ctx
->ctx_lock
);
1646 * We could have raced with io_destroy() and are currently holding a
1647 * reference to ctx which should be destroyed. We cannot submit IO
1648 * since ctx gets freed as soon as io_submit() puts its reference. The
1649 * check here is reliable: io_destroy() sets ctx->dead before waiting
1650 * for outstanding IO and the barrier between these two is realized by
1651 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1652 * increment ctx->reqs_active before checking for ctx->dead and the
1653 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1654 * don't see ctx->dead set here, io_destroy() waits for our IO to
1658 spin_unlock_irq(&ctx
->ctx_lock
);
1663 if (!list_empty(&ctx
->run_list
)) {
1664 /* drain the run list */
1665 while (__aio_run_iocbs(ctx
))
1668 spin_unlock_irq(&ctx
->ctx_lock
);
1669 if (req
->ki_opcode
== IOCB_CMD_PREAD
||
1670 req
->ki_opcode
== IOCB_CMD_PREADV
||
1671 req
->ki_opcode
== IOCB_CMD_PWRITE
||
1672 req
->ki_opcode
== IOCB_CMD_PWRITEV
)
1673 aio_batch_add(file
->f_mapping
, batch_hash
);
1675 aio_put_req(req
); /* drop extra ref to req */
1679 aio_put_req(req
); /* drop extra ref to req */
1680 aio_put_req(req
); /* drop i/o ref to req */
1684 long do_io_submit(aio_context_t ctx_id
, long nr
,
1685 struct iocb __user
*__user
*iocbpp
, bool compat
)
1690 struct hlist_head batch_hash
[AIO_BATCH_HASH_SIZE
] = { { 0, }, };
1692 if (unlikely(nr
< 0))
1695 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1696 nr
= LONG_MAX
/sizeof(*iocbpp
);
1698 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1701 ctx
= lookup_ioctx(ctx_id
);
1702 if (unlikely(!ctx
)) {
1703 pr_debug("EINVAL: io_submit: invalid context id\n");
1708 * AKPM: should this return a partial result if some of the IOs were
1709 * successfully submitted?
1711 for (i
=0; i
<nr
; i
++) {
1712 struct iocb __user
*user_iocb
;
1715 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1720 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1725 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, batch_hash
, compat
);
1729 aio_batch_free(batch_hash
);
1736 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1737 * the number of iocbs queued. May return -EINVAL if the aio_context
1738 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1739 * *iocbpp[0] is not properly initialized, if the operation specified
1740 * is invalid for the file descriptor in the iocb. May fail with
1741 * -EFAULT if any of the data structures point to invalid data. May
1742 * fail with -EBADF if the file descriptor specified in the first
1743 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1744 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1745 * fail with -ENOSYS if not implemented.
1747 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1748 struct iocb __user
* __user
*, iocbpp
)
1750 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1754 * Finds a given iocb for cancellation.
1756 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1759 struct list_head
*pos
;
1761 assert_spin_locked(&ctx
->ctx_lock
);
1763 /* TODO: use a hash or array, this sucks. */
1764 list_for_each(pos
, &ctx
->active_reqs
) {
1765 struct kiocb
*kiocb
= list_kiocb(pos
);
1766 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1773 * Attempts to cancel an iocb previously passed to io_submit. If
1774 * the operation is successfully cancelled, the resulting event is
1775 * copied into the memory pointed to by result without being placed
1776 * into the completion queue and 0 is returned. May fail with
1777 * -EFAULT if any of the data structures pointed to are invalid.
1778 * May fail with -EINVAL if aio_context specified by ctx_id is
1779 * invalid. May fail with -EAGAIN if the iocb specified was not
1780 * cancelled. Will fail with -ENOSYS if not implemented.
1782 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1783 struct io_event __user
*, result
)
1785 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1787 struct kiocb
*kiocb
;
1791 ret
= get_user(key
, &iocb
->aio_key
);
1795 ctx
= lookup_ioctx(ctx_id
);
1799 spin_lock_irq(&ctx
->ctx_lock
);
1801 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1802 if (kiocb
&& kiocb
->ki_cancel
) {
1803 cancel
= kiocb
->ki_cancel
;
1805 kiocbSetCancelled(kiocb
);
1808 spin_unlock_irq(&ctx
->ctx_lock
);
1810 if (NULL
!= cancel
) {
1811 struct io_event tmp
;
1812 pr_debug("calling cancel\n");
1813 memset(&tmp
, 0, sizeof(tmp
));
1814 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1815 tmp
.data
= kiocb
->ki_user_data
;
1816 ret
= cancel(kiocb
, &tmp
);
1818 /* Cancellation succeeded -- copy the result
1819 * into the user's buffer.
1821 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1833 * Attempts to read at least min_nr events and up to nr events from
1834 * the completion queue for the aio_context specified by ctx_id. If
1835 * it succeeds, the number of read events is returned. May fail with
1836 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1837 * out of range, if timeout is out of range. May fail with -EFAULT
1838 * if any of the memory specified is invalid. May return 0 or
1839 * < min_nr if the timeout specified by timeout has elapsed
1840 * before sufficient events are available, where timeout == NULL
1841 * specifies an infinite timeout. Note that the timeout pointed to by
1842 * timeout is relative and will be updated if not NULL and the
1843 * operation blocks. Will fail with -ENOSYS if not implemented.
1845 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1848 struct io_event __user
*, events
,
1849 struct timespec __user
*, timeout
)
1851 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1854 if (likely(ioctx
)) {
1855 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1856 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1860 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);