[PATCH] sem2mutex: misc static one-file mutexes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
blob1e70823e1cb583ea8a8ff78c66472169f0cecf96
1 /*
2 * (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be infrerred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
45 #endif
47 #define PFX "powernow-k8: "
48 #define BFX PFX "BIOS error: "
49 #define VERSION "version 1.60.1"
50 #include "powernow-k8.h"
52 /* serialize freq changes */
53 static DEFINE_MUTEX(fidvid_mutex);
55 static struct powernow_k8_data *powernow_data[NR_CPUS];
57 #ifndef CONFIG_SMP
58 static cpumask_t cpu_core_map[1] = { CPU_MASK_ALL };
59 #endif
61 /* Return a frequency in MHz, given an input fid */
62 static u32 find_freq_from_fid(u32 fid)
64 return 800 + (fid * 100);
67 /* Return a frequency in KHz, given an input fid */
68 static u32 find_khz_freq_from_fid(u32 fid)
70 return 1000 * find_freq_from_fid(fid);
73 /* Return a voltage in miliVolts, given an input vid */
74 static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
76 return 1550-vid*25;
79 /* Return the vco fid for an input fid
81 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
82 * only from corresponding high fids. This returns "high" fid corresponding to
83 * "low" one.
85 static u32 convert_fid_to_vco_fid(u32 fid)
87 if (fid < HI_FID_TABLE_BOTTOM)
88 return 8 + (2 * fid);
89 else
90 return fid;
94 * Return 1 if the pending bit is set. Unless we just instructed the processor
95 * to transition to a new state, seeing this bit set is really bad news.
97 static int pending_bit_stuck(void)
99 u32 lo, hi;
101 rdmsr(MSR_FIDVID_STATUS, lo, hi);
102 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
106 * Update the global current fid / vid values from the status msr.
107 * Returns 1 on error.
109 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
111 u32 lo, hi;
112 u32 i = 0;
114 do {
115 if (i++ > 10000) {
116 dprintk("detected change pending stuck\n");
117 return 1;
119 rdmsr(MSR_FIDVID_STATUS, lo, hi);
120 } while (lo & MSR_S_LO_CHANGE_PENDING);
122 data->currvid = hi & MSR_S_HI_CURRENT_VID;
123 data->currfid = lo & MSR_S_LO_CURRENT_FID;
125 return 0;
128 /* the isochronous relief time */
129 static void count_off_irt(struct powernow_k8_data *data)
131 udelay((1 << data->irt) * 10);
132 return;
135 /* the voltage stabalization time */
136 static void count_off_vst(struct powernow_k8_data *data)
138 udelay(data->vstable * VST_UNITS_20US);
139 return;
142 /* need to init the control msr to a safe value (for each cpu) */
143 static void fidvid_msr_init(void)
145 u32 lo, hi;
146 u8 fid, vid;
148 rdmsr(MSR_FIDVID_STATUS, lo, hi);
149 vid = hi & MSR_S_HI_CURRENT_VID;
150 fid = lo & MSR_S_LO_CURRENT_FID;
151 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
152 hi = MSR_C_HI_STP_GNT_BENIGN;
153 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
154 wrmsr(MSR_FIDVID_CTL, lo, hi);
158 /* write the new fid value along with the other control fields to the msr */
159 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
161 u32 lo;
162 u32 savevid = data->currvid;
163 u32 i = 0;
165 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
166 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
167 return 1;
170 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
172 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
173 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
175 do {
176 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
177 if (i++ > 100) {
178 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
179 return 1;
181 } while (query_current_values_with_pending_wait(data));
183 count_off_irt(data);
185 if (savevid != data->currvid) {
186 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
187 savevid, data->currvid);
188 return 1;
191 if (fid != data->currfid) {
192 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
193 data->currfid);
194 return 1;
197 return 0;
200 /* Write a new vid to the hardware */
201 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
203 u32 lo;
204 u32 savefid = data->currfid;
205 int i = 0;
207 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
208 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
209 return 1;
212 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
214 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
215 vid, lo, STOP_GRANT_5NS);
217 do {
218 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
219 if (i++ > 100) {
220 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
221 return 1;
223 } while (query_current_values_with_pending_wait(data));
225 if (savefid != data->currfid) {
226 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
227 savefid, data->currfid);
228 return 1;
231 if (vid != data->currvid) {
232 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
233 data->currvid);
234 return 1;
237 return 0;
241 * Reduce the vid by the max of step or reqvid.
242 * Decreasing vid codes represent increasing voltages:
243 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
245 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
247 if ((data->currvid - reqvid) > step)
248 reqvid = data->currvid - step;
250 if (write_new_vid(data, reqvid))
251 return 1;
253 count_off_vst(data);
255 return 0;
258 /* Change the fid and vid, by the 3 phases. */
259 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
261 if (core_voltage_pre_transition(data, reqvid))
262 return 1;
264 if (core_frequency_transition(data, reqfid))
265 return 1;
267 if (core_voltage_post_transition(data, reqvid))
268 return 1;
270 if (query_current_values_with_pending_wait(data))
271 return 1;
273 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
274 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
275 smp_processor_id(),
276 reqfid, reqvid, data->currfid, data->currvid);
277 return 1;
280 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
281 smp_processor_id(), data->currfid, data->currvid);
283 return 0;
286 /* Phase 1 - core voltage transition ... setup voltage */
287 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
289 u32 rvosteps = data->rvo;
290 u32 savefid = data->currfid;
291 u32 maxvid, lo;
293 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
294 smp_processor_id(),
295 data->currfid, data->currvid, reqvid, data->rvo);
297 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
298 maxvid = 0x1f & (maxvid >> 16);
299 dprintk("ph1 maxvid=0x%x\n", maxvid);
300 if (reqvid < maxvid) /* lower numbers are higher voltages */
301 reqvid = maxvid;
303 while (data->currvid > reqvid) {
304 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
305 data->currvid, reqvid);
306 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
307 return 1;
310 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
311 if (data->currvid == maxvid) {
312 rvosteps = 0;
313 } else {
314 dprintk("ph1: changing vid for rvo, req 0x%x\n",
315 data->currvid - 1);
316 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
317 return 1;
318 rvosteps--;
322 if (query_current_values_with_pending_wait(data))
323 return 1;
325 if (savefid != data->currfid) {
326 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
327 return 1;
330 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
331 data->currfid, data->currvid);
333 return 0;
336 /* Phase 2 - core frequency transition */
337 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
339 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
341 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
342 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
343 reqfid, data->currfid);
344 return 1;
347 if (data->currfid == reqfid) {
348 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
349 return 0;
352 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
353 smp_processor_id(),
354 data->currfid, data->currvid, reqfid);
356 vcoreqfid = convert_fid_to_vco_fid(reqfid);
357 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
358 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
359 : vcoreqfid - vcocurrfid;
361 while (vcofiddiff > 2) {
362 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
364 if (reqfid > data->currfid) {
365 if (data->currfid > LO_FID_TABLE_TOP) {
366 if (write_new_fid(data, data->currfid + fid_interval)) {
367 return 1;
369 } else {
370 if (write_new_fid
371 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
372 return 1;
375 } else {
376 if (write_new_fid(data, data->currfid - fid_interval))
377 return 1;
380 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
381 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
382 : vcoreqfid - vcocurrfid;
385 if (write_new_fid(data, reqfid))
386 return 1;
388 if (query_current_values_with_pending_wait(data))
389 return 1;
391 if (data->currfid != reqfid) {
392 printk(KERN_ERR PFX
393 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
394 data->currfid, reqfid);
395 return 1;
398 if (savevid != data->currvid) {
399 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
400 savevid, data->currvid);
401 return 1;
404 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
405 data->currfid, data->currvid);
407 return 0;
410 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
411 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
413 u32 savefid = data->currfid;
414 u32 savereqvid = reqvid;
416 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
417 smp_processor_id(),
418 data->currfid, data->currvid);
420 if (reqvid != data->currvid) {
421 if (write_new_vid(data, reqvid))
422 return 1;
424 if (savefid != data->currfid) {
425 printk(KERN_ERR PFX
426 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
427 savefid, data->currfid);
428 return 1;
431 if (data->currvid != reqvid) {
432 printk(KERN_ERR PFX
433 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
434 reqvid, data->currvid);
435 return 1;
439 if (query_current_values_with_pending_wait(data))
440 return 1;
442 if (savereqvid != data->currvid) {
443 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
444 return 1;
447 if (savefid != data->currfid) {
448 dprintk("ph3 failed, currfid changed 0x%x\n",
449 data->currfid);
450 return 1;
453 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
454 data->currfid, data->currvid);
456 return 0;
459 static int check_supported_cpu(unsigned int cpu)
461 cpumask_t oldmask = CPU_MASK_ALL;
462 u32 eax, ebx, ecx, edx;
463 unsigned int rc = 0;
465 oldmask = current->cpus_allowed;
466 set_cpus_allowed(current, cpumask_of_cpu(cpu));
468 if (smp_processor_id() != cpu) {
469 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
470 goto out;
473 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
474 goto out;
476 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
477 if ((eax & CPUID_XFAM) != CPUID_XFAM_K8)
478 goto out;
480 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
481 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) {
482 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
483 goto out;
486 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
487 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
488 printk(KERN_INFO PFX
489 "No frequency change capabilities detected\n");
490 goto out;
493 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
494 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
495 printk(KERN_INFO PFX "Power state transitions not supported\n");
496 goto out;
499 rc = 1;
501 out:
502 set_cpus_allowed(current, oldmask);
503 return rc;
506 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
508 unsigned int j;
509 u8 lastfid = 0xff;
511 for (j = 0; j < data->numps; j++) {
512 if (pst[j].vid > LEAST_VID) {
513 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
514 return -EINVAL;
516 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
517 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
518 return -ENODEV;
520 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
521 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
522 return -ENODEV;
524 if (pst[j].fid > MAX_FID) {
525 printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
526 return -ENODEV;
528 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
529 /* Only first fid is allowed to be in "low" range */
530 printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
531 return -EINVAL;
533 if (pst[j].fid < lastfid)
534 lastfid = pst[j].fid;
536 if (lastfid & 1) {
537 printk(KERN_ERR BFX "lastfid invalid\n");
538 return -EINVAL;
540 if (lastfid > LO_FID_TABLE_TOP)
541 printk(KERN_INFO BFX "first fid not from lo freq table\n");
543 return 0;
546 static void print_basics(struct powernow_k8_data *data)
548 int j;
549 for (j = 0; j < data->numps; j++) {
550 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
551 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
552 data->powernow_table[j].index & 0xff,
553 data->powernow_table[j].frequency/1000,
554 data->powernow_table[j].index >> 8,
555 find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
557 if (data->batps)
558 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
561 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
563 struct cpufreq_frequency_table *powernow_table;
564 unsigned int j;
566 if (data->batps) { /* use ACPI support to get full speed on mains power */
567 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
568 data->numps = data->batps;
571 for ( j=1; j<data->numps; j++ ) {
572 if (pst[j-1].fid >= pst[j].fid) {
573 printk(KERN_ERR PFX "PST out of sequence\n");
574 return -EINVAL;
578 if (data->numps < 2) {
579 printk(KERN_ERR PFX "no p states to transition\n");
580 return -ENODEV;
583 if (check_pst_table(data, pst, maxvid))
584 return -EINVAL;
586 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
587 * (data->numps + 1)), GFP_KERNEL);
588 if (!powernow_table) {
589 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
590 return -ENOMEM;
593 for (j = 0; j < data->numps; j++) {
594 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
595 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
596 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
598 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
599 powernow_table[data->numps].index = 0;
601 if (query_current_values_with_pending_wait(data)) {
602 kfree(powernow_table);
603 return -EIO;
606 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
607 data->powernow_table = powernow_table;
608 print_basics(data);
610 for (j = 0; j < data->numps; j++)
611 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
612 return 0;
614 dprintk("currfid/vid do not match PST, ignoring\n");
615 return 0;
618 /* Find and validate the PSB/PST table in BIOS. */
619 static int find_psb_table(struct powernow_k8_data *data)
621 struct psb_s *psb;
622 unsigned int i;
623 u32 mvs;
624 u8 maxvid;
625 u32 cpst = 0;
626 u32 thiscpuid;
628 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
629 /* Scan BIOS looking for the signature. */
630 /* It can not be at ffff0 - it is too big. */
632 psb = phys_to_virt(i);
633 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
634 continue;
636 dprintk("found PSB header at 0x%p\n", psb);
638 dprintk("table vers: 0x%x\n", psb->tableversion);
639 if (psb->tableversion != PSB_VERSION_1_4) {
640 printk(KERN_ERR BFX "PSB table is not v1.4\n");
641 return -ENODEV;
644 dprintk("flags: 0x%x\n", psb->flags1);
645 if (psb->flags1) {
646 printk(KERN_ERR BFX "unknown flags\n");
647 return -ENODEV;
650 data->vstable = psb->vstable;
651 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
653 dprintk("flags2: 0x%x\n", psb->flags2);
654 data->rvo = psb->flags2 & 3;
655 data->irt = ((psb->flags2) >> 2) & 3;
656 mvs = ((psb->flags2) >> 4) & 3;
657 data->vidmvs = 1 << mvs;
658 data->batps = ((psb->flags2) >> 6) & 3;
660 dprintk("ramp voltage offset: %d\n", data->rvo);
661 dprintk("isochronous relief time: %d\n", data->irt);
662 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
664 dprintk("numpst: 0x%x\n", psb->num_tables);
665 cpst = psb->num_tables;
666 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
667 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
668 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
669 cpst = 1;
672 if (cpst != 1) {
673 printk(KERN_ERR BFX "numpst must be 1\n");
674 return -ENODEV;
677 data->plllock = psb->plllocktime;
678 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
679 dprintk("maxfid: 0x%x\n", psb->maxfid);
680 dprintk("maxvid: 0x%x\n", psb->maxvid);
681 maxvid = psb->maxvid;
683 data->numps = psb->numps;
684 dprintk("numpstates: 0x%x\n", data->numps);
685 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
688 * If you see this message, complain to BIOS manufacturer. If
689 * he tells you "we do not support Linux" or some similar
690 * nonsense, remember that Windows 2000 uses the same legacy
691 * mechanism that the old Linux PSB driver uses. Tell them it
692 * is broken with Windows 2000.
694 * The reference to the AMD documentation is chapter 9 in the
695 * BIOS and Kernel Developer's Guide, which is available on
696 * www.amd.com
698 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
699 return -ENODEV;
702 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
703 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
705 if (!data->acpi_data.state_count)
706 return;
708 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
709 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
710 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
711 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
712 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
713 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
716 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
718 int i;
719 int cntlofreq = 0;
720 struct cpufreq_frequency_table *powernow_table;
722 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
723 dprintk("register performance failed: bad ACPI data\n");
724 return -EIO;
727 /* verify the data contained in the ACPI structures */
728 if (data->acpi_data.state_count <= 1) {
729 dprintk("No ACPI P-States\n");
730 goto err_out;
733 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
734 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
735 dprintk("Invalid control/status registers (%x - %x)\n",
736 data->acpi_data.control_register.space_id,
737 data->acpi_data.status_register.space_id);
738 goto err_out;
741 /* fill in data->powernow_table */
742 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
743 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
744 if (!powernow_table) {
745 dprintk("powernow_table memory alloc failure\n");
746 goto err_out;
749 for (i = 0; i < data->acpi_data.state_count; i++) {
750 u32 fid;
751 u32 vid;
753 if (data->exttype) {
754 fid = data->acpi_data.states[i].status & FID_MASK;
755 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
756 } else {
757 fid = data->acpi_data.states[i].control & FID_MASK;
758 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
761 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
763 powernow_table[i].index = fid; /* lower 8 bits */
764 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
765 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
767 /* verify frequency is OK */
768 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
769 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
770 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
771 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
772 continue;
775 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
776 if (vid == VID_OFF) {
777 dprintk("invalid vid %u, ignoring\n", vid);
778 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
779 continue;
782 /* verify only 1 entry from the lo frequency table */
783 if (fid < HI_FID_TABLE_BOTTOM) {
784 if (cntlofreq) {
785 /* if both entries are the same, ignore this one ... */
786 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
787 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
788 printk(KERN_ERR PFX "Too many lo freq table entries\n");
789 goto err_out_mem;
792 dprintk("double low frequency table entry, ignoring it.\n");
793 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
794 continue;
795 } else
796 cntlofreq = i;
799 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
800 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
801 powernow_table[i].frequency,
802 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
803 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
804 continue;
808 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
809 powernow_table[data->acpi_data.state_count].index = 0;
810 data->powernow_table = powernow_table;
812 /* fill in data */
813 data->numps = data->acpi_data.state_count;
814 print_basics(data);
815 powernow_k8_acpi_pst_values(data, 0);
817 /* notify BIOS that we exist */
818 acpi_processor_notify_smm(THIS_MODULE);
820 return 0;
822 err_out_mem:
823 kfree(powernow_table);
825 err_out:
826 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
828 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
829 data->acpi_data.state_count = 0;
831 return -ENODEV;
834 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
836 if (data->acpi_data.state_count)
837 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
840 #else
841 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
842 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
843 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
844 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
846 /* Take a frequency, and issue the fid/vid transition command */
847 static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
849 u32 fid;
850 u32 vid;
851 int res, i;
852 struct cpufreq_freqs freqs;
854 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
856 /* fid are the lower 8 bits of the index we stored into
857 * the cpufreq frequency table in find_psb_table, vid are
858 * the upper 8 bits.
861 fid = data->powernow_table[index].index & 0xFF;
862 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
864 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
866 if (query_current_values_with_pending_wait(data))
867 return 1;
869 if ((data->currvid == vid) && (data->currfid == fid)) {
870 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
871 fid, vid);
872 return 0;
875 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
876 printk(KERN_ERR PFX
877 "ignoring illegal change in lo freq table-%x to 0x%x\n",
878 data->currfid, fid);
879 return 1;
882 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
883 smp_processor_id(), fid, vid);
885 freqs.cpu = data->cpu;
886 freqs.old = find_khz_freq_from_fid(data->currfid);
887 freqs.new = find_khz_freq_from_fid(fid);
888 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
889 freqs.cpu = i;
890 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
893 res = transition_fid_vid(data, fid, vid);
895 freqs.new = find_khz_freq_from_fid(data->currfid);
896 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
897 freqs.cpu = i;
898 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
900 return res;
903 /* Driver entry point to switch to the target frequency */
904 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
906 cpumask_t oldmask = CPU_MASK_ALL;
907 struct powernow_k8_data *data = powernow_data[pol->cpu];
908 u32 checkfid = data->currfid;
909 u32 checkvid = data->currvid;
910 unsigned int newstate;
911 int ret = -EIO;
913 /* only run on specific CPU from here on */
914 oldmask = current->cpus_allowed;
915 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
917 if (smp_processor_id() != pol->cpu) {
918 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
919 goto err_out;
922 if (pending_bit_stuck()) {
923 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
924 goto err_out;
927 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
928 pol->cpu, targfreq, pol->min, pol->max, relation);
930 if (query_current_values_with_pending_wait(data)) {
931 ret = -EIO;
932 goto err_out;
935 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
936 data->currfid, data->currvid);
938 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
939 printk(KERN_INFO PFX
940 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
941 checkfid, data->currfid, checkvid, data->currvid);
944 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
945 goto err_out;
947 mutex_lock(&fidvid_mutex);
949 powernow_k8_acpi_pst_values(data, newstate);
951 if (transition_frequency(data, newstate)) {
952 printk(KERN_ERR PFX "transition frequency failed\n");
953 ret = 1;
954 mutex_unlock(&fidvid_mutex);
955 goto err_out;
957 mutex_unlock(&fidvid_mutex);
959 pol->cur = find_khz_freq_from_fid(data->currfid);
960 ret = 0;
962 err_out:
963 set_cpus_allowed(current, oldmask);
964 return ret;
967 /* Driver entry point to verify the policy and range of frequencies */
968 static int powernowk8_verify(struct cpufreq_policy *pol)
970 struct powernow_k8_data *data = powernow_data[pol->cpu];
972 return cpufreq_frequency_table_verify(pol, data->powernow_table);
975 /* per CPU init entry point to the driver */
976 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
978 struct powernow_k8_data *data;
979 cpumask_t oldmask = CPU_MASK_ALL;
980 int rc, i;
982 if (!cpu_online(pol->cpu))
983 return -ENODEV;
985 if (!check_supported_cpu(pol->cpu))
986 return -ENODEV;
988 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
989 if (!data) {
990 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
991 return -ENOMEM;
994 data->cpu = pol->cpu;
996 if (powernow_k8_cpu_init_acpi(data)) {
998 * Use the PSB BIOS structure. This is only availabe on
999 * an UP version, and is deprecated by AMD.
1002 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
1003 printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1004 kfree(data);
1005 return -ENODEV;
1007 if (pol->cpu != 0) {
1008 printk(KERN_ERR PFX "init not cpu 0\n");
1009 kfree(data);
1010 return -ENODEV;
1012 rc = find_psb_table(data);
1013 if (rc) {
1014 kfree(data);
1015 return -ENODEV;
1019 /* only run on specific CPU from here on */
1020 oldmask = current->cpus_allowed;
1021 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1023 if (smp_processor_id() != pol->cpu) {
1024 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1025 goto err_out;
1028 if (pending_bit_stuck()) {
1029 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1030 goto err_out;
1033 if (query_current_values_with_pending_wait(data))
1034 goto err_out;
1036 fidvid_msr_init();
1038 /* run on any CPU again */
1039 set_cpus_allowed(current, oldmask);
1041 pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1042 pol->cpus = cpu_core_map[pol->cpu];
1044 /* Take a crude guess here.
1045 * That guess was in microseconds, so multiply with 1000 */
1046 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1047 + (3 * (1 << data->irt) * 10)) * 1000;
1049 pol->cur = find_khz_freq_from_fid(data->currfid);
1050 dprintk("policy current frequency %d kHz\n", pol->cur);
1052 /* min/max the cpu is capable of */
1053 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1054 printk(KERN_ERR PFX "invalid powernow_table\n");
1055 powernow_k8_cpu_exit_acpi(data);
1056 kfree(data->powernow_table);
1057 kfree(data);
1058 return -EINVAL;
1061 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1063 printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1064 data->currfid, data->currvid);
1066 for_each_cpu_mask(i, cpu_core_map[pol->cpu])
1067 powernow_data[i] = data;
1069 return 0;
1071 err_out:
1072 set_cpus_allowed(current, oldmask);
1073 powernow_k8_cpu_exit_acpi(data);
1075 kfree(data);
1076 return -ENODEV;
1079 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1081 struct powernow_k8_data *data = powernow_data[pol->cpu];
1083 if (!data)
1084 return -EINVAL;
1086 powernow_k8_cpu_exit_acpi(data);
1088 cpufreq_frequency_table_put_attr(pol->cpu);
1090 kfree(data->powernow_table);
1091 kfree(data);
1093 return 0;
1096 static unsigned int powernowk8_get (unsigned int cpu)
1098 struct powernow_k8_data *data = powernow_data[cpu];
1099 cpumask_t oldmask = current->cpus_allowed;
1100 unsigned int khz = 0;
1102 set_cpus_allowed(current, cpumask_of_cpu(cpu));
1103 if (smp_processor_id() != cpu) {
1104 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1105 set_cpus_allowed(current, oldmask);
1106 return 0;
1109 if (query_current_values_with_pending_wait(data))
1110 goto out;
1112 khz = find_khz_freq_from_fid(data->currfid);
1114 out:
1115 set_cpus_allowed(current, oldmask);
1116 return khz;
1119 static struct freq_attr* powernow_k8_attr[] = {
1120 &cpufreq_freq_attr_scaling_available_freqs,
1121 NULL,
1124 static struct cpufreq_driver cpufreq_amd64_driver = {
1125 .verify = powernowk8_verify,
1126 .target = powernowk8_target,
1127 .init = powernowk8_cpu_init,
1128 .exit = __devexit_p(powernowk8_cpu_exit),
1129 .get = powernowk8_get,
1130 .name = "powernow-k8",
1131 .owner = THIS_MODULE,
1132 .attr = powernow_k8_attr,
1135 /* driver entry point for init */
1136 static int __cpuinit powernowk8_init(void)
1138 unsigned int i, supported_cpus = 0;
1140 for_each_online_cpu(i) {
1141 if (check_supported_cpu(i))
1142 supported_cpus++;
1145 if (supported_cpus == num_online_cpus()) {
1146 printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron "
1147 "processors (" VERSION ")\n", supported_cpus);
1148 return cpufreq_register_driver(&cpufreq_amd64_driver);
1151 return -ENODEV;
1154 /* driver entry point for term */
1155 static void __exit powernowk8_exit(void)
1157 dprintk("exit\n");
1159 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1162 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1163 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1164 MODULE_LICENSE("GPL");
1166 late_initcall(powernowk8_init);
1167 module_exit(powernowk8_exit);