4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
35 #define INPUT_DEVICES 256
37 static LIST_HEAD(input_dev_list
);
38 static LIST_HEAD(input_handler_list
);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex
);
48 static struct input_handler
*input_table
[8];
50 static inline int is_event_supported(unsigned int code
,
51 unsigned long *bm
, unsigned int max
)
53 return code
<= max
&& test_bit(code
, bm
);
56 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
59 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
62 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
63 return (old_val
* 3 + value
) / 4;
65 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
66 return (old_val
+ value
) / 2;
73 * Pass event first through all filters and then, if event has not been
74 * filtered out, through all open handles. This function is called with
75 * dev->event_lock held and interrupts disabled.
77 static void input_pass_event(struct input_dev
*dev
,
78 unsigned int type
, unsigned int code
, int value
)
80 struct input_handler
*handler
;
81 struct input_handle
*handle
;
85 handle
= rcu_dereference(dev
->grab
);
87 handle
->handler
->event(handle
, type
, code
, value
);
89 bool filtered
= false;
91 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
) {
95 handler
= handle
->handler
;
96 if (!handler
->filter
) {
100 handler
->event(handle
, type
, code
, value
);
102 } else if (handler
->filter(handle
, type
, code
, value
))
111 * Generate software autorepeat event. Note that we take
112 * dev->event_lock here to avoid racing with input_event
113 * which may cause keys get "stuck".
115 static void input_repeat_key(unsigned long data
)
117 struct input_dev
*dev
= (void *) data
;
120 spin_lock_irqsave(&dev
->event_lock
, flags
);
122 if (test_bit(dev
->repeat_key
, dev
->key
) &&
123 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
125 input_pass_event(dev
, EV_KEY
, dev
->repeat_key
, 2);
129 * Only send SYN_REPORT if we are not in a middle
130 * of driver parsing a new hardware packet.
131 * Otherwise assume that the driver will send
132 * SYN_REPORT once it's done.
134 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
137 if (dev
->rep
[REP_PERIOD
])
138 mod_timer(&dev
->timer
, jiffies
+
139 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
142 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
145 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
147 if (test_bit(EV_REP
, dev
->evbit
) &&
148 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
150 dev
->repeat_key
= code
;
151 mod_timer(&dev
->timer
,
152 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
156 static void input_stop_autorepeat(struct input_dev
*dev
)
158 del_timer(&dev
->timer
);
161 #define INPUT_IGNORE_EVENT 0
162 #define INPUT_PASS_TO_HANDLERS 1
163 #define INPUT_PASS_TO_DEVICE 2
164 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
166 static int input_handle_abs_event(struct input_dev
*dev
,
167 unsigned int code
, int *pval
)
172 if (code
== ABS_MT_SLOT
) {
174 * "Stage" the event; we'll flush it later, when we
175 * get actual touch data.
177 if (*pval
>= 0 && *pval
< dev
->mtsize
)
180 return INPUT_IGNORE_EVENT
;
183 is_mt_event
= code
>= ABS_MT_FIRST
&& code
<= ABS_MT_LAST
;
186 pold
= &dev
->absinfo
[code
].value
;
187 } else if (dev
->mt
) {
188 struct input_mt_slot
*mtslot
= &dev
->mt
[dev
->slot
];
189 pold
= &mtslot
->abs
[code
- ABS_MT_FIRST
];
192 * Bypass filtering for multi-touch events when
193 * not employing slots.
199 *pval
= input_defuzz_abs_event(*pval
, *pold
,
200 dev
->absinfo
[code
].fuzz
);
202 return INPUT_IGNORE_EVENT
;
207 /* Flush pending "slot" event */
208 if (is_mt_event
&& dev
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
209 input_abs_set_val(dev
, ABS_MT_SLOT
, dev
->slot
);
210 input_pass_event(dev
, EV_ABS
, ABS_MT_SLOT
, dev
->slot
);
213 return INPUT_PASS_TO_HANDLERS
;
216 static void input_handle_event(struct input_dev
*dev
,
217 unsigned int type
, unsigned int code
, int value
)
219 int disposition
= INPUT_IGNORE_EVENT
;
226 disposition
= INPUT_PASS_TO_ALL
;
232 disposition
= INPUT_PASS_TO_HANDLERS
;
237 disposition
= INPUT_PASS_TO_HANDLERS
;
243 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
244 !!test_bit(code
, dev
->key
) != value
) {
247 __change_bit(code
, dev
->key
);
249 input_start_autorepeat(dev
, code
);
251 input_stop_autorepeat(dev
);
254 disposition
= INPUT_PASS_TO_HANDLERS
;
259 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
260 !!test_bit(code
, dev
->sw
) != value
) {
262 __change_bit(code
, dev
->sw
);
263 disposition
= INPUT_PASS_TO_HANDLERS
;
268 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
269 disposition
= input_handle_abs_event(dev
, code
, &value
);
274 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
275 disposition
= INPUT_PASS_TO_HANDLERS
;
280 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
281 disposition
= INPUT_PASS_TO_ALL
;
286 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
287 !!test_bit(code
, dev
->led
) != value
) {
289 __change_bit(code
, dev
->led
);
290 disposition
= INPUT_PASS_TO_ALL
;
295 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
297 if (!!test_bit(code
, dev
->snd
) != !!value
)
298 __change_bit(code
, dev
->snd
);
299 disposition
= INPUT_PASS_TO_ALL
;
304 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
305 dev
->rep
[code
] = value
;
306 disposition
= INPUT_PASS_TO_ALL
;
312 disposition
= INPUT_PASS_TO_ALL
;
316 disposition
= INPUT_PASS_TO_ALL
;
320 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
323 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
324 dev
->event(dev
, type
, code
, value
);
326 if (disposition
& INPUT_PASS_TO_HANDLERS
)
327 input_pass_event(dev
, type
, code
, value
);
331 * input_event() - report new input event
332 * @dev: device that generated the event
333 * @type: type of the event
335 * @value: value of the event
337 * This function should be used by drivers implementing various input
338 * devices to report input events. See also input_inject_event().
340 * NOTE: input_event() may be safely used right after input device was
341 * allocated with input_allocate_device(), even before it is registered
342 * with input_register_device(), but the event will not reach any of the
343 * input handlers. Such early invocation of input_event() may be used
344 * to 'seed' initial state of a switch or initial position of absolute
347 void input_event(struct input_dev
*dev
,
348 unsigned int type
, unsigned int code
, int value
)
352 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
354 spin_lock_irqsave(&dev
->event_lock
, flags
);
355 add_input_randomness(type
, code
, value
);
356 input_handle_event(dev
, type
, code
, value
);
357 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
360 EXPORT_SYMBOL(input_event
);
363 * input_inject_event() - send input event from input handler
364 * @handle: input handle to send event through
365 * @type: type of the event
367 * @value: value of the event
369 * Similar to input_event() but will ignore event if device is
370 * "grabbed" and handle injecting event is not the one that owns
373 void input_inject_event(struct input_handle
*handle
,
374 unsigned int type
, unsigned int code
, int value
)
376 struct input_dev
*dev
= handle
->dev
;
377 struct input_handle
*grab
;
380 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
381 spin_lock_irqsave(&dev
->event_lock
, flags
);
384 grab
= rcu_dereference(dev
->grab
);
385 if (!grab
|| grab
== handle
)
386 input_handle_event(dev
, type
, code
, value
);
389 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
392 EXPORT_SYMBOL(input_inject_event
);
395 * input_alloc_absinfo - allocates array of input_absinfo structs
396 * @dev: the input device emitting absolute events
398 * If the absinfo struct the caller asked for is already allocated, this
399 * functions will not do anything.
401 void input_alloc_absinfo(struct input_dev
*dev
)
404 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(struct input_absinfo
),
407 WARN(!dev
->absinfo
, "%s(): kcalloc() failed?\n", __func__
);
409 EXPORT_SYMBOL(input_alloc_absinfo
);
411 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
412 int min
, int max
, int fuzz
, int flat
)
414 struct input_absinfo
*absinfo
;
416 input_alloc_absinfo(dev
);
420 absinfo
= &dev
->absinfo
[axis
];
421 absinfo
->minimum
= min
;
422 absinfo
->maximum
= max
;
423 absinfo
->fuzz
= fuzz
;
424 absinfo
->flat
= flat
;
426 dev
->absbit
[BIT_WORD(axis
)] |= BIT_MASK(axis
);
428 EXPORT_SYMBOL(input_set_abs_params
);
432 * input_grab_device - grabs device for exclusive use
433 * @handle: input handle that wants to own the device
435 * When a device is grabbed by an input handle all events generated by
436 * the device are delivered only to this handle. Also events injected
437 * by other input handles are ignored while device is grabbed.
439 int input_grab_device(struct input_handle
*handle
)
441 struct input_dev
*dev
= handle
->dev
;
444 retval
= mutex_lock_interruptible(&dev
->mutex
);
453 rcu_assign_pointer(dev
->grab
, handle
);
457 mutex_unlock(&dev
->mutex
);
460 EXPORT_SYMBOL(input_grab_device
);
462 static void __input_release_device(struct input_handle
*handle
)
464 struct input_dev
*dev
= handle
->dev
;
466 if (dev
->grab
== handle
) {
467 rcu_assign_pointer(dev
->grab
, NULL
);
468 /* Make sure input_pass_event() notices that grab is gone */
471 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
472 if (handle
->open
&& handle
->handler
->start
)
473 handle
->handler
->start(handle
);
478 * input_release_device - release previously grabbed device
479 * @handle: input handle that owns the device
481 * Releases previously grabbed device so that other input handles can
482 * start receiving input events. Upon release all handlers attached
483 * to the device have their start() method called so they have a change
484 * to synchronize device state with the rest of the system.
486 void input_release_device(struct input_handle
*handle
)
488 struct input_dev
*dev
= handle
->dev
;
490 mutex_lock(&dev
->mutex
);
491 __input_release_device(handle
);
492 mutex_unlock(&dev
->mutex
);
494 EXPORT_SYMBOL(input_release_device
);
497 * input_open_device - open input device
498 * @handle: handle through which device is being accessed
500 * This function should be called by input handlers when they
501 * want to start receive events from given input device.
503 int input_open_device(struct input_handle
*handle
)
505 struct input_dev
*dev
= handle
->dev
;
508 retval
= mutex_lock_interruptible(&dev
->mutex
);
512 if (dev
->going_away
) {
519 if (!dev
->users
++ && dev
->open
)
520 retval
= dev
->open(dev
);
524 if (!--handle
->open
) {
526 * Make sure we are not delivering any more events
527 * through this handle
534 mutex_unlock(&dev
->mutex
);
537 EXPORT_SYMBOL(input_open_device
);
539 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
541 struct input_dev
*dev
= handle
->dev
;
544 retval
= mutex_lock_interruptible(&dev
->mutex
);
549 retval
= dev
->flush(dev
, file
);
551 mutex_unlock(&dev
->mutex
);
554 EXPORT_SYMBOL(input_flush_device
);
557 * input_close_device - close input device
558 * @handle: handle through which device is being accessed
560 * This function should be called by input handlers when they
561 * want to stop receive events from given input device.
563 void input_close_device(struct input_handle
*handle
)
565 struct input_dev
*dev
= handle
->dev
;
567 mutex_lock(&dev
->mutex
);
569 __input_release_device(handle
);
571 if (!--dev
->users
&& dev
->close
)
574 if (!--handle
->open
) {
576 * synchronize_rcu() makes sure that input_pass_event()
577 * completed and that no more input events are delivered
578 * through this handle
583 mutex_unlock(&dev
->mutex
);
585 EXPORT_SYMBOL(input_close_device
);
588 * Simulate keyup events for all keys that are marked as pressed.
589 * The function must be called with dev->event_lock held.
591 static void input_dev_release_keys(struct input_dev
*dev
)
595 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
596 for (code
= 0; code
<= KEY_MAX
; code
++) {
597 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
598 __test_and_clear_bit(code
, dev
->key
)) {
599 input_pass_event(dev
, EV_KEY
, code
, 0);
602 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
607 * Prepare device for unregistering
609 static void input_disconnect_device(struct input_dev
*dev
)
611 struct input_handle
*handle
;
614 * Mark device as going away. Note that we take dev->mutex here
615 * not to protect access to dev->going_away but rather to ensure
616 * that there are no threads in the middle of input_open_device()
618 mutex_lock(&dev
->mutex
);
619 dev
->going_away
= true;
620 mutex_unlock(&dev
->mutex
);
622 spin_lock_irq(&dev
->event_lock
);
625 * Simulate keyup events for all pressed keys so that handlers
626 * are not left with "stuck" keys. The driver may continue
627 * generate events even after we done here but they will not
628 * reach any handlers.
630 input_dev_release_keys(dev
);
632 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
635 spin_unlock_irq(&dev
->event_lock
);
639 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
640 * @ke: keymap entry containing scancode to be converted.
641 * @scancode: pointer to the location where converted scancode should
644 * This function is used to convert scancode stored in &struct keymap_entry
645 * into scalar form understood by legacy keymap handling methods. These
646 * methods expect scancodes to be represented as 'unsigned int'.
648 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
649 unsigned int *scancode
)
653 *scancode
= *((u8
*)ke
->scancode
);
657 *scancode
= *((u16
*)ke
->scancode
);
661 *scancode
= *((u32
*)ke
->scancode
);
670 EXPORT_SYMBOL(input_scancode_to_scalar
);
673 * Those routines handle the default case where no [gs]etkeycode() is
674 * defined. In this case, an array indexed by the scancode is used.
677 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
680 switch (dev
->keycodesize
) {
682 return ((u8
*)dev
->keycode
)[index
];
685 return ((u16
*)dev
->keycode
)[index
];
688 return ((u32
*)dev
->keycode
)[index
];
692 static int input_default_getkeycode(struct input_dev
*dev
,
693 struct input_keymap_entry
*ke
)
698 if (!dev
->keycodesize
)
701 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
704 error
= input_scancode_to_scalar(ke
, &index
);
709 if (index
>= dev
->keycodemax
)
712 ke
->keycode
= input_fetch_keycode(dev
, index
);
714 ke
->len
= sizeof(index
);
715 memcpy(ke
->scancode
, &index
, sizeof(index
));
720 static int input_default_setkeycode(struct input_dev
*dev
,
721 const struct input_keymap_entry
*ke
,
722 unsigned int *old_keycode
)
728 if (!dev
->keycodesize
)
731 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
734 error
= input_scancode_to_scalar(ke
, &index
);
739 if (index
>= dev
->keycodemax
)
742 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
743 (ke
->keycode
>> (dev
->keycodesize
* 8)))
746 switch (dev
->keycodesize
) {
748 u8
*k
= (u8
*)dev
->keycode
;
749 *old_keycode
= k
[index
];
750 k
[index
] = ke
->keycode
;
754 u16
*k
= (u16
*)dev
->keycode
;
755 *old_keycode
= k
[index
];
756 k
[index
] = ke
->keycode
;
760 u32
*k
= (u32
*)dev
->keycode
;
761 *old_keycode
= k
[index
];
762 k
[index
] = ke
->keycode
;
767 __clear_bit(*old_keycode
, dev
->keybit
);
768 __set_bit(ke
->keycode
, dev
->keybit
);
770 for (i
= 0; i
< dev
->keycodemax
; i
++) {
771 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
772 __set_bit(*old_keycode
, dev
->keybit
);
773 break; /* Setting the bit twice is useless, so break */
781 * input_get_keycode - retrieve keycode currently mapped to a given scancode
782 * @dev: input device which keymap is being queried
785 * This function should be called by anyone interested in retrieving current
786 * keymap. Presently evdev handlers use it.
788 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
793 spin_lock_irqsave(&dev
->event_lock
, flags
);
794 retval
= dev
->getkeycode(dev
, ke
);
795 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
799 EXPORT_SYMBOL(input_get_keycode
);
802 * input_set_keycode - attribute a keycode to a given scancode
803 * @dev: input device which keymap is being updated
804 * @ke: new keymap entry
806 * This function should be called by anyone needing to update current
807 * keymap. Presently keyboard and evdev handlers use it.
809 int input_set_keycode(struct input_dev
*dev
,
810 const struct input_keymap_entry
*ke
)
813 unsigned int old_keycode
;
816 if (ke
->keycode
> KEY_MAX
)
819 spin_lock_irqsave(&dev
->event_lock
, flags
);
821 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
825 /* Make sure KEY_RESERVED did not get enabled. */
826 __clear_bit(KEY_RESERVED
, dev
->keybit
);
829 * Simulate keyup event if keycode is not present
830 * in the keymap anymore
832 if (test_bit(EV_KEY
, dev
->evbit
) &&
833 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
834 __test_and_clear_bit(old_keycode
, dev
->key
)) {
836 input_pass_event(dev
, EV_KEY
, old_keycode
, 0);
838 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
842 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
846 EXPORT_SYMBOL(input_set_keycode
);
848 #define MATCH_BIT(bit, max) \
849 for (i = 0; i < BITS_TO_LONGS(max); i++) \
850 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
852 if (i != BITS_TO_LONGS(max)) \
855 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
856 struct input_dev
*dev
)
858 const struct input_device_id
*id
;
861 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
863 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
864 if (id
->bustype
!= dev
->id
.bustype
)
867 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
868 if (id
->vendor
!= dev
->id
.vendor
)
871 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
872 if (id
->product
!= dev
->id
.product
)
875 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
876 if (id
->version
!= dev
->id
.version
)
879 MATCH_BIT(evbit
, EV_MAX
);
880 MATCH_BIT(keybit
, KEY_MAX
);
881 MATCH_BIT(relbit
, REL_MAX
);
882 MATCH_BIT(absbit
, ABS_MAX
);
883 MATCH_BIT(mscbit
, MSC_MAX
);
884 MATCH_BIT(ledbit
, LED_MAX
);
885 MATCH_BIT(sndbit
, SND_MAX
);
886 MATCH_BIT(ffbit
, FF_MAX
);
887 MATCH_BIT(swbit
, SW_MAX
);
889 if (!handler
->match
|| handler
->match(handler
, dev
))
896 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
898 const struct input_device_id
*id
;
901 id
= input_match_device(handler
, dev
);
905 error
= handler
->connect(handler
, dev
, id
);
906 if (error
&& error
!= -ENODEV
)
907 pr_err("failed to attach handler %s to device %s, error: %d\n",
908 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
915 static int input_bits_to_string(char *buf
, int buf_size
,
916 unsigned long bits
, bool skip_empty
)
920 if (INPUT_COMPAT_TEST
) {
921 u32 dword
= bits
>> 32;
922 if (dword
|| !skip_empty
)
923 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
925 dword
= bits
& 0xffffffffUL
;
926 if (dword
|| !skip_empty
|| len
)
927 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
930 if (bits
|| !skip_empty
)
931 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
937 #else /* !CONFIG_COMPAT */
939 static int input_bits_to_string(char *buf
, int buf_size
,
940 unsigned long bits
, bool skip_empty
)
942 return bits
|| !skip_empty
?
943 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
948 #ifdef CONFIG_PROC_FS
950 static struct proc_dir_entry
*proc_bus_input_dir
;
951 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
952 static int input_devices_state
;
954 static inline void input_wakeup_procfs_readers(void)
956 input_devices_state
++;
957 wake_up(&input_devices_poll_wait
);
960 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
962 poll_wait(file
, &input_devices_poll_wait
, wait
);
963 if (file
->f_version
!= input_devices_state
) {
964 file
->f_version
= input_devices_state
;
965 return POLLIN
| POLLRDNORM
;
971 union input_seq_state
{
979 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
981 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
984 /* We need to fit into seq->private pointer */
985 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
987 error
= mutex_lock_interruptible(&input_mutex
);
989 state
->mutex_acquired
= false;
990 return ERR_PTR(error
);
993 state
->mutex_acquired
= true;
995 return seq_list_start(&input_dev_list
, *pos
);
998 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1000 return seq_list_next(v
, &input_dev_list
, pos
);
1003 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1005 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1007 if (state
->mutex_acquired
)
1008 mutex_unlock(&input_mutex
);
1011 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1012 unsigned long *bitmap
, int max
)
1015 bool skip_empty
= true;
1018 seq_printf(seq
, "B: %s=", name
);
1020 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1021 if (input_bits_to_string(buf
, sizeof(buf
),
1022 bitmap
[i
], skip_empty
)) {
1024 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1029 * If no output was produced print a single 0.
1034 seq_putc(seq
, '\n');
1037 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1039 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1040 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1041 struct input_handle
*handle
;
1043 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1044 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1046 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1047 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1048 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1049 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1050 seq_printf(seq
, "H: Handlers=");
1052 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1053 seq_printf(seq
, "%s ", handle
->name
);
1054 seq_putc(seq
, '\n');
1056 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1058 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1059 if (test_bit(EV_KEY
, dev
->evbit
))
1060 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1061 if (test_bit(EV_REL
, dev
->evbit
))
1062 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1063 if (test_bit(EV_ABS
, dev
->evbit
))
1064 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1065 if (test_bit(EV_MSC
, dev
->evbit
))
1066 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1067 if (test_bit(EV_LED
, dev
->evbit
))
1068 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1069 if (test_bit(EV_SND
, dev
->evbit
))
1070 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1071 if (test_bit(EV_FF
, dev
->evbit
))
1072 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1073 if (test_bit(EV_SW
, dev
->evbit
))
1074 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1076 seq_putc(seq
, '\n');
1082 static const struct seq_operations input_devices_seq_ops
= {
1083 .start
= input_devices_seq_start
,
1084 .next
= input_devices_seq_next
,
1085 .stop
= input_seq_stop
,
1086 .show
= input_devices_seq_show
,
1089 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1091 return seq_open(file
, &input_devices_seq_ops
);
1094 static const struct file_operations input_devices_fileops
= {
1095 .owner
= THIS_MODULE
,
1096 .open
= input_proc_devices_open
,
1097 .poll
= input_proc_devices_poll
,
1099 .llseek
= seq_lseek
,
1100 .release
= seq_release
,
1103 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1105 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1108 /* We need to fit into seq->private pointer */
1109 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1111 error
= mutex_lock_interruptible(&input_mutex
);
1113 state
->mutex_acquired
= false;
1114 return ERR_PTR(error
);
1117 state
->mutex_acquired
= true;
1120 return seq_list_start(&input_handler_list
, *pos
);
1123 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1125 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1127 state
->pos
= *pos
+ 1;
1128 return seq_list_next(v
, &input_handler_list
, pos
);
1131 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1133 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1134 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1136 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1137 if (handler
->filter
)
1138 seq_puts(seq
, " (filter)");
1140 seq_printf(seq
, " Minor=%d", handler
->minor
);
1141 seq_putc(seq
, '\n');
1146 static const struct seq_operations input_handlers_seq_ops
= {
1147 .start
= input_handlers_seq_start
,
1148 .next
= input_handlers_seq_next
,
1149 .stop
= input_seq_stop
,
1150 .show
= input_handlers_seq_show
,
1153 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1155 return seq_open(file
, &input_handlers_seq_ops
);
1158 static const struct file_operations input_handlers_fileops
= {
1159 .owner
= THIS_MODULE
,
1160 .open
= input_proc_handlers_open
,
1162 .llseek
= seq_lseek
,
1163 .release
= seq_release
,
1166 static int __init
input_proc_init(void)
1168 struct proc_dir_entry
*entry
;
1170 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1171 if (!proc_bus_input_dir
)
1174 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1175 &input_devices_fileops
);
1179 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1180 &input_handlers_fileops
);
1186 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1187 fail1
: remove_proc_entry("bus/input", NULL
);
1191 static void input_proc_exit(void)
1193 remove_proc_entry("devices", proc_bus_input_dir
);
1194 remove_proc_entry("handlers", proc_bus_input_dir
);
1195 remove_proc_entry("bus/input", NULL
);
1198 #else /* !CONFIG_PROC_FS */
1199 static inline void input_wakeup_procfs_readers(void) { }
1200 static inline int input_proc_init(void) { return 0; }
1201 static inline void input_proc_exit(void) { }
1204 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1205 static ssize_t input_dev_show_##name(struct device *dev, \
1206 struct device_attribute *attr, \
1209 struct input_dev *input_dev = to_input_dev(dev); \
1211 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1212 input_dev->name ? input_dev->name : ""); \
1214 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1216 INPUT_DEV_STRING_ATTR_SHOW(name
);
1217 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1218 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1220 static int input_print_modalias_bits(char *buf
, int size
,
1221 char name
, unsigned long *bm
,
1222 unsigned int min_bit
, unsigned int max_bit
)
1226 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1227 for (i
= min_bit
; i
< max_bit
; i
++)
1228 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1229 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1233 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1238 len
= snprintf(buf
, max(size
, 0),
1239 "input:b%04Xv%04Xp%04Xe%04X-",
1240 id
->id
.bustype
, id
->id
.vendor
,
1241 id
->id
.product
, id
->id
.version
);
1243 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1244 'e', id
->evbit
, 0, EV_MAX
);
1245 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1246 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1247 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1248 'r', id
->relbit
, 0, REL_MAX
);
1249 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1250 'a', id
->absbit
, 0, ABS_MAX
);
1251 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1252 'm', id
->mscbit
, 0, MSC_MAX
);
1253 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1254 'l', id
->ledbit
, 0, LED_MAX
);
1255 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1256 's', id
->sndbit
, 0, SND_MAX
);
1257 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1258 'f', id
->ffbit
, 0, FF_MAX
);
1259 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1260 'w', id
->swbit
, 0, SW_MAX
);
1263 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1268 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1269 struct device_attribute
*attr
,
1272 struct input_dev
*id
= to_input_dev(dev
);
1275 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1277 return min_t(int, len
, PAGE_SIZE
);
1279 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1281 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1282 int max
, int add_cr
);
1284 static ssize_t
input_dev_show_properties(struct device
*dev
,
1285 struct device_attribute
*attr
,
1288 struct input_dev
*input_dev
= to_input_dev(dev
);
1289 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1290 INPUT_PROP_MAX
, true);
1291 return min_t(int, len
, PAGE_SIZE
);
1293 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1295 static struct attribute
*input_dev_attrs
[] = {
1296 &dev_attr_name
.attr
,
1297 &dev_attr_phys
.attr
,
1298 &dev_attr_uniq
.attr
,
1299 &dev_attr_modalias
.attr
,
1300 &dev_attr_properties
.attr
,
1304 static struct attribute_group input_dev_attr_group
= {
1305 .attrs
= input_dev_attrs
,
1308 #define INPUT_DEV_ID_ATTR(name) \
1309 static ssize_t input_dev_show_id_##name(struct device *dev, \
1310 struct device_attribute *attr, \
1313 struct input_dev *input_dev = to_input_dev(dev); \
1314 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1316 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1318 INPUT_DEV_ID_ATTR(bustype
);
1319 INPUT_DEV_ID_ATTR(vendor
);
1320 INPUT_DEV_ID_ATTR(product
);
1321 INPUT_DEV_ID_ATTR(version
);
1323 static struct attribute
*input_dev_id_attrs
[] = {
1324 &dev_attr_bustype
.attr
,
1325 &dev_attr_vendor
.attr
,
1326 &dev_attr_product
.attr
,
1327 &dev_attr_version
.attr
,
1331 static struct attribute_group input_dev_id_attr_group
= {
1333 .attrs
= input_dev_id_attrs
,
1336 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1337 int max
, int add_cr
)
1341 bool skip_empty
= true;
1343 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1344 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1345 bitmap
[i
], skip_empty
);
1349 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1354 * If no output was produced print a single 0.
1357 len
= snprintf(buf
, buf_size
, "%d", 0);
1360 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1365 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1366 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1367 struct device_attribute *attr, \
1370 struct input_dev *input_dev = to_input_dev(dev); \
1371 int len = input_print_bitmap(buf, PAGE_SIZE, \
1372 input_dev->bm##bit, ev##_MAX, \
1374 return min_t(int, len, PAGE_SIZE); \
1376 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1378 INPUT_DEV_CAP_ATTR(EV
, ev
);
1379 INPUT_DEV_CAP_ATTR(KEY
, key
);
1380 INPUT_DEV_CAP_ATTR(REL
, rel
);
1381 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1382 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1383 INPUT_DEV_CAP_ATTR(LED
, led
);
1384 INPUT_DEV_CAP_ATTR(SND
, snd
);
1385 INPUT_DEV_CAP_ATTR(FF
, ff
);
1386 INPUT_DEV_CAP_ATTR(SW
, sw
);
1388 static struct attribute
*input_dev_caps_attrs
[] = {
1401 static struct attribute_group input_dev_caps_attr_group
= {
1402 .name
= "capabilities",
1403 .attrs
= input_dev_caps_attrs
,
1406 static const struct attribute_group
*input_dev_attr_groups
[] = {
1407 &input_dev_attr_group
,
1408 &input_dev_id_attr_group
,
1409 &input_dev_caps_attr_group
,
1413 static void input_dev_release(struct device
*device
)
1415 struct input_dev
*dev
= to_input_dev(device
);
1417 input_ff_destroy(dev
);
1418 input_mt_destroy_slots(dev
);
1419 kfree(dev
->absinfo
);
1422 module_put(THIS_MODULE
);
1426 * Input uevent interface - loading event handlers based on
1429 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1430 const char *name
, unsigned long *bitmap
, int max
)
1434 if (add_uevent_var(env
, "%s", name
))
1437 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1438 sizeof(env
->buf
) - env
->buflen
,
1439 bitmap
, max
, false);
1440 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1447 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1448 struct input_dev
*dev
)
1452 if (add_uevent_var(env
, "MODALIAS="))
1455 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1456 sizeof(env
->buf
) - env
->buflen
,
1458 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1465 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1467 int err = add_uevent_var(env, fmt, val); \
1472 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1474 int err = input_add_uevent_bm_var(env, name, bm, max); \
1479 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1481 int err = input_add_uevent_modalias_var(env, dev); \
1486 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1488 struct input_dev
*dev
= to_input_dev(device
);
1490 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1491 dev
->id
.bustype
, dev
->id
.vendor
,
1492 dev
->id
.product
, dev
->id
.version
);
1494 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1496 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1498 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1500 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1502 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1503 if (test_bit(EV_KEY
, dev
->evbit
))
1504 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1505 if (test_bit(EV_REL
, dev
->evbit
))
1506 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1507 if (test_bit(EV_ABS
, dev
->evbit
))
1508 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1509 if (test_bit(EV_MSC
, dev
->evbit
))
1510 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1511 if (test_bit(EV_LED
, dev
->evbit
))
1512 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1513 if (test_bit(EV_SND
, dev
->evbit
))
1514 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1515 if (test_bit(EV_FF
, dev
->evbit
))
1516 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1517 if (test_bit(EV_SW
, dev
->evbit
))
1518 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1520 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1525 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1530 if (!test_bit(EV_##type, dev->evbit)) \
1533 for (i = 0; i < type##_MAX; i++) { \
1534 if (!test_bit(i, dev->bits##bit)) \
1537 active = test_bit(i, dev->bits); \
1538 if (!active && !on) \
1541 dev->event(dev, EV_##type, i, on ? active : 0); \
1545 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1550 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1551 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1553 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1554 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1555 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1560 * input_reset_device() - reset/restore the state of input device
1561 * @dev: input device whose state needs to be reset
1563 * This function tries to reset the state of an opened input device and
1564 * bring internal state and state if the hardware in sync with each other.
1565 * We mark all keys as released, restore LED state, repeat rate, etc.
1567 void input_reset_device(struct input_dev
*dev
)
1569 mutex_lock(&dev
->mutex
);
1572 input_dev_toggle(dev
, true);
1575 * Keys that have been pressed at suspend time are unlikely
1576 * to be still pressed when we resume.
1578 spin_lock_irq(&dev
->event_lock
);
1579 input_dev_release_keys(dev
);
1580 spin_unlock_irq(&dev
->event_lock
);
1583 mutex_unlock(&dev
->mutex
);
1585 EXPORT_SYMBOL(input_reset_device
);
1588 static int input_dev_suspend(struct device
*dev
)
1590 struct input_dev
*input_dev
= to_input_dev(dev
);
1592 mutex_lock(&input_dev
->mutex
);
1594 if (input_dev
->users
)
1595 input_dev_toggle(input_dev
, false);
1597 mutex_unlock(&input_dev
->mutex
);
1602 static int input_dev_resume(struct device
*dev
)
1604 struct input_dev
*input_dev
= to_input_dev(dev
);
1606 input_reset_device(input_dev
);
1611 static const struct dev_pm_ops input_dev_pm_ops
= {
1612 .suspend
= input_dev_suspend
,
1613 .resume
= input_dev_resume
,
1614 .poweroff
= input_dev_suspend
,
1615 .restore
= input_dev_resume
,
1617 #endif /* CONFIG_PM */
1619 static struct device_type input_dev_type
= {
1620 .groups
= input_dev_attr_groups
,
1621 .release
= input_dev_release
,
1622 .uevent
= input_dev_uevent
,
1624 .pm
= &input_dev_pm_ops
,
1628 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1630 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1633 struct class input_class
= {
1635 .devnode
= input_devnode
,
1637 EXPORT_SYMBOL_GPL(input_class
);
1640 * input_allocate_device - allocate memory for new input device
1642 * Returns prepared struct input_dev or NULL.
1644 * NOTE: Use input_free_device() to free devices that have not been
1645 * registered; input_unregister_device() should be used for already
1646 * registered devices.
1648 struct input_dev
*input_allocate_device(void)
1650 struct input_dev
*dev
;
1652 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1654 dev
->dev
.type
= &input_dev_type
;
1655 dev
->dev
.class = &input_class
;
1656 device_initialize(&dev
->dev
);
1657 mutex_init(&dev
->mutex
);
1658 spin_lock_init(&dev
->event_lock
);
1659 INIT_LIST_HEAD(&dev
->h_list
);
1660 INIT_LIST_HEAD(&dev
->node
);
1662 __module_get(THIS_MODULE
);
1667 EXPORT_SYMBOL(input_allocate_device
);
1670 * input_free_device - free memory occupied by input_dev structure
1671 * @dev: input device to free
1673 * This function should only be used if input_register_device()
1674 * was not called yet or if it failed. Once device was registered
1675 * use input_unregister_device() and memory will be freed once last
1676 * reference to the device is dropped.
1678 * Device should be allocated by input_allocate_device().
1680 * NOTE: If there are references to the input device then memory
1681 * will not be freed until last reference is dropped.
1683 void input_free_device(struct input_dev
*dev
)
1686 input_put_device(dev
);
1688 EXPORT_SYMBOL(input_free_device
);
1691 * input_set_capability - mark device as capable of a certain event
1692 * @dev: device that is capable of emitting or accepting event
1693 * @type: type of the event (EV_KEY, EV_REL, etc...)
1696 * In addition to setting up corresponding bit in appropriate capability
1697 * bitmap the function also adjusts dev->evbit.
1699 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1703 __set_bit(code
, dev
->keybit
);
1707 __set_bit(code
, dev
->relbit
);
1711 __set_bit(code
, dev
->absbit
);
1715 __set_bit(code
, dev
->mscbit
);
1719 __set_bit(code
, dev
->swbit
);
1723 __set_bit(code
, dev
->ledbit
);
1727 __set_bit(code
, dev
->sndbit
);
1731 __set_bit(code
, dev
->ffbit
);
1739 pr_err("input_set_capability: unknown type %u (code %u)\n",
1745 __set_bit(type
, dev
->evbit
);
1747 EXPORT_SYMBOL(input_set_capability
);
1749 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
1753 unsigned int events
;
1756 mt_slots
= dev
->mtsize
;
1757 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
1758 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
1759 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
1760 clamp(mt_slots
, 2, 32);
1761 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
1767 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
1769 for (i
= 0; i
< ABS_CNT
; i
++) {
1770 if (test_bit(i
, dev
->absbit
)) {
1771 if (input_is_mt_axis(i
))
1778 for (i
= 0; i
< REL_CNT
; i
++)
1779 if (test_bit(i
, dev
->relbit
))
1785 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1787 if (!test_bit(EV_##type, dev->evbit)) \
1788 memset(dev->bits##bit, 0, \
1789 sizeof(dev->bits##bit)); \
1792 static void input_cleanse_bitmasks(struct input_dev
*dev
)
1794 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
1795 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
1796 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
1797 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
1798 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
1799 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
1800 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
1801 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
1805 * input_register_device - register device with input core
1806 * @dev: device to be registered
1808 * This function registers device with input core. The device must be
1809 * allocated with input_allocate_device() and all it's capabilities
1810 * set up before registering.
1811 * If function fails the device must be freed with input_free_device().
1812 * Once device has been successfully registered it can be unregistered
1813 * with input_unregister_device(); input_free_device() should not be
1814 * called in this case.
1816 int input_register_device(struct input_dev
*dev
)
1818 static atomic_t input_no
= ATOMIC_INIT(0);
1819 struct input_handler
*handler
;
1823 /* Every input device generates EV_SYN/SYN_REPORT events. */
1824 __set_bit(EV_SYN
, dev
->evbit
);
1826 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1827 __clear_bit(KEY_RESERVED
, dev
->keybit
);
1829 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1830 input_cleanse_bitmasks(dev
);
1832 if (!dev
->hint_events_per_packet
)
1833 dev
->hint_events_per_packet
=
1834 input_estimate_events_per_packet(dev
);
1837 * If delay and period are pre-set by the driver, then autorepeating
1838 * is handled by the driver itself and we don't do it in input.c.
1840 init_timer(&dev
->timer
);
1841 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1842 dev
->timer
.data
= (long) dev
;
1843 dev
->timer
.function
= input_repeat_key
;
1844 dev
->rep
[REP_DELAY
] = 250;
1845 dev
->rep
[REP_PERIOD
] = 33;
1848 if (!dev
->getkeycode
)
1849 dev
->getkeycode
= input_default_getkeycode
;
1851 if (!dev
->setkeycode
)
1852 dev
->setkeycode
= input_default_setkeycode
;
1854 dev_set_name(&dev
->dev
, "input%ld",
1855 (unsigned long) atomic_inc_return(&input_no
) - 1);
1857 error
= device_add(&dev
->dev
);
1861 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1862 pr_info("%s as %s\n",
1863 dev
->name
? dev
->name
: "Unspecified device",
1864 path
? path
: "N/A");
1867 error
= mutex_lock_interruptible(&input_mutex
);
1869 device_del(&dev
->dev
);
1873 list_add_tail(&dev
->node
, &input_dev_list
);
1875 list_for_each_entry(handler
, &input_handler_list
, node
)
1876 input_attach_handler(dev
, handler
);
1878 input_wakeup_procfs_readers();
1880 mutex_unlock(&input_mutex
);
1884 EXPORT_SYMBOL(input_register_device
);
1887 * input_unregister_device - unregister previously registered device
1888 * @dev: device to be unregistered
1890 * This function unregisters an input device. Once device is unregistered
1891 * the caller should not try to access it as it may get freed at any moment.
1893 void input_unregister_device(struct input_dev
*dev
)
1895 struct input_handle
*handle
, *next
;
1897 input_disconnect_device(dev
);
1899 mutex_lock(&input_mutex
);
1901 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1902 handle
->handler
->disconnect(handle
);
1903 WARN_ON(!list_empty(&dev
->h_list
));
1905 del_timer_sync(&dev
->timer
);
1906 list_del_init(&dev
->node
);
1908 input_wakeup_procfs_readers();
1910 mutex_unlock(&input_mutex
);
1912 device_unregister(&dev
->dev
);
1914 EXPORT_SYMBOL(input_unregister_device
);
1917 * input_register_handler - register a new input handler
1918 * @handler: handler to be registered
1920 * This function registers a new input handler (interface) for input
1921 * devices in the system and attaches it to all input devices that
1922 * are compatible with the handler.
1924 int input_register_handler(struct input_handler
*handler
)
1926 struct input_dev
*dev
;
1929 retval
= mutex_lock_interruptible(&input_mutex
);
1933 INIT_LIST_HEAD(&handler
->h_list
);
1935 if (handler
->fops
!= NULL
) {
1936 if (input_table
[handler
->minor
>> 5]) {
1940 input_table
[handler
->minor
>> 5] = handler
;
1943 list_add_tail(&handler
->node
, &input_handler_list
);
1945 list_for_each_entry(dev
, &input_dev_list
, node
)
1946 input_attach_handler(dev
, handler
);
1948 input_wakeup_procfs_readers();
1951 mutex_unlock(&input_mutex
);
1954 EXPORT_SYMBOL(input_register_handler
);
1957 * input_unregister_handler - unregisters an input handler
1958 * @handler: handler to be unregistered
1960 * This function disconnects a handler from its input devices and
1961 * removes it from lists of known handlers.
1963 void input_unregister_handler(struct input_handler
*handler
)
1965 struct input_handle
*handle
, *next
;
1967 mutex_lock(&input_mutex
);
1969 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
1970 handler
->disconnect(handle
);
1971 WARN_ON(!list_empty(&handler
->h_list
));
1973 list_del_init(&handler
->node
);
1975 if (handler
->fops
!= NULL
)
1976 input_table
[handler
->minor
>> 5] = NULL
;
1978 input_wakeup_procfs_readers();
1980 mutex_unlock(&input_mutex
);
1982 EXPORT_SYMBOL(input_unregister_handler
);
1985 * input_handler_for_each_handle - handle iterator
1986 * @handler: input handler to iterate
1987 * @data: data for the callback
1988 * @fn: function to be called for each handle
1990 * Iterate over @bus's list of devices, and call @fn for each, passing
1991 * it @data and stop when @fn returns a non-zero value. The function is
1992 * using RCU to traverse the list and therefore may be usind in atonic
1993 * contexts. The @fn callback is invoked from RCU critical section and
1994 * thus must not sleep.
1996 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
1997 int (*fn
)(struct input_handle
*, void *))
1999 struct input_handle
*handle
;
2004 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2005 retval
= fn(handle
, data
);
2014 EXPORT_SYMBOL(input_handler_for_each_handle
);
2017 * input_register_handle - register a new input handle
2018 * @handle: handle to register
2020 * This function puts a new input handle onto device's
2021 * and handler's lists so that events can flow through
2022 * it once it is opened using input_open_device().
2024 * This function is supposed to be called from handler's
2027 int input_register_handle(struct input_handle
*handle
)
2029 struct input_handler
*handler
= handle
->handler
;
2030 struct input_dev
*dev
= handle
->dev
;
2034 * We take dev->mutex here to prevent race with
2035 * input_release_device().
2037 error
= mutex_lock_interruptible(&dev
->mutex
);
2042 * Filters go to the head of the list, normal handlers
2045 if (handler
->filter
)
2046 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2048 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2050 mutex_unlock(&dev
->mutex
);
2053 * Since we are supposed to be called from ->connect()
2054 * which is mutually exclusive with ->disconnect()
2055 * we can't be racing with input_unregister_handle()
2056 * and so separate lock is not needed here.
2058 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2061 handler
->start(handle
);
2065 EXPORT_SYMBOL(input_register_handle
);
2068 * input_unregister_handle - unregister an input handle
2069 * @handle: handle to unregister
2071 * This function removes input handle from device's
2072 * and handler's lists.
2074 * This function is supposed to be called from handler's
2075 * disconnect() method.
2077 void input_unregister_handle(struct input_handle
*handle
)
2079 struct input_dev
*dev
= handle
->dev
;
2081 list_del_rcu(&handle
->h_node
);
2084 * Take dev->mutex to prevent race with input_release_device().
2086 mutex_lock(&dev
->mutex
);
2087 list_del_rcu(&handle
->d_node
);
2088 mutex_unlock(&dev
->mutex
);
2092 EXPORT_SYMBOL(input_unregister_handle
);
2094 static int input_open_file(struct inode
*inode
, struct file
*file
)
2096 struct input_handler
*handler
;
2097 const struct file_operations
*old_fops
, *new_fops
= NULL
;
2100 err
= mutex_lock_interruptible(&input_mutex
);
2104 /* No load-on-demand here? */
2105 handler
= input_table
[iminor(inode
) >> 5];
2107 new_fops
= fops_get(handler
->fops
);
2109 mutex_unlock(&input_mutex
);
2112 * That's _really_ odd. Usually NULL ->open means "nothing special",
2113 * not "no device". Oh, well...
2115 if (!new_fops
|| !new_fops
->open
) {
2121 old_fops
= file
->f_op
;
2122 file
->f_op
= new_fops
;
2124 err
= new_fops
->open(inode
, file
);
2126 fops_put(file
->f_op
);
2127 file
->f_op
= fops_get(old_fops
);
2134 static const struct file_operations input_fops
= {
2135 .owner
= THIS_MODULE
,
2136 .open
= input_open_file
,
2137 .llseek
= noop_llseek
,
2140 static int __init
input_init(void)
2144 err
= class_register(&input_class
);
2146 pr_err("unable to register input_dev class\n");
2150 err
= input_proc_init();
2154 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
2156 pr_err("unable to register char major %d", INPUT_MAJOR
);
2162 fail2
: input_proc_exit();
2163 fail1
: class_unregister(&input_class
);
2167 static void __exit
input_exit(void)
2170 unregister_chrdev(INPUT_MAJOR
, "input");
2171 class_unregister(&input_class
);
2174 subsys_initcall(input_init
);
2175 module_exit(input_exit
);