fix oops in scsi_run_queue()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blobe298c6f499bc2d0b1bb05d34b8ec2c0373931825
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
67 #include "internal.h"
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
78 unsigned long num_physpages;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
86 void * high_memory;
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
100 #else
102 #endif
104 static int __init disable_randmaps(char *s)
106 randomize_va_space = 0;
107 return 1;
109 __setup("norandmaps", disable_randmaps);
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 static int __init init_zero_pfn(void)
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
122 core_initcall(init_zero_pfn);
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
130 void pgd_clear_bad(pgd_t *pgd)
132 pgd_ERROR(*pgd);
133 pgd_clear(pgd);
136 void pud_clear_bad(pud_t *pud)
138 pud_ERROR(*pud);
139 pud_clear(pud);
142 void pmd_clear_bad(pmd_t *pmd)
144 pmd_ERROR(*pmd);
145 pmd_clear(pmd);
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153 unsigned long addr)
155 pgtable_t token = pmd_pgtable(*pmd);
156 pmd_clear(pmd);
157 pte_free_tlb(tlb, token, addr);
158 tlb->mm->nr_ptes--;
161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162 unsigned long addr, unsigned long end,
163 unsigned long floor, unsigned long ceiling)
165 pmd_t *pmd;
166 unsigned long next;
167 unsigned long start;
169 start = addr;
170 pmd = pmd_offset(pud, addr);
171 do {
172 next = pmd_addr_end(addr, end);
173 if (pmd_none_or_clear_bad(pmd))
174 continue;
175 free_pte_range(tlb, pmd, addr);
176 } while (pmd++, addr = next, addr != end);
178 start &= PUD_MASK;
179 if (start < floor)
180 return;
181 if (ceiling) {
182 ceiling &= PUD_MASK;
183 if (!ceiling)
184 return;
186 if (end - 1 > ceiling - 1)
187 return;
189 pmd = pmd_offset(pud, start);
190 pud_clear(pud);
191 pmd_free_tlb(tlb, pmd, start);
194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
198 pud_t *pud;
199 unsigned long next;
200 unsigned long start;
202 start = addr;
203 pud = pud_offset(pgd, addr);
204 do {
205 next = pud_addr_end(addr, end);
206 if (pud_none_or_clear_bad(pud))
207 continue;
208 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209 } while (pud++, addr = next, addr != end);
211 start &= PGDIR_MASK;
212 if (start < floor)
213 return;
214 if (ceiling) {
215 ceiling &= PGDIR_MASK;
216 if (!ceiling)
217 return;
219 if (end - 1 > ceiling - 1)
220 return;
222 pud = pud_offset(pgd, start);
223 pgd_clear(pgd);
224 pud_free_tlb(tlb, pud, start);
228 * This function frees user-level page tables of a process.
230 * Must be called with pagetable lock held.
232 void free_pgd_range(struct mmu_gather *tlb,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
236 pgd_t *pgd;
237 unsigned long next;
238 unsigned long start;
241 * The next few lines have given us lots of grief...
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
266 addr &= PMD_MASK;
267 if (addr < floor) {
268 addr += PMD_SIZE;
269 if (!addr)
270 return;
272 if (ceiling) {
273 ceiling &= PMD_MASK;
274 if (!ceiling)
275 return;
277 if (end - 1 > ceiling - 1)
278 end -= PMD_SIZE;
279 if (addr > end - 1)
280 return;
282 start = addr;
283 pgd = pgd_offset(tlb->mm, addr);
284 do {
285 next = pgd_addr_end(addr, end);
286 if (pgd_none_or_clear_bad(pgd))
287 continue;
288 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289 } while (pgd++, addr = next, addr != end);
292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293 unsigned long floor, unsigned long ceiling)
295 while (vma) {
296 struct vm_area_struct *next = vma->vm_next;
297 unsigned long addr = vma->vm_start;
300 * Hide vma from rmap and truncate_pagecache before freeing
301 * pgtables
303 anon_vma_unlink(vma);
304 unlink_file_vma(vma);
306 if (is_vm_hugetlb_page(vma)) {
307 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
308 floor, next? next->vm_start: ceiling);
309 } else {
311 * Optimization: gather nearby vmas into one call down
313 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
314 && !is_vm_hugetlb_page(next)) {
315 vma = next;
316 next = vma->vm_next;
317 anon_vma_unlink(vma);
318 unlink_file_vma(vma);
320 free_pgd_range(tlb, addr, vma->vm_end,
321 floor, next? next->vm_start: ceiling);
323 vma = next;
327 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
329 pgtable_t new = pte_alloc_one(mm, address);
330 if (!new)
331 return -ENOMEM;
334 * Ensure all pte setup (eg. pte page lock and page clearing) are
335 * visible before the pte is made visible to other CPUs by being
336 * put into page tables.
338 * The other side of the story is the pointer chasing in the page
339 * table walking code (when walking the page table without locking;
340 * ie. most of the time). Fortunately, these data accesses consist
341 * of a chain of data-dependent loads, meaning most CPUs (alpha
342 * being the notable exception) will already guarantee loads are
343 * seen in-order. See the alpha page table accessors for the
344 * smp_read_barrier_depends() barriers in page table walking code.
346 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
348 spin_lock(&mm->page_table_lock);
349 if (!pmd_present(*pmd)) { /* Has another populated it ? */
350 mm->nr_ptes++;
351 pmd_populate(mm, pmd, new);
352 new = NULL;
354 spin_unlock(&mm->page_table_lock);
355 if (new)
356 pte_free(mm, new);
357 return 0;
360 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
362 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
363 if (!new)
364 return -ENOMEM;
366 smp_wmb(); /* See comment in __pte_alloc */
368 spin_lock(&init_mm.page_table_lock);
369 if (!pmd_present(*pmd)) { /* Has another populated it ? */
370 pmd_populate_kernel(&init_mm, pmd, new);
371 new = NULL;
373 spin_unlock(&init_mm.page_table_lock);
374 if (new)
375 pte_free_kernel(&init_mm, new);
376 return 0;
379 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
381 if (file_rss)
382 add_mm_counter(mm, file_rss, file_rss);
383 if (anon_rss)
384 add_mm_counter(mm, anon_rss, anon_rss);
388 * This function is called to print an error when a bad pte
389 * is found. For example, we might have a PFN-mapped pte in
390 * a region that doesn't allow it.
392 * The calling function must still handle the error.
394 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
395 pte_t pte, struct page *page)
397 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
398 pud_t *pud = pud_offset(pgd, addr);
399 pmd_t *pmd = pmd_offset(pud, addr);
400 struct address_space *mapping;
401 pgoff_t index;
402 static unsigned long resume;
403 static unsigned long nr_shown;
404 static unsigned long nr_unshown;
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
410 if (nr_shown == 60) {
411 if (time_before(jiffies, resume)) {
412 nr_unshown++;
413 return;
415 if (nr_unshown) {
416 printk(KERN_ALERT
417 "BUG: Bad page map: %lu messages suppressed\n",
418 nr_unshown);
419 nr_unshown = 0;
421 nr_shown = 0;
423 if (nr_shown++ == 0)
424 resume = jiffies + 60 * HZ;
426 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
427 index = linear_page_index(vma, addr);
429 printk(KERN_ALERT
430 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
431 current->comm,
432 (long long)pte_val(pte), (long long)pmd_val(*pmd));
433 if (page) {
434 printk(KERN_ALERT
435 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436 page, (void *)page->flags, page_count(page),
437 page_mapcount(page), page->mapping, page->index);
439 printk(KERN_ALERT
440 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
443 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
445 if (vma->vm_ops)
446 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
447 (unsigned long)vma->vm_ops->fault);
448 if (vma->vm_file && vma->vm_file->f_op)
449 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
450 (unsigned long)vma->vm_file->f_op->mmap);
451 dump_stack();
452 add_taint(TAINT_BAD_PAGE);
455 static inline int is_cow_mapping(unsigned int flags)
457 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
460 #ifndef is_zero_pfn
461 static inline int is_zero_pfn(unsigned long pfn)
463 return pfn == zero_pfn;
465 #endif
467 #ifndef my_zero_pfn
468 static inline unsigned long my_zero_pfn(unsigned long addr)
470 return zero_pfn;
472 #endif
475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
477 * "Special" mappings do not wish to be associated with a "struct page" (either
478 * it doesn't exist, or it exists but they don't want to touch it). In this
479 * case, NULL is returned here. "Normal" mappings do have a struct page.
481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482 * pte bit, in which case this function is trivial. Secondly, an architecture
483 * may not have a spare pte bit, which requires a more complicated scheme,
484 * described below.
486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487 * special mapping (even if there are underlying and valid "struct pages").
488 * COWed pages of a VM_PFNMAP are always normal.
490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493 * mapping will always honor the rule
495 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
497 * And for normal mappings this is false.
499 * This restricts such mappings to be a linear translation from virtual address
500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
501 * as the vma is not a COW mapping; in that case, we know that all ptes are
502 * special (because none can have been COWed).
505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508 * page" backing, however the difference is that _all_ pages with a struct
509 * page (that is, those where pfn_valid is true) are refcounted and considered
510 * normal pages by the VM. The disadvantage is that pages are refcounted
511 * (which can be slower and simply not an option for some PFNMAP users). The
512 * advantage is that we don't have to follow the strict linearity rule of
513 * PFNMAP mappings in order to support COWable mappings.
516 #ifdef __HAVE_ARCH_PTE_SPECIAL
517 # define HAVE_PTE_SPECIAL 1
518 #else
519 # define HAVE_PTE_SPECIAL 0
520 #endif
521 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
522 pte_t pte)
524 unsigned long pfn = pte_pfn(pte);
526 if (HAVE_PTE_SPECIAL) {
527 if (likely(!pte_special(pte)))
528 goto check_pfn;
529 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
530 return NULL;
531 if (!is_zero_pfn(pfn))
532 print_bad_pte(vma, addr, pte, NULL);
533 return NULL;
536 /* !HAVE_PTE_SPECIAL case follows: */
538 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
539 if (vma->vm_flags & VM_MIXEDMAP) {
540 if (!pfn_valid(pfn))
541 return NULL;
542 goto out;
543 } else {
544 unsigned long off;
545 off = (addr - vma->vm_start) >> PAGE_SHIFT;
546 if (pfn == vma->vm_pgoff + off)
547 return NULL;
548 if (!is_cow_mapping(vma->vm_flags))
549 return NULL;
553 if (is_zero_pfn(pfn))
554 return NULL;
555 check_pfn:
556 if (unlikely(pfn > highest_memmap_pfn)) {
557 print_bad_pte(vma, addr, pte, NULL);
558 return NULL;
562 * NOTE! We still have PageReserved() pages in the page tables.
563 * eg. VDSO mappings can cause them to exist.
565 out:
566 return pfn_to_page(pfn);
570 * copy one vm_area from one task to the other. Assumes the page tables
571 * already present in the new task to be cleared in the whole range
572 * covered by this vma.
575 static inline unsigned long
576 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
577 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
578 unsigned long addr, int *rss)
580 unsigned long vm_flags = vma->vm_flags;
581 pte_t pte = *src_pte;
582 struct page *page;
584 /* pte contains position in swap or file, so copy. */
585 if (unlikely(!pte_present(pte))) {
586 if (!pte_file(pte)) {
587 swp_entry_t entry = pte_to_swp_entry(pte);
589 if (swap_duplicate(entry) < 0)
590 return entry.val;
592 /* make sure dst_mm is on swapoff's mmlist. */
593 if (unlikely(list_empty(&dst_mm->mmlist))) {
594 spin_lock(&mmlist_lock);
595 if (list_empty(&dst_mm->mmlist))
596 list_add(&dst_mm->mmlist,
597 &src_mm->mmlist);
598 spin_unlock(&mmlist_lock);
600 if (is_write_migration_entry(entry) &&
601 is_cow_mapping(vm_flags)) {
603 * COW mappings require pages in both parent
604 * and child to be set to read.
606 make_migration_entry_read(&entry);
607 pte = swp_entry_to_pte(entry);
608 set_pte_at(src_mm, addr, src_pte, pte);
611 goto out_set_pte;
615 * If it's a COW mapping, write protect it both
616 * in the parent and the child
618 if (is_cow_mapping(vm_flags)) {
619 ptep_set_wrprotect(src_mm, addr, src_pte);
620 pte = pte_wrprotect(pte);
624 * If it's a shared mapping, mark it clean in
625 * the child
627 if (vm_flags & VM_SHARED)
628 pte = pte_mkclean(pte);
629 pte = pte_mkold(pte);
631 page = vm_normal_page(vma, addr, pte);
632 if (page) {
633 get_page(page);
634 page_dup_rmap(page);
635 rss[PageAnon(page)]++;
638 out_set_pte:
639 set_pte_at(dst_mm, addr, dst_pte, pte);
640 return 0;
643 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
644 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
645 unsigned long addr, unsigned long end)
647 pte_t *orig_src_pte, *orig_dst_pte;
648 pte_t *src_pte, *dst_pte;
649 spinlock_t *src_ptl, *dst_ptl;
650 int progress = 0;
651 int rss[2];
652 swp_entry_t entry = (swp_entry_t){0};
654 again:
655 rss[1] = rss[0] = 0;
656 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
657 if (!dst_pte)
658 return -ENOMEM;
659 src_pte = pte_offset_map_nested(src_pmd, addr);
660 src_ptl = pte_lockptr(src_mm, src_pmd);
661 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
662 orig_src_pte = src_pte;
663 orig_dst_pte = dst_pte;
664 arch_enter_lazy_mmu_mode();
666 do {
668 * We are holding two locks at this point - either of them
669 * could generate latencies in another task on another CPU.
671 if (progress >= 32) {
672 progress = 0;
673 if (need_resched() ||
674 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
675 break;
677 if (pte_none(*src_pte)) {
678 progress++;
679 continue;
681 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
682 vma, addr, rss);
683 if (entry.val)
684 break;
685 progress += 8;
686 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
688 arch_leave_lazy_mmu_mode();
689 spin_unlock(src_ptl);
690 pte_unmap_nested(orig_src_pte);
691 add_mm_rss(dst_mm, rss[0], rss[1]);
692 pte_unmap_unlock(orig_dst_pte, dst_ptl);
693 cond_resched();
695 if (entry.val) {
696 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
697 return -ENOMEM;
698 progress = 0;
700 if (addr != end)
701 goto again;
702 return 0;
705 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
706 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
707 unsigned long addr, unsigned long end)
709 pmd_t *src_pmd, *dst_pmd;
710 unsigned long next;
712 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
713 if (!dst_pmd)
714 return -ENOMEM;
715 src_pmd = pmd_offset(src_pud, addr);
716 do {
717 next = pmd_addr_end(addr, end);
718 if (pmd_none_or_clear_bad(src_pmd))
719 continue;
720 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
721 vma, addr, next))
722 return -ENOMEM;
723 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
724 return 0;
727 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
729 unsigned long addr, unsigned long end)
731 pud_t *src_pud, *dst_pud;
732 unsigned long next;
734 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
735 if (!dst_pud)
736 return -ENOMEM;
737 src_pud = pud_offset(src_pgd, addr);
738 do {
739 next = pud_addr_end(addr, end);
740 if (pud_none_or_clear_bad(src_pud))
741 continue;
742 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
743 vma, addr, next))
744 return -ENOMEM;
745 } while (dst_pud++, src_pud++, addr = next, addr != end);
746 return 0;
749 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
750 struct vm_area_struct *vma)
752 pgd_t *src_pgd, *dst_pgd;
753 unsigned long next;
754 unsigned long addr = vma->vm_start;
755 unsigned long end = vma->vm_end;
756 int ret;
759 * Don't copy ptes where a page fault will fill them correctly.
760 * Fork becomes much lighter when there are big shared or private
761 * readonly mappings. The tradeoff is that copy_page_range is more
762 * efficient than faulting.
764 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
765 if (!vma->anon_vma)
766 return 0;
769 if (is_vm_hugetlb_page(vma))
770 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
772 if (unlikely(is_pfn_mapping(vma))) {
774 * We do not free on error cases below as remove_vma
775 * gets called on error from higher level routine
777 ret = track_pfn_vma_copy(vma);
778 if (ret)
779 return ret;
783 * We need to invalidate the secondary MMU mappings only when
784 * there could be a permission downgrade on the ptes of the
785 * parent mm. And a permission downgrade will only happen if
786 * is_cow_mapping() returns true.
788 if (is_cow_mapping(vma->vm_flags))
789 mmu_notifier_invalidate_range_start(src_mm, addr, end);
791 ret = 0;
792 dst_pgd = pgd_offset(dst_mm, addr);
793 src_pgd = pgd_offset(src_mm, addr);
794 do {
795 next = pgd_addr_end(addr, end);
796 if (pgd_none_or_clear_bad(src_pgd))
797 continue;
798 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
799 vma, addr, next))) {
800 ret = -ENOMEM;
801 break;
803 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
805 if (is_cow_mapping(vma->vm_flags))
806 mmu_notifier_invalidate_range_end(src_mm,
807 vma->vm_start, end);
808 return ret;
811 static unsigned long zap_pte_range(struct mmu_gather *tlb,
812 struct vm_area_struct *vma, pmd_t *pmd,
813 unsigned long addr, unsigned long end,
814 long *zap_work, struct zap_details *details)
816 struct mm_struct *mm = tlb->mm;
817 pte_t *pte;
818 spinlock_t *ptl;
819 int file_rss = 0;
820 int anon_rss = 0;
822 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
823 arch_enter_lazy_mmu_mode();
824 do {
825 pte_t ptent = *pte;
826 if (pte_none(ptent)) {
827 (*zap_work)--;
828 continue;
831 (*zap_work) -= PAGE_SIZE;
833 if (pte_present(ptent)) {
834 struct page *page;
836 page = vm_normal_page(vma, addr, ptent);
837 if (unlikely(details) && page) {
839 * unmap_shared_mapping_pages() wants to
840 * invalidate cache without truncating:
841 * unmap shared but keep private pages.
843 if (details->check_mapping &&
844 details->check_mapping != page->mapping)
845 continue;
847 * Each page->index must be checked when
848 * invalidating or truncating nonlinear.
850 if (details->nonlinear_vma &&
851 (page->index < details->first_index ||
852 page->index > details->last_index))
853 continue;
855 ptent = ptep_get_and_clear_full(mm, addr, pte,
856 tlb->fullmm);
857 tlb_remove_tlb_entry(tlb, pte, addr);
858 if (unlikely(!page))
859 continue;
860 if (unlikely(details) && details->nonlinear_vma
861 && linear_page_index(details->nonlinear_vma,
862 addr) != page->index)
863 set_pte_at(mm, addr, pte,
864 pgoff_to_pte(page->index));
865 if (PageAnon(page))
866 anon_rss--;
867 else {
868 if (pte_dirty(ptent))
869 set_page_dirty(page);
870 if (pte_young(ptent) &&
871 likely(!VM_SequentialReadHint(vma)))
872 mark_page_accessed(page);
873 file_rss--;
875 page_remove_rmap(page);
876 if (unlikely(page_mapcount(page) < 0))
877 print_bad_pte(vma, addr, ptent, page);
878 tlb_remove_page(tlb, page);
879 continue;
882 * If details->check_mapping, we leave swap entries;
883 * if details->nonlinear_vma, we leave file entries.
885 if (unlikely(details))
886 continue;
887 if (pte_file(ptent)) {
888 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
889 print_bad_pte(vma, addr, ptent, NULL);
890 } else if
891 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
892 print_bad_pte(vma, addr, ptent, NULL);
893 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
894 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
896 add_mm_rss(mm, file_rss, anon_rss);
897 arch_leave_lazy_mmu_mode();
898 pte_unmap_unlock(pte - 1, ptl);
900 return addr;
903 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
904 struct vm_area_struct *vma, pud_t *pud,
905 unsigned long addr, unsigned long end,
906 long *zap_work, struct zap_details *details)
908 pmd_t *pmd;
909 unsigned long next;
911 pmd = pmd_offset(pud, addr);
912 do {
913 next = pmd_addr_end(addr, end);
914 if (pmd_none_or_clear_bad(pmd)) {
915 (*zap_work)--;
916 continue;
918 next = zap_pte_range(tlb, vma, pmd, addr, next,
919 zap_work, details);
920 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
922 return addr;
925 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
926 struct vm_area_struct *vma, pgd_t *pgd,
927 unsigned long addr, unsigned long end,
928 long *zap_work, struct zap_details *details)
930 pud_t *pud;
931 unsigned long next;
933 pud = pud_offset(pgd, addr);
934 do {
935 next = pud_addr_end(addr, end);
936 if (pud_none_or_clear_bad(pud)) {
937 (*zap_work)--;
938 continue;
940 next = zap_pmd_range(tlb, vma, pud, addr, next,
941 zap_work, details);
942 } while (pud++, addr = next, (addr != end && *zap_work > 0));
944 return addr;
947 static unsigned long unmap_page_range(struct mmu_gather *tlb,
948 struct vm_area_struct *vma,
949 unsigned long addr, unsigned long end,
950 long *zap_work, struct zap_details *details)
952 pgd_t *pgd;
953 unsigned long next;
955 if (details && !details->check_mapping && !details->nonlinear_vma)
956 details = NULL;
958 BUG_ON(addr >= end);
959 mem_cgroup_uncharge_start();
960 tlb_start_vma(tlb, vma);
961 pgd = pgd_offset(vma->vm_mm, addr);
962 do {
963 next = pgd_addr_end(addr, end);
964 if (pgd_none_or_clear_bad(pgd)) {
965 (*zap_work)--;
966 continue;
968 next = zap_pud_range(tlb, vma, pgd, addr, next,
969 zap_work, details);
970 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
971 tlb_end_vma(tlb, vma);
972 mem_cgroup_uncharge_end();
974 return addr;
977 #ifdef CONFIG_PREEMPT
978 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
979 #else
980 /* No preempt: go for improved straight-line efficiency */
981 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
982 #endif
985 * unmap_vmas - unmap a range of memory covered by a list of vma's
986 * @tlbp: address of the caller's struct mmu_gather
987 * @vma: the starting vma
988 * @start_addr: virtual address at which to start unmapping
989 * @end_addr: virtual address at which to end unmapping
990 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
991 * @details: details of nonlinear truncation or shared cache invalidation
993 * Returns the end address of the unmapping (restart addr if interrupted).
995 * Unmap all pages in the vma list.
997 * We aim to not hold locks for too long (for scheduling latency reasons).
998 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
999 * return the ending mmu_gather to the caller.
1001 * Only addresses between `start' and `end' will be unmapped.
1003 * The VMA list must be sorted in ascending virtual address order.
1005 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1006 * range after unmap_vmas() returns. So the only responsibility here is to
1007 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1008 * drops the lock and schedules.
1010 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1011 struct vm_area_struct *vma, unsigned long start_addr,
1012 unsigned long end_addr, unsigned long *nr_accounted,
1013 struct zap_details *details)
1015 long zap_work = ZAP_BLOCK_SIZE;
1016 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1017 int tlb_start_valid = 0;
1018 unsigned long start = start_addr;
1019 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1020 int fullmm = (*tlbp)->fullmm;
1021 struct mm_struct *mm = vma->vm_mm;
1023 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1024 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1025 unsigned long end;
1027 start = max(vma->vm_start, start_addr);
1028 if (start >= vma->vm_end)
1029 continue;
1030 end = min(vma->vm_end, end_addr);
1031 if (end <= vma->vm_start)
1032 continue;
1034 if (vma->vm_flags & VM_ACCOUNT)
1035 *nr_accounted += (end - start) >> PAGE_SHIFT;
1037 if (unlikely(is_pfn_mapping(vma)))
1038 untrack_pfn_vma(vma, 0, 0);
1040 while (start != end) {
1041 if (!tlb_start_valid) {
1042 tlb_start = start;
1043 tlb_start_valid = 1;
1046 if (unlikely(is_vm_hugetlb_page(vma))) {
1048 * It is undesirable to test vma->vm_file as it
1049 * should be non-null for valid hugetlb area.
1050 * However, vm_file will be NULL in the error
1051 * cleanup path of do_mmap_pgoff. When
1052 * hugetlbfs ->mmap method fails,
1053 * do_mmap_pgoff() nullifies vma->vm_file
1054 * before calling this function to clean up.
1055 * Since no pte has actually been setup, it is
1056 * safe to do nothing in this case.
1058 if (vma->vm_file) {
1059 unmap_hugepage_range(vma, start, end, NULL);
1060 zap_work -= (end - start) /
1061 pages_per_huge_page(hstate_vma(vma));
1064 start = end;
1065 } else
1066 start = unmap_page_range(*tlbp, vma,
1067 start, end, &zap_work, details);
1069 if (zap_work > 0) {
1070 BUG_ON(start != end);
1071 break;
1074 tlb_finish_mmu(*tlbp, tlb_start, start);
1076 if (need_resched() ||
1077 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1078 if (i_mmap_lock) {
1079 *tlbp = NULL;
1080 goto out;
1082 cond_resched();
1085 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1086 tlb_start_valid = 0;
1087 zap_work = ZAP_BLOCK_SIZE;
1090 out:
1091 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1092 return start; /* which is now the end (or restart) address */
1096 * zap_page_range - remove user pages in a given range
1097 * @vma: vm_area_struct holding the applicable pages
1098 * @address: starting address of pages to zap
1099 * @size: number of bytes to zap
1100 * @details: details of nonlinear truncation or shared cache invalidation
1102 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1103 unsigned long size, struct zap_details *details)
1105 struct mm_struct *mm = vma->vm_mm;
1106 struct mmu_gather *tlb;
1107 unsigned long end = address + size;
1108 unsigned long nr_accounted = 0;
1110 lru_add_drain();
1111 tlb = tlb_gather_mmu(mm, 0);
1112 update_hiwater_rss(mm);
1113 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1114 if (tlb)
1115 tlb_finish_mmu(tlb, address, end);
1116 return end;
1120 * zap_vma_ptes - remove ptes mapping the vma
1121 * @vma: vm_area_struct holding ptes to be zapped
1122 * @address: starting address of pages to zap
1123 * @size: number of bytes to zap
1125 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1127 * The entire address range must be fully contained within the vma.
1129 * Returns 0 if successful.
1131 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1132 unsigned long size)
1134 if (address < vma->vm_start || address + size > vma->vm_end ||
1135 !(vma->vm_flags & VM_PFNMAP))
1136 return -1;
1137 zap_page_range(vma, address, size, NULL);
1138 return 0;
1140 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1143 * Do a quick page-table lookup for a single page.
1145 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1146 unsigned int flags)
1148 pgd_t *pgd;
1149 pud_t *pud;
1150 pmd_t *pmd;
1151 pte_t *ptep, pte;
1152 spinlock_t *ptl;
1153 struct page *page;
1154 struct mm_struct *mm = vma->vm_mm;
1156 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1157 if (!IS_ERR(page)) {
1158 BUG_ON(flags & FOLL_GET);
1159 goto out;
1162 page = NULL;
1163 pgd = pgd_offset(mm, address);
1164 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1165 goto no_page_table;
1167 pud = pud_offset(pgd, address);
1168 if (pud_none(*pud))
1169 goto no_page_table;
1170 if (pud_huge(*pud)) {
1171 BUG_ON(flags & FOLL_GET);
1172 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1173 goto out;
1175 if (unlikely(pud_bad(*pud)))
1176 goto no_page_table;
1178 pmd = pmd_offset(pud, address);
1179 if (pmd_none(*pmd))
1180 goto no_page_table;
1181 if (pmd_huge(*pmd)) {
1182 BUG_ON(flags & FOLL_GET);
1183 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1184 goto out;
1186 if (unlikely(pmd_bad(*pmd)))
1187 goto no_page_table;
1189 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1191 pte = *ptep;
1192 if (!pte_present(pte))
1193 goto no_page;
1194 if ((flags & FOLL_WRITE) && !pte_write(pte))
1195 goto unlock;
1197 page = vm_normal_page(vma, address, pte);
1198 if (unlikely(!page)) {
1199 if ((flags & FOLL_DUMP) ||
1200 !is_zero_pfn(pte_pfn(pte)))
1201 goto bad_page;
1202 page = pte_page(pte);
1205 if (flags & FOLL_GET)
1206 get_page(page);
1207 if (flags & FOLL_TOUCH) {
1208 if ((flags & FOLL_WRITE) &&
1209 !pte_dirty(pte) && !PageDirty(page))
1210 set_page_dirty(page);
1212 * pte_mkyoung() would be more correct here, but atomic care
1213 * is needed to avoid losing the dirty bit: it is easier to use
1214 * mark_page_accessed().
1216 mark_page_accessed(page);
1218 unlock:
1219 pte_unmap_unlock(ptep, ptl);
1220 out:
1221 return page;
1223 bad_page:
1224 pte_unmap_unlock(ptep, ptl);
1225 return ERR_PTR(-EFAULT);
1227 no_page:
1228 pte_unmap_unlock(ptep, ptl);
1229 if (!pte_none(pte))
1230 return page;
1232 no_page_table:
1234 * When core dumping an enormous anonymous area that nobody
1235 * has touched so far, we don't want to allocate unnecessary pages or
1236 * page tables. Return error instead of NULL to skip handle_mm_fault,
1237 * then get_dump_page() will return NULL to leave a hole in the dump.
1238 * But we can only make this optimization where a hole would surely
1239 * be zero-filled if handle_mm_fault() actually did handle it.
1241 if ((flags & FOLL_DUMP) &&
1242 (!vma->vm_ops || !vma->vm_ops->fault))
1243 return ERR_PTR(-EFAULT);
1244 return page;
1247 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1248 unsigned long start, int nr_pages, unsigned int gup_flags,
1249 struct page **pages, struct vm_area_struct **vmas)
1251 int i;
1252 unsigned long vm_flags;
1254 if (nr_pages <= 0)
1255 return 0;
1257 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1260 * Require read or write permissions.
1261 * If FOLL_FORCE is set, we only require the "MAY" flags.
1263 vm_flags = (gup_flags & FOLL_WRITE) ?
1264 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1265 vm_flags &= (gup_flags & FOLL_FORCE) ?
1266 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1267 i = 0;
1269 do {
1270 struct vm_area_struct *vma;
1272 vma = find_extend_vma(mm, start);
1273 if (!vma && in_gate_area(tsk, start)) {
1274 unsigned long pg = start & PAGE_MASK;
1275 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1276 pgd_t *pgd;
1277 pud_t *pud;
1278 pmd_t *pmd;
1279 pte_t *pte;
1281 /* user gate pages are read-only */
1282 if (gup_flags & FOLL_WRITE)
1283 return i ? : -EFAULT;
1284 if (pg > TASK_SIZE)
1285 pgd = pgd_offset_k(pg);
1286 else
1287 pgd = pgd_offset_gate(mm, pg);
1288 BUG_ON(pgd_none(*pgd));
1289 pud = pud_offset(pgd, pg);
1290 BUG_ON(pud_none(*pud));
1291 pmd = pmd_offset(pud, pg);
1292 if (pmd_none(*pmd))
1293 return i ? : -EFAULT;
1294 pte = pte_offset_map(pmd, pg);
1295 if (pte_none(*pte)) {
1296 pte_unmap(pte);
1297 return i ? : -EFAULT;
1299 if (pages) {
1300 struct page *page = vm_normal_page(gate_vma, start, *pte);
1301 pages[i] = page;
1302 if (page)
1303 get_page(page);
1305 pte_unmap(pte);
1306 if (vmas)
1307 vmas[i] = gate_vma;
1308 i++;
1309 start += PAGE_SIZE;
1310 nr_pages--;
1311 continue;
1314 if (!vma ||
1315 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1316 !(vm_flags & vma->vm_flags))
1317 return i ? : -EFAULT;
1319 if (is_vm_hugetlb_page(vma)) {
1320 i = follow_hugetlb_page(mm, vma, pages, vmas,
1321 &start, &nr_pages, i, gup_flags);
1322 continue;
1325 do {
1326 struct page *page;
1327 unsigned int foll_flags = gup_flags;
1330 * If we have a pending SIGKILL, don't keep faulting
1331 * pages and potentially allocating memory.
1333 if (unlikely(fatal_signal_pending(current)))
1334 return i ? i : -ERESTARTSYS;
1336 cond_resched();
1337 while (!(page = follow_page(vma, start, foll_flags))) {
1338 int ret;
1340 ret = handle_mm_fault(mm, vma, start,
1341 (foll_flags & FOLL_WRITE) ?
1342 FAULT_FLAG_WRITE : 0);
1344 if (ret & VM_FAULT_ERROR) {
1345 if (ret & VM_FAULT_OOM)
1346 return i ? i : -ENOMEM;
1347 if (ret &
1348 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1349 return i ? i : -EFAULT;
1350 BUG();
1352 if (ret & VM_FAULT_MAJOR)
1353 tsk->maj_flt++;
1354 else
1355 tsk->min_flt++;
1358 * The VM_FAULT_WRITE bit tells us that
1359 * do_wp_page has broken COW when necessary,
1360 * even if maybe_mkwrite decided not to set
1361 * pte_write. We can thus safely do subsequent
1362 * page lookups as if they were reads. But only
1363 * do so when looping for pte_write is futile:
1364 * in some cases userspace may also be wanting
1365 * to write to the gotten user page, which a
1366 * read fault here might prevent (a readonly
1367 * page might get reCOWed by userspace write).
1369 if ((ret & VM_FAULT_WRITE) &&
1370 !(vma->vm_flags & VM_WRITE))
1371 foll_flags &= ~FOLL_WRITE;
1373 cond_resched();
1375 if (IS_ERR(page))
1376 return i ? i : PTR_ERR(page);
1377 if (pages) {
1378 pages[i] = page;
1380 flush_anon_page(vma, page, start);
1381 flush_dcache_page(page);
1383 if (vmas)
1384 vmas[i] = vma;
1385 i++;
1386 start += PAGE_SIZE;
1387 nr_pages--;
1388 } while (nr_pages && start < vma->vm_end);
1389 } while (nr_pages);
1390 return i;
1394 * get_user_pages() - pin user pages in memory
1395 * @tsk: task_struct of target task
1396 * @mm: mm_struct of target mm
1397 * @start: starting user address
1398 * @nr_pages: number of pages from start to pin
1399 * @write: whether pages will be written to by the caller
1400 * @force: whether to force write access even if user mapping is
1401 * readonly. This will result in the page being COWed even
1402 * in MAP_SHARED mappings. You do not want this.
1403 * @pages: array that receives pointers to the pages pinned.
1404 * Should be at least nr_pages long. Or NULL, if caller
1405 * only intends to ensure the pages are faulted in.
1406 * @vmas: array of pointers to vmas corresponding to each page.
1407 * Or NULL if the caller does not require them.
1409 * Returns number of pages pinned. This may be fewer than the number
1410 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1411 * were pinned, returns -errno. Each page returned must be released
1412 * with a put_page() call when it is finished with. vmas will only
1413 * remain valid while mmap_sem is held.
1415 * Must be called with mmap_sem held for read or write.
1417 * get_user_pages walks a process's page tables and takes a reference to
1418 * each struct page that each user address corresponds to at a given
1419 * instant. That is, it takes the page that would be accessed if a user
1420 * thread accesses the given user virtual address at that instant.
1422 * This does not guarantee that the page exists in the user mappings when
1423 * get_user_pages returns, and there may even be a completely different
1424 * page there in some cases (eg. if mmapped pagecache has been invalidated
1425 * and subsequently re faulted). However it does guarantee that the page
1426 * won't be freed completely. And mostly callers simply care that the page
1427 * contains data that was valid *at some point in time*. Typically, an IO
1428 * or similar operation cannot guarantee anything stronger anyway because
1429 * locks can't be held over the syscall boundary.
1431 * If write=0, the page must not be written to. If the page is written to,
1432 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1433 * after the page is finished with, and before put_page is called.
1435 * get_user_pages is typically used for fewer-copy IO operations, to get a
1436 * handle on the memory by some means other than accesses via the user virtual
1437 * addresses. The pages may be submitted for DMA to devices or accessed via
1438 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1439 * use the correct cache flushing APIs.
1441 * See also get_user_pages_fast, for performance critical applications.
1443 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1444 unsigned long start, int nr_pages, int write, int force,
1445 struct page **pages, struct vm_area_struct **vmas)
1447 int flags = FOLL_TOUCH;
1449 if (pages)
1450 flags |= FOLL_GET;
1451 if (write)
1452 flags |= FOLL_WRITE;
1453 if (force)
1454 flags |= FOLL_FORCE;
1456 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1458 EXPORT_SYMBOL(get_user_pages);
1461 * get_dump_page() - pin user page in memory while writing it to core dump
1462 * @addr: user address
1464 * Returns struct page pointer of user page pinned for dump,
1465 * to be freed afterwards by page_cache_release() or put_page().
1467 * Returns NULL on any kind of failure - a hole must then be inserted into
1468 * the corefile, to preserve alignment with its headers; and also returns
1469 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1470 * allowing a hole to be left in the corefile to save diskspace.
1472 * Called without mmap_sem, but after all other threads have been killed.
1474 #ifdef CONFIG_ELF_CORE
1475 struct page *get_dump_page(unsigned long addr)
1477 struct vm_area_struct *vma;
1478 struct page *page;
1480 if (__get_user_pages(current, current->mm, addr, 1,
1481 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1482 return NULL;
1483 flush_cache_page(vma, addr, page_to_pfn(page));
1484 return page;
1486 #endif /* CONFIG_ELF_CORE */
1488 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1489 spinlock_t **ptl)
1491 pgd_t * pgd = pgd_offset(mm, addr);
1492 pud_t * pud = pud_alloc(mm, pgd, addr);
1493 if (pud) {
1494 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1495 if (pmd)
1496 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1498 return NULL;
1502 * This is the old fallback for page remapping.
1504 * For historical reasons, it only allows reserved pages. Only
1505 * old drivers should use this, and they needed to mark their
1506 * pages reserved for the old functions anyway.
1508 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1509 struct page *page, pgprot_t prot)
1511 struct mm_struct *mm = vma->vm_mm;
1512 int retval;
1513 pte_t *pte;
1514 spinlock_t *ptl;
1516 retval = -EINVAL;
1517 if (PageAnon(page))
1518 goto out;
1519 retval = -ENOMEM;
1520 flush_dcache_page(page);
1521 pte = get_locked_pte(mm, addr, &ptl);
1522 if (!pte)
1523 goto out;
1524 retval = -EBUSY;
1525 if (!pte_none(*pte))
1526 goto out_unlock;
1528 /* Ok, finally just insert the thing.. */
1529 get_page(page);
1530 inc_mm_counter(mm, file_rss);
1531 page_add_file_rmap(page);
1532 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1534 retval = 0;
1535 pte_unmap_unlock(pte, ptl);
1536 return retval;
1537 out_unlock:
1538 pte_unmap_unlock(pte, ptl);
1539 out:
1540 return retval;
1544 * vm_insert_page - insert single page into user vma
1545 * @vma: user vma to map to
1546 * @addr: target user address of this page
1547 * @page: source kernel page
1549 * This allows drivers to insert individual pages they've allocated
1550 * into a user vma.
1552 * The page has to be a nice clean _individual_ kernel allocation.
1553 * If you allocate a compound page, you need to have marked it as
1554 * such (__GFP_COMP), or manually just split the page up yourself
1555 * (see split_page()).
1557 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1558 * took an arbitrary page protection parameter. This doesn't allow
1559 * that. Your vma protection will have to be set up correctly, which
1560 * means that if you want a shared writable mapping, you'd better
1561 * ask for a shared writable mapping!
1563 * The page does not need to be reserved.
1565 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1566 struct page *page)
1568 if (addr < vma->vm_start || addr >= vma->vm_end)
1569 return -EFAULT;
1570 if (!page_count(page))
1571 return -EINVAL;
1572 vma->vm_flags |= VM_INSERTPAGE;
1573 return insert_page(vma, addr, page, vma->vm_page_prot);
1575 EXPORT_SYMBOL(vm_insert_page);
1577 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1578 unsigned long pfn, pgprot_t prot)
1580 struct mm_struct *mm = vma->vm_mm;
1581 int retval;
1582 pte_t *pte, entry;
1583 spinlock_t *ptl;
1585 retval = -ENOMEM;
1586 pte = get_locked_pte(mm, addr, &ptl);
1587 if (!pte)
1588 goto out;
1589 retval = -EBUSY;
1590 if (!pte_none(*pte))
1591 goto out_unlock;
1593 /* Ok, finally just insert the thing.. */
1594 entry = pte_mkspecial(pfn_pte(pfn, prot));
1595 set_pte_at(mm, addr, pte, entry);
1596 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1598 retval = 0;
1599 out_unlock:
1600 pte_unmap_unlock(pte, ptl);
1601 out:
1602 return retval;
1606 * vm_insert_pfn - insert single pfn into user vma
1607 * @vma: user vma to map to
1608 * @addr: target user address of this page
1609 * @pfn: source kernel pfn
1611 * Similar to vm_inert_page, this allows drivers to insert individual pages
1612 * they've allocated into a user vma. Same comments apply.
1614 * This function should only be called from a vm_ops->fault handler, and
1615 * in that case the handler should return NULL.
1617 * vma cannot be a COW mapping.
1619 * As this is called only for pages that do not currently exist, we
1620 * do not need to flush old virtual caches or the TLB.
1622 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1623 unsigned long pfn)
1625 int ret;
1626 pgprot_t pgprot = vma->vm_page_prot;
1628 * Technically, architectures with pte_special can avoid all these
1629 * restrictions (same for remap_pfn_range). However we would like
1630 * consistency in testing and feature parity among all, so we should
1631 * try to keep these invariants in place for everybody.
1633 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1634 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1635 (VM_PFNMAP|VM_MIXEDMAP));
1636 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1637 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1639 if (addr < vma->vm_start || addr >= vma->vm_end)
1640 return -EFAULT;
1641 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1642 return -EINVAL;
1644 ret = insert_pfn(vma, addr, pfn, pgprot);
1646 if (ret)
1647 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1649 return ret;
1651 EXPORT_SYMBOL(vm_insert_pfn);
1653 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1654 unsigned long pfn)
1656 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1658 if (addr < vma->vm_start || addr >= vma->vm_end)
1659 return -EFAULT;
1662 * If we don't have pte special, then we have to use the pfn_valid()
1663 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1664 * refcount the page if pfn_valid is true (hence insert_page rather
1665 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1666 * without pte special, it would there be refcounted as a normal page.
1668 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1669 struct page *page;
1671 page = pfn_to_page(pfn);
1672 return insert_page(vma, addr, page, vma->vm_page_prot);
1674 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1676 EXPORT_SYMBOL(vm_insert_mixed);
1679 * maps a range of physical memory into the requested pages. the old
1680 * mappings are removed. any references to nonexistent pages results
1681 * in null mappings (currently treated as "copy-on-access")
1683 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1684 unsigned long addr, unsigned long end,
1685 unsigned long pfn, pgprot_t prot)
1687 pte_t *pte;
1688 spinlock_t *ptl;
1690 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1691 if (!pte)
1692 return -ENOMEM;
1693 arch_enter_lazy_mmu_mode();
1694 do {
1695 BUG_ON(!pte_none(*pte));
1696 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1697 pfn++;
1698 } while (pte++, addr += PAGE_SIZE, addr != end);
1699 arch_leave_lazy_mmu_mode();
1700 pte_unmap_unlock(pte - 1, ptl);
1701 return 0;
1704 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1705 unsigned long addr, unsigned long end,
1706 unsigned long pfn, pgprot_t prot)
1708 pmd_t *pmd;
1709 unsigned long next;
1711 pfn -= addr >> PAGE_SHIFT;
1712 pmd = pmd_alloc(mm, pud, addr);
1713 if (!pmd)
1714 return -ENOMEM;
1715 do {
1716 next = pmd_addr_end(addr, end);
1717 if (remap_pte_range(mm, pmd, addr, next,
1718 pfn + (addr >> PAGE_SHIFT), prot))
1719 return -ENOMEM;
1720 } while (pmd++, addr = next, addr != end);
1721 return 0;
1724 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1725 unsigned long addr, unsigned long end,
1726 unsigned long pfn, pgprot_t prot)
1728 pud_t *pud;
1729 unsigned long next;
1731 pfn -= addr >> PAGE_SHIFT;
1732 pud = pud_alloc(mm, pgd, addr);
1733 if (!pud)
1734 return -ENOMEM;
1735 do {
1736 next = pud_addr_end(addr, end);
1737 if (remap_pmd_range(mm, pud, addr, next,
1738 pfn + (addr >> PAGE_SHIFT), prot))
1739 return -ENOMEM;
1740 } while (pud++, addr = next, addr != end);
1741 return 0;
1745 * remap_pfn_range - remap kernel memory to userspace
1746 * @vma: user vma to map to
1747 * @addr: target user address to start at
1748 * @pfn: physical address of kernel memory
1749 * @size: size of map area
1750 * @prot: page protection flags for this mapping
1752 * Note: this is only safe if the mm semaphore is held when called.
1754 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1755 unsigned long pfn, unsigned long size, pgprot_t prot)
1757 pgd_t *pgd;
1758 unsigned long next;
1759 unsigned long end = addr + PAGE_ALIGN(size);
1760 struct mm_struct *mm = vma->vm_mm;
1761 int err;
1764 * Physically remapped pages are special. Tell the
1765 * rest of the world about it:
1766 * VM_IO tells people not to look at these pages
1767 * (accesses can have side effects).
1768 * VM_RESERVED is specified all over the place, because
1769 * in 2.4 it kept swapout's vma scan off this vma; but
1770 * in 2.6 the LRU scan won't even find its pages, so this
1771 * flag means no more than count its pages in reserved_vm,
1772 * and omit it from core dump, even when VM_IO turned off.
1773 * VM_PFNMAP tells the core MM that the base pages are just
1774 * raw PFN mappings, and do not have a "struct page" associated
1775 * with them.
1777 * There's a horrible special case to handle copy-on-write
1778 * behaviour that some programs depend on. We mark the "original"
1779 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1781 if (addr == vma->vm_start && end == vma->vm_end) {
1782 vma->vm_pgoff = pfn;
1783 vma->vm_flags |= VM_PFN_AT_MMAP;
1784 } else if (is_cow_mapping(vma->vm_flags))
1785 return -EINVAL;
1787 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1789 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1790 if (err) {
1792 * To indicate that track_pfn related cleanup is not
1793 * needed from higher level routine calling unmap_vmas
1795 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1796 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1797 return -EINVAL;
1800 BUG_ON(addr >= end);
1801 pfn -= addr >> PAGE_SHIFT;
1802 pgd = pgd_offset(mm, addr);
1803 flush_cache_range(vma, addr, end);
1804 do {
1805 next = pgd_addr_end(addr, end);
1806 err = remap_pud_range(mm, pgd, addr, next,
1807 pfn + (addr >> PAGE_SHIFT), prot);
1808 if (err)
1809 break;
1810 } while (pgd++, addr = next, addr != end);
1812 if (err)
1813 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1815 return err;
1817 EXPORT_SYMBOL(remap_pfn_range);
1819 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1820 unsigned long addr, unsigned long end,
1821 pte_fn_t fn, void *data)
1823 pte_t *pte;
1824 int err;
1825 pgtable_t token;
1826 spinlock_t *uninitialized_var(ptl);
1828 pte = (mm == &init_mm) ?
1829 pte_alloc_kernel(pmd, addr) :
1830 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1831 if (!pte)
1832 return -ENOMEM;
1834 BUG_ON(pmd_huge(*pmd));
1836 arch_enter_lazy_mmu_mode();
1838 token = pmd_pgtable(*pmd);
1840 do {
1841 err = fn(pte++, token, addr, data);
1842 if (err)
1843 break;
1844 } while (addr += PAGE_SIZE, addr != end);
1846 arch_leave_lazy_mmu_mode();
1848 if (mm != &init_mm)
1849 pte_unmap_unlock(pte-1, ptl);
1850 return err;
1853 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1854 unsigned long addr, unsigned long end,
1855 pte_fn_t fn, void *data)
1857 pmd_t *pmd;
1858 unsigned long next;
1859 int err;
1861 BUG_ON(pud_huge(*pud));
1863 pmd = pmd_alloc(mm, pud, addr);
1864 if (!pmd)
1865 return -ENOMEM;
1866 do {
1867 next = pmd_addr_end(addr, end);
1868 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1869 if (err)
1870 break;
1871 } while (pmd++, addr = next, addr != end);
1872 return err;
1875 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1876 unsigned long addr, unsigned long end,
1877 pte_fn_t fn, void *data)
1879 pud_t *pud;
1880 unsigned long next;
1881 int err;
1883 pud = pud_alloc(mm, pgd, addr);
1884 if (!pud)
1885 return -ENOMEM;
1886 do {
1887 next = pud_addr_end(addr, end);
1888 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1889 if (err)
1890 break;
1891 } while (pud++, addr = next, addr != end);
1892 return err;
1896 * Scan a region of virtual memory, filling in page tables as necessary
1897 * and calling a provided function on each leaf page table.
1899 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1900 unsigned long size, pte_fn_t fn, void *data)
1902 pgd_t *pgd;
1903 unsigned long next;
1904 unsigned long start = addr, end = addr + size;
1905 int err;
1907 BUG_ON(addr >= end);
1908 mmu_notifier_invalidate_range_start(mm, start, end);
1909 pgd = pgd_offset(mm, addr);
1910 do {
1911 next = pgd_addr_end(addr, end);
1912 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1913 if (err)
1914 break;
1915 } while (pgd++, addr = next, addr != end);
1916 mmu_notifier_invalidate_range_end(mm, start, end);
1917 return err;
1919 EXPORT_SYMBOL_GPL(apply_to_page_range);
1922 * handle_pte_fault chooses page fault handler according to an entry
1923 * which was read non-atomically. Before making any commitment, on
1924 * those architectures or configurations (e.g. i386 with PAE) which
1925 * might give a mix of unmatched parts, do_swap_page and do_file_page
1926 * must check under lock before unmapping the pte and proceeding
1927 * (but do_wp_page is only called after already making such a check;
1928 * and do_anonymous_page and do_no_page can safely check later on).
1930 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1931 pte_t *page_table, pte_t orig_pte)
1933 int same = 1;
1934 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1935 if (sizeof(pte_t) > sizeof(unsigned long)) {
1936 spinlock_t *ptl = pte_lockptr(mm, pmd);
1937 spin_lock(ptl);
1938 same = pte_same(*page_table, orig_pte);
1939 spin_unlock(ptl);
1941 #endif
1942 pte_unmap(page_table);
1943 return same;
1947 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1948 * servicing faults for write access. In the normal case, do always want
1949 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1950 * that do not have writing enabled, when used by access_process_vm.
1952 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1954 if (likely(vma->vm_flags & VM_WRITE))
1955 pte = pte_mkwrite(pte);
1956 return pte;
1959 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1962 * If the source page was a PFN mapping, we don't have
1963 * a "struct page" for it. We do a best-effort copy by
1964 * just copying from the original user address. If that
1965 * fails, we just zero-fill it. Live with it.
1967 if (unlikely(!src)) {
1968 void *kaddr = kmap_atomic(dst, KM_USER0);
1969 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1972 * This really shouldn't fail, because the page is there
1973 * in the page tables. But it might just be unreadable,
1974 * in which case we just give up and fill the result with
1975 * zeroes.
1977 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1978 memset(kaddr, 0, PAGE_SIZE);
1979 kunmap_atomic(kaddr, KM_USER0);
1980 flush_dcache_page(dst);
1981 } else
1982 copy_user_highpage(dst, src, va, vma);
1986 * This routine handles present pages, when users try to write
1987 * to a shared page. It is done by copying the page to a new address
1988 * and decrementing the shared-page counter for the old page.
1990 * Note that this routine assumes that the protection checks have been
1991 * done by the caller (the low-level page fault routine in most cases).
1992 * Thus we can safely just mark it writable once we've done any necessary
1993 * COW.
1995 * We also mark the page dirty at this point even though the page will
1996 * change only once the write actually happens. This avoids a few races,
1997 * and potentially makes it more efficient.
1999 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2000 * but allow concurrent faults), with pte both mapped and locked.
2001 * We return with mmap_sem still held, but pte unmapped and unlocked.
2003 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2004 unsigned long address, pte_t *page_table, pmd_t *pmd,
2005 spinlock_t *ptl, pte_t orig_pte)
2007 struct page *old_page, *new_page;
2008 pte_t entry;
2009 int reuse = 0, ret = 0;
2010 int page_mkwrite = 0;
2011 struct page *dirty_page = NULL;
2013 old_page = vm_normal_page(vma, address, orig_pte);
2014 if (!old_page) {
2016 * VM_MIXEDMAP !pfn_valid() case
2018 * We should not cow pages in a shared writeable mapping.
2019 * Just mark the pages writable as we can't do any dirty
2020 * accounting on raw pfn maps.
2022 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2023 (VM_WRITE|VM_SHARED))
2024 goto reuse;
2025 goto gotten;
2029 * Take out anonymous pages first, anonymous shared vmas are
2030 * not dirty accountable.
2032 if (PageAnon(old_page) && !PageKsm(old_page)) {
2033 if (!trylock_page(old_page)) {
2034 page_cache_get(old_page);
2035 pte_unmap_unlock(page_table, ptl);
2036 lock_page(old_page);
2037 page_table = pte_offset_map_lock(mm, pmd, address,
2038 &ptl);
2039 if (!pte_same(*page_table, orig_pte)) {
2040 unlock_page(old_page);
2041 page_cache_release(old_page);
2042 goto unlock;
2044 page_cache_release(old_page);
2046 reuse = reuse_swap_page(old_page);
2047 unlock_page(old_page);
2048 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2049 (VM_WRITE|VM_SHARED))) {
2051 * Only catch write-faults on shared writable pages,
2052 * read-only shared pages can get COWed by
2053 * get_user_pages(.write=1, .force=1).
2055 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2056 struct vm_fault vmf;
2057 int tmp;
2059 vmf.virtual_address = (void __user *)(address &
2060 PAGE_MASK);
2061 vmf.pgoff = old_page->index;
2062 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2063 vmf.page = old_page;
2066 * Notify the address space that the page is about to
2067 * become writable so that it can prohibit this or wait
2068 * for the page to get into an appropriate state.
2070 * We do this without the lock held, so that it can
2071 * sleep if it needs to.
2073 page_cache_get(old_page);
2074 pte_unmap_unlock(page_table, ptl);
2076 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2077 if (unlikely(tmp &
2078 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2079 ret = tmp;
2080 goto unwritable_page;
2082 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2083 lock_page(old_page);
2084 if (!old_page->mapping) {
2085 ret = 0; /* retry the fault */
2086 unlock_page(old_page);
2087 goto unwritable_page;
2089 } else
2090 VM_BUG_ON(!PageLocked(old_page));
2093 * Since we dropped the lock we need to revalidate
2094 * the PTE as someone else may have changed it. If
2095 * they did, we just return, as we can count on the
2096 * MMU to tell us if they didn't also make it writable.
2098 page_table = pte_offset_map_lock(mm, pmd, address,
2099 &ptl);
2100 if (!pte_same(*page_table, orig_pte)) {
2101 unlock_page(old_page);
2102 page_cache_release(old_page);
2103 goto unlock;
2106 page_mkwrite = 1;
2108 dirty_page = old_page;
2109 get_page(dirty_page);
2110 reuse = 1;
2113 if (reuse) {
2114 reuse:
2115 flush_cache_page(vma, address, pte_pfn(orig_pte));
2116 entry = pte_mkyoung(orig_pte);
2117 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2118 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2119 update_mmu_cache(vma, address, entry);
2120 ret |= VM_FAULT_WRITE;
2121 goto unlock;
2125 * Ok, we need to copy. Oh, well..
2127 page_cache_get(old_page);
2128 gotten:
2129 pte_unmap_unlock(page_table, ptl);
2131 if (unlikely(anon_vma_prepare(vma)))
2132 goto oom;
2134 if (is_zero_pfn(pte_pfn(orig_pte))) {
2135 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2136 if (!new_page)
2137 goto oom;
2138 } else {
2139 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2140 if (!new_page)
2141 goto oom;
2142 cow_user_page(new_page, old_page, address, vma);
2144 __SetPageUptodate(new_page);
2147 * Don't let another task, with possibly unlocked vma,
2148 * keep the mlocked page.
2150 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2151 lock_page(old_page); /* for LRU manipulation */
2152 clear_page_mlock(old_page);
2153 unlock_page(old_page);
2156 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2157 goto oom_free_new;
2160 * Re-check the pte - we dropped the lock
2162 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2163 if (likely(pte_same(*page_table, orig_pte))) {
2164 if (old_page) {
2165 if (!PageAnon(old_page)) {
2166 dec_mm_counter(mm, file_rss);
2167 inc_mm_counter(mm, anon_rss);
2169 } else
2170 inc_mm_counter(mm, anon_rss);
2171 flush_cache_page(vma, address, pte_pfn(orig_pte));
2172 entry = mk_pte(new_page, vma->vm_page_prot);
2173 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 * Clear the pte entry and flush it first, before updating the
2176 * pte with the new entry. This will avoid a race condition
2177 * seen in the presence of one thread doing SMC and another
2178 * thread doing COW.
2180 ptep_clear_flush(vma, address, page_table);
2181 page_add_new_anon_rmap(new_page, vma, address);
2183 * We call the notify macro here because, when using secondary
2184 * mmu page tables (such as kvm shadow page tables), we want the
2185 * new page to be mapped directly into the secondary page table.
2187 set_pte_at_notify(mm, address, page_table, entry);
2188 update_mmu_cache(vma, address, entry);
2189 if (old_page) {
2191 * Only after switching the pte to the new page may
2192 * we remove the mapcount here. Otherwise another
2193 * process may come and find the rmap count decremented
2194 * before the pte is switched to the new page, and
2195 * "reuse" the old page writing into it while our pte
2196 * here still points into it and can be read by other
2197 * threads.
2199 * The critical issue is to order this
2200 * page_remove_rmap with the ptp_clear_flush above.
2201 * Those stores are ordered by (if nothing else,)
2202 * the barrier present in the atomic_add_negative
2203 * in page_remove_rmap.
2205 * Then the TLB flush in ptep_clear_flush ensures that
2206 * no process can access the old page before the
2207 * decremented mapcount is visible. And the old page
2208 * cannot be reused until after the decremented
2209 * mapcount is visible. So transitively, TLBs to
2210 * old page will be flushed before it can be reused.
2212 page_remove_rmap(old_page);
2215 /* Free the old page.. */
2216 new_page = old_page;
2217 ret |= VM_FAULT_WRITE;
2218 } else
2219 mem_cgroup_uncharge_page(new_page);
2221 if (new_page)
2222 page_cache_release(new_page);
2223 if (old_page)
2224 page_cache_release(old_page);
2225 unlock:
2226 pte_unmap_unlock(page_table, ptl);
2227 if (dirty_page) {
2229 * Yes, Virginia, this is actually required to prevent a race
2230 * with clear_page_dirty_for_io() from clearing the page dirty
2231 * bit after it clear all dirty ptes, but before a racing
2232 * do_wp_page installs a dirty pte.
2234 * do_no_page is protected similarly.
2236 if (!page_mkwrite) {
2237 wait_on_page_locked(dirty_page);
2238 set_page_dirty_balance(dirty_page, page_mkwrite);
2240 put_page(dirty_page);
2241 if (page_mkwrite) {
2242 struct address_space *mapping = dirty_page->mapping;
2244 set_page_dirty(dirty_page);
2245 unlock_page(dirty_page);
2246 page_cache_release(dirty_page);
2247 if (mapping) {
2249 * Some device drivers do not set page.mapping
2250 * but still dirty their pages
2252 balance_dirty_pages_ratelimited(mapping);
2256 /* file_update_time outside page_lock */
2257 if (vma->vm_file)
2258 file_update_time(vma->vm_file);
2260 return ret;
2261 oom_free_new:
2262 page_cache_release(new_page);
2263 oom:
2264 if (old_page) {
2265 if (page_mkwrite) {
2266 unlock_page(old_page);
2267 page_cache_release(old_page);
2269 page_cache_release(old_page);
2271 return VM_FAULT_OOM;
2273 unwritable_page:
2274 page_cache_release(old_page);
2275 return ret;
2279 * Helper functions for unmap_mapping_range().
2281 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2283 * We have to restart searching the prio_tree whenever we drop the lock,
2284 * since the iterator is only valid while the lock is held, and anyway
2285 * a later vma might be split and reinserted earlier while lock dropped.
2287 * The list of nonlinear vmas could be handled more efficiently, using
2288 * a placeholder, but handle it in the same way until a need is shown.
2289 * It is important to search the prio_tree before nonlinear list: a vma
2290 * may become nonlinear and be shifted from prio_tree to nonlinear list
2291 * while the lock is dropped; but never shifted from list to prio_tree.
2293 * In order to make forward progress despite restarting the search,
2294 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2295 * quickly skip it next time around. Since the prio_tree search only
2296 * shows us those vmas affected by unmapping the range in question, we
2297 * can't efficiently keep all vmas in step with mapping->truncate_count:
2298 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2299 * mapping->truncate_count and vma->vm_truncate_count are protected by
2300 * i_mmap_lock.
2302 * In order to make forward progress despite repeatedly restarting some
2303 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2304 * and restart from that address when we reach that vma again. It might
2305 * have been split or merged, shrunk or extended, but never shifted: so
2306 * restart_addr remains valid so long as it remains in the vma's range.
2307 * unmap_mapping_range forces truncate_count to leap over page-aligned
2308 * values so we can save vma's restart_addr in its truncate_count field.
2310 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2312 static void reset_vma_truncate_counts(struct address_space *mapping)
2314 struct vm_area_struct *vma;
2315 struct prio_tree_iter iter;
2317 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2318 vma->vm_truncate_count = 0;
2319 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2320 vma->vm_truncate_count = 0;
2323 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2324 unsigned long start_addr, unsigned long end_addr,
2325 struct zap_details *details)
2327 unsigned long restart_addr;
2328 int need_break;
2331 * files that support invalidating or truncating portions of the
2332 * file from under mmaped areas must have their ->fault function
2333 * return a locked page (and set VM_FAULT_LOCKED in the return).
2334 * This provides synchronisation against concurrent unmapping here.
2337 again:
2338 restart_addr = vma->vm_truncate_count;
2339 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2340 start_addr = restart_addr;
2341 if (start_addr >= end_addr) {
2342 /* Top of vma has been split off since last time */
2343 vma->vm_truncate_count = details->truncate_count;
2344 return 0;
2348 restart_addr = zap_page_range(vma, start_addr,
2349 end_addr - start_addr, details);
2350 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2352 if (restart_addr >= end_addr) {
2353 /* We have now completed this vma: mark it so */
2354 vma->vm_truncate_count = details->truncate_count;
2355 if (!need_break)
2356 return 0;
2357 } else {
2358 /* Note restart_addr in vma's truncate_count field */
2359 vma->vm_truncate_count = restart_addr;
2360 if (!need_break)
2361 goto again;
2364 spin_unlock(details->i_mmap_lock);
2365 cond_resched();
2366 spin_lock(details->i_mmap_lock);
2367 return -EINTR;
2370 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2371 struct zap_details *details)
2373 struct vm_area_struct *vma;
2374 struct prio_tree_iter iter;
2375 pgoff_t vba, vea, zba, zea;
2377 restart:
2378 vma_prio_tree_foreach(vma, &iter, root,
2379 details->first_index, details->last_index) {
2380 /* Skip quickly over those we have already dealt with */
2381 if (vma->vm_truncate_count == details->truncate_count)
2382 continue;
2384 vba = vma->vm_pgoff;
2385 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2386 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2387 zba = details->first_index;
2388 if (zba < vba)
2389 zba = vba;
2390 zea = details->last_index;
2391 if (zea > vea)
2392 zea = vea;
2394 if (unmap_mapping_range_vma(vma,
2395 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2396 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2397 details) < 0)
2398 goto restart;
2402 static inline void unmap_mapping_range_list(struct list_head *head,
2403 struct zap_details *details)
2405 struct vm_area_struct *vma;
2408 * In nonlinear VMAs there is no correspondence between virtual address
2409 * offset and file offset. So we must perform an exhaustive search
2410 * across *all* the pages in each nonlinear VMA, not just the pages
2411 * whose virtual address lies outside the file truncation point.
2413 restart:
2414 list_for_each_entry(vma, head, shared.vm_set.list) {
2415 /* Skip quickly over those we have already dealt with */
2416 if (vma->vm_truncate_count == details->truncate_count)
2417 continue;
2418 details->nonlinear_vma = vma;
2419 if (unmap_mapping_range_vma(vma, vma->vm_start,
2420 vma->vm_end, details) < 0)
2421 goto restart;
2426 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2427 * @mapping: the address space containing mmaps to be unmapped.
2428 * @holebegin: byte in first page to unmap, relative to the start of
2429 * the underlying file. This will be rounded down to a PAGE_SIZE
2430 * boundary. Note that this is different from truncate_pagecache(), which
2431 * must keep the partial page. In contrast, we must get rid of
2432 * partial pages.
2433 * @holelen: size of prospective hole in bytes. This will be rounded
2434 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2435 * end of the file.
2436 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2437 * but 0 when invalidating pagecache, don't throw away private data.
2439 void unmap_mapping_range(struct address_space *mapping,
2440 loff_t const holebegin, loff_t const holelen, int even_cows)
2442 struct zap_details details;
2443 pgoff_t hba = holebegin >> PAGE_SHIFT;
2444 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2446 /* Check for overflow. */
2447 if (sizeof(holelen) > sizeof(hlen)) {
2448 long long holeend =
2449 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2450 if (holeend & ~(long long)ULONG_MAX)
2451 hlen = ULONG_MAX - hba + 1;
2454 details.check_mapping = even_cows? NULL: mapping;
2455 details.nonlinear_vma = NULL;
2456 details.first_index = hba;
2457 details.last_index = hba + hlen - 1;
2458 if (details.last_index < details.first_index)
2459 details.last_index = ULONG_MAX;
2460 details.i_mmap_lock = &mapping->i_mmap_lock;
2462 spin_lock(&mapping->i_mmap_lock);
2464 /* Protect against endless unmapping loops */
2465 mapping->truncate_count++;
2466 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2467 if (mapping->truncate_count == 0)
2468 reset_vma_truncate_counts(mapping);
2469 mapping->truncate_count++;
2471 details.truncate_count = mapping->truncate_count;
2473 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2474 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2475 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2476 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2477 spin_unlock(&mapping->i_mmap_lock);
2479 EXPORT_SYMBOL(unmap_mapping_range);
2481 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2483 struct address_space *mapping = inode->i_mapping;
2486 * If the underlying filesystem is not going to provide
2487 * a way to truncate a range of blocks (punch a hole) -
2488 * we should return failure right now.
2490 if (!inode->i_op->truncate_range)
2491 return -ENOSYS;
2493 mutex_lock(&inode->i_mutex);
2494 down_write(&inode->i_alloc_sem);
2495 unmap_mapping_range(mapping, offset, (end - offset), 1);
2496 truncate_inode_pages_range(mapping, offset, end);
2497 unmap_mapping_range(mapping, offset, (end - offset), 1);
2498 inode->i_op->truncate_range(inode, offset, end);
2499 up_write(&inode->i_alloc_sem);
2500 mutex_unlock(&inode->i_mutex);
2502 return 0;
2506 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2507 * but allow concurrent faults), and pte mapped but not yet locked.
2508 * We return with mmap_sem still held, but pte unmapped and unlocked.
2510 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2511 unsigned long address, pte_t *page_table, pmd_t *pmd,
2512 unsigned int flags, pte_t orig_pte)
2514 spinlock_t *ptl;
2515 struct page *page;
2516 swp_entry_t entry;
2517 pte_t pte;
2518 struct mem_cgroup *ptr = NULL;
2519 int ret = 0;
2521 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2522 goto out;
2524 entry = pte_to_swp_entry(orig_pte);
2525 if (unlikely(non_swap_entry(entry))) {
2526 if (is_migration_entry(entry)) {
2527 migration_entry_wait(mm, pmd, address);
2528 } else if (is_hwpoison_entry(entry)) {
2529 ret = VM_FAULT_HWPOISON;
2530 } else {
2531 print_bad_pte(vma, address, orig_pte, NULL);
2532 ret = VM_FAULT_SIGBUS;
2534 goto out;
2536 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2537 page = lookup_swap_cache(entry);
2538 if (!page) {
2539 grab_swap_token(mm); /* Contend for token _before_ read-in */
2540 page = swapin_readahead(entry,
2541 GFP_HIGHUSER_MOVABLE, vma, address);
2542 if (!page) {
2544 * Back out if somebody else faulted in this pte
2545 * while we released the pte lock.
2547 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2548 if (likely(pte_same(*page_table, orig_pte)))
2549 ret = VM_FAULT_OOM;
2550 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2551 goto unlock;
2554 /* Had to read the page from swap area: Major fault */
2555 ret = VM_FAULT_MAJOR;
2556 count_vm_event(PGMAJFAULT);
2557 } else if (PageHWPoison(page)) {
2559 * hwpoisoned dirty swapcache pages are kept for killing
2560 * owner processes (which may be unknown at hwpoison time)
2562 ret = VM_FAULT_HWPOISON;
2563 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2564 goto out_release;
2567 lock_page(page);
2568 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2570 page = ksm_might_need_to_copy(page, vma, address);
2571 if (!page) {
2572 ret = VM_FAULT_OOM;
2573 goto out;
2576 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2577 ret = VM_FAULT_OOM;
2578 goto out_page;
2582 * Back out if somebody else already faulted in this pte.
2584 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2585 if (unlikely(!pte_same(*page_table, orig_pte)))
2586 goto out_nomap;
2588 if (unlikely(!PageUptodate(page))) {
2589 ret = VM_FAULT_SIGBUS;
2590 goto out_nomap;
2594 * The page isn't present yet, go ahead with the fault.
2596 * Be careful about the sequence of operations here.
2597 * To get its accounting right, reuse_swap_page() must be called
2598 * while the page is counted on swap but not yet in mapcount i.e.
2599 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2600 * must be called after the swap_free(), or it will never succeed.
2601 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2602 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2603 * in page->private. In this case, a record in swap_cgroup is silently
2604 * discarded at swap_free().
2607 inc_mm_counter(mm, anon_rss);
2608 pte = mk_pte(page, vma->vm_page_prot);
2609 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2610 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2611 flags &= ~FAULT_FLAG_WRITE;
2613 flush_icache_page(vma, page);
2614 set_pte_at(mm, address, page_table, pte);
2615 page_add_anon_rmap(page, vma, address);
2616 /* It's better to call commit-charge after rmap is established */
2617 mem_cgroup_commit_charge_swapin(page, ptr);
2619 swap_free(entry);
2620 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2621 try_to_free_swap(page);
2622 unlock_page(page);
2624 if (flags & FAULT_FLAG_WRITE) {
2625 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2626 if (ret & VM_FAULT_ERROR)
2627 ret &= VM_FAULT_ERROR;
2628 goto out;
2631 /* No need to invalidate - it was non-present before */
2632 update_mmu_cache(vma, address, pte);
2633 unlock:
2634 pte_unmap_unlock(page_table, ptl);
2635 out:
2636 return ret;
2637 out_nomap:
2638 mem_cgroup_cancel_charge_swapin(ptr);
2639 pte_unmap_unlock(page_table, ptl);
2640 out_page:
2641 unlock_page(page);
2642 out_release:
2643 page_cache_release(page);
2644 return ret;
2648 * This is like a special single-page "expand_downwards()",
2649 * except we must first make sure that 'address-PAGE_SIZE'
2650 * doesn't hit another vma.
2652 * The "find_vma()" will do the right thing even if we wrap
2654 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2656 address &= PAGE_MASK;
2657 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2658 address -= PAGE_SIZE;
2659 if (find_vma(vma->vm_mm, address) != vma)
2660 return -ENOMEM;
2662 expand_stack(vma, address);
2664 return 0;
2668 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2669 * but allow concurrent faults), and pte mapped but not yet locked.
2670 * We return with mmap_sem still held, but pte unmapped and unlocked.
2672 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2673 unsigned long address, pte_t *page_table, pmd_t *pmd,
2674 unsigned int flags)
2676 struct page *page;
2677 spinlock_t *ptl;
2678 pte_t entry;
2680 pte_unmap(page_table);
2682 /* Check if we need to add a guard page to the stack */
2683 if (check_stack_guard_page(vma, address) < 0)
2684 return VM_FAULT_SIGBUS;
2686 /* Use the zero-page for reads */
2687 if (!(flags & FAULT_FLAG_WRITE)) {
2688 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2689 vma->vm_page_prot));
2690 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2691 if (!pte_none(*page_table))
2692 goto unlock;
2693 goto setpte;
2696 /* Allocate our own private page. */
2697 if (unlikely(anon_vma_prepare(vma)))
2698 goto oom;
2699 page = alloc_zeroed_user_highpage_movable(vma, address);
2700 if (!page)
2701 goto oom;
2702 __SetPageUptodate(page);
2704 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2705 goto oom_free_page;
2707 entry = mk_pte(page, vma->vm_page_prot);
2708 if (vma->vm_flags & VM_WRITE)
2709 entry = pte_mkwrite(pte_mkdirty(entry));
2711 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2712 if (!pte_none(*page_table))
2713 goto release;
2715 inc_mm_counter(mm, anon_rss);
2716 page_add_new_anon_rmap(page, vma, address);
2717 setpte:
2718 set_pte_at(mm, address, page_table, entry);
2720 /* No need to invalidate - it was non-present before */
2721 update_mmu_cache(vma, address, entry);
2722 unlock:
2723 pte_unmap_unlock(page_table, ptl);
2724 return 0;
2725 release:
2726 mem_cgroup_uncharge_page(page);
2727 page_cache_release(page);
2728 goto unlock;
2729 oom_free_page:
2730 page_cache_release(page);
2731 oom:
2732 return VM_FAULT_OOM;
2736 * __do_fault() tries to create a new page mapping. It aggressively
2737 * tries to share with existing pages, but makes a separate copy if
2738 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2739 * the next page fault.
2741 * As this is called only for pages that do not currently exist, we
2742 * do not need to flush old virtual caches or the TLB.
2744 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2745 * but allow concurrent faults), and pte neither mapped nor locked.
2746 * We return with mmap_sem still held, but pte unmapped and unlocked.
2748 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2749 unsigned long address, pmd_t *pmd,
2750 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2752 pte_t *page_table;
2753 spinlock_t *ptl;
2754 struct page *page;
2755 pte_t entry;
2756 int anon = 0;
2757 int charged = 0;
2758 struct page *dirty_page = NULL;
2759 struct vm_fault vmf;
2760 int ret;
2761 int page_mkwrite = 0;
2763 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2764 vmf.pgoff = pgoff;
2765 vmf.flags = flags;
2766 vmf.page = NULL;
2768 ret = vma->vm_ops->fault(vma, &vmf);
2769 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2770 return ret;
2772 if (unlikely(PageHWPoison(vmf.page))) {
2773 if (ret & VM_FAULT_LOCKED)
2774 unlock_page(vmf.page);
2775 return VM_FAULT_HWPOISON;
2779 * For consistency in subsequent calls, make the faulted page always
2780 * locked.
2782 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2783 lock_page(vmf.page);
2784 else
2785 VM_BUG_ON(!PageLocked(vmf.page));
2788 * Should we do an early C-O-W break?
2790 page = vmf.page;
2791 if (flags & FAULT_FLAG_WRITE) {
2792 if (!(vma->vm_flags & VM_SHARED)) {
2793 anon = 1;
2794 if (unlikely(anon_vma_prepare(vma))) {
2795 ret = VM_FAULT_OOM;
2796 goto out;
2798 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2799 vma, address);
2800 if (!page) {
2801 ret = VM_FAULT_OOM;
2802 goto out;
2804 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2805 ret = VM_FAULT_OOM;
2806 page_cache_release(page);
2807 goto out;
2809 charged = 1;
2811 * Don't let another task, with possibly unlocked vma,
2812 * keep the mlocked page.
2814 if (vma->vm_flags & VM_LOCKED)
2815 clear_page_mlock(vmf.page);
2816 copy_user_highpage(page, vmf.page, address, vma);
2817 __SetPageUptodate(page);
2818 } else {
2820 * If the page will be shareable, see if the backing
2821 * address space wants to know that the page is about
2822 * to become writable
2824 if (vma->vm_ops->page_mkwrite) {
2825 int tmp;
2827 unlock_page(page);
2828 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2829 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2830 if (unlikely(tmp &
2831 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2832 ret = tmp;
2833 goto unwritable_page;
2835 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2836 lock_page(page);
2837 if (!page->mapping) {
2838 ret = 0; /* retry the fault */
2839 unlock_page(page);
2840 goto unwritable_page;
2842 } else
2843 VM_BUG_ON(!PageLocked(page));
2844 page_mkwrite = 1;
2850 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2853 * This silly early PAGE_DIRTY setting removes a race
2854 * due to the bad i386 page protection. But it's valid
2855 * for other architectures too.
2857 * Note that if FAULT_FLAG_WRITE is set, we either now have
2858 * an exclusive copy of the page, or this is a shared mapping,
2859 * so we can make it writable and dirty to avoid having to
2860 * handle that later.
2862 /* Only go through if we didn't race with anybody else... */
2863 if (likely(pte_same(*page_table, orig_pte))) {
2864 flush_icache_page(vma, page);
2865 entry = mk_pte(page, vma->vm_page_prot);
2866 if (flags & FAULT_FLAG_WRITE)
2867 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2868 if (anon) {
2869 inc_mm_counter(mm, anon_rss);
2870 page_add_new_anon_rmap(page, vma, address);
2871 } else {
2872 inc_mm_counter(mm, file_rss);
2873 page_add_file_rmap(page);
2874 if (flags & FAULT_FLAG_WRITE) {
2875 dirty_page = page;
2876 get_page(dirty_page);
2879 set_pte_at(mm, address, page_table, entry);
2881 /* no need to invalidate: a not-present page won't be cached */
2882 update_mmu_cache(vma, address, entry);
2883 } else {
2884 if (charged)
2885 mem_cgroup_uncharge_page(page);
2886 if (anon)
2887 page_cache_release(page);
2888 else
2889 anon = 1; /* no anon but release faulted_page */
2892 pte_unmap_unlock(page_table, ptl);
2894 out:
2895 if (dirty_page) {
2896 struct address_space *mapping = page->mapping;
2898 if (set_page_dirty(dirty_page))
2899 page_mkwrite = 1;
2900 unlock_page(dirty_page);
2901 put_page(dirty_page);
2902 if (page_mkwrite && mapping) {
2904 * Some device drivers do not set page.mapping but still
2905 * dirty their pages
2907 balance_dirty_pages_ratelimited(mapping);
2910 /* file_update_time outside page_lock */
2911 if (vma->vm_file)
2912 file_update_time(vma->vm_file);
2913 } else {
2914 unlock_page(vmf.page);
2915 if (anon)
2916 page_cache_release(vmf.page);
2919 return ret;
2921 unwritable_page:
2922 page_cache_release(page);
2923 return ret;
2926 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2927 unsigned long address, pte_t *page_table, pmd_t *pmd,
2928 unsigned int flags, pte_t orig_pte)
2930 pgoff_t pgoff = (((address & PAGE_MASK)
2931 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2933 pte_unmap(page_table);
2934 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2938 * Fault of a previously existing named mapping. Repopulate the pte
2939 * from the encoded file_pte if possible. This enables swappable
2940 * nonlinear vmas.
2942 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2943 * but allow concurrent faults), and pte mapped but not yet locked.
2944 * We return with mmap_sem still held, but pte unmapped and unlocked.
2946 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2947 unsigned long address, pte_t *page_table, pmd_t *pmd,
2948 unsigned int flags, pte_t orig_pte)
2950 pgoff_t pgoff;
2952 flags |= FAULT_FLAG_NONLINEAR;
2954 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2955 return 0;
2957 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2959 * Page table corrupted: show pte and kill process.
2961 print_bad_pte(vma, address, orig_pte, NULL);
2962 return VM_FAULT_SIGBUS;
2965 pgoff = pte_to_pgoff(orig_pte);
2966 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2970 * These routines also need to handle stuff like marking pages dirty
2971 * and/or accessed for architectures that don't do it in hardware (most
2972 * RISC architectures). The early dirtying is also good on the i386.
2974 * There is also a hook called "update_mmu_cache()" that architectures
2975 * with external mmu caches can use to update those (ie the Sparc or
2976 * PowerPC hashed page tables that act as extended TLBs).
2978 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2979 * but allow concurrent faults), and pte mapped but not yet locked.
2980 * We return with mmap_sem still held, but pte unmapped and unlocked.
2982 static inline int handle_pte_fault(struct mm_struct *mm,
2983 struct vm_area_struct *vma, unsigned long address,
2984 pte_t *pte, pmd_t *pmd, unsigned int flags)
2986 pte_t entry;
2987 spinlock_t *ptl;
2989 entry = *pte;
2990 if (!pte_present(entry)) {
2991 if (pte_none(entry)) {
2992 if (vma->vm_ops) {
2993 if (likely(vma->vm_ops->fault))
2994 return do_linear_fault(mm, vma, address,
2995 pte, pmd, flags, entry);
2997 return do_anonymous_page(mm, vma, address,
2998 pte, pmd, flags);
3000 if (pte_file(entry))
3001 return do_nonlinear_fault(mm, vma, address,
3002 pte, pmd, flags, entry);
3003 return do_swap_page(mm, vma, address,
3004 pte, pmd, flags, entry);
3007 ptl = pte_lockptr(mm, pmd);
3008 spin_lock(ptl);
3009 if (unlikely(!pte_same(*pte, entry)))
3010 goto unlock;
3011 if (flags & FAULT_FLAG_WRITE) {
3012 if (!pte_write(entry))
3013 return do_wp_page(mm, vma, address,
3014 pte, pmd, ptl, entry);
3015 entry = pte_mkdirty(entry);
3017 entry = pte_mkyoung(entry);
3018 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3019 update_mmu_cache(vma, address, entry);
3020 } else {
3022 * This is needed only for protection faults but the arch code
3023 * is not yet telling us if this is a protection fault or not.
3024 * This still avoids useless tlb flushes for .text page faults
3025 * with threads.
3027 if (flags & FAULT_FLAG_WRITE)
3028 flush_tlb_page(vma, address);
3030 unlock:
3031 pte_unmap_unlock(pte, ptl);
3032 return 0;
3036 * By the time we get here, we already hold the mm semaphore
3038 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3039 unsigned long address, unsigned int flags)
3041 pgd_t *pgd;
3042 pud_t *pud;
3043 pmd_t *pmd;
3044 pte_t *pte;
3046 __set_current_state(TASK_RUNNING);
3048 count_vm_event(PGFAULT);
3050 if (unlikely(is_vm_hugetlb_page(vma)))
3051 return hugetlb_fault(mm, vma, address, flags);
3053 pgd = pgd_offset(mm, address);
3054 pud = pud_alloc(mm, pgd, address);
3055 if (!pud)
3056 return VM_FAULT_OOM;
3057 pmd = pmd_alloc(mm, pud, address);
3058 if (!pmd)
3059 return VM_FAULT_OOM;
3060 pte = pte_alloc_map(mm, pmd, address);
3061 if (!pte)
3062 return VM_FAULT_OOM;
3064 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3067 #ifndef __PAGETABLE_PUD_FOLDED
3069 * Allocate page upper directory.
3070 * We've already handled the fast-path in-line.
3072 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3074 pud_t *new = pud_alloc_one(mm, address);
3075 if (!new)
3076 return -ENOMEM;
3078 smp_wmb(); /* See comment in __pte_alloc */
3080 spin_lock(&mm->page_table_lock);
3081 if (pgd_present(*pgd)) /* Another has populated it */
3082 pud_free(mm, new);
3083 else
3084 pgd_populate(mm, pgd, new);
3085 spin_unlock(&mm->page_table_lock);
3086 return 0;
3088 #endif /* __PAGETABLE_PUD_FOLDED */
3090 #ifndef __PAGETABLE_PMD_FOLDED
3092 * Allocate page middle directory.
3093 * We've already handled the fast-path in-line.
3095 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3097 pmd_t *new = pmd_alloc_one(mm, address);
3098 if (!new)
3099 return -ENOMEM;
3101 smp_wmb(); /* See comment in __pte_alloc */
3103 spin_lock(&mm->page_table_lock);
3104 #ifndef __ARCH_HAS_4LEVEL_HACK
3105 if (pud_present(*pud)) /* Another has populated it */
3106 pmd_free(mm, new);
3107 else
3108 pud_populate(mm, pud, new);
3109 #else
3110 if (pgd_present(*pud)) /* Another has populated it */
3111 pmd_free(mm, new);
3112 else
3113 pgd_populate(mm, pud, new);
3114 #endif /* __ARCH_HAS_4LEVEL_HACK */
3115 spin_unlock(&mm->page_table_lock);
3116 return 0;
3118 #endif /* __PAGETABLE_PMD_FOLDED */
3120 int make_pages_present(unsigned long addr, unsigned long end)
3122 int ret, len, write;
3123 struct vm_area_struct * vma;
3125 vma = find_vma(current->mm, addr);
3126 if (!vma)
3127 return -ENOMEM;
3128 write = (vma->vm_flags & VM_WRITE) != 0;
3129 BUG_ON(addr >= end);
3130 BUG_ON(end > vma->vm_end);
3131 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3132 ret = get_user_pages(current, current->mm, addr,
3133 len, write, 0, NULL, NULL);
3134 if (ret < 0)
3135 return ret;
3136 return ret == len ? 0 : -EFAULT;
3139 #if !defined(__HAVE_ARCH_GATE_AREA)
3141 #if defined(AT_SYSINFO_EHDR)
3142 static struct vm_area_struct gate_vma;
3144 static int __init gate_vma_init(void)
3146 gate_vma.vm_mm = NULL;
3147 gate_vma.vm_start = FIXADDR_USER_START;
3148 gate_vma.vm_end = FIXADDR_USER_END;
3149 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3150 gate_vma.vm_page_prot = __P101;
3152 * Make sure the vDSO gets into every core dump.
3153 * Dumping its contents makes post-mortem fully interpretable later
3154 * without matching up the same kernel and hardware config to see
3155 * what PC values meant.
3157 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3158 return 0;
3160 __initcall(gate_vma_init);
3161 #endif
3163 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3165 #ifdef AT_SYSINFO_EHDR
3166 return &gate_vma;
3167 #else
3168 return NULL;
3169 #endif
3172 int in_gate_area_no_task(unsigned long addr)
3174 #ifdef AT_SYSINFO_EHDR
3175 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3176 return 1;
3177 #endif
3178 return 0;
3181 #endif /* __HAVE_ARCH_GATE_AREA */
3183 static int follow_pte(struct mm_struct *mm, unsigned long address,
3184 pte_t **ptepp, spinlock_t **ptlp)
3186 pgd_t *pgd;
3187 pud_t *pud;
3188 pmd_t *pmd;
3189 pte_t *ptep;
3191 pgd = pgd_offset(mm, address);
3192 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3193 goto out;
3195 pud = pud_offset(pgd, address);
3196 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3197 goto out;
3199 pmd = pmd_offset(pud, address);
3200 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3201 goto out;
3203 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3204 if (pmd_huge(*pmd))
3205 goto out;
3207 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3208 if (!ptep)
3209 goto out;
3210 if (!pte_present(*ptep))
3211 goto unlock;
3212 *ptepp = ptep;
3213 return 0;
3214 unlock:
3215 pte_unmap_unlock(ptep, *ptlp);
3216 out:
3217 return -EINVAL;
3221 * follow_pfn - look up PFN at a user virtual address
3222 * @vma: memory mapping
3223 * @address: user virtual address
3224 * @pfn: location to store found PFN
3226 * Only IO mappings and raw PFN mappings are allowed.
3228 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3230 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3231 unsigned long *pfn)
3233 int ret = -EINVAL;
3234 spinlock_t *ptl;
3235 pte_t *ptep;
3237 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3238 return ret;
3240 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3241 if (ret)
3242 return ret;
3243 *pfn = pte_pfn(*ptep);
3244 pte_unmap_unlock(ptep, ptl);
3245 return 0;
3247 EXPORT_SYMBOL(follow_pfn);
3249 #ifdef CONFIG_HAVE_IOREMAP_PROT
3250 int follow_phys(struct vm_area_struct *vma,
3251 unsigned long address, unsigned int flags,
3252 unsigned long *prot, resource_size_t *phys)
3254 int ret = -EINVAL;
3255 pte_t *ptep, pte;
3256 spinlock_t *ptl;
3258 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3259 goto out;
3261 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3262 goto out;
3263 pte = *ptep;
3265 if ((flags & FOLL_WRITE) && !pte_write(pte))
3266 goto unlock;
3268 *prot = pgprot_val(pte_pgprot(pte));
3269 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3271 ret = 0;
3272 unlock:
3273 pte_unmap_unlock(ptep, ptl);
3274 out:
3275 return ret;
3278 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3279 void *buf, int len, int write)
3281 resource_size_t phys_addr;
3282 unsigned long prot = 0;
3283 void __iomem *maddr;
3284 int offset = addr & (PAGE_SIZE-1);
3286 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3287 return -EINVAL;
3289 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3290 if (write)
3291 memcpy_toio(maddr + offset, buf, len);
3292 else
3293 memcpy_fromio(buf, maddr + offset, len);
3294 iounmap(maddr);
3296 return len;
3298 #endif
3301 * Access another process' address space.
3302 * Source/target buffer must be kernel space,
3303 * Do not walk the page table directly, use get_user_pages
3305 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3307 struct mm_struct *mm;
3308 struct vm_area_struct *vma;
3309 void *old_buf = buf;
3311 mm = get_task_mm(tsk);
3312 if (!mm)
3313 return 0;
3315 down_read(&mm->mmap_sem);
3316 /* ignore errors, just check how much was successfully transferred */
3317 while (len) {
3318 int bytes, ret, offset;
3319 void *maddr;
3320 struct page *page = NULL;
3322 ret = get_user_pages(tsk, mm, addr, 1,
3323 write, 1, &page, &vma);
3324 if (ret <= 0) {
3326 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3327 * we can access using slightly different code.
3329 #ifdef CONFIG_HAVE_IOREMAP_PROT
3330 vma = find_vma(mm, addr);
3331 if (!vma)
3332 break;
3333 if (vma->vm_ops && vma->vm_ops->access)
3334 ret = vma->vm_ops->access(vma, addr, buf,
3335 len, write);
3336 if (ret <= 0)
3337 #endif
3338 break;
3339 bytes = ret;
3340 } else {
3341 bytes = len;
3342 offset = addr & (PAGE_SIZE-1);
3343 if (bytes > PAGE_SIZE-offset)
3344 bytes = PAGE_SIZE-offset;
3346 maddr = kmap(page);
3347 if (write) {
3348 copy_to_user_page(vma, page, addr,
3349 maddr + offset, buf, bytes);
3350 set_page_dirty_lock(page);
3351 } else {
3352 copy_from_user_page(vma, page, addr,
3353 buf, maddr + offset, bytes);
3355 kunmap(page);
3356 page_cache_release(page);
3358 len -= bytes;
3359 buf += bytes;
3360 addr += bytes;
3362 up_read(&mm->mmap_sem);
3363 mmput(mm);
3365 return buf - old_buf;
3369 * Print the name of a VMA.
3371 void print_vma_addr(char *prefix, unsigned long ip)
3373 struct mm_struct *mm = current->mm;
3374 struct vm_area_struct *vma;
3377 * Do not print if we are in atomic
3378 * contexts (in exception stacks, etc.):
3380 if (preempt_count())
3381 return;
3383 down_read(&mm->mmap_sem);
3384 vma = find_vma(mm, ip);
3385 if (vma && vma->vm_file) {
3386 struct file *f = vma->vm_file;
3387 char *buf = (char *)__get_free_page(GFP_KERNEL);
3388 if (buf) {
3389 char *p, *s;
3391 p = d_path(&f->f_path, buf, PAGE_SIZE);
3392 if (IS_ERR(p))
3393 p = "?";
3394 s = strrchr(p, '/');
3395 if (s)
3396 p = s+1;
3397 printk("%s%s[%lx+%lx]", prefix, p,
3398 vma->vm_start,
3399 vma->vm_end - vma->vm_start);
3400 free_page((unsigned long)buf);
3403 up_read(&current->mm->mmap_sem);
3406 #ifdef CONFIG_PROVE_LOCKING
3407 void might_fault(void)
3410 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3411 * holding the mmap_sem, this is safe because kernel memory doesn't
3412 * get paged out, therefore we'll never actually fault, and the
3413 * below annotations will generate false positives.
3415 if (segment_eq(get_fs(), KERNEL_DS))
3416 return;
3418 might_sleep();
3420 * it would be nicer only to annotate paths which are not under
3421 * pagefault_disable, however that requires a larger audit and
3422 * providing helpers like get_user_atomic.
3424 if (!in_atomic() && current->mm)
3425 might_lock_read(&current->mm->mmap_sem);
3427 EXPORT_SYMBOL(might_fault);
3428 #endif