net/igb/e1000/e1000e: more robust ethtool duplex/speed configuration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
blob4fa727ce8374cc80e1384856f35bcb9394ab657f
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS, E1000_STATS};
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
115 if (hw->media_type == e1000_media_type_copper) {
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
149 ecmd->port = PORT_FIBRE;
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
157 if (er32(STATUS) & E1000_STATUS_LU) {
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ethtool_cmd_speed_set(ecmd, -1);
172 ecmd->duplex = -1;
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 return 0;
180 static int e1000_set_settings(struct net_device *netdev,
181 struct ethtool_cmd *ecmd)
183 struct e1000_adapter *adapter = netdev_priv(netdev);
184 struct e1000_hw *hw = &adapter->hw;
186 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187 msleep(1);
189 if (ecmd->autoneg == AUTONEG_ENABLE) {
190 hw->autoneg = 1;
191 if (hw->media_type == e1000_media_type_fiber)
192 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193 ADVERTISED_FIBRE |
194 ADVERTISED_Autoneg;
195 else
196 hw->autoneg_advertised = ecmd->advertising |
197 ADVERTISED_TP |
198 ADVERTISED_Autoneg;
199 ecmd->advertising = hw->autoneg_advertised;
200 } else {
201 u32 speed = ethtool_cmd_speed(ecmd);
202 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
203 clear_bit(__E1000_RESETTING, &adapter->flags);
204 return -EINVAL;
208 /* reset the link */
210 if (netif_running(adapter->netdev)) {
211 e1000_down(adapter);
212 e1000_up(adapter);
213 } else
214 e1000_reset(adapter);
216 clear_bit(__E1000_RESETTING, &adapter->flags);
217 return 0;
220 static u32 e1000_get_link(struct net_device *netdev)
222 struct e1000_adapter *adapter = netdev_priv(netdev);
225 * If the link is not reported up to netdev, interrupts are disabled,
226 * and so the physical link state may have changed since we last
227 * looked. Set get_link_status to make sure that the true link
228 * state is interrogated, rather than pulling a cached and possibly
229 * stale link state from the driver.
231 if (!netif_carrier_ok(netdev))
232 adapter->hw.get_link_status = 1;
234 return e1000_has_link(adapter);
237 static void e1000_get_pauseparam(struct net_device *netdev,
238 struct ethtool_pauseparam *pause)
240 struct e1000_adapter *adapter = netdev_priv(netdev);
241 struct e1000_hw *hw = &adapter->hw;
243 pause->autoneg =
244 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246 if (hw->fc == E1000_FC_RX_PAUSE)
247 pause->rx_pause = 1;
248 else if (hw->fc == E1000_FC_TX_PAUSE)
249 pause->tx_pause = 1;
250 else if (hw->fc == E1000_FC_FULL) {
251 pause->rx_pause = 1;
252 pause->tx_pause = 1;
256 static int e1000_set_pauseparam(struct net_device *netdev,
257 struct ethtool_pauseparam *pause)
259 struct e1000_adapter *adapter = netdev_priv(netdev);
260 struct e1000_hw *hw = &adapter->hw;
261 int retval = 0;
263 adapter->fc_autoneg = pause->autoneg;
265 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266 msleep(1);
268 if (pause->rx_pause && pause->tx_pause)
269 hw->fc = E1000_FC_FULL;
270 else if (pause->rx_pause && !pause->tx_pause)
271 hw->fc = E1000_FC_RX_PAUSE;
272 else if (!pause->rx_pause && pause->tx_pause)
273 hw->fc = E1000_FC_TX_PAUSE;
274 else if (!pause->rx_pause && !pause->tx_pause)
275 hw->fc = E1000_FC_NONE;
277 hw->original_fc = hw->fc;
279 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280 if (netif_running(adapter->netdev)) {
281 e1000_down(adapter);
282 e1000_up(adapter);
283 } else
284 e1000_reset(adapter);
285 } else
286 retval = ((hw->media_type == e1000_media_type_fiber) ?
287 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
289 clear_bit(__E1000_RESETTING, &adapter->flags);
290 return retval;
293 static u32 e1000_get_rx_csum(struct net_device *netdev)
295 struct e1000_adapter *adapter = netdev_priv(netdev);
296 return adapter->rx_csum;
299 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
301 struct e1000_adapter *adapter = netdev_priv(netdev);
302 adapter->rx_csum = data;
304 if (netif_running(netdev))
305 e1000_reinit_locked(adapter);
306 else
307 e1000_reset(adapter);
308 return 0;
311 static u32 e1000_get_tx_csum(struct net_device *netdev)
313 return (netdev->features & NETIF_F_HW_CSUM) != 0;
316 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
318 struct e1000_adapter *adapter = netdev_priv(netdev);
319 struct e1000_hw *hw = &adapter->hw;
321 if (hw->mac_type < e1000_82543) {
322 if (!data)
323 return -EINVAL;
324 return 0;
327 if (data)
328 netdev->features |= NETIF_F_HW_CSUM;
329 else
330 netdev->features &= ~NETIF_F_HW_CSUM;
332 return 0;
335 static int e1000_set_tso(struct net_device *netdev, u32 data)
337 struct e1000_adapter *adapter = netdev_priv(netdev);
338 struct e1000_hw *hw = &adapter->hw;
340 if ((hw->mac_type < e1000_82544) ||
341 (hw->mac_type == e1000_82547))
342 return data ? -EINVAL : 0;
344 if (data)
345 netdev->features |= NETIF_F_TSO;
346 else
347 netdev->features &= ~NETIF_F_TSO;
349 netdev->features &= ~NETIF_F_TSO6;
351 e_info(probe, "TSO is %s\n", data ? "Enabled" : "Disabled");
352 adapter->tso_force = true;
353 return 0;
356 static u32 e1000_get_msglevel(struct net_device *netdev)
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359 return adapter->msg_enable;
362 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
364 struct e1000_adapter *adapter = netdev_priv(netdev);
365 adapter->msg_enable = data;
368 static int e1000_get_regs_len(struct net_device *netdev)
370 #define E1000_REGS_LEN 32
371 return E1000_REGS_LEN * sizeof(u32);
374 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
375 void *p)
377 struct e1000_adapter *adapter = netdev_priv(netdev);
378 struct e1000_hw *hw = &adapter->hw;
379 u32 *regs_buff = p;
380 u16 phy_data;
382 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
384 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
386 regs_buff[0] = er32(CTRL);
387 regs_buff[1] = er32(STATUS);
389 regs_buff[2] = er32(RCTL);
390 regs_buff[3] = er32(RDLEN);
391 regs_buff[4] = er32(RDH);
392 regs_buff[5] = er32(RDT);
393 regs_buff[6] = er32(RDTR);
395 regs_buff[7] = er32(TCTL);
396 regs_buff[8] = er32(TDLEN);
397 regs_buff[9] = er32(TDH);
398 regs_buff[10] = er32(TDT);
399 regs_buff[11] = er32(TIDV);
401 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
402 if (hw->phy_type == e1000_phy_igp) {
403 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
404 IGP01E1000_PHY_AGC_A);
405 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
406 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
407 regs_buff[13] = (u32)phy_data; /* cable length */
408 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
409 IGP01E1000_PHY_AGC_B);
410 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
411 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
412 regs_buff[14] = (u32)phy_data; /* cable length */
413 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
414 IGP01E1000_PHY_AGC_C);
415 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
416 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
417 regs_buff[15] = (u32)phy_data; /* cable length */
418 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
419 IGP01E1000_PHY_AGC_D);
420 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
421 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
422 regs_buff[16] = (u32)phy_data; /* cable length */
423 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
424 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
425 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
426 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
427 regs_buff[18] = (u32)phy_data; /* cable polarity */
428 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
429 IGP01E1000_PHY_PCS_INIT_REG);
430 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
431 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
432 regs_buff[19] = (u32)phy_data; /* cable polarity */
433 regs_buff[20] = 0; /* polarity correction enabled (always) */
434 regs_buff[22] = 0; /* phy receive errors (unavailable) */
435 regs_buff[23] = regs_buff[18]; /* mdix mode */
436 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
437 } else {
438 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
439 regs_buff[13] = (u32)phy_data; /* cable length */
440 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
442 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
443 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
444 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
445 regs_buff[18] = regs_buff[13]; /* cable polarity */
446 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
447 regs_buff[20] = regs_buff[17]; /* polarity correction */
448 /* phy receive errors */
449 regs_buff[22] = adapter->phy_stats.receive_errors;
450 regs_buff[23] = regs_buff[13]; /* mdix mode */
452 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
453 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
454 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
455 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
456 if (hw->mac_type >= e1000_82540 &&
457 hw->media_type == e1000_media_type_copper) {
458 regs_buff[26] = er32(MANC);
462 static int e1000_get_eeprom_len(struct net_device *netdev)
464 struct e1000_adapter *adapter = netdev_priv(netdev);
465 struct e1000_hw *hw = &adapter->hw;
467 return hw->eeprom.word_size * 2;
470 static int e1000_get_eeprom(struct net_device *netdev,
471 struct ethtool_eeprom *eeprom, u8 *bytes)
473 struct e1000_adapter *adapter = netdev_priv(netdev);
474 struct e1000_hw *hw = &adapter->hw;
475 u16 *eeprom_buff;
476 int first_word, last_word;
477 int ret_val = 0;
478 u16 i;
480 if (eeprom->len == 0)
481 return -EINVAL;
483 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
485 first_word = eeprom->offset >> 1;
486 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
488 eeprom_buff = kmalloc(sizeof(u16) *
489 (last_word - first_word + 1), GFP_KERNEL);
490 if (!eeprom_buff)
491 return -ENOMEM;
493 if (hw->eeprom.type == e1000_eeprom_spi)
494 ret_val = e1000_read_eeprom(hw, first_word,
495 last_word - first_word + 1,
496 eeprom_buff);
497 else {
498 for (i = 0; i < last_word - first_word + 1; i++) {
499 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
500 &eeprom_buff[i]);
501 if (ret_val)
502 break;
506 /* Device's eeprom is always little-endian, word addressable */
507 for (i = 0; i < last_word - first_word + 1; i++)
508 le16_to_cpus(&eeprom_buff[i]);
510 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
511 eeprom->len);
512 kfree(eeprom_buff);
514 return ret_val;
517 static int e1000_set_eeprom(struct net_device *netdev,
518 struct ethtool_eeprom *eeprom, u8 *bytes)
520 struct e1000_adapter *adapter = netdev_priv(netdev);
521 struct e1000_hw *hw = &adapter->hw;
522 u16 *eeprom_buff;
523 void *ptr;
524 int max_len, first_word, last_word, ret_val = 0;
525 u16 i;
527 if (eeprom->len == 0)
528 return -EOPNOTSUPP;
530 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
531 return -EFAULT;
533 max_len = hw->eeprom.word_size * 2;
535 first_word = eeprom->offset >> 1;
536 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
537 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
538 if (!eeprom_buff)
539 return -ENOMEM;
541 ptr = (void *)eeprom_buff;
543 if (eeprom->offset & 1) {
544 /* need read/modify/write of first changed EEPROM word */
545 /* only the second byte of the word is being modified */
546 ret_val = e1000_read_eeprom(hw, first_word, 1,
547 &eeprom_buff[0]);
548 ptr++;
550 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
551 /* need read/modify/write of last changed EEPROM word */
552 /* only the first byte of the word is being modified */
553 ret_val = e1000_read_eeprom(hw, last_word, 1,
554 &eeprom_buff[last_word - first_word]);
557 /* Device's eeprom is always little-endian, word addressable */
558 for (i = 0; i < last_word - first_word + 1; i++)
559 le16_to_cpus(&eeprom_buff[i]);
561 memcpy(ptr, bytes, eeprom->len);
563 for (i = 0; i < last_word - first_word + 1; i++)
564 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
566 ret_val = e1000_write_eeprom(hw, first_word,
567 last_word - first_word + 1, eeprom_buff);
569 /* Update the checksum over the first part of the EEPROM if needed */
570 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
571 e1000_update_eeprom_checksum(hw);
573 kfree(eeprom_buff);
574 return ret_val;
577 static void e1000_get_drvinfo(struct net_device *netdev,
578 struct ethtool_drvinfo *drvinfo)
580 struct e1000_adapter *adapter = netdev_priv(netdev);
581 char firmware_version[32];
583 strncpy(drvinfo->driver, e1000_driver_name, 32);
584 strncpy(drvinfo->version, e1000_driver_version, 32);
586 sprintf(firmware_version, "N/A");
587 strncpy(drvinfo->fw_version, firmware_version, 32);
588 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
589 drvinfo->regdump_len = e1000_get_regs_len(netdev);
590 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
593 static void e1000_get_ringparam(struct net_device *netdev,
594 struct ethtool_ringparam *ring)
596 struct e1000_adapter *adapter = netdev_priv(netdev);
597 struct e1000_hw *hw = &adapter->hw;
598 e1000_mac_type mac_type = hw->mac_type;
599 struct e1000_tx_ring *txdr = adapter->tx_ring;
600 struct e1000_rx_ring *rxdr = adapter->rx_ring;
602 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
603 E1000_MAX_82544_RXD;
604 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
605 E1000_MAX_82544_TXD;
606 ring->rx_mini_max_pending = 0;
607 ring->rx_jumbo_max_pending = 0;
608 ring->rx_pending = rxdr->count;
609 ring->tx_pending = txdr->count;
610 ring->rx_mini_pending = 0;
611 ring->rx_jumbo_pending = 0;
614 static int e1000_set_ringparam(struct net_device *netdev,
615 struct ethtool_ringparam *ring)
617 struct e1000_adapter *adapter = netdev_priv(netdev);
618 struct e1000_hw *hw = &adapter->hw;
619 e1000_mac_type mac_type = hw->mac_type;
620 struct e1000_tx_ring *txdr, *tx_old;
621 struct e1000_rx_ring *rxdr, *rx_old;
622 int i, err;
624 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
625 return -EINVAL;
627 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
628 msleep(1);
630 if (netif_running(adapter->netdev))
631 e1000_down(adapter);
633 tx_old = adapter->tx_ring;
634 rx_old = adapter->rx_ring;
636 err = -ENOMEM;
637 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
638 if (!txdr)
639 goto err_alloc_tx;
641 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
642 if (!rxdr)
643 goto err_alloc_rx;
645 adapter->tx_ring = txdr;
646 adapter->rx_ring = rxdr;
648 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
649 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
650 E1000_MAX_RXD : E1000_MAX_82544_RXD));
651 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
653 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
654 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
655 E1000_MAX_TXD : E1000_MAX_82544_TXD));
656 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
658 for (i = 0; i < adapter->num_tx_queues; i++)
659 txdr[i].count = txdr->count;
660 for (i = 0; i < adapter->num_rx_queues; i++)
661 rxdr[i].count = rxdr->count;
663 if (netif_running(adapter->netdev)) {
664 /* Try to get new resources before deleting old */
665 err = e1000_setup_all_rx_resources(adapter);
666 if (err)
667 goto err_setup_rx;
668 err = e1000_setup_all_tx_resources(adapter);
669 if (err)
670 goto err_setup_tx;
672 /* save the new, restore the old in order to free it,
673 * then restore the new back again */
675 adapter->rx_ring = rx_old;
676 adapter->tx_ring = tx_old;
677 e1000_free_all_rx_resources(adapter);
678 e1000_free_all_tx_resources(adapter);
679 kfree(tx_old);
680 kfree(rx_old);
681 adapter->rx_ring = rxdr;
682 adapter->tx_ring = txdr;
683 err = e1000_up(adapter);
684 if (err)
685 goto err_setup;
688 clear_bit(__E1000_RESETTING, &adapter->flags);
689 return 0;
690 err_setup_tx:
691 e1000_free_all_rx_resources(adapter);
692 err_setup_rx:
693 adapter->rx_ring = rx_old;
694 adapter->tx_ring = tx_old;
695 kfree(rxdr);
696 err_alloc_rx:
697 kfree(txdr);
698 err_alloc_tx:
699 e1000_up(adapter);
700 err_setup:
701 clear_bit(__E1000_RESETTING, &adapter->flags);
702 return err;
705 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
706 u32 mask, u32 write)
708 struct e1000_hw *hw = &adapter->hw;
709 static const u32 test[] =
710 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
711 u8 __iomem *address = hw->hw_addr + reg;
712 u32 read;
713 int i;
715 for (i = 0; i < ARRAY_SIZE(test); i++) {
716 writel(write & test[i], address);
717 read = readl(address);
718 if (read != (write & test[i] & mask)) {
719 e_err(drv, "pattern test reg %04X failed: "
720 "got 0x%08X expected 0x%08X\n",
721 reg, read, (write & test[i] & mask));
722 *data = reg;
723 return true;
726 return false;
729 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
730 u32 mask, u32 write)
732 struct e1000_hw *hw = &adapter->hw;
733 u8 __iomem *address = hw->hw_addr + reg;
734 u32 read;
736 writel(write & mask, address);
737 read = readl(address);
738 if ((read & mask) != (write & mask)) {
739 e_err(drv, "set/check reg %04X test failed: "
740 "got 0x%08X expected 0x%08X\n",
741 reg, (read & mask), (write & mask));
742 *data = reg;
743 return true;
745 return false;
748 #define REG_PATTERN_TEST(reg, mask, write) \
749 do { \
750 if (reg_pattern_test(adapter, data, \
751 (hw->mac_type >= e1000_82543) \
752 ? E1000_##reg : E1000_82542_##reg, \
753 mask, write)) \
754 return 1; \
755 } while (0)
757 #define REG_SET_AND_CHECK(reg, mask, write) \
758 do { \
759 if (reg_set_and_check(adapter, data, \
760 (hw->mac_type >= e1000_82543) \
761 ? E1000_##reg : E1000_82542_##reg, \
762 mask, write)) \
763 return 1; \
764 } while (0)
766 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
768 u32 value, before, after;
769 u32 i, toggle;
770 struct e1000_hw *hw = &adapter->hw;
772 /* The status register is Read Only, so a write should fail.
773 * Some bits that get toggled are ignored.
776 /* there are several bits on newer hardware that are r/w */
777 toggle = 0xFFFFF833;
779 before = er32(STATUS);
780 value = (er32(STATUS) & toggle);
781 ew32(STATUS, toggle);
782 after = er32(STATUS) & toggle;
783 if (value != after) {
784 e_err(drv, "failed STATUS register test got: "
785 "0x%08X expected: 0x%08X\n", after, value);
786 *data = 1;
787 return 1;
789 /* restore previous status */
790 ew32(STATUS, before);
792 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
793 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
794 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
795 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
797 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
798 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
799 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
800 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
801 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
802 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
803 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
804 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
805 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
806 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
808 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
810 before = 0x06DFB3FE;
811 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
812 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
814 if (hw->mac_type >= e1000_82543) {
816 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
817 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
818 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
819 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
820 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
821 value = E1000_RAR_ENTRIES;
822 for (i = 0; i < value; i++) {
823 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
824 0xFFFFFFFF);
827 } else {
829 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
830 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
831 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
832 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
836 value = E1000_MC_TBL_SIZE;
837 for (i = 0; i < value; i++)
838 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
840 *data = 0;
841 return 0;
844 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
846 struct e1000_hw *hw = &adapter->hw;
847 u16 temp;
848 u16 checksum = 0;
849 u16 i;
851 *data = 0;
852 /* Read and add up the contents of the EEPROM */
853 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
854 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
855 *data = 1;
856 break;
858 checksum += temp;
861 /* If Checksum is not Correct return error else test passed */
862 if ((checksum != (u16)EEPROM_SUM) && !(*data))
863 *data = 2;
865 return *data;
868 static irqreturn_t e1000_test_intr(int irq, void *data)
870 struct net_device *netdev = (struct net_device *)data;
871 struct e1000_adapter *adapter = netdev_priv(netdev);
872 struct e1000_hw *hw = &adapter->hw;
874 adapter->test_icr |= er32(ICR);
876 return IRQ_HANDLED;
879 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
881 struct net_device *netdev = adapter->netdev;
882 u32 mask, i = 0;
883 bool shared_int = true;
884 u32 irq = adapter->pdev->irq;
885 struct e1000_hw *hw = &adapter->hw;
887 *data = 0;
889 /* NOTE: we don't test MSI interrupts here, yet */
890 /* Hook up test interrupt handler just for this test */
891 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
892 netdev))
893 shared_int = false;
894 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
895 netdev->name, netdev)) {
896 *data = 1;
897 return -1;
899 e_info(hw, "testing %s interrupt\n", (shared_int ?
900 "shared" : "unshared"));
902 /* Disable all the interrupts */
903 ew32(IMC, 0xFFFFFFFF);
904 msleep(10);
906 /* Test each interrupt */
907 for (; i < 10; i++) {
909 /* Interrupt to test */
910 mask = 1 << i;
912 if (!shared_int) {
913 /* Disable the interrupt to be reported in
914 * the cause register and then force the same
915 * interrupt and see if one gets posted. If
916 * an interrupt was posted to the bus, the
917 * test failed.
919 adapter->test_icr = 0;
920 ew32(IMC, mask);
921 ew32(ICS, mask);
922 msleep(10);
924 if (adapter->test_icr & mask) {
925 *data = 3;
926 break;
930 /* Enable the interrupt to be reported in
931 * the cause register and then force the same
932 * interrupt and see if one gets posted. If
933 * an interrupt was not posted to the bus, the
934 * test failed.
936 adapter->test_icr = 0;
937 ew32(IMS, mask);
938 ew32(ICS, mask);
939 msleep(10);
941 if (!(adapter->test_icr & mask)) {
942 *data = 4;
943 break;
946 if (!shared_int) {
947 /* Disable the other interrupts to be reported in
948 * the cause register and then force the other
949 * interrupts and see if any get posted. If
950 * an interrupt was posted to the bus, the
951 * test failed.
953 adapter->test_icr = 0;
954 ew32(IMC, ~mask & 0x00007FFF);
955 ew32(ICS, ~mask & 0x00007FFF);
956 msleep(10);
958 if (adapter->test_icr) {
959 *data = 5;
960 break;
965 /* Disable all the interrupts */
966 ew32(IMC, 0xFFFFFFFF);
967 msleep(10);
969 /* Unhook test interrupt handler */
970 free_irq(irq, netdev);
972 return *data;
975 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
977 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
978 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
979 struct pci_dev *pdev = adapter->pdev;
980 int i;
982 if (txdr->desc && txdr->buffer_info) {
983 for (i = 0; i < txdr->count; i++) {
984 if (txdr->buffer_info[i].dma)
985 dma_unmap_single(&pdev->dev,
986 txdr->buffer_info[i].dma,
987 txdr->buffer_info[i].length,
988 DMA_TO_DEVICE);
989 if (txdr->buffer_info[i].skb)
990 dev_kfree_skb(txdr->buffer_info[i].skb);
994 if (rxdr->desc && rxdr->buffer_info) {
995 for (i = 0; i < rxdr->count; i++) {
996 if (rxdr->buffer_info[i].dma)
997 dma_unmap_single(&pdev->dev,
998 rxdr->buffer_info[i].dma,
999 rxdr->buffer_info[i].length,
1000 DMA_FROM_DEVICE);
1001 if (rxdr->buffer_info[i].skb)
1002 dev_kfree_skb(rxdr->buffer_info[i].skb);
1006 if (txdr->desc) {
1007 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1008 txdr->dma);
1009 txdr->desc = NULL;
1011 if (rxdr->desc) {
1012 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1013 rxdr->dma);
1014 rxdr->desc = NULL;
1017 kfree(txdr->buffer_info);
1018 txdr->buffer_info = NULL;
1019 kfree(rxdr->buffer_info);
1020 rxdr->buffer_info = NULL;
1023 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1025 struct e1000_hw *hw = &adapter->hw;
1026 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1027 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1028 struct pci_dev *pdev = adapter->pdev;
1029 u32 rctl;
1030 int i, ret_val;
1032 /* Setup Tx descriptor ring and Tx buffers */
1034 if (!txdr->count)
1035 txdr->count = E1000_DEFAULT_TXD;
1037 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1038 GFP_KERNEL);
1039 if (!txdr->buffer_info) {
1040 ret_val = 1;
1041 goto err_nomem;
1044 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1045 txdr->size = ALIGN(txdr->size, 4096);
1046 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1047 GFP_KERNEL);
1048 if (!txdr->desc) {
1049 ret_val = 2;
1050 goto err_nomem;
1052 memset(txdr->desc, 0, txdr->size);
1053 txdr->next_to_use = txdr->next_to_clean = 0;
1055 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1056 ew32(TDBAH, ((u64)txdr->dma >> 32));
1057 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1058 ew32(TDH, 0);
1059 ew32(TDT, 0);
1060 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1061 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1062 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1064 for (i = 0; i < txdr->count; i++) {
1065 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1066 struct sk_buff *skb;
1067 unsigned int size = 1024;
1069 skb = alloc_skb(size, GFP_KERNEL);
1070 if (!skb) {
1071 ret_val = 3;
1072 goto err_nomem;
1074 skb_put(skb, size);
1075 txdr->buffer_info[i].skb = skb;
1076 txdr->buffer_info[i].length = skb->len;
1077 txdr->buffer_info[i].dma =
1078 dma_map_single(&pdev->dev, skb->data, skb->len,
1079 DMA_TO_DEVICE);
1080 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1081 tx_desc->lower.data = cpu_to_le32(skb->len);
1082 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1083 E1000_TXD_CMD_IFCS |
1084 E1000_TXD_CMD_RPS);
1085 tx_desc->upper.data = 0;
1088 /* Setup Rx descriptor ring and Rx buffers */
1090 if (!rxdr->count)
1091 rxdr->count = E1000_DEFAULT_RXD;
1093 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1094 GFP_KERNEL);
1095 if (!rxdr->buffer_info) {
1096 ret_val = 4;
1097 goto err_nomem;
1100 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1101 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1102 GFP_KERNEL);
1103 if (!rxdr->desc) {
1104 ret_val = 5;
1105 goto err_nomem;
1107 memset(rxdr->desc, 0, rxdr->size);
1108 rxdr->next_to_use = rxdr->next_to_clean = 0;
1110 rctl = er32(RCTL);
1111 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1112 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1113 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1114 ew32(RDLEN, rxdr->size);
1115 ew32(RDH, 0);
1116 ew32(RDT, 0);
1117 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1118 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1119 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1120 ew32(RCTL, rctl);
1122 for (i = 0; i < rxdr->count; i++) {
1123 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1124 struct sk_buff *skb;
1126 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1127 if (!skb) {
1128 ret_val = 6;
1129 goto err_nomem;
1131 skb_reserve(skb, NET_IP_ALIGN);
1132 rxdr->buffer_info[i].skb = skb;
1133 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1134 rxdr->buffer_info[i].dma =
1135 dma_map_single(&pdev->dev, skb->data,
1136 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1137 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1138 memset(skb->data, 0x00, skb->len);
1141 return 0;
1143 err_nomem:
1144 e1000_free_desc_rings(adapter);
1145 return ret_val;
1148 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1150 struct e1000_hw *hw = &adapter->hw;
1152 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1153 e1000_write_phy_reg(hw, 29, 0x001F);
1154 e1000_write_phy_reg(hw, 30, 0x8FFC);
1155 e1000_write_phy_reg(hw, 29, 0x001A);
1156 e1000_write_phy_reg(hw, 30, 0x8FF0);
1159 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1161 struct e1000_hw *hw = &adapter->hw;
1162 u16 phy_reg;
1164 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1165 * Extended PHY Specific Control Register to 25MHz clock. This
1166 * value defaults back to a 2.5MHz clock when the PHY is reset.
1168 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1169 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1170 e1000_write_phy_reg(hw,
1171 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1173 /* In addition, because of the s/w reset above, we need to enable
1174 * CRS on TX. This must be set for both full and half duplex
1175 * operation.
1177 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1179 e1000_write_phy_reg(hw,
1180 M88E1000_PHY_SPEC_CTRL, phy_reg);
1183 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1185 struct e1000_hw *hw = &adapter->hw;
1186 u32 ctrl_reg;
1187 u16 phy_reg;
1189 /* Setup the Device Control Register for PHY loopback test. */
1191 ctrl_reg = er32(CTRL);
1192 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1193 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1194 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1195 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1196 E1000_CTRL_FD); /* Force Duplex to FULL */
1198 ew32(CTRL, ctrl_reg);
1200 /* Read the PHY Specific Control Register (0x10) */
1201 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1203 /* Clear Auto-Crossover bits in PHY Specific Control Register
1204 * (bits 6:5).
1206 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1207 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1209 /* Perform software reset on the PHY */
1210 e1000_phy_reset(hw);
1212 /* Have to setup TX_CLK and TX_CRS after software reset */
1213 e1000_phy_reset_clk_and_crs(adapter);
1215 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1217 /* Wait for reset to complete. */
1218 udelay(500);
1220 /* Have to setup TX_CLK and TX_CRS after software reset */
1221 e1000_phy_reset_clk_and_crs(adapter);
1223 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1224 e1000_phy_disable_receiver(adapter);
1226 /* Set the loopback bit in the PHY control register. */
1227 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1228 phy_reg |= MII_CR_LOOPBACK;
1229 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1231 /* Setup TX_CLK and TX_CRS one more time. */
1232 e1000_phy_reset_clk_and_crs(adapter);
1234 /* Check Phy Configuration */
1235 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1236 if (phy_reg != 0x4100)
1237 return 9;
1239 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1240 if (phy_reg != 0x0070)
1241 return 10;
1243 e1000_read_phy_reg(hw, 29, &phy_reg);
1244 if (phy_reg != 0x001A)
1245 return 11;
1247 return 0;
1250 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1252 struct e1000_hw *hw = &adapter->hw;
1253 u32 ctrl_reg = 0;
1254 u32 stat_reg = 0;
1256 hw->autoneg = false;
1258 if (hw->phy_type == e1000_phy_m88) {
1259 /* Auto-MDI/MDIX Off */
1260 e1000_write_phy_reg(hw,
1261 M88E1000_PHY_SPEC_CTRL, 0x0808);
1262 /* reset to update Auto-MDI/MDIX */
1263 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1264 /* autoneg off */
1265 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1268 ctrl_reg = er32(CTRL);
1270 /* force 1000, set loopback */
1271 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1273 /* Now set up the MAC to the same speed/duplex as the PHY. */
1274 ctrl_reg = er32(CTRL);
1275 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1276 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1277 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1278 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1279 E1000_CTRL_FD); /* Force Duplex to FULL */
1281 if (hw->media_type == e1000_media_type_copper &&
1282 hw->phy_type == e1000_phy_m88)
1283 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1284 else {
1285 /* Set the ILOS bit on the fiber Nic is half
1286 * duplex link is detected. */
1287 stat_reg = er32(STATUS);
1288 if ((stat_reg & E1000_STATUS_FD) == 0)
1289 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1292 ew32(CTRL, ctrl_reg);
1294 /* Disable the receiver on the PHY so when a cable is plugged in, the
1295 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1297 if (hw->phy_type == e1000_phy_m88)
1298 e1000_phy_disable_receiver(adapter);
1300 udelay(500);
1302 return 0;
1305 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1307 struct e1000_hw *hw = &adapter->hw;
1308 u16 phy_reg = 0;
1309 u16 count = 0;
1311 switch (hw->mac_type) {
1312 case e1000_82543:
1313 if (hw->media_type == e1000_media_type_copper) {
1314 /* Attempt to setup Loopback mode on Non-integrated PHY.
1315 * Some PHY registers get corrupted at random, so
1316 * attempt this 10 times.
1318 while (e1000_nonintegrated_phy_loopback(adapter) &&
1319 count++ < 10);
1320 if (count < 11)
1321 return 0;
1323 break;
1325 case e1000_82544:
1326 case e1000_82540:
1327 case e1000_82545:
1328 case e1000_82545_rev_3:
1329 case e1000_82546:
1330 case e1000_82546_rev_3:
1331 case e1000_82541:
1332 case e1000_82541_rev_2:
1333 case e1000_82547:
1334 case e1000_82547_rev_2:
1335 return e1000_integrated_phy_loopback(adapter);
1336 break;
1337 default:
1338 /* Default PHY loopback work is to read the MII
1339 * control register and assert bit 14 (loopback mode).
1341 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1342 phy_reg |= MII_CR_LOOPBACK;
1343 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1344 return 0;
1345 break;
1348 return 8;
1351 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1353 struct e1000_hw *hw = &adapter->hw;
1354 u32 rctl;
1356 if (hw->media_type == e1000_media_type_fiber ||
1357 hw->media_type == e1000_media_type_internal_serdes) {
1358 switch (hw->mac_type) {
1359 case e1000_82545:
1360 case e1000_82546:
1361 case e1000_82545_rev_3:
1362 case e1000_82546_rev_3:
1363 return e1000_set_phy_loopback(adapter);
1364 break;
1365 default:
1366 rctl = er32(RCTL);
1367 rctl |= E1000_RCTL_LBM_TCVR;
1368 ew32(RCTL, rctl);
1369 return 0;
1371 } else if (hw->media_type == e1000_media_type_copper)
1372 return e1000_set_phy_loopback(adapter);
1374 return 7;
1377 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1379 struct e1000_hw *hw = &adapter->hw;
1380 u32 rctl;
1381 u16 phy_reg;
1383 rctl = er32(RCTL);
1384 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1385 ew32(RCTL, rctl);
1387 switch (hw->mac_type) {
1388 case e1000_82545:
1389 case e1000_82546:
1390 case e1000_82545_rev_3:
1391 case e1000_82546_rev_3:
1392 default:
1393 hw->autoneg = true;
1394 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1395 if (phy_reg & MII_CR_LOOPBACK) {
1396 phy_reg &= ~MII_CR_LOOPBACK;
1397 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1398 e1000_phy_reset(hw);
1400 break;
1404 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1405 unsigned int frame_size)
1407 memset(skb->data, 0xFF, frame_size);
1408 frame_size &= ~1;
1409 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1410 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1411 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1414 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1415 unsigned int frame_size)
1417 frame_size &= ~1;
1418 if (*(skb->data + 3) == 0xFF) {
1419 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1420 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1421 return 0;
1424 return 13;
1427 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1429 struct e1000_hw *hw = &adapter->hw;
1430 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1431 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1432 struct pci_dev *pdev = adapter->pdev;
1433 int i, j, k, l, lc, good_cnt, ret_val=0;
1434 unsigned long time;
1436 ew32(RDT, rxdr->count - 1);
1438 /* Calculate the loop count based on the largest descriptor ring
1439 * The idea is to wrap the largest ring a number of times using 64
1440 * send/receive pairs during each loop
1443 if (rxdr->count <= txdr->count)
1444 lc = ((txdr->count / 64) * 2) + 1;
1445 else
1446 lc = ((rxdr->count / 64) * 2) + 1;
1448 k = l = 0;
1449 for (j = 0; j <= lc; j++) { /* loop count loop */
1450 for (i = 0; i < 64; i++) { /* send the packets */
1451 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1452 1024);
1453 dma_sync_single_for_device(&pdev->dev,
1454 txdr->buffer_info[k].dma,
1455 txdr->buffer_info[k].length,
1456 DMA_TO_DEVICE);
1457 if (unlikely(++k == txdr->count)) k = 0;
1459 ew32(TDT, k);
1460 msleep(200);
1461 time = jiffies; /* set the start time for the receive */
1462 good_cnt = 0;
1463 do { /* receive the sent packets */
1464 dma_sync_single_for_cpu(&pdev->dev,
1465 rxdr->buffer_info[l].dma,
1466 rxdr->buffer_info[l].length,
1467 DMA_FROM_DEVICE);
1469 ret_val = e1000_check_lbtest_frame(
1470 rxdr->buffer_info[l].skb,
1471 1024);
1472 if (!ret_val)
1473 good_cnt++;
1474 if (unlikely(++l == rxdr->count)) l = 0;
1475 /* time + 20 msecs (200 msecs on 2.4) is more than
1476 * enough time to complete the receives, if it's
1477 * exceeded, break and error off
1479 } while (good_cnt < 64 && jiffies < (time + 20));
1480 if (good_cnt != 64) {
1481 ret_val = 13; /* ret_val is the same as mis-compare */
1482 break;
1484 if (jiffies >= (time + 2)) {
1485 ret_val = 14; /* error code for time out error */
1486 break;
1488 } /* end loop count loop */
1489 return ret_val;
1492 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1494 *data = e1000_setup_desc_rings(adapter);
1495 if (*data)
1496 goto out;
1497 *data = e1000_setup_loopback_test(adapter);
1498 if (*data)
1499 goto err_loopback;
1500 *data = e1000_run_loopback_test(adapter);
1501 e1000_loopback_cleanup(adapter);
1503 err_loopback:
1504 e1000_free_desc_rings(adapter);
1505 out:
1506 return *data;
1509 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1511 struct e1000_hw *hw = &adapter->hw;
1512 *data = 0;
1513 if (hw->media_type == e1000_media_type_internal_serdes) {
1514 int i = 0;
1515 hw->serdes_has_link = false;
1517 /* On some blade server designs, link establishment
1518 * could take as long as 2-3 minutes */
1519 do {
1520 e1000_check_for_link(hw);
1521 if (hw->serdes_has_link)
1522 return *data;
1523 msleep(20);
1524 } while (i++ < 3750);
1526 *data = 1;
1527 } else {
1528 e1000_check_for_link(hw);
1529 if (hw->autoneg) /* if auto_neg is set wait for it */
1530 msleep(4000);
1532 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1533 *data = 1;
1536 return *data;
1539 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1541 switch (sset) {
1542 case ETH_SS_TEST:
1543 return E1000_TEST_LEN;
1544 case ETH_SS_STATS:
1545 return E1000_STATS_LEN;
1546 default:
1547 return -EOPNOTSUPP;
1551 static void e1000_diag_test(struct net_device *netdev,
1552 struct ethtool_test *eth_test, u64 *data)
1554 struct e1000_adapter *adapter = netdev_priv(netdev);
1555 struct e1000_hw *hw = &adapter->hw;
1556 bool if_running = netif_running(netdev);
1558 set_bit(__E1000_TESTING, &adapter->flags);
1559 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1560 /* Offline tests */
1562 /* save speed, duplex, autoneg settings */
1563 u16 autoneg_advertised = hw->autoneg_advertised;
1564 u8 forced_speed_duplex = hw->forced_speed_duplex;
1565 u8 autoneg = hw->autoneg;
1567 e_info(hw, "offline testing starting\n");
1569 /* Link test performed before hardware reset so autoneg doesn't
1570 * interfere with test result */
1571 if (e1000_link_test(adapter, &data[4]))
1572 eth_test->flags |= ETH_TEST_FL_FAILED;
1574 if (if_running)
1575 /* indicate we're in test mode */
1576 dev_close(netdev);
1577 else
1578 e1000_reset(adapter);
1580 if (e1000_reg_test(adapter, &data[0]))
1581 eth_test->flags |= ETH_TEST_FL_FAILED;
1583 e1000_reset(adapter);
1584 if (e1000_eeprom_test(adapter, &data[1]))
1585 eth_test->flags |= ETH_TEST_FL_FAILED;
1587 e1000_reset(adapter);
1588 if (e1000_intr_test(adapter, &data[2]))
1589 eth_test->flags |= ETH_TEST_FL_FAILED;
1591 e1000_reset(adapter);
1592 /* make sure the phy is powered up */
1593 e1000_power_up_phy(adapter);
1594 if (e1000_loopback_test(adapter, &data[3]))
1595 eth_test->flags |= ETH_TEST_FL_FAILED;
1597 /* restore speed, duplex, autoneg settings */
1598 hw->autoneg_advertised = autoneg_advertised;
1599 hw->forced_speed_duplex = forced_speed_duplex;
1600 hw->autoneg = autoneg;
1602 e1000_reset(adapter);
1603 clear_bit(__E1000_TESTING, &adapter->flags);
1604 if (if_running)
1605 dev_open(netdev);
1606 } else {
1607 e_info(hw, "online testing starting\n");
1608 /* Online tests */
1609 if (e1000_link_test(adapter, &data[4]))
1610 eth_test->flags |= ETH_TEST_FL_FAILED;
1612 /* Online tests aren't run; pass by default */
1613 data[0] = 0;
1614 data[1] = 0;
1615 data[2] = 0;
1616 data[3] = 0;
1618 clear_bit(__E1000_TESTING, &adapter->flags);
1620 msleep_interruptible(4 * 1000);
1623 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1624 struct ethtool_wolinfo *wol)
1626 struct e1000_hw *hw = &adapter->hw;
1627 int retval = 1; /* fail by default */
1629 switch (hw->device_id) {
1630 case E1000_DEV_ID_82542:
1631 case E1000_DEV_ID_82543GC_FIBER:
1632 case E1000_DEV_ID_82543GC_COPPER:
1633 case E1000_DEV_ID_82544EI_FIBER:
1634 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1635 case E1000_DEV_ID_82545EM_FIBER:
1636 case E1000_DEV_ID_82545EM_COPPER:
1637 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1638 case E1000_DEV_ID_82546GB_PCIE:
1639 /* these don't support WoL at all */
1640 wol->supported = 0;
1641 break;
1642 case E1000_DEV_ID_82546EB_FIBER:
1643 case E1000_DEV_ID_82546GB_FIBER:
1644 /* Wake events not supported on port B */
1645 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1646 wol->supported = 0;
1647 break;
1649 /* return success for non excluded adapter ports */
1650 retval = 0;
1651 break;
1652 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1653 /* quad port adapters only support WoL on port A */
1654 if (!adapter->quad_port_a) {
1655 wol->supported = 0;
1656 break;
1658 /* return success for non excluded adapter ports */
1659 retval = 0;
1660 break;
1661 default:
1662 /* dual port cards only support WoL on port A from now on
1663 * unless it was enabled in the eeprom for port B
1664 * so exclude FUNC_1 ports from having WoL enabled */
1665 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1666 !adapter->eeprom_wol) {
1667 wol->supported = 0;
1668 break;
1671 retval = 0;
1674 return retval;
1677 static void e1000_get_wol(struct net_device *netdev,
1678 struct ethtool_wolinfo *wol)
1680 struct e1000_adapter *adapter = netdev_priv(netdev);
1681 struct e1000_hw *hw = &adapter->hw;
1683 wol->supported = WAKE_UCAST | WAKE_MCAST |
1684 WAKE_BCAST | WAKE_MAGIC;
1685 wol->wolopts = 0;
1687 /* this function will set ->supported = 0 and return 1 if wol is not
1688 * supported by this hardware */
1689 if (e1000_wol_exclusion(adapter, wol) ||
1690 !device_can_wakeup(&adapter->pdev->dev))
1691 return;
1693 /* apply any specific unsupported masks here */
1694 switch (hw->device_id) {
1695 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1696 /* KSP3 does not suppport UCAST wake-ups */
1697 wol->supported &= ~WAKE_UCAST;
1699 if (adapter->wol & E1000_WUFC_EX)
1700 e_err(drv, "Interface does not support directed "
1701 "(unicast) frame wake-up packets\n");
1702 break;
1703 default:
1704 break;
1707 if (adapter->wol & E1000_WUFC_EX)
1708 wol->wolopts |= WAKE_UCAST;
1709 if (adapter->wol & E1000_WUFC_MC)
1710 wol->wolopts |= WAKE_MCAST;
1711 if (adapter->wol & E1000_WUFC_BC)
1712 wol->wolopts |= WAKE_BCAST;
1713 if (adapter->wol & E1000_WUFC_MAG)
1714 wol->wolopts |= WAKE_MAGIC;
1717 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1719 struct e1000_adapter *adapter = netdev_priv(netdev);
1720 struct e1000_hw *hw = &adapter->hw;
1722 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1723 return -EOPNOTSUPP;
1725 if (e1000_wol_exclusion(adapter, wol) ||
1726 !device_can_wakeup(&adapter->pdev->dev))
1727 return wol->wolopts ? -EOPNOTSUPP : 0;
1729 switch (hw->device_id) {
1730 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1731 if (wol->wolopts & WAKE_UCAST) {
1732 e_err(drv, "Interface does not support directed "
1733 "(unicast) frame wake-up packets\n");
1734 return -EOPNOTSUPP;
1736 break;
1737 default:
1738 break;
1741 /* these settings will always override what we currently have */
1742 adapter->wol = 0;
1744 if (wol->wolopts & WAKE_UCAST)
1745 adapter->wol |= E1000_WUFC_EX;
1746 if (wol->wolopts & WAKE_MCAST)
1747 adapter->wol |= E1000_WUFC_MC;
1748 if (wol->wolopts & WAKE_BCAST)
1749 adapter->wol |= E1000_WUFC_BC;
1750 if (wol->wolopts & WAKE_MAGIC)
1751 adapter->wol |= E1000_WUFC_MAG;
1753 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1755 return 0;
1758 /* toggle LED 4 times per second = 2 "blinks" per second */
1759 #define E1000_ID_INTERVAL (HZ/4)
1761 /* bit defines for adapter->led_status */
1762 #define E1000_LED_ON 0
1764 static void e1000_led_blink_callback(unsigned long data)
1766 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1767 struct e1000_hw *hw = &adapter->hw;
1769 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1770 e1000_led_off(hw);
1771 else
1772 e1000_led_on(hw);
1774 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1777 static int e1000_phys_id(struct net_device *netdev, u32 data)
1779 struct e1000_adapter *adapter = netdev_priv(netdev);
1780 struct e1000_hw *hw = &adapter->hw;
1782 if (!data)
1783 data = INT_MAX;
1785 if (!adapter->blink_timer.function) {
1786 init_timer(&adapter->blink_timer);
1787 adapter->blink_timer.function = e1000_led_blink_callback;
1788 adapter->blink_timer.data = (unsigned long)adapter;
1790 e1000_setup_led(hw);
1791 mod_timer(&adapter->blink_timer, jiffies);
1792 msleep_interruptible(data * 1000);
1793 del_timer_sync(&adapter->blink_timer);
1795 e1000_led_off(hw);
1796 clear_bit(E1000_LED_ON, &adapter->led_status);
1797 e1000_cleanup_led(hw);
1799 return 0;
1802 static int e1000_get_coalesce(struct net_device *netdev,
1803 struct ethtool_coalesce *ec)
1805 struct e1000_adapter *adapter = netdev_priv(netdev);
1807 if (adapter->hw.mac_type < e1000_82545)
1808 return -EOPNOTSUPP;
1810 if (adapter->itr_setting <= 4)
1811 ec->rx_coalesce_usecs = adapter->itr_setting;
1812 else
1813 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1815 return 0;
1818 static int e1000_set_coalesce(struct net_device *netdev,
1819 struct ethtool_coalesce *ec)
1821 struct e1000_adapter *adapter = netdev_priv(netdev);
1822 struct e1000_hw *hw = &adapter->hw;
1824 if (hw->mac_type < e1000_82545)
1825 return -EOPNOTSUPP;
1827 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1828 ((ec->rx_coalesce_usecs > 4) &&
1829 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1830 (ec->rx_coalesce_usecs == 2))
1831 return -EINVAL;
1833 if (ec->rx_coalesce_usecs == 4) {
1834 adapter->itr = adapter->itr_setting = 4;
1835 } else if (ec->rx_coalesce_usecs <= 3) {
1836 adapter->itr = 20000;
1837 adapter->itr_setting = ec->rx_coalesce_usecs;
1838 } else {
1839 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1840 adapter->itr_setting = adapter->itr & ~3;
1843 if (adapter->itr_setting != 0)
1844 ew32(ITR, 1000000000 / (adapter->itr * 256));
1845 else
1846 ew32(ITR, 0);
1848 return 0;
1851 static int e1000_nway_reset(struct net_device *netdev)
1853 struct e1000_adapter *adapter = netdev_priv(netdev);
1854 if (netif_running(netdev))
1855 e1000_reinit_locked(adapter);
1856 return 0;
1859 static void e1000_get_ethtool_stats(struct net_device *netdev,
1860 struct ethtool_stats *stats, u64 *data)
1862 struct e1000_adapter *adapter = netdev_priv(netdev);
1863 int i;
1864 char *p = NULL;
1866 e1000_update_stats(adapter);
1867 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1868 switch (e1000_gstrings_stats[i].type) {
1869 case NETDEV_STATS:
1870 p = (char *) netdev +
1871 e1000_gstrings_stats[i].stat_offset;
1872 break;
1873 case E1000_STATS:
1874 p = (char *) adapter +
1875 e1000_gstrings_stats[i].stat_offset;
1876 break;
1879 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1880 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1882 /* BUG_ON(i != E1000_STATS_LEN); */
1885 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1886 u8 *data)
1888 u8 *p = data;
1889 int i;
1891 switch (stringset) {
1892 case ETH_SS_TEST:
1893 memcpy(data, *e1000_gstrings_test,
1894 sizeof(e1000_gstrings_test));
1895 break;
1896 case ETH_SS_STATS:
1897 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1898 memcpy(p, e1000_gstrings_stats[i].stat_string,
1899 ETH_GSTRING_LEN);
1900 p += ETH_GSTRING_LEN;
1902 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1903 break;
1907 static const struct ethtool_ops e1000_ethtool_ops = {
1908 .get_settings = e1000_get_settings,
1909 .set_settings = e1000_set_settings,
1910 .get_drvinfo = e1000_get_drvinfo,
1911 .get_regs_len = e1000_get_regs_len,
1912 .get_regs = e1000_get_regs,
1913 .get_wol = e1000_get_wol,
1914 .set_wol = e1000_set_wol,
1915 .get_msglevel = e1000_get_msglevel,
1916 .set_msglevel = e1000_set_msglevel,
1917 .nway_reset = e1000_nway_reset,
1918 .get_link = e1000_get_link,
1919 .get_eeprom_len = e1000_get_eeprom_len,
1920 .get_eeprom = e1000_get_eeprom,
1921 .set_eeprom = e1000_set_eeprom,
1922 .get_ringparam = e1000_get_ringparam,
1923 .set_ringparam = e1000_set_ringparam,
1924 .get_pauseparam = e1000_get_pauseparam,
1925 .set_pauseparam = e1000_set_pauseparam,
1926 .get_rx_csum = e1000_get_rx_csum,
1927 .set_rx_csum = e1000_set_rx_csum,
1928 .get_tx_csum = e1000_get_tx_csum,
1929 .set_tx_csum = e1000_set_tx_csum,
1930 .set_sg = ethtool_op_set_sg,
1931 .set_tso = e1000_set_tso,
1932 .self_test = e1000_diag_test,
1933 .get_strings = e1000_get_strings,
1934 .phys_id = e1000_phys_id,
1935 .get_ethtool_stats = e1000_get_ethtool_stats,
1936 .get_sset_count = e1000_get_sset_count,
1937 .get_coalesce = e1000_get_coalesce,
1938 .set_coalesce = e1000_set_coalesce,
1941 void e1000_set_ethtool_ops(struct net_device *netdev)
1943 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);