3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
32 #include <linux/hash.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
42 # define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
46 #define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
53 #define mb_error(f...) do { \
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue
);
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
66 EXPORT_SYMBOL(mb_cache_create
);
67 EXPORT_SYMBOL(mb_cache_shrink
);
68 EXPORT_SYMBOL(mb_cache_destroy
);
69 EXPORT_SYMBOL(mb_cache_entry_alloc
);
70 EXPORT_SYMBOL(mb_cache_entry_insert
);
71 EXPORT_SYMBOL(mb_cache_entry_release
);
72 EXPORT_SYMBOL(mb_cache_entry_free
);
73 EXPORT_SYMBOL(mb_cache_entry_get
);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first
);
76 EXPORT_SYMBOL(mb_cache_entry_find_next
);
80 struct list_head c_cache_list
;
82 atomic_t c_entry_count
;
84 struct kmem_cache
*c_entry_cache
;
85 struct list_head
*c_block_hash
;
86 struct list_head
*c_index_hash
;
91 * Global data: list of all mbcache's, lru list, and a spinlock for
92 * accessing cache data structures on SMP machines. The lru list is
93 * global across all mbcaches.
96 static LIST_HEAD(mb_cache_list
);
97 static LIST_HEAD(mb_cache_lru_list
);
98 static DEFINE_SPINLOCK(mb_cache_spinlock
);
101 * What the mbcache registers as to get shrunk dynamically.
104 static int mb_cache_shrink_fn(struct shrinker
*shrink
, int nr_to_scan
, gfp_t gfp_mask
);
106 static struct shrinker mb_cache_shrinker
= {
107 .shrink
= mb_cache_shrink_fn
,
108 .seeks
= DEFAULT_SEEKS
,
112 __mb_cache_entry_is_hashed(struct mb_cache_entry
*ce
)
114 return !list_empty(&ce
->e_block_list
);
119 __mb_cache_entry_unhash(struct mb_cache_entry
*ce
)
121 if (__mb_cache_entry_is_hashed(ce
)) {
122 list_del_init(&ce
->e_block_list
);
123 list_del(&ce
->e_index
.o_list
);
129 __mb_cache_entry_forget(struct mb_cache_entry
*ce
, gfp_t gfp_mask
)
131 struct mb_cache
*cache
= ce
->e_cache
;
133 mb_assert(!(ce
->e_used
|| ce
->e_queued
));
134 kmem_cache_free(cache
->c_entry_cache
, ce
);
135 atomic_dec(&cache
->c_entry_count
);
140 __mb_cache_entry_release_unlock(struct mb_cache_entry
*ce
)
141 __releases(mb_cache_spinlock
)
143 /* Wake up all processes queuing for this cache entry. */
145 wake_up_all(&mb_cache_queue
);
146 if (ce
->e_used
>= MB_CACHE_WRITER
)
147 ce
->e_used
-= MB_CACHE_WRITER
;
149 if (!(ce
->e_used
|| ce
->e_queued
)) {
150 if (!__mb_cache_entry_is_hashed(ce
))
152 mb_assert(list_empty(&ce
->e_lru_list
));
153 list_add_tail(&ce
->e_lru_list
, &mb_cache_lru_list
);
155 spin_unlock(&mb_cache_spinlock
);
158 spin_unlock(&mb_cache_spinlock
);
159 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
164 * mb_cache_shrink_fn() memory pressure callback
166 * This function is called by the kernel memory management when memory
170 * @nr_to_scan: Number of objects to scan
171 * @gfp_mask: (ignored)
173 * Returns the number of objects which are present in the cache.
176 mb_cache_shrink_fn(struct shrinker
*shrink
, int nr_to_scan
, gfp_t gfp_mask
)
178 LIST_HEAD(free_list
);
179 struct mb_cache
*cache
;
180 struct mb_cache_entry
*entry
, *tmp
;
183 mb_debug("trying to free %d entries", nr_to_scan
);
184 spin_lock(&mb_cache_spinlock
);
185 while (nr_to_scan
-- && !list_empty(&mb_cache_lru_list
)) {
186 struct mb_cache_entry
*ce
=
187 list_entry(mb_cache_lru_list
.next
,
188 struct mb_cache_entry
, e_lru_list
);
189 list_move_tail(&ce
->e_lru_list
, &free_list
);
190 __mb_cache_entry_unhash(ce
);
192 list_for_each_entry(cache
, &mb_cache_list
, c_cache_list
) {
193 mb_debug("cache %s (%d)", cache
->c_name
,
194 atomic_read(&cache
->c_entry_count
));
195 count
+= atomic_read(&cache
->c_entry_count
);
197 spin_unlock(&mb_cache_spinlock
);
198 list_for_each_entry_safe(entry
, tmp
, &free_list
, e_lru_list
) {
199 __mb_cache_entry_forget(entry
, gfp_mask
);
201 return (count
/ 100) * sysctl_vfs_cache_pressure
;
206 * mb_cache_create() create a new cache
208 * All entries in one cache are equal size. Cache entries may be from
209 * multiple devices. If this is the first mbcache created, registers
210 * the cache with kernel memory management. Returns NULL if no more
211 * memory was available.
213 * @name: name of the cache (informal)
214 * @bucket_bits: log2(number of hash buckets)
217 mb_cache_create(const char *name
, int bucket_bits
)
219 int n
, bucket_count
= 1 << bucket_bits
;
220 struct mb_cache
*cache
= NULL
;
222 cache
= kmalloc(sizeof(struct mb_cache
), GFP_KERNEL
);
225 cache
->c_name
= name
;
226 atomic_set(&cache
->c_entry_count
, 0);
227 cache
->c_bucket_bits
= bucket_bits
;
228 cache
->c_block_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
230 if (!cache
->c_block_hash
)
232 for (n
=0; n
<bucket_count
; n
++)
233 INIT_LIST_HEAD(&cache
->c_block_hash
[n
]);
234 cache
->c_index_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
236 if (!cache
->c_index_hash
)
238 for (n
=0; n
<bucket_count
; n
++)
239 INIT_LIST_HEAD(&cache
->c_index_hash
[n
]);
240 cache
->c_entry_cache
= kmem_cache_create(name
,
241 sizeof(struct mb_cache_entry
), 0,
242 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
243 if (!cache
->c_entry_cache
)
246 spin_lock(&mb_cache_spinlock
);
247 list_add(&cache
->c_cache_list
, &mb_cache_list
);
248 spin_unlock(&mb_cache_spinlock
);
252 kfree(cache
->c_index_hash
);
255 kfree(cache
->c_block_hash
);
264 * Removes all cache entries of a device from the cache. All cache entries
265 * currently in use cannot be freed, and thus remain in the cache. All others
268 * @bdev: which device's cache entries to shrink
271 mb_cache_shrink(struct block_device
*bdev
)
273 LIST_HEAD(free_list
);
274 struct list_head
*l
, *ltmp
;
276 spin_lock(&mb_cache_spinlock
);
277 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
278 struct mb_cache_entry
*ce
=
279 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
280 if (ce
->e_bdev
== bdev
) {
281 list_move_tail(&ce
->e_lru_list
, &free_list
);
282 __mb_cache_entry_unhash(ce
);
285 spin_unlock(&mb_cache_spinlock
);
286 list_for_each_safe(l
, ltmp
, &free_list
) {
287 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
288 e_lru_list
), GFP_KERNEL
);
296 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
297 * and then destroys it. If this was the last mbcache, un-registers the
298 * mbcache from kernel memory management.
301 mb_cache_destroy(struct mb_cache
*cache
)
303 LIST_HEAD(free_list
);
304 struct list_head
*l
, *ltmp
;
306 spin_lock(&mb_cache_spinlock
);
307 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
308 struct mb_cache_entry
*ce
=
309 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
310 if (ce
->e_cache
== cache
) {
311 list_move_tail(&ce
->e_lru_list
, &free_list
);
312 __mb_cache_entry_unhash(ce
);
315 list_del(&cache
->c_cache_list
);
316 spin_unlock(&mb_cache_spinlock
);
318 list_for_each_safe(l
, ltmp
, &free_list
) {
319 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
320 e_lru_list
), GFP_KERNEL
);
323 if (atomic_read(&cache
->c_entry_count
) > 0) {
324 mb_error("cache %s: %d orphaned entries",
326 atomic_read(&cache
->c_entry_count
));
329 kmem_cache_destroy(cache
->c_entry_cache
);
331 kfree(cache
->c_index_hash
);
332 kfree(cache
->c_block_hash
);
338 * mb_cache_entry_alloc()
340 * Allocates a new cache entry. The new entry will not be valid initially,
341 * and thus cannot be looked up yet. It should be filled with data, and
342 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
343 * if no more memory was available.
345 struct mb_cache_entry
*
346 mb_cache_entry_alloc(struct mb_cache
*cache
, gfp_t gfp_flags
)
348 struct mb_cache_entry
*ce
;
350 ce
= kmem_cache_alloc(cache
->c_entry_cache
, gfp_flags
);
352 atomic_inc(&cache
->c_entry_count
);
353 INIT_LIST_HEAD(&ce
->e_lru_list
);
354 INIT_LIST_HEAD(&ce
->e_block_list
);
356 ce
->e_used
= 1 + MB_CACHE_WRITER
;
364 * mb_cache_entry_insert()
366 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
367 * the cache. After this, the cache entry can be looked up, but is not yet
368 * in the lru list as the caller still holds a handle to it. Returns 0 on
369 * success, or -EBUSY if a cache entry for that device + inode exists
370 * already (this may happen after a failed lookup, but when another process
371 * has inserted the same cache entry in the meantime).
373 * @bdev: device the cache entry belongs to
374 * @block: block number
378 mb_cache_entry_insert(struct mb_cache_entry
*ce
, struct block_device
*bdev
,
379 sector_t block
, unsigned int key
)
381 struct mb_cache
*cache
= ce
->e_cache
;
386 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
387 cache
->c_bucket_bits
);
388 spin_lock(&mb_cache_spinlock
);
389 list_for_each_prev(l
, &cache
->c_block_hash
[bucket
]) {
390 struct mb_cache_entry
*ce
=
391 list_entry(l
, struct mb_cache_entry
, e_block_list
);
392 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
)
395 __mb_cache_entry_unhash(ce
);
398 list_add(&ce
->e_block_list
, &cache
->c_block_hash
[bucket
]);
399 ce
->e_index
.o_key
= key
;
400 bucket
= hash_long(key
, cache
->c_bucket_bits
);
401 list_add(&ce
->e_index
.o_list
, &cache
->c_index_hash
[bucket
]);
404 spin_unlock(&mb_cache_spinlock
);
410 * mb_cache_entry_release()
412 * Release a handle to a cache entry. When the last handle to a cache entry
413 * is released it is either freed (if it is invalid) or otherwise inserted
414 * in to the lru list.
417 mb_cache_entry_release(struct mb_cache_entry
*ce
)
419 spin_lock(&mb_cache_spinlock
);
420 __mb_cache_entry_release_unlock(ce
);
425 * mb_cache_entry_free()
427 * This is equivalent to the sequence mb_cache_entry_takeout() --
428 * mb_cache_entry_release().
431 mb_cache_entry_free(struct mb_cache_entry
*ce
)
433 spin_lock(&mb_cache_spinlock
);
434 mb_assert(list_empty(&ce
->e_lru_list
));
435 __mb_cache_entry_unhash(ce
);
436 __mb_cache_entry_release_unlock(ce
);
441 * mb_cache_entry_get()
443 * Get a cache entry by device / block number. (There can only be one entry
444 * in the cache per device and block.) Returns NULL if no such cache entry
445 * exists. The returned cache entry is locked for exclusive access ("single
448 struct mb_cache_entry
*
449 mb_cache_entry_get(struct mb_cache
*cache
, struct block_device
*bdev
,
454 struct mb_cache_entry
*ce
;
456 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
457 cache
->c_bucket_bits
);
458 spin_lock(&mb_cache_spinlock
);
459 list_for_each(l
, &cache
->c_block_hash
[bucket
]) {
460 ce
= list_entry(l
, struct mb_cache_entry
, e_block_list
);
461 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
) {
464 if (!list_empty(&ce
->e_lru_list
))
465 list_del_init(&ce
->e_lru_list
);
467 while (ce
->e_used
> 0) {
469 prepare_to_wait(&mb_cache_queue
, &wait
,
470 TASK_UNINTERRUPTIBLE
);
471 spin_unlock(&mb_cache_spinlock
);
473 spin_lock(&mb_cache_spinlock
);
476 finish_wait(&mb_cache_queue
, &wait
);
477 ce
->e_used
+= 1 + MB_CACHE_WRITER
;
479 if (!__mb_cache_entry_is_hashed(ce
)) {
480 __mb_cache_entry_release_unlock(ce
);
489 spin_unlock(&mb_cache_spinlock
);
493 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
495 static struct mb_cache_entry
*
496 __mb_cache_entry_find(struct list_head
*l
, struct list_head
*head
,
497 struct block_device
*bdev
, unsigned int key
)
500 struct mb_cache_entry
*ce
=
501 list_entry(l
, struct mb_cache_entry
, e_index
.o_list
);
502 if (ce
->e_bdev
== bdev
&& ce
->e_index
.o_key
== key
) {
505 if (!list_empty(&ce
->e_lru_list
))
506 list_del_init(&ce
->e_lru_list
);
508 /* Incrementing before holding the lock gives readers
509 priority over writers. */
511 while (ce
->e_used
>= MB_CACHE_WRITER
) {
513 prepare_to_wait(&mb_cache_queue
, &wait
,
514 TASK_UNINTERRUPTIBLE
);
515 spin_unlock(&mb_cache_spinlock
);
517 spin_lock(&mb_cache_spinlock
);
520 finish_wait(&mb_cache_queue
, &wait
);
522 if (!__mb_cache_entry_is_hashed(ce
)) {
523 __mb_cache_entry_release_unlock(ce
);
524 spin_lock(&mb_cache_spinlock
);
525 return ERR_PTR(-EAGAIN
);
536 * mb_cache_entry_find_first()
538 * Find the first cache entry on a given device with a certain key in
539 * an additional index. Additonal matches can be found with
540 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
541 * returned cache entry is locked for shared access ("multiple readers").
543 * @cache: the cache to search
544 * @bdev: the device the cache entry should belong to
545 * @key: the key in the index
547 struct mb_cache_entry
*
548 mb_cache_entry_find_first(struct mb_cache
*cache
, struct block_device
*bdev
,
551 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
553 struct mb_cache_entry
*ce
;
555 spin_lock(&mb_cache_spinlock
);
556 l
= cache
->c_index_hash
[bucket
].next
;
557 ce
= __mb_cache_entry_find(l
, &cache
->c_index_hash
[bucket
], bdev
, key
);
558 spin_unlock(&mb_cache_spinlock
);
564 * mb_cache_entry_find_next()
566 * Find the next cache entry on a given device with a certain key in an
567 * additional index. Returns NULL if no match could be found. The previous
568 * entry is atomatically released, so that mb_cache_entry_find_next() can
569 * be called like this:
571 * entry = mb_cache_entry_find_first();
574 * entry = mb_cache_entry_find_next(entry, ...);
577 * @prev: The previous match
578 * @bdev: the device the cache entry should belong to
579 * @key: the key in the index
581 struct mb_cache_entry
*
582 mb_cache_entry_find_next(struct mb_cache_entry
*prev
,
583 struct block_device
*bdev
, unsigned int key
)
585 struct mb_cache
*cache
= prev
->e_cache
;
586 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
588 struct mb_cache_entry
*ce
;
590 spin_lock(&mb_cache_spinlock
);
591 l
= prev
->e_index
.o_list
.next
;
592 ce
= __mb_cache_entry_find(l
, &cache
->c_index_hash
[bucket
], bdev
, key
);
593 __mb_cache_entry_release_unlock(prev
);
597 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
599 static int __init
init_mbcache(void)
601 register_shrinker(&mb_cache_shrinker
);
605 static void __exit
exit_mbcache(void)
607 unregister_shrinker(&mb_cache_shrinker
);
610 module_init(init_mbcache
)
611 module_exit(exit_mbcache
)