2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 struct memblock memblock __initdata_memblock
;
25 int memblock_debug __initdata_memblock
;
26 int memblock_can_resize __initdata_memblock
;
27 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
28 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
30 /* inline so we don't get a warning when pr_debug is compiled out */
31 static inline const char *memblock_type_name(struct memblock_type
*type
)
33 if (type
== &memblock
.memory
)
35 else if (type
== &memblock
.reserved
)
42 * Address comparison utilities
45 static phys_addr_t __init_memblock
memblock_align_down(phys_addr_t addr
, phys_addr_t size
)
47 return addr
& ~(size
- 1);
50 static phys_addr_t __init_memblock
memblock_align_up(phys_addr_t addr
, phys_addr_t size
)
52 return (addr
+ (size
- 1)) & ~(size
- 1);
55 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
56 phys_addr_t base2
, phys_addr_t size2
)
58 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
61 static long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
62 phys_addr_t base
, phys_addr_t size
)
66 for (i
= 0; i
< type
->cnt
; i
++) {
67 phys_addr_t rgnbase
= type
->regions
[i
].base
;
68 phys_addr_t rgnsize
= type
->regions
[i
].size
;
69 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
73 return (i
< type
->cnt
) ? i
: -1;
77 * Find, allocate, deallocate or reserve unreserved regions. All allocations
81 static phys_addr_t __init_memblock
memblock_find_region(phys_addr_t start
, phys_addr_t end
,
82 phys_addr_t size
, phys_addr_t align
)
84 phys_addr_t base
, res_base
;
87 /* In case, huge size is requested */
89 return MEMBLOCK_ERROR
;
91 base
= memblock_align_down((end
- size
), align
);
93 /* Prevent allocations returning 0 as it's also used to
94 * indicate an allocation failure
99 while (start
<= base
) {
100 j
= memblock_overlaps_region(&memblock
.reserved
, base
, size
);
103 res_base
= memblock
.reserved
.regions
[j
].base
;
106 base
= memblock_align_down(res_base
- size
, align
);
109 return MEMBLOCK_ERROR
;
112 static phys_addr_t __init_memblock
memblock_find_base(phys_addr_t size
,
113 phys_addr_t align
, phys_addr_t start
, phys_addr_t end
)
119 /* Pump up max_addr */
120 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
121 end
= memblock
.current_limit
;
123 /* We do a top-down search, this tends to limit memory
124 * fragmentation by keeping early boot allocs near the
127 for (i
= memblock
.memory
.cnt
- 1; i
>= 0; i
--) {
128 phys_addr_t memblockbase
= memblock
.memory
.regions
[i
].base
;
129 phys_addr_t memblocksize
= memblock
.memory
.regions
[i
].size
;
130 phys_addr_t bottom
, top
, found
;
132 if (memblocksize
< size
)
134 if ((memblockbase
+ memblocksize
) <= start
)
136 bottom
= max(memblockbase
, start
);
137 top
= min(memblockbase
+ memblocksize
, end
);
140 found
= memblock_find_region(bottom
, top
, size
, align
);
141 if (found
!= MEMBLOCK_ERROR
)
144 return MEMBLOCK_ERROR
;
148 * Find a free area with specified alignment in a specific range.
150 u64 __init_memblock
memblock_find_in_range(u64 start
, u64 end
, u64 size
, u64 align
)
152 return memblock_find_base(size
, align
, start
, end
);
156 * Free memblock.reserved.regions
158 int __init_memblock
memblock_free_reserved_regions(void)
160 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
163 return memblock_free(__pa(memblock
.reserved
.regions
),
164 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
168 * Reserve memblock.reserved.regions
170 int __init_memblock
memblock_reserve_reserved_regions(void)
172 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
175 return memblock_reserve(__pa(memblock
.reserved
.regions
),
176 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
179 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
183 for (i
= r
; i
< type
->cnt
- 1; i
++) {
184 type
->regions
[i
].base
= type
->regions
[i
+ 1].base
;
185 type
->regions
[i
].size
= type
->regions
[i
+ 1].size
;
189 /* Special case for empty arrays */
190 if (type
->cnt
== 0) {
192 type
->regions
[0].base
= 0;
193 type
->regions
[0].size
= 0;
197 /* Defined below but needed now */
198 static long memblock_add_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
);
200 static int __init_memblock
memblock_double_array(struct memblock_type
*type
)
202 struct memblock_region
*new_array
, *old_array
;
203 phys_addr_t old_size
, new_size
, addr
;
204 int use_slab
= slab_is_available();
206 /* We don't allow resizing until we know about the reserved regions
207 * of memory that aren't suitable for allocation
209 if (!memblock_can_resize
)
212 /* Calculate new doubled size */
213 old_size
= type
->max
* sizeof(struct memblock_region
);
214 new_size
= old_size
<< 1;
216 /* Try to find some space for it.
218 * WARNING: We assume that either slab_is_available() and we use it or
219 * we use MEMBLOCK for allocations. That means that this is unsafe to use
220 * when bootmem is currently active (unless bootmem itself is implemented
221 * on top of MEMBLOCK which isn't the case yet)
223 * This should however not be an issue for now, as we currently only
224 * call into MEMBLOCK while it's still active, or much later when slab is
225 * active for memory hotplug operations
228 new_array
= kmalloc(new_size
, GFP_KERNEL
);
229 addr
= new_array
== NULL
? MEMBLOCK_ERROR
: __pa(new_array
);
231 addr
= memblock_find_base(new_size
, sizeof(phys_addr_t
), 0, MEMBLOCK_ALLOC_ACCESSIBLE
);
232 if (addr
== MEMBLOCK_ERROR
) {
233 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
234 memblock_type_name(type
), type
->max
, type
->max
* 2);
237 new_array
= __va(addr
);
239 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
240 memblock_type_name(type
), type
->max
* 2, (u64
)addr
, (u64
)addr
+ new_size
- 1);
242 /* Found space, we now need to move the array over before
243 * we add the reserved region since it may be our reserved
244 * array itself that is full.
246 memcpy(new_array
, type
->regions
, old_size
);
247 memset(new_array
+ type
->max
, 0, old_size
);
248 old_array
= type
->regions
;
249 type
->regions
= new_array
;
252 /* If we use SLAB that's it, we are done */
256 /* Add the new reserved region now. Should not fail ! */
257 BUG_ON(memblock_add_region(&memblock
.reserved
, addr
, new_size
));
259 /* If the array wasn't our static init one, then free it. We only do
260 * that before SLAB is available as later on, we don't know whether
261 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
264 if (old_array
!= memblock_memory_init_regions
&&
265 old_array
!= memblock_reserved_init_regions
)
266 memblock_free(__pa(old_array
), old_size
);
271 int __init_memblock __weak
memblock_memory_can_coalesce(phys_addr_t addr1
, phys_addr_t size1
,
272 phys_addr_t addr2
, phys_addr_t size2
)
277 static long __init_memblock
memblock_add_region(struct memblock_type
*type
,
278 phys_addr_t base
, phys_addr_t size
)
280 phys_addr_t end
= base
+ size
;
283 /* First try and coalesce this MEMBLOCK with others */
284 for (i
= 0; i
< type
->cnt
; i
++) {
285 struct memblock_region
*rgn
= &type
->regions
[i
];
286 phys_addr_t rend
= rgn
->base
+ rgn
->size
;
288 /* Exit if there's no possible hits */
289 if (rgn
->base
> end
|| rgn
->size
== 0)
292 /* Check if we are fully enclosed within an existing
295 if (rgn
->base
<= base
&& rend
>= end
)
298 /* Check if we overlap or are adjacent with the bottom
301 if (base
< rgn
->base
&& end
>= rgn
->base
) {
302 /* If we can't coalesce, create a new block */
303 if (!memblock_memory_can_coalesce(base
, size
,
306 /* Overlap & can't coalesce are mutually
307 * exclusive, if you do that, be prepared
310 WARN_ON(end
!= rgn
->base
);
313 /* We extend the bottom of the block down to our
317 rgn
->size
= rend
- base
;
319 /* Return if we have nothing else to allocate
325 /* We continue processing from the end of the
332 /* Now check if we overlap or are adjacent with the
335 if (base
<= rend
&& end
>= rend
) {
336 /* If we can't coalesce, create a new block */
337 if (!memblock_memory_can_coalesce(rgn
->base
,
340 /* Overlap & can't coalesce are mutually
341 * exclusive, if you do that, be prepared
344 WARN_ON(rend
!= base
);
347 /* We adjust our base down to enclose the
348 * original block and destroy it. It will be
349 * part of our new allocation. Since we've
350 * freed an entry, we know we won't fail
351 * to allocate one later, so we won't risk
352 * losing the original block allocation.
354 size
+= (base
- rgn
->base
);
356 memblock_remove_region(type
, i
--);
360 /* If the array is empty, special case, replace the fake
361 * filler region and return
363 if ((type
->cnt
== 1) && (type
->regions
[0].size
== 0)) {
364 type
->regions
[0].base
= base
;
365 type
->regions
[0].size
= size
;
370 /* If we are out of space, we fail. It's too late to resize the array
371 * but then this shouldn't have happened in the first place.
373 if (WARN_ON(type
->cnt
>= type
->max
))
376 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
377 for (i
= type
->cnt
- 1; i
>= 0; i
--) {
378 if (base
< type
->regions
[i
].base
) {
379 type
->regions
[i
+1].base
= type
->regions
[i
].base
;
380 type
->regions
[i
+1].size
= type
->regions
[i
].size
;
382 type
->regions
[i
+1].base
= base
;
383 type
->regions
[i
+1].size
= size
;
388 if (base
< type
->regions
[0].base
) {
389 type
->regions
[0].base
= base
;
390 type
->regions
[0].size
= size
;
395 /* The array is full ? Try to resize it. If that fails, we undo
396 * our allocation and return an error
398 if (type
->cnt
== type
->max
&& memblock_double_array(type
)) {
400 memblock_remove_region(type
, slot
);
407 long __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
409 return memblock_add_region(&memblock
.memory
, base
, size
);
413 static long __init_memblock
__memblock_remove(struct memblock_type
*type
,
414 phys_addr_t base
, phys_addr_t size
)
416 phys_addr_t end
= base
+ size
;
419 /* Walk through the array for collisions */
420 for (i
= 0; i
< type
->cnt
; i
++) {
421 struct memblock_region
*rgn
= &type
->regions
[i
];
422 phys_addr_t rend
= rgn
->base
+ rgn
->size
;
424 /* Nothing more to do, exit */
425 if (rgn
->base
> end
|| rgn
->size
== 0)
428 /* If we fully enclose the block, drop it */
429 if (base
<= rgn
->base
&& end
>= rend
) {
430 memblock_remove_region(type
, i
--);
434 /* If we are fully enclosed within a block
435 * then we need to split it and we are done
437 if (base
> rgn
->base
&& end
< rend
) {
438 rgn
->size
= base
- rgn
->base
;
439 if (!memblock_add_region(type
, end
, rend
- end
))
441 /* Failure to split is bad, we at least
442 * restore the block before erroring
444 rgn
->size
= rend
- rgn
->base
;
449 /* Check if we need to trim the bottom of a block */
450 if (rgn
->base
< end
&& rend
> end
) {
451 rgn
->size
-= end
- rgn
->base
;
456 /* And check if we need to trim the top of a block */
458 rgn
->size
-= rend
- base
;
464 long __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
466 return __memblock_remove(&memblock
.memory
, base
, size
);
469 long __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
471 return __memblock_remove(&memblock
.reserved
, base
, size
);
474 long __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
476 struct memblock_type
*_rgn
= &memblock
.reserved
;
480 return memblock_add_region(_rgn
, base
, size
);
483 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
487 /* We align the size to limit fragmentation. Without this, a lot of
488 * small allocs quickly eat up the whole reserve array on sparc
490 size
= memblock_align_up(size
, align
);
492 found
= memblock_find_base(size
, align
, 0, max_addr
);
493 if (found
!= MEMBLOCK_ERROR
&&
494 !memblock_add_region(&memblock
.reserved
, found
, size
))
500 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
504 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
507 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
508 (unsigned long long) size
, (unsigned long long) max_addr
);
513 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
515 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
520 * Additional node-local allocators. Search for node memory is bottom up
521 * and walks memblock regions within that node bottom-up as well, but allocation
522 * within an memblock region is top-down. XXX I plan to fix that at some stage
524 * WARNING: Only available after early_node_map[] has been populated,
525 * on some architectures, that is after all the calls to add_active_range()
526 * have been done to populate it.
529 phys_addr_t __weak __init
memblock_nid_range(phys_addr_t start
, phys_addr_t end
, int *nid
)
531 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
533 * This code originates from sparc which really wants use to walk by addresses
534 * and returns the nid. This is not very convenient for early_pfn_map[] users
535 * as the map isn't sorted yet, and it really wants to be walked by nid.
537 * For now, I implement the inefficient method below which walks the early
538 * map multiple times. Eventually we may want to use an ARCH config option
539 * to implement a completely different method for both case.
541 unsigned long start_pfn
, end_pfn
;
544 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
545 get_pfn_range_for_nid(i
, &start_pfn
, &end_pfn
);
546 if (start
< PFN_PHYS(start_pfn
) || start
>= PFN_PHYS(end_pfn
))
549 return min(end
, PFN_PHYS(end_pfn
));
557 static phys_addr_t __init
memblock_alloc_nid_region(struct memblock_region
*mp
,
559 phys_addr_t align
, int nid
)
561 phys_addr_t start
, end
;
564 end
= start
+ mp
->size
;
566 start
= memblock_align_up(start
, align
);
567 while (start
< end
) {
568 phys_addr_t this_end
;
571 this_end
= memblock_nid_range(start
, end
, &this_nid
);
572 if (this_nid
== nid
) {
573 phys_addr_t ret
= memblock_find_region(start
, this_end
, size
, align
);
574 if (ret
!= MEMBLOCK_ERROR
&&
575 !memblock_add_region(&memblock
.reserved
, ret
, size
))
581 return MEMBLOCK_ERROR
;
584 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
586 struct memblock_type
*mem
= &memblock
.memory
;
591 /* We align the size to limit fragmentation. Without this, a lot of
592 * small allocs quickly eat up the whole reserve array on sparc
594 size
= memblock_align_up(size
, align
);
596 /* We do a bottom-up search for a region with the right
597 * nid since that's easier considering how memblock_nid_range()
600 for (i
= 0; i
< mem
->cnt
; i
++) {
601 phys_addr_t ret
= memblock_alloc_nid_region(&mem
->regions
[i
],
603 if (ret
!= MEMBLOCK_ERROR
)
610 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
612 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
616 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ANYWHERE
);
621 * Remaining API functions
624 /* You must call memblock_analyze() before this. */
625 phys_addr_t __init
memblock_phys_mem_size(void)
627 return memblock
.memory_size
;
631 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
633 return memblock
.memory
.regions
[0].base
;
636 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
638 int idx
= memblock
.memory
.cnt
- 1;
640 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
643 /* You must call memblock_analyze() after this. */
644 void __init
memblock_enforce_memory_limit(phys_addr_t memory_limit
)
648 struct memblock_region
*p
;
653 /* Truncate the memblock regions to satisfy the memory limit. */
654 limit
= memory_limit
;
655 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
656 if (limit
> memblock
.memory
.regions
[i
].size
) {
657 limit
-= memblock
.memory
.regions
[i
].size
;
661 memblock
.memory
.regions
[i
].size
= limit
;
662 memblock
.memory
.cnt
= i
+ 1;
666 memory_limit
= memblock_end_of_DRAM();
668 /* And truncate any reserves above the limit also. */
669 for (i
= 0; i
< memblock
.reserved
.cnt
; i
++) {
670 p
= &memblock
.reserved
.regions
[i
];
672 if (p
->base
> memory_limit
)
674 else if ((p
->base
+ p
->size
) > memory_limit
)
675 p
->size
= memory_limit
- p
->base
;
678 memblock_remove_region(&memblock
.reserved
, i
);
684 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
686 unsigned int left
= 0, right
= type
->cnt
;
689 unsigned int mid
= (right
+ left
) / 2;
691 if (addr
< type
->regions
[mid
].base
)
693 else if (addr
>= (type
->regions
[mid
].base
+
694 type
->regions
[mid
].size
))
698 } while (left
< right
);
702 int __init
memblock_is_reserved(phys_addr_t addr
)
704 return memblock_search(&memblock
.reserved
, addr
) != -1;
707 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
709 return memblock_search(&memblock
.memory
, addr
) != -1;
712 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
714 int idx
= memblock_search(&memblock
.memory
, base
);
718 return memblock
.memory
.regions
[idx
].base
<= base
&&
719 (memblock
.memory
.regions
[idx
].base
+
720 memblock
.memory
.regions
[idx
].size
) >= (base
+ size
);
723 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
725 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
729 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
731 memblock
.current_limit
= limit
;
734 static void __init_memblock
memblock_dump(struct memblock_type
*region
, char *name
)
736 unsigned long long base
, size
;
739 pr_info(" %s.cnt = 0x%lx\n", name
, region
->cnt
);
741 for (i
= 0; i
< region
->cnt
; i
++) {
742 base
= region
->regions
[i
].base
;
743 size
= region
->regions
[i
].size
;
745 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
746 name
, i
, base
, base
+ size
- 1, size
);
750 void __init_memblock
memblock_dump_all(void)
755 pr_info("MEMBLOCK configuration:\n");
756 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock
.memory_size
);
758 memblock_dump(&memblock
.memory
, "memory");
759 memblock_dump(&memblock
.reserved
, "reserved");
762 void __init
memblock_analyze(void)
766 /* Check marker in the unused last array entry */
767 WARN_ON(memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
].base
768 != MEMBLOCK_INACTIVE
);
769 WARN_ON(memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
].base
770 != MEMBLOCK_INACTIVE
);
772 memblock
.memory_size
= 0;
774 for (i
= 0; i
< memblock
.memory
.cnt
; i
++)
775 memblock
.memory_size
+= memblock
.memory
.regions
[i
].size
;
777 /* We allow resizing from there */
778 memblock_can_resize
= 1;
781 void __init
memblock_init(void)
783 static int init_done __initdata
= 0;
789 /* Hookup the initial arrays */
790 memblock
.memory
.regions
= memblock_memory_init_regions
;
791 memblock
.memory
.max
= INIT_MEMBLOCK_REGIONS
;
792 memblock
.reserved
.regions
= memblock_reserved_init_regions
;
793 memblock
.reserved
.max
= INIT_MEMBLOCK_REGIONS
;
795 /* Write a marker in the unused last array entry */
796 memblock
.memory
.regions
[INIT_MEMBLOCK_REGIONS
].base
= MEMBLOCK_INACTIVE
;
797 memblock
.reserved
.regions
[INIT_MEMBLOCK_REGIONS
].base
= MEMBLOCK_INACTIVE
;
799 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
800 * This simplifies the memblock_add() code below...
802 memblock
.memory
.regions
[0].base
= 0;
803 memblock
.memory
.regions
[0].size
= 0;
804 memblock
.memory
.cnt
= 1;
807 memblock
.reserved
.regions
[0].base
= 0;
808 memblock
.reserved
.regions
[0].size
= 0;
809 memblock
.reserved
.cnt
= 1;
811 memblock
.current_limit
= MEMBLOCK_ALLOC_ANYWHERE
;
814 static int __init
early_memblock(char *p
)
816 if (p
&& strstr(p
, "debug"))
820 early_param("memblock", early_memblock
);
822 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
824 static int memblock_debug_show(struct seq_file
*m
, void *private)
826 struct memblock_type
*type
= m
->private;
827 struct memblock_region
*reg
;
830 for (i
= 0; i
< type
->cnt
; i
++) {
831 reg
= &type
->regions
[i
];
832 seq_printf(m
, "%4d: ", i
);
833 if (sizeof(phys_addr_t
) == 4)
834 seq_printf(m
, "0x%08lx..0x%08lx\n",
835 (unsigned long)reg
->base
,
836 (unsigned long)(reg
->base
+ reg
->size
- 1));
838 seq_printf(m
, "0x%016llx..0x%016llx\n",
839 (unsigned long long)reg
->base
,
840 (unsigned long long)(reg
->base
+ reg
->size
- 1));
846 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
848 return single_open(file
, memblock_debug_show
, inode
->i_private
);
851 static const struct file_operations memblock_debug_fops
= {
852 .open
= memblock_debug_open
,
855 .release
= single_release
,
858 static int __init
memblock_init_debugfs(void)
860 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
863 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
864 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
868 __initcall(memblock_init_debugfs
);
870 #endif /* CONFIG_DEBUG_FS */