drm/i915: Add the missing clonemask for display port on Ironlake
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob5ddbd38201b0b2d78ff9cb94284d7e01b3f54d3e
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
64 drm_i915_private_t *dev_priv = dev->dev_private;
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
75 dev->gtt_total = (uint32_t) (end - start);
77 return 0;
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
84 struct drm_i915_gem_init *args = data;
85 int ret;
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
91 return ret;
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
98 struct drm_i915_gem_get_aperture *args = data;
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
107 return 0;
112 * Creates a new mm object and returns a handle to it.
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
123 args->size = roundup(args->size, PAGE_SIZE);
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
135 if (ret)
136 return ret;
138 args->handle = handle;
140 return 0;
143 static inline int
144 fast_shmem_read(struct page **pages,
145 loff_t page_base, int page_offset,
146 char __user *data,
147 int length)
149 char __iomem *vaddr;
150 int unwritten;
152 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153 if (vaddr == NULL)
154 return -ENOMEM;
155 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 kunmap_atomic(vaddr, KM_USER0);
158 if (unwritten)
159 return -EFAULT;
161 return 0;
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
166 drm_i915_private_t *dev_priv = obj->dev->dev_private;
167 struct drm_i915_gem_object *obj_priv = obj->driver_private;
169 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170 obj_priv->tiling_mode != I915_TILING_NONE;
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175 int dst_offset,
176 struct page *src_page,
177 int src_offset,
178 int length)
180 char *dst_vaddr, *src_vaddr;
182 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183 if (dst_vaddr == NULL)
184 return -ENOMEM;
186 src_vaddr = kmap_atomic(src_page, KM_USER1);
187 if (src_vaddr == NULL) {
188 kunmap_atomic(dst_vaddr, KM_USER0);
189 return -ENOMEM;
192 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
194 kunmap_atomic(src_vaddr, KM_USER1);
195 kunmap_atomic(dst_vaddr, KM_USER0);
197 return 0;
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202 int gpu_offset,
203 struct page *cpu_page,
204 int cpu_offset,
205 int length,
206 int is_read)
208 char *gpu_vaddr, *cpu_vaddr;
210 /* Use the unswizzled path if this page isn't affected. */
211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 if (is_read)
213 return slow_shmem_copy(cpu_page, cpu_offset,
214 gpu_page, gpu_offset, length);
215 else
216 return slow_shmem_copy(gpu_page, gpu_offset,
217 cpu_page, cpu_offset, length);
220 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221 if (gpu_vaddr == NULL)
222 return -ENOMEM;
224 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225 if (cpu_vaddr == NULL) {
226 kunmap_atomic(gpu_vaddr, KM_USER0);
227 return -ENOMEM;
230 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231 * XORing with the other bits (A9 for Y, A9 and A10 for X)
233 while (length > 0) {
234 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235 int this_length = min(cacheline_end - gpu_offset, length);
236 int swizzled_gpu_offset = gpu_offset ^ 64;
238 if (is_read) {
239 memcpy(cpu_vaddr + cpu_offset,
240 gpu_vaddr + swizzled_gpu_offset,
241 this_length);
242 } else {
243 memcpy(gpu_vaddr + swizzled_gpu_offset,
244 cpu_vaddr + cpu_offset,
245 this_length);
247 cpu_offset += this_length;
248 gpu_offset += this_length;
249 length -= this_length;
252 kunmap_atomic(cpu_vaddr, KM_USER1);
253 kunmap_atomic(gpu_vaddr, KM_USER0);
255 return 0;
259 * This is the fast shmem pread path, which attempts to copy_from_user directly
260 * from the backing pages of the object to the user's address space. On a
261 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265 struct drm_i915_gem_pread *args,
266 struct drm_file *file_priv)
268 struct drm_i915_gem_object *obj_priv = obj->driver_private;
269 ssize_t remain;
270 loff_t offset, page_base;
271 char __user *user_data;
272 int page_offset, page_length;
273 int ret;
275 user_data = (char __user *) (uintptr_t) args->data_ptr;
276 remain = args->size;
278 mutex_lock(&dev->struct_mutex);
280 ret = i915_gem_object_get_pages(obj);
281 if (ret != 0)
282 goto fail_unlock;
284 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285 args->size);
286 if (ret != 0)
287 goto fail_put_pages;
289 obj_priv = obj->driver_private;
290 offset = args->offset;
292 while (remain > 0) {
293 /* Operation in this page
295 * page_base = page offset within aperture
296 * page_offset = offset within page
297 * page_length = bytes to copy for this page
299 page_base = (offset & ~(PAGE_SIZE-1));
300 page_offset = offset & (PAGE_SIZE-1);
301 page_length = remain;
302 if ((page_offset + remain) > PAGE_SIZE)
303 page_length = PAGE_SIZE - page_offset;
305 ret = fast_shmem_read(obj_priv->pages,
306 page_base, page_offset,
307 user_data, page_length);
308 if (ret)
309 goto fail_put_pages;
311 remain -= page_length;
312 user_data += page_length;
313 offset += page_length;
316 fail_put_pages:
317 i915_gem_object_put_pages(obj);
318 fail_unlock:
319 mutex_unlock(&dev->struct_mutex);
321 return ret;
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
327 return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
333 mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
339 int ret;
341 ret = i915_gem_object_get_pages(obj);
343 /* If we've insufficient memory to map in the pages, attempt
344 * to make some space by throwing out some old buffers.
346 if (ret == -ENOMEM) {
347 struct drm_device *dev = obj->dev;
348 gfp_t gfp;
350 ret = i915_gem_evict_something(dev, obj->size);
351 if (ret)
352 return ret;
354 gfp = i915_gem_object_get_page_gfp_mask(obj);
355 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356 ret = i915_gem_object_get_pages(obj);
357 i915_gem_object_set_page_gfp_mask (obj, gfp);
360 return ret;
364 * This is the fallback shmem pread path, which allocates temporary storage
365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
366 * can copy out of the object's backing pages while holding the struct mutex
367 * and not take page faults.
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371 struct drm_i915_gem_pread *args,
372 struct drm_file *file_priv)
374 struct drm_i915_gem_object *obj_priv = obj->driver_private;
375 struct mm_struct *mm = current->mm;
376 struct page **user_pages;
377 ssize_t remain;
378 loff_t offset, pinned_pages, i;
379 loff_t first_data_page, last_data_page, num_pages;
380 int shmem_page_index, shmem_page_offset;
381 int data_page_index, data_page_offset;
382 int page_length;
383 int ret;
384 uint64_t data_ptr = args->data_ptr;
385 int do_bit17_swizzling;
387 remain = args->size;
389 /* Pin the user pages containing the data. We can't fault while
390 * holding the struct mutex, yet we want to hold it while
391 * dereferencing the user data.
393 first_data_page = data_ptr / PAGE_SIZE;
394 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395 num_pages = last_data_page - first_data_page + 1;
397 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398 if (user_pages == NULL)
399 return -ENOMEM;
401 down_read(&mm->mmap_sem);
402 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403 num_pages, 1, 0, user_pages, NULL);
404 up_read(&mm->mmap_sem);
405 if (pinned_pages < num_pages) {
406 ret = -EFAULT;
407 goto fail_put_user_pages;
410 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
412 mutex_lock(&dev->struct_mutex);
414 ret = i915_gem_object_get_pages_or_evict(obj);
415 if (ret)
416 goto fail_unlock;
418 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419 args->size);
420 if (ret != 0)
421 goto fail_put_pages;
423 obj_priv = obj->driver_private;
424 offset = args->offset;
426 while (remain > 0) {
427 /* Operation in this page
429 * shmem_page_index = page number within shmem file
430 * shmem_page_offset = offset within page in shmem file
431 * data_page_index = page number in get_user_pages return
432 * data_page_offset = offset with data_page_index page.
433 * page_length = bytes to copy for this page
435 shmem_page_index = offset / PAGE_SIZE;
436 shmem_page_offset = offset & ~PAGE_MASK;
437 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438 data_page_offset = data_ptr & ~PAGE_MASK;
440 page_length = remain;
441 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442 page_length = PAGE_SIZE - shmem_page_offset;
443 if ((data_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - data_page_offset;
446 if (do_bit17_swizzling) {
447 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448 shmem_page_offset,
449 user_pages[data_page_index],
450 data_page_offset,
451 page_length,
453 } else {
454 ret = slow_shmem_copy(user_pages[data_page_index],
455 data_page_offset,
456 obj_priv->pages[shmem_page_index],
457 shmem_page_offset,
458 page_length);
460 if (ret)
461 goto fail_put_pages;
463 remain -= page_length;
464 data_ptr += page_length;
465 offset += page_length;
468 fail_put_pages:
469 i915_gem_object_put_pages(obj);
470 fail_unlock:
471 mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473 for (i = 0; i < pinned_pages; i++) {
474 SetPageDirty(user_pages[i]);
475 page_cache_release(user_pages[i]);
477 drm_free_large(user_pages);
479 return ret;
483 * Reads data from the object referenced by handle.
485 * On error, the contents of *data are undefined.
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489 struct drm_file *file_priv)
491 struct drm_i915_gem_pread *args = data;
492 struct drm_gem_object *obj;
493 struct drm_i915_gem_object *obj_priv;
494 int ret;
496 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497 if (obj == NULL)
498 return -EBADF;
499 obj_priv = obj->driver_private;
501 /* Bounds check source.
503 * XXX: This could use review for overflow issues...
505 if (args->offset > obj->size || args->size > obj->size ||
506 args->offset + args->size > obj->size) {
507 drm_gem_object_unreference(obj);
508 return -EINVAL;
511 if (i915_gem_object_needs_bit17_swizzle(obj)) {
512 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513 } else {
514 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515 if (ret != 0)
516 ret = i915_gem_shmem_pread_slow(dev, obj, args,
517 file_priv);
520 drm_gem_object_unreference(obj);
522 return ret;
525 /* This is the fast write path which cannot handle
526 * page faults in the source data
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531 loff_t page_base, int page_offset,
532 char __user *user_data,
533 int length)
535 char *vaddr_atomic;
536 unsigned long unwritten;
538 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540 user_data, length);
541 io_mapping_unmap_atomic(vaddr_atomic);
542 if (unwritten)
543 return -EFAULT;
544 return 0;
547 /* Here's the write path which can sleep for
548 * page faults
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553 loff_t gtt_base, int gtt_offset,
554 struct page *user_page, int user_offset,
555 int length)
557 char *src_vaddr, *dst_vaddr;
558 unsigned long unwritten;
560 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561 src_vaddr = kmap_atomic(user_page, KM_USER1);
562 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563 src_vaddr + user_offset,
564 length);
565 kunmap_atomic(src_vaddr, KM_USER1);
566 io_mapping_unmap_atomic(dst_vaddr);
567 if (unwritten)
568 return -EFAULT;
569 return 0;
572 static inline int
573 fast_shmem_write(struct page **pages,
574 loff_t page_base, int page_offset,
575 char __user *data,
576 int length)
578 char __iomem *vaddr;
579 unsigned long unwritten;
581 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582 if (vaddr == NULL)
583 return -ENOMEM;
584 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585 kunmap_atomic(vaddr, KM_USER0);
587 if (unwritten)
588 return -EFAULT;
589 return 0;
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598 struct drm_i915_gem_pwrite *args,
599 struct drm_file *file_priv)
601 struct drm_i915_gem_object *obj_priv = obj->driver_private;
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length;
607 int ret;
609 user_data = (char __user *) (uintptr_t) args->data_ptr;
610 remain = args->size;
611 if (!access_ok(VERIFY_READ, user_data, remain))
612 return -EFAULT;
615 mutex_lock(&dev->struct_mutex);
616 ret = i915_gem_object_pin(obj, 0);
617 if (ret) {
618 mutex_unlock(&dev->struct_mutex);
619 return ret;
621 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622 if (ret)
623 goto fail;
625 obj_priv = obj->driver_private;
626 offset = obj_priv->gtt_offset + args->offset;
628 while (remain > 0) {
629 /* Operation in this page
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
635 page_base = (offset & ~(PAGE_SIZE-1));
636 page_offset = offset & (PAGE_SIZE-1);
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
641 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642 page_offset, user_data, page_length);
644 /* If we get a fault while copying data, then (presumably) our
645 * source page isn't available. Return the error and we'll
646 * retry in the slow path.
648 if (ret)
649 goto fail;
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
656 fail:
657 i915_gem_object_unpin(obj);
658 mutex_unlock(&dev->struct_mutex);
660 return ret;
664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665 * the memory and maps it using kmap_atomic for copying.
667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672 struct drm_i915_gem_pwrite *args,
673 struct drm_file *file_priv)
675 struct drm_i915_gem_object *obj_priv = obj->driver_private;
676 drm_i915_private_t *dev_priv = dev->dev_private;
677 ssize_t remain;
678 loff_t gtt_page_base, offset;
679 loff_t first_data_page, last_data_page, num_pages;
680 loff_t pinned_pages, i;
681 struct page **user_pages;
682 struct mm_struct *mm = current->mm;
683 int gtt_page_offset, data_page_offset, data_page_index, page_length;
684 int ret;
685 uint64_t data_ptr = args->data_ptr;
687 remain = args->size;
689 /* Pin the user pages containing the data. We can't fault while
690 * holding the struct mutex, and all of the pwrite implementations
691 * want to hold it while dereferencing the user data.
693 first_data_page = data_ptr / PAGE_SIZE;
694 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695 num_pages = last_data_page - first_data_page + 1;
697 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698 if (user_pages == NULL)
699 return -ENOMEM;
701 down_read(&mm->mmap_sem);
702 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703 num_pages, 0, 0, user_pages, NULL);
704 up_read(&mm->mmap_sem);
705 if (pinned_pages < num_pages) {
706 ret = -EFAULT;
707 goto out_unpin_pages;
710 mutex_lock(&dev->struct_mutex);
711 ret = i915_gem_object_pin(obj, 0);
712 if (ret)
713 goto out_unlock;
715 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716 if (ret)
717 goto out_unpin_object;
719 obj_priv = obj->driver_private;
720 offset = obj_priv->gtt_offset + args->offset;
722 while (remain > 0) {
723 /* Operation in this page
725 * gtt_page_base = page offset within aperture
726 * gtt_page_offset = offset within page in aperture
727 * data_page_index = page number in get_user_pages return
728 * data_page_offset = offset with data_page_index page.
729 * page_length = bytes to copy for this page
731 gtt_page_base = offset & PAGE_MASK;
732 gtt_page_offset = offset & ~PAGE_MASK;
733 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734 data_page_offset = data_ptr & ~PAGE_MASK;
736 page_length = remain;
737 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738 page_length = PAGE_SIZE - gtt_page_offset;
739 if ((data_page_offset + page_length) > PAGE_SIZE)
740 page_length = PAGE_SIZE - data_page_offset;
742 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743 gtt_page_base, gtt_page_offset,
744 user_pages[data_page_index],
745 data_page_offset,
746 page_length);
748 /* If we get a fault while copying data, then (presumably) our
749 * source page isn't available. Return the error and we'll
750 * retry in the slow path.
752 if (ret)
753 goto out_unpin_object;
755 remain -= page_length;
756 offset += page_length;
757 data_ptr += page_length;
760 out_unpin_object:
761 i915_gem_object_unpin(obj);
762 out_unlock:
763 mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765 for (i = 0; i < pinned_pages; i++)
766 page_cache_release(user_pages[i]);
767 drm_free_large(user_pages);
769 return ret;
773 * This is the fast shmem pwrite path, which attempts to directly
774 * copy_from_user into the kmapped pages backing the object.
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778 struct drm_i915_gem_pwrite *args,
779 struct drm_file *file_priv)
781 struct drm_i915_gem_object *obj_priv = obj->driver_private;
782 ssize_t remain;
783 loff_t offset, page_base;
784 char __user *user_data;
785 int page_offset, page_length;
786 int ret;
788 user_data = (char __user *) (uintptr_t) args->data_ptr;
789 remain = args->size;
791 mutex_lock(&dev->struct_mutex);
793 ret = i915_gem_object_get_pages(obj);
794 if (ret != 0)
795 goto fail_unlock;
797 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798 if (ret != 0)
799 goto fail_put_pages;
801 obj_priv = obj->driver_private;
802 offset = args->offset;
803 obj_priv->dirty = 1;
805 while (remain > 0) {
806 /* Operation in this page
808 * page_base = page offset within aperture
809 * page_offset = offset within page
810 * page_length = bytes to copy for this page
812 page_base = (offset & ~(PAGE_SIZE-1));
813 page_offset = offset & (PAGE_SIZE-1);
814 page_length = remain;
815 if ((page_offset + remain) > PAGE_SIZE)
816 page_length = PAGE_SIZE - page_offset;
818 ret = fast_shmem_write(obj_priv->pages,
819 page_base, page_offset,
820 user_data, page_length);
821 if (ret)
822 goto fail_put_pages;
824 remain -= page_length;
825 user_data += page_length;
826 offset += page_length;
829 fail_put_pages:
830 i915_gem_object_put_pages(obj);
831 fail_unlock:
832 mutex_unlock(&dev->struct_mutex);
834 return ret;
838 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839 * the memory and maps it using kmap_atomic for copying.
841 * This avoids taking mmap_sem for faulting on the user's address while the
842 * struct_mutex is held.
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846 struct drm_i915_gem_pwrite *args,
847 struct drm_file *file_priv)
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
850 struct mm_struct *mm = current->mm;
851 struct page **user_pages;
852 ssize_t remain;
853 loff_t offset, pinned_pages, i;
854 loff_t first_data_page, last_data_page, num_pages;
855 int shmem_page_index, shmem_page_offset;
856 int data_page_index, data_page_offset;
857 int page_length;
858 int ret;
859 uint64_t data_ptr = args->data_ptr;
860 int do_bit17_swizzling;
862 remain = args->size;
864 /* Pin the user pages containing the data. We can't fault while
865 * holding the struct mutex, and all of the pwrite implementations
866 * want to hold it while dereferencing the user data.
868 first_data_page = data_ptr / PAGE_SIZE;
869 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870 num_pages = last_data_page - first_data_page + 1;
872 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873 if (user_pages == NULL)
874 return -ENOMEM;
876 down_read(&mm->mmap_sem);
877 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878 num_pages, 0, 0, user_pages, NULL);
879 up_read(&mm->mmap_sem);
880 if (pinned_pages < num_pages) {
881 ret = -EFAULT;
882 goto fail_put_user_pages;
885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887 mutex_lock(&dev->struct_mutex);
889 ret = i915_gem_object_get_pages_or_evict(obj);
890 if (ret)
891 goto fail_unlock;
893 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894 if (ret != 0)
895 goto fail_put_pages;
897 obj_priv = obj->driver_private;
898 offset = args->offset;
899 obj_priv->dirty = 1;
901 while (remain > 0) {
902 /* Operation in this page
904 * shmem_page_index = page number within shmem file
905 * shmem_page_offset = offset within page in shmem file
906 * data_page_index = page number in get_user_pages return
907 * data_page_offset = offset with data_page_index page.
908 * page_length = bytes to copy for this page
910 shmem_page_index = offset / PAGE_SIZE;
911 shmem_page_offset = offset & ~PAGE_MASK;
912 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913 data_page_offset = data_ptr & ~PAGE_MASK;
915 page_length = remain;
916 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917 page_length = PAGE_SIZE - shmem_page_offset;
918 if ((data_page_offset + page_length) > PAGE_SIZE)
919 page_length = PAGE_SIZE - data_page_offset;
921 if (do_bit17_swizzling) {
922 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923 shmem_page_offset,
924 user_pages[data_page_index],
925 data_page_offset,
926 page_length,
928 } else {
929 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930 shmem_page_offset,
931 user_pages[data_page_index],
932 data_page_offset,
933 page_length);
935 if (ret)
936 goto fail_put_pages;
938 remain -= page_length;
939 data_ptr += page_length;
940 offset += page_length;
943 fail_put_pages:
944 i915_gem_object_put_pages(obj);
945 fail_unlock:
946 mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948 for (i = 0; i < pinned_pages; i++)
949 page_cache_release(user_pages[i]);
950 drm_free_large(user_pages);
952 return ret;
956 * Writes data to the object referenced by handle.
958 * On error, the contents of the buffer that were to be modified are undefined.
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962 struct drm_file *file_priv)
964 struct drm_i915_gem_pwrite *args = data;
965 struct drm_gem_object *obj;
966 struct drm_i915_gem_object *obj_priv;
967 int ret = 0;
969 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970 if (obj == NULL)
971 return -EBADF;
972 obj_priv = obj->driver_private;
974 /* Bounds check destination.
976 * XXX: This could use review for overflow issues...
978 if (args->offset > obj->size || args->size > obj->size ||
979 args->offset + args->size > obj->size) {
980 drm_gem_object_unreference(obj);
981 return -EINVAL;
984 /* We can only do the GTT pwrite on untiled buffers, as otherwise
985 * it would end up going through the fenced access, and we'll get
986 * different detiling behavior between reading and writing.
987 * pread/pwrite currently are reading and writing from the CPU
988 * perspective, requiring manual detiling by the client.
990 if (obj_priv->phys_obj)
991 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993 dev->gtt_total != 0) {
994 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995 if (ret == -EFAULT) {
996 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997 file_priv);
999 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001 } else {
1002 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003 if (ret == -EFAULT) {
1004 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005 file_priv);
1009 #if WATCH_PWRITE
1010 if (ret)
1011 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1014 drm_gem_object_unreference(obj);
1016 return ret;
1020 * Called when user space prepares to use an object with the CPU, either
1021 * through the mmap ioctl's mapping or a GTT mapping.
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025 struct drm_file *file_priv)
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_i915_gem_set_domain *args = data;
1029 struct drm_gem_object *obj;
1030 struct drm_i915_gem_object *obj_priv;
1031 uint32_t read_domains = args->read_domains;
1032 uint32_t write_domain = args->write_domain;
1033 int ret;
1035 if (!(dev->driver->driver_features & DRIVER_GEM))
1036 return -ENODEV;
1038 /* Only handle setting domains to types used by the CPU. */
1039 if (write_domain & I915_GEM_GPU_DOMAINS)
1040 return -EINVAL;
1042 if (read_domains & I915_GEM_GPU_DOMAINS)
1043 return -EINVAL;
1045 /* Having something in the write domain implies it's in the read
1046 * domain, and only that read domain. Enforce that in the request.
1048 if (write_domain != 0 && read_domains != write_domain)
1049 return -EINVAL;
1051 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052 if (obj == NULL)
1053 return -EBADF;
1054 obj_priv = obj->driver_private;
1056 mutex_lock(&dev->struct_mutex);
1058 intel_mark_busy(dev, obj);
1060 #if WATCH_BUF
1061 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062 obj, obj->size, read_domains, write_domain);
1063 #endif
1064 if (read_domains & I915_GEM_DOMAIN_GTT) {
1065 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1067 /* Update the LRU on the fence for the CPU access that's
1068 * about to occur.
1070 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071 list_move_tail(&obj_priv->fence_list,
1072 &dev_priv->mm.fence_list);
1075 /* Silently promote "you're not bound, there was nothing to do"
1076 * to success, since the client was just asking us to
1077 * make sure everything was done.
1079 if (ret == -EINVAL)
1080 ret = 0;
1081 } else {
1082 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1085 drm_gem_object_unreference(obj);
1086 mutex_unlock(&dev->struct_mutex);
1087 return ret;
1091 * Called when user space has done writes to this buffer
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095 struct drm_file *file_priv)
1097 struct drm_i915_gem_sw_finish *args = data;
1098 struct drm_gem_object *obj;
1099 struct drm_i915_gem_object *obj_priv;
1100 int ret = 0;
1102 if (!(dev->driver->driver_features & DRIVER_GEM))
1103 return -ENODEV;
1105 mutex_lock(&dev->struct_mutex);
1106 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107 if (obj == NULL) {
1108 mutex_unlock(&dev->struct_mutex);
1109 return -EBADF;
1112 #if WATCH_BUF
1113 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114 __func__, args->handle, obj, obj->size);
1115 #endif
1116 obj_priv = obj->driver_private;
1118 /* Pinned buffers may be scanout, so flush the cache */
1119 if (obj_priv->pin_count)
1120 i915_gem_object_flush_cpu_write_domain(obj);
1122 drm_gem_object_unreference(obj);
1123 mutex_unlock(&dev->struct_mutex);
1124 return ret;
1128 * Maps the contents of an object, returning the address it is mapped
1129 * into.
1131 * While the mapping holds a reference on the contents of the object, it doesn't
1132 * imply a ref on the object itself.
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136 struct drm_file *file_priv)
1138 struct drm_i915_gem_mmap *args = data;
1139 struct drm_gem_object *obj;
1140 loff_t offset;
1141 unsigned long addr;
1143 if (!(dev->driver->driver_features & DRIVER_GEM))
1144 return -ENODEV;
1146 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147 if (obj == NULL)
1148 return -EBADF;
1150 offset = args->offset;
1152 down_write(&current->mm->mmap_sem);
1153 addr = do_mmap(obj->filp, 0, args->size,
1154 PROT_READ | PROT_WRITE, MAP_SHARED,
1155 args->offset);
1156 up_write(&current->mm->mmap_sem);
1157 mutex_lock(&dev->struct_mutex);
1158 drm_gem_object_unreference(obj);
1159 mutex_unlock(&dev->struct_mutex);
1160 if (IS_ERR((void *)addr))
1161 return addr;
1163 args->addr_ptr = (uint64_t) addr;
1165 return 0;
1169 * i915_gem_fault - fault a page into the GTT
1170 * vma: VMA in question
1171 * vmf: fault info
1173 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174 * from userspace. The fault handler takes care of binding the object to
1175 * the GTT (if needed), allocating and programming a fence register (again,
1176 * only if needed based on whether the old reg is still valid or the object
1177 * is tiled) and inserting a new PTE into the faulting process.
1179 * Note that the faulting process may involve evicting existing objects
1180 * from the GTT and/or fence registers to make room. So performance may
1181 * suffer if the GTT working set is large or there are few fence registers
1182 * left.
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1186 struct drm_gem_object *obj = vma->vm_private_data;
1187 struct drm_device *dev = obj->dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190 pgoff_t page_offset;
1191 unsigned long pfn;
1192 int ret = 0;
1193 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1195 /* We don't use vmf->pgoff since that has the fake offset */
1196 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197 PAGE_SHIFT;
1199 /* Now bind it into the GTT if needed */
1200 mutex_lock(&dev->struct_mutex);
1201 if (!obj_priv->gtt_space) {
1202 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203 if (ret)
1204 goto unlock;
1206 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1208 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209 if (ret)
1210 goto unlock;
1213 /* Need a new fence register? */
1214 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215 ret = i915_gem_object_get_fence_reg(obj);
1216 if (ret)
1217 goto unlock;
1220 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221 page_offset;
1223 /* Finally, remap it using the new GTT offset */
1224 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226 mutex_unlock(&dev->struct_mutex);
1228 switch (ret) {
1229 case 0:
1230 case -ERESTARTSYS:
1231 return VM_FAULT_NOPAGE;
1232 case -ENOMEM:
1233 case -EAGAIN:
1234 return VM_FAULT_OOM;
1235 default:
1236 return VM_FAULT_SIGBUS;
1241 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242 * @obj: obj in question
1244 * GEM memory mapping works by handing back to userspace a fake mmap offset
1245 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1246 * up the object based on the offset and sets up the various memory mapping
1247 * structures.
1249 * This routine allocates and attaches a fake offset for @obj.
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1254 struct drm_device *dev = obj->dev;
1255 struct drm_gem_mm *mm = dev->mm_private;
1256 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257 struct drm_map_list *list;
1258 struct drm_local_map *map;
1259 int ret = 0;
1261 /* Set the object up for mmap'ing */
1262 list = &obj->map_list;
1263 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264 if (!list->map)
1265 return -ENOMEM;
1267 map = list->map;
1268 map->type = _DRM_GEM;
1269 map->size = obj->size;
1270 map->handle = obj;
1272 /* Get a DRM GEM mmap offset allocated... */
1273 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274 obj->size / PAGE_SIZE, 0, 0);
1275 if (!list->file_offset_node) {
1276 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277 ret = -ENOMEM;
1278 goto out_free_list;
1281 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282 obj->size / PAGE_SIZE, 0);
1283 if (!list->file_offset_node) {
1284 ret = -ENOMEM;
1285 goto out_free_list;
1288 list->hash.key = list->file_offset_node->start;
1289 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290 DRM_ERROR("failed to add to map hash\n");
1291 ret = -ENOMEM;
1292 goto out_free_mm;
1295 /* By now we should be all set, any drm_mmap request on the offset
1296 * below will get to our mmap & fault handler */
1297 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1299 return 0;
1301 out_free_mm:
1302 drm_mm_put_block(list->file_offset_node);
1303 out_free_list:
1304 kfree(list->map);
1306 return ret;
1310 * i915_gem_release_mmap - remove physical page mappings
1311 * @obj: obj in question
1313 * Preserve the reservation of the mmaping with the DRM core code, but
1314 * relinquish ownership of the pages back to the system.
1316 * It is vital that we remove the page mapping if we have mapped a tiled
1317 * object through the GTT and then lose the fence register due to
1318 * resource pressure. Similarly if the object has been moved out of the
1319 * aperture, than pages mapped into userspace must be revoked. Removing the
1320 * mapping will then trigger a page fault on the next user access, allowing
1321 * fixup by i915_gem_fault().
1323 void
1324 i915_gem_release_mmap(struct drm_gem_object *obj)
1326 struct drm_device *dev = obj->dev;
1327 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1329 if (dev->dev_mapping)
1330 unmap_mapping_range(dev->dev_mapping,
1331 obj_priv->mmap_offset, obj->size, 1);
1334 static void
1335 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1337 struct drm_device *dev = obj->dev;
1338 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1339 struct drm_gem_mm *mm = dev->mm_private;
1340 struct drm_map_list *list;
1342 list = &obj->map_list;
1343 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1345 if (list->file_offset_node) {
1346 drm_mm_put_block(list->file_offset_node);
1347 list->file_offset_node = NULL;
1350 if (list->map) {
1351 kfree(list->map);
1352 list->map = NULL;
1355 obj_priv->mmap_offset = 0;
1359 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1360 * @obj: object to check
1362 * Return the required GTT alignment for an object, taking into account
1363 * potential fence register mapping if needed.
1365 static uint32_t
1366 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1368 struct drm_device *dev = obj->dev;
1369 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1370 int start, i;
1373 * Minimum alignment is 4k (GTT page size), but might be greater
1374 * if a fence register is needed for the object.
1376 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1377 return 4096;
1380 * Previous chips need to be aligned to the size of the smallest
1381 * fence register that can contain the object.
1383 if (IS_I9XX(dev))
1384 start = 1024*1024;
1385 else
1386 start = 512*1024;
1388 for (i = start; i < obj->size; i <<= 1)
1391 return i;
1395 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1396 * @dev: DRM device
1397 * @data: GTT mapping ioctl data
1398 * @file_priv: GEM object info
1400 * Simply returns the fake offset to userspace so it can mmap it.
1401 * The mmap call will end up in drm_gem_mmap(), which will set things
1402 * up so we can get faults in the handler above.
1404 * The fault handler will take care of binding the object into the GTT
1405 * (since it may have been evicted to make room for something), allocating
1406 * a fence register, and mapping the appropriate aperture address into
1407 * userspace.
1410 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1411 struct drm_file *file_priv)
1413 struct drm_i915_gem_mmap_gtt *args = data;
1414 struct drm_i915_private *dev_priv = dev->dev_private;
1415 struct drm_gem_object *obj;
1416 struct drm_i915_gem_object *obj_priv;
1417 int ret;
1419 if (!(dev->driver->driver_features & DRIVER_GEM))
1420 return -ENODEV;
1422 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1423 if (obj == NULL)
1424 return -EBADF;
1426 mutex_lock(&dev->struct_mutex);
1428 obj_priv = obj->driver_private;
1430 if (obj_priv->madv != I915_MADV_WILLNEED) {
1431 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1432 drm_gem_object_unreference(obj);
1433 mutex_unlock(&dev->struct_mutex);
1434 return -EINVAL;
1438 if (!obj_priv->mmap_offset) {
1439 ret = i915_gem_create_mmap_offset(obj);
1440 if (ret) {
1441 drm_gem_object_unreference(obj);
1442 mutex_unlock(&dev->struct_mutex);
1443 return ret;
1447 args->offset = obj_priv->mmap_offset;
1450 * Pull it into the GTT so that we have a page list (makes the
1451 * initial fault faster and any subsequent flushing possible).
1453 if (!obj_priv->agp_mem) {
1454 ret = i915_gem_object_bind_to_gtt(obj, 0);
1455 if (ret) {
1456 drm_gem_object_unreference(obj);
1457 mutex_unlock(&dev->struct_mutex);
1458 return ret;
1460 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1463 drm_gem_object_unreference(obj);
1464 mutex_unlock(&dev->struct_mutex);
1466 return 0;
1469 void
1470 i915_gem_object_put_pages(struct drm_gem_object *obj)
1472 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1473 int page_count = obj->size / PAGE_SIZE;
1474 int i;
1476 BUG_ON(obj_priv->pages_refcount == 0);
1477 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1479 if (--obj_priv->pages_refcount != 0)
1480 return;
1482 if (obj_priv->tiling_mode != I915_TILING_NONE)
1483 i915_gem_object_save_bit_17_swizzle(obj);
1485 if (obj_priv->madv == I915_MADV_DONTNEED)
1486 obj_priv->dirty = 0;
1488 for (i = 0; i < page_count; i++) {
1489 if (obj_priv->pages[i] == NULL)
1490 break;
1492 if (obj_priv->dirty)
1493 set_page_dirty(obj_priv->pages[i]);
1495 if (obj_priv->madv == I915_MADV_WILLNEED)
1496 mark_page_accessed(obj_priv->pages[i]);
1498 page_cache_release(obj_priv->pages[i]);
1500 obj_priv->dirty = 0;
1502 drm_free_large(obj_priv->pages);
1503 obj_priv->pages = NULL;
1506 static void
1507 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1513 /* Add a reference if we're newly entering the active list. */
1514 if (!obj_priv->active) {
1515 drm_gem_object_reference(obj);
1516 obj_priv->active = 1;
1518 /* Move from whatever list we were on to the tail of execution. */
1519 spin_lock(&dev_priv->mm.active_list_lock);
1520 list_move_tail(&obj_priv->list,
1521 &dev_priv->mm.active_list);
1522 spin_unlock(&dev_priv->mm.active_list_lock);
1523 obj_priv->last_rendering_seqno = seqno;
1526 static void
1527 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1529 struct drm_device *dev = obj->dev;
1530 drm_i915_private_t *dev_priv = dev->dev_private;
1531 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1533 BUG_ON(!obj_priv->active);
1534 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1535 obj_priv->last_rendering_seqno = 0;
1538 /* Immediately discard the backing storage */
1539 static void
1540 i915_gem_object_truncate(struct drm_gem_object *obj)
1542 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1543 struct inode *inode;
1545 inode = obj->filp->f_path.dentry->d_inode;
1546 if (inode->i_op->truncate)
1547 inode->i_op->truncate (inode);
1549 obj_priv->madv = __I915_MADV_PURGED;
1552 static inline int
1553 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1555 return obj_priv->madv == I915_MADV_DONTNEED;
1558 static void
1559 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1561 struct drm_device *dev = obj->dev;
1562 drm_i915_private_t *dev_priv = dev->dev_private;
1563 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1565 i915_verify_inactive(dev, __FILE__, __LINE__);
1566 if (obj_priv->pin_count != 0)
1567 list_del_init(&obj_priv->list);
1568 else
1569 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1571 obj_priv->last_rendering_seqno = 0;
1572 if (obj_priv->active) {
1573 obj_priv->active = 0;
1574 drm_gem_object_unreference(obj);
1576 i915_verify_inactive(dev, __FILE__, __LINE__);
1580 * Creates a new sequence number, emitting a write of it to the status page
1581 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1583 * Must be called with struct_lock held.
1585 * Returned sequence numbers are nonzero on success.
1587 static uint32_t
1588 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1589 uint32_t flush_domains)
1591 drm_i915_private_t *dev_priv = dev->dev_private;
1592 struct drm_i915_file_private *i915_file_priv = NULL;
1593 struct drm_i915_gem_request *request;
1594 uint32_t seqno;
1595 int was_empty;
1596 RING_LOCALS;
1598 if (file_priv != NULL)
1599 i915_file_priv = file_priv->driver_priv;
1601 request = kzalloc(sizeof(*request), GFP_KERNEL);
1602 if (request == NULL)
1603 return 0;
1605 /* Grab the seqno we're going to make this request be, and bump the
1606 * next (skipping 0 so it can be the reserved no-seqno value).
1608 seqno = dev_priv->mm.next_gem_seqno;
1609 dev_priv->mm.next_gem_seqno++;
1610 if (dev_priv->mm.next_gem_seqno == 0)
1611 dev_priv->mm.next_gem_seqno++;
1613 BEGIN_LP_RING(4);
1614 OUT_RING(MI_STORE_DWORD_INDEX);
1615 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1616 OUT_RING(seqno);
1618 OUT_RING(MI_USER_INTERRUPT);
1619 ADVANCE_LP_RING();
1621 DRM_DEBUG("%d\n", seqno);
1623 request->seqno = seqno;
1624 request->emitted_jiffies = jiffies;
1625 was_empty = list_empty(&dev_priv->mm.request_list);
1626 list_add_tail(&request->list, &dev_priv->mm.request_list);
1627 if (i915_file_priv) {
1628 list_add_tail(&request->client_list,
1629 &i915_file_priv->mm.request_list);
1630 } else {
1631 INIT_LIST_HEAD(&request->client_list);
1634 /* Associate any objects on the flushing list matching the write
1635 * domain we're flushing with our flush.
1637 if (flush_domains != 0) {
1638 struct drm_i915_gem_object *obj_priv, *next;
1640 list_for_each_entry_safe(obj_priv, next,
1641 &dev_priv->mm.flushing_list, list) {
1642 struct drm_gem_object *obj = obj_priv->obj;
1644 if ((obj->write_domain & flush_domains) ==
1645 obj->write_domain) {
1646 uint32_t old_write_domain = obj->write_domain;
1648 obj->write_domain = 0;
1649 i915_gem_object_move_to_active(obj, seqno);
1651 trace_i915_gem_object_change_domain(obj,
1652 obj->read_domains,
1653 old_write_domain);
1659 if (!dev_priv->mm.suspended) {
1660 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1661 if (was_empty)
1662 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1664 return seqno;
1668 * Command execution barrier
1670 * Ensures that all commands in the ring are finished
1671 * before signalling the CPU
1673 static uint32_t
1674 i915_retire_commands(struct drm_device *dev)
1676 drm_i915_private_t *dev_priv = dev->dev_private;
1677 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1678 uint32_t flush_domains = 0;
1679 RING_LOCALS;
1681 /* The sampler always gets flushed on i965 (sigh) */
1682 if (IS_I965G(dev))
1683 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1684 BEGIN_LP_RING(2);
1685 OUT_RING(cmd);
1686 OUT_RING(0); /* noop */
1687 ADVANCE_LP_RING();
1688 return flush_domains;
1692 * Moves buffers associated only with the given active seqno from the active
1693 * to inactive list, potentially freeing them.
1695 static void
1696 i915_gem_retire_request(struct drm_device *dev,
1697 struct drm_i915_gem_request *request)
1699 drm_i915_private_t *dev_priv = dev->dev_private;
1701 trace_i915_gem_request_retire(dev, request->seqno);
1703 /* Move any buffers on the active list that are no longer referenced
1704 * by the ringbuffer to the flushing/inactive lists as appropriate.
1706 spin_lock(&dev_priv->mm.active_list_lock);
1707 while (!list_empty(&dev_priv->mm.active_list)) {
1708 struct drm_gem_object *obj;
1709 struct drm_i915_gem_object *obj_priv;
1711 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1712 struct drm_i915_gem_object,
1713 list);
1714 obj = obj_priv->obj;
1716 /* If the seqno being retired doesn't match the oldest in the
1717 * list, then the oldest in the list must still be newer than
1718 * this seqno.
1720 if (obj_priv->last_rendering_seqno != request->seqno)
1721 goto out;
1723 #if WATCH_LRU
1724 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1725 __func__, request->seqno, obj);
1726 #endif
1728 if (obj->write_domain != 0)
1729 i915_gem_object_move_to_flushing(obj);
1730 else {
1731 /* Take a reference on the object so it won't be
1732 * freed while the spinlock is held. The list
1733 * protection for this spinlock is safe when breaking
1734 * the lock like this since the next thing we do
1735 * is just get the head of the list again.
1737 drm_gem_object_reference(obj);
1738 i915_gem_object_move_to_inactive(obj);
1739 spin_unlock(&dev_priv->mm.active_list_lock);
1740 drm_gem_object_unreference(obj);
1741 spin_lock(&dev_priv->mm.active_list_lock);
1744 out:
1745 spin_unlock(&dev_priv->mm.active_list_lock);
1749 * Returns true if seq1 is later than seq2.
1751 bool
1752 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1754 return (int32_t)(seq1 - seq2) >= 0;
1757 uint32_t
1758 i915_get_gem_seqno(struct drm_device *dev)
1760 drm_i915_private_t *dev_priv = dev->dev_private;
1762 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1766 * This function clears the request list as sequence numbers are passed.
1768 void
1769 i915_gem_retire_requests(struct drm_device *dev)
1771 drm_i915_private_t *dev_priv = dev->dev_private;
1772 uint32_t seqno;
1774 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1775 return;
1777 seqno = i915_get_gem_seqno(dev);
1779 while (!list_empty(&dev_priv->mm.request_list)) {
1780 struct drm_i915_gem_request *request;
1781 uint32_t retiring_seqno;
1783 request = list_first_entry(&dev_priv->mm.request_list,
1784 struct drm_i915_gem_request,
1785 list);
1786 retiring_seqno = request->seqno;
1788 if (i915_seqno_passed(seqno, retiring_seqno) ||
1789 atomic_read(&dev_priv->mm.wedged)) {
1790 i915_gem_retire_request(dev, request);
1792 list_del(&request->list);
1793 list_del(&request->client_list);
1794 kfree(request);
1795 } else
1796 break;
1799 if (unlikely (dev_priv->trace_irq_seqno &&
1800 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1801 i915_user_irq_put(dev);
1802 dev_priv->trace_irq_seqno = 0;
1806 void
1807 i915_gem_retire_work_handler(struct work_struct *work)
1809 drm_i915_private_t *dev_priv;
1810 struct drm_device *dev;
1812 dev_priv = container_of(work, drm_i915_private_t,
1813 mm.retire_work.work);
1814 dev = dev_priv->dev;
1816 mutex_lock(&dev->struct_mutex);
1817 i915_gem_retire_requests(dev);
1818 if (!dev_priv->mm.suspended &&
1819 !list_empty(&dev_priv->mm.request_list))
1820 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1821 mutex_unlock(&dev->struct_mutex);
1825 * Waits for a sequence number to be signaled, and cleans up the
1826 * request and object lists appropriately for that event.
1828 static int
1829 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1831 drm_i915_private_t *dev_priv = dev->dev_private;
1832 u32 ier;
1833 int ret = 0;
1835 BUG_ON(seqno == 0);
1837 if (atomic_read(&dev_priv->mm.wedged))
1838 return -EIO;
1840 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1841 if (IS_IGDNG(dev))
1842 ier = I915_READ(DEIER) | I915_READ(GTIER);
1843 else
1844 ier = I915_READ(IER);
1845 if (!ier) {
1846 DRM_ERROR("something (likely vbetool) disabled "
1847 "interrupts, re-enabling\n");
1848 i915_driver_irq_preinstall(dev);
1849 i915_driver_irq_postinstall(dev);
1852 trace_i915_gem_request_wait_begin(dev, seqno);
1854 dev_priv->mm.waiting_gem_seqno = seqno;
1855 i915_user_irq_get(dev);
1856 ret = wait_event_interruptible(dev_priv->irq_queue,
1857 i915_seqno_passed(i915_get_gem_seqno(dev),
1858 seqno) ||
1859 atomic_read(&dev_priv->mm.wedged));
1860 i915_user_irq_put(dev);
1861 dev_priv->mm.waiting_gem_seqno = 0;
1863 trace_i915_gem_request_wait_end(dev, seqno);
1865 if (atomic_read(&dev_priv->mm.wedged))
1866 ret = -EIO;
1868 if (ret && ret != -ERESTARTSYS)
1869 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1870 __func__, ret, seqno, i915_get_gem_seqno(dev));
1872 /* Directly dispatch request retiring. While we have the work queue
1873 * to handle this, the waiter on a request often wants an associated
1874 * buffer to have made it to the inactive list, and we would need
1875 * a separate wait queue to handle that.
1877 if (ret == 0)
1878 i915_gem_retire_requests(dev);
1880 return ret;
1883 static void
1884 i915_gem_flush(struct drm_device *dev,
1885 uint32_t invalidate_domains,
1886 uint32_t flush_domains)
1888 drm_i915_private_t *dev_priv = dev->dev_private;
1889 uint32_t cmd;
1890 RING_LOCALS;
1892 #if WATCH_EXEC
1893 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1894 invalidate_domains, flush_domains);
1895 #endif
1896 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1897 invalidate_domains, flush_domains);
1899 if (flush_domains & I915_GEM_DOMAIN_CPU)
1900 drm_agp_chipset_flush(dev);
1902 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1904 * read/write caches:
1906 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1907 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1908 * also flushed at 2d versus 3d pipeline switches.
1910 * read-only caches:
1912 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1913 * MI_READ_FLUSH is set, and is always flushed on 965.
1915 * I915_GEM_DOMAIN_COMMAND may not exist?
1917 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1918 * invalidated when MI_EXE_FLUSH is set.
1920 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1921 * invalidated with every MI_FLUSH.
1923 * TLBs:
1925 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1926 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1927 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1928 * are flushed at any MI_FLUSH.
1931 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1932 if ((invalidate_domains|flush_domains) &
1933 I915_GEM_DOMAIN_RENDER)
1934 cmd &= ~MI_NO_WRITE_FLUSH;
1935 if (!IS_I965G(dev)) {
1937 * On the 965, the sampler cache always gets flushed
1938 * and this bit is reserved.
1940 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1941 cmd |= MI_READ_FLUSH;
1943 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1944 cmd |= MI_EXE_FLUSH;
1946 #if WATCH_EXEC
1947 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1948 #endif
1949 BEGIN_LP_RING(2);
1950 OUT_RING(cmd);
1951 OUT_RING(0); /* noop */
1952 ADVANCE_LP_RING();
1957 * Ensures that all rendering to the object has completed and the object is
1958 * safe to unbind from the GTT or access from the CPU.
1960 static int
1961 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1963 struct drm_device *dev = obj->dev;
1964 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1965 int ret;
1967 /* This function only exists to support waiting for existing rendering,
1968 * not for emitting required flushes.
1970 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1972 /* If there is rendering queued on the buffer being evicted, wait for
1973 * it.
1975 if (obj_priv->active) {
1976 #if WATCH_BUF
1977 DRM_INFO("%s: object %p wait for seqno %08x\n",
1978 __func__, obj, obj_priv->last_rendering_seqno);
1979 #endif
1980 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1981 if (ret != 0)
1982 return ret;
1985 return 0;
1989 * Unbinds an object from the GTT aperture.
1992 i915_gem_object_unbind(struct drm_gem_object *obj)
1994 struct drm_device *dev = obj->dev;
1995 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1996 int ret = 0;
1998 #if WATCH_BUF
1999 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2000 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2001 #endif
2002 if (obj_priv->gtt_space == NULL)
2003 return 0;
2005 if (obj_priv->pin_count != 0) {
2006 DRM_ERROR("Attempting to unbind pinned buffer\n");
2007 return -EINVAL;
2010 /* blow away mappings if mapped through GTT */
2011 i915_gem_release_mmap(obj);
2013 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2014 i915_gem_clear_fence_reg(obj);
2016 /* Move the object to the CPU domain to ensure that
2017 * any possible CPU writes while it's not in the GTT
2018 * are flushed when we go to remap it. This will
2019 * also ensure that all pending GPU writes are finished
2020 * before we unbind.
2022 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2023 if (ret) {
2024 if (ret != -ERESTARTSYS)
2025 DRM_ERROR("set_domain failed: %d\n", ret);
2026 return ret;
2029 BUG_ON(obj_priv->active);
2031 if (obj_priv->agp_mem != NULL) {
2032 drm_unbind_agp(obj_priv->agp_mem);
2033 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2034 obj_priv->agp_mem = NULL;
2037 i915_gem_object_put_pages(obj);
2038 BUG_ON(obj_priv->pages_refcount);
2040 if (obj_priv->gtt_space) {
2041 atomic_dec(&dev->gtt_count);
2042 atomic_sub(obj->size, &dev->gtt_memory);
2044 drm_mm_put_block(obj_priv->gtt_space);
2045 obj_priv->gtt_space = NULL;
2048 /* Remove ourselves from the LRU list if present. */
2049 if (!list_empty(&obj_priv->list))
2050 list_del_init(&obj_priv->list);
2052 if (i915_gem_object_is_purgeable(obj_priv))
2053 i915_gem_object_truncate(obj);
2055 trace_i915_gem_object_unbind(obj);
2057 return 0;
2060 static struct drm_gem_object *
2061 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2063 drm_i915_private_t *dev_priv = dev->dev_private;
2064 struct drm_i915_gem_object *obj_priv;
2065 struct drm_gem_object *best = NULL;
2066 struct drm_gem_object *first = NULL;
2068 /* Try to find the smallest clean object */
2069 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2070 struct drm_gem_object *obj = obj_priv->obj;
2071 if (obj->size >= min_size) {
2072 if ((!obj_priv->dirty ||
2073 i915_gem_object_is_purgeable(obj_priv)) &&
2074 (!best || obj->size < best->size)) {
2075 best = obj;
2076 if (best->size == min_size)
2077 return best;
2079 if (!first)
2080 first = obj;
2084 return best ? best : first;
2087 static int
2088 i915_gem_evict_everything(struct drm_device *dev)
2090 drm_i915_private_t *dev_priv = dev->dev_private;
2091 uint32_t seqno;
2092 int ret;
2093 bool lists_empty;
2095 spin_lock(&dev_priv->mm.active_list_lock);
2096 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2097 list_empty(&dev_priv->mm.flushing_list) &&
2098 list_empty(&dev_priv->mm.active_list));
2099 spin_unlock(&dev_priv->mm.active_list_lock);
2101 if (lists_empty)
2102 return -ENOSPC;
2104 /* Flush everything (on to the inactive lists) and evict */
2105 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2106 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2107 if (seqno == 0)
2108 return -ENOMEM;
2110 ret = i915_wait_request(dev, seqno);
2111 if (ret)
2112 return ret;
2114 ret = i915_gem_evict_from_inactive_list(dev);
2115 if (ret)
2116 return ret;
2118 spin_lock(&dev_priv->mm.active_list_lock);
2119 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2120 list_empty(&dev_priv->mm.flushing_list) &&
2121 list_empty(&dev_priv->mm.active_list));
2122 spin_unlock(&dev_priv->mm.active_list_lock);
2123 BUG_ON(!lists_empty);
2125 return 0;
2128 static int
2129 i915_gem_evict_something(struct drm_device *dev, int min_size)
2131 drm_i915_private_t *dev_priv = dev->dev_private;
2132 struct drm_gem_object *obj;
2133 int ret;
2135 for (;;) {
2136 i915_gem_retire_requests(dev);
2138 /* If there's an inactive buffer available now, grab it
2139 * and be done.
2141 obj = i915_gem_find_inactive_object(dev, min_size);
2142 if (obj) {
2143 struct drm_i915_gem_object *obj_priv;
2145 #if WATCH_LRU
2146 DRM_INFO("%s: evicting %p\n", __func__, obj);
2147 #endif
2148 obj_priv = obj->driver_private;
2149 BUG_ON(obj_priv->pin_count != 0);
2150 BUG_ON(obj_priv->active);
2152 /* Wait on the rendering and unbind the buffer. */
2153 return i915_gem_object_unbind(obj);
2156 /* If we didn't get anything, but the ring is still processing
2157 * things, wait for the next to finish and hopefully leave us
2158 * a buffer to evict.
2160 if (!list_empty(&dev_priv->mm.request_list)) {
2161 struct drm_i915_gem_request *request;
2163 request = list_first_entry(&dev_priv->mm.request_list,
2164 struct drm_i915_gem_request,
2165 list);
2167 ret = i915_wait_request(dev, request->seqno);
2168 if (ret)
2169 return ret;
2171 continue;
2174 /* If we didn't have anything on the request list but there
2175 * are buffers awaiting a flush, emit one and try again.
2176 * When we wait on it, those buffers waiting for that flush
2177 * will get moved to inactive.
2179 if (!list_empty(&dev_priv->mm.flushing_list)) {
2180 struct drm_i915_gem_object *obj_priv;
2182 /* Find an object that we can immediately reuse */
2183 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2184 obj = obj_priv->obj;
2185 if (obj->size >= min_size)
2186 break;
2188 obj = NULL;
2191 if (obj != NULL) {
2192 uint32_t seqno;
2194 i915_gem_flush(dev,
2195 obj->write_domain,
2196 obj->write_domain);
2197 seqno = i915_add_request(dev, NULL, obj->write_domain);
2198 if (seqno == 0)
2199 return -ENOMEM;
2201 ret = i915_wait_request(dev, seqno);
2202 if (ret)
2203 return ret;
2205 continue;
2209 /* If we didn't do any of the above, there's no single buffer
2210 * large enough to swap out for the new one, so just evict
2211 * everything and start again. (This should be rare.)
2213 if (!list_empty (&dev_priv->mm.inactive_list))
2214 return i915_gem_evict_from_inactive_list(dev);
2215 else
2216 return i915_gem_evict_everything(dev);
2221 i915_gem_object_get_pages(struct drm_gem_object *obj)
2223 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2224 int page_count, i;
2225 struct address_space *mapping;
2226 struct inode *inode;
2227 struct page *page;
2228 int ret;
2230 if (obj_priv->pages_refcount++ != 0)
2231 return 0;
2233 /* Get the list of pages out of our struct file. They'll be pinned
2234 * at this point until we release them.
2236 page_count = obj->size / PAGE_SIZE;
2237 BUG_ON(obj_priv->pages != NULL);
2238 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2239 if (obj_priv->pages == NULL) {
2240 obj_priv->pages_refcount--;
2241 return -ENOMEM;
2244 inode = obj->filp->f_path.dentry->d_inode;
2245 mapping = inode->i_mapping;
2246 for (i = 0; i < page_count; i++) {
2247 page = read_mapping_page(mapping, i, NULL);
2248 if (IS_ERR(page)) {
2249 ret = PTR_ERR(page);
2250 i915_gem_object_put_pages(obj);
2251 return ret;
2253 obj_priv->pages[i] = page;
2256 if (obj_priv->tiling_mode != I915_TILING_NONE)
2257 i915_gem_object_do_bit_17_swizzle(obj);
2259 return 0;
2262 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2264 struct drm_gem_object *obj = reg->obj;
2265 struct drm_device *dev = obj->dev;
2266 drm_i915_private_t *dev_priv = dev->dev_private;
2267 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2268 int regnum = obj_priv->fence_reg;
2269 uint64_t val;
2271 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2272 0xfffff000) << 32;
2273 val |= obj_priv->gtt_offset & 0xfffff000;
2274 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2275 if (obj_priv->tiling_mode == I915_TILING_Y)
2276 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2277 val |= I965_FENCE_REG_VALID;
2279 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2282 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2284 struct drm_gem_object *obj = reg->obj;
2285 struct drm_device *dev = obj->dev;
2286 drm_i915_private_t *dev_priv = dev->dev_private;
2287 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2288 int regnum = obj_priv->fence_reg;
2289 int tile_width;
2290 uint32_t fence_reg, val;
2291 uint32_t pitch_val;
2293 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2294 (obj_priv->gtt_offset & (obj->size - 1))) {
2295 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2296 __func__, obj_priv->gtt_offset, obj->size);
2297 return;
2300 if (obj_priv->tiling_mode == I915_TILING_Y &&
2301 HAS_128_BYTE_Y_TILING(dev))
2302 tile_width = 128;
2303 else
2304 tile_width = 512;
2306 /* Note: pitch better be a power of two tile widths */
2307 pitch_val = obj_priv->stride / tile_width;
2308 pitch_val = ffs(pitch_val) - 1;
2310 val = obj_priv->gtt_offset;
2311 if (obj_priv->tiling_mode == I915_TILING_Y)
2312 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2313 val |= I915_FENCE_SIZE_BITS(obj->size);
2314 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2315 val |= I830_FENCE_REG_VALID;
2317 if (regnum < 8)
2318 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2319 else
2320 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2321 I915_WRITE(fence_reg, val);
2324 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2326 struct drm_gem_object *obj = reg->obj;
2327 struct drm_device *dev = obj->dev;
2328 drm_i915_private_t *dev_priv = dev->dev_private;
2329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2330 int regnum = obj_priv->fence_reg;
2331 uint32_t val;
2332 uint32_t pitch_val;
2333 uint32_t fence_size_bits;
2335 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2336 (obj_priv->gtt_offset & (obj->size - 1))) {
2337 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2338 __func__, obj_priv->gtt_offset);
2339 return;
2342 pitch_val = obj_priv->stride / 128;
2343 pitch_val = ffs(pitch_val) - 1;
2344 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2346 val = obj_priv->gtt_offset;
2347 if (obj_priv->tiling_mode == I915_TILING_Y)
2348 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2349 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2350 WARN_ON(fence_size_bits & ~0x00000f00);
2351 val |= fence_size_bits;
2352 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2353 val |= I830_FENCE_REG_VALID;
2355 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2359 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2360 * @obj: object to map through a fence reg
2362 * When mapping objects through the GTT, userspace wants to be able to write
2363 * to them without having to worry about swizzling if the object is tiled.
2365 * This function walks the fence regs looking for a free one for @obj,
2366 * stealing one if it can't find any.
2368 * It then sets up the reg based on the object's properties: address, pitch
2369 * and tiling format.
2372 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2374 struct drm_device *dev = obj->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2377 struct drm_i915_fence_reg *reg = NULL;
2378 struct drm_i915_gem_object *old_obj_priv = NULL;
2379 int i, ret, avail;
2381 /* Just update our place in the LRU if our fence is getting used. */
2382 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2383 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2384 return 0;
2387 switch (obj_priv->tiling_mode) {
2388 case I915_TILING_NONE:
2389 WARN(1, "allocating a fence for non-tiled object?\n");
2390 break;
2391 case I915_TILING_X:
2392 if (!obj_priv->stride)
2393 return -EINVAL;
2394 WARN((obj_priv->stride & (512 - 1)),
2395 "object 0x%08x is X tiled but has non-512B pitch\n",
2396 obj_priv->gtt_offset);
2397 break;
2398 case I915_TILING_Y:
2399 if (!obj_priv->stride)
2400 return -EINVAL;
2401 WARN((obj_priv->stride & (128 - 1)),
2402 "object 0x%08x is Y tiled but has non-128B pitch\n",
2403 obj_priv->gtt_offset);
2404 break;
2407 /* First try to find a free reg */
2408 avail = 0;
2409 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2410 reg = &dev_priv->fence_regs[i];
2411 if (!reg->obj)
2412 break;
2414 old_obj_priv = reg->obj->driver_private;
2415 if (!old_obj_priv->pin_count)
2416 avail++;
2419 /* None available, try to steal one or wait for a user to finish */
2420 if (i == dev_priv->num_fence_regs) {
2421 struct drm_gem_object *old_obj = NULL;
2423 if (avail == 0)
2424 return -ENOSPC;
2426 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2427 fence_list) {
2428 old_obj = old_obj_priv->obj;
2430 if (old_obj_priv->pin_count)
2431 continue;
2433 /* Take a reference, as otherwise the wait_rendering
2434 * below may cause the object to get freed out from
2435 * under us.
2437 drm_gem_object_reference(old_obj);
2439 /* i915 uses fences for GPU access to tiled buffers */
2440 if (IS_I965G(dev) || !old_obj_priv->active)
2441 break;
2443 /* This brings the object to the head of the LRU if it
2444 * had been written to. The only way this should
2445 * result in us waiting longer than the expected
2446 * optimal amount of time is if there was a
2447 * fence-using buffer later that was read-only.
2449 i915_gem_object_flush_gpu_write_domain(old_obj);
2450 ret = i915_gem_object_wait_rendering(old_obj);
2451 if (ret != 0) {
2452 drm_gem_object_unreference(old_obj);
2453 return ret;
2456 break;
2460 * Zap this virtual mapping so we can set up a fence again
2461 * for this object next time we need it.
2463 i915_gem_release_mmap(old_obj);
2465 i = old_obj_priv->fence_reg;
2466 reg = &dev_priv->fence_regs[i];
2468 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2469 list_del_init(&old_obj_priv->fence_list);
2471 drm_gem_object_unreference(old_obj);
2474 obj_priv->fence_reg = i;
2475 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2477 reg->obj = obj;
2479 if (IS_I965G(dev))
2480 i965_write_fence_reg(reg);
2481 else if (IS_I9XX(dev))
2482 i915_write_fence_reg(reg);
2483 else
2484 i830_write_fence_reg(reg);
2486 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2488 return 0;
2492 * i915_gem_clear_fence_reg - clear out fence register info
2493 * @obj: object to clear
2495 * Zeroes out the fence register itself and clears out the associated
2496 * data structures in dev_priv and obj_priv.
2498 static void
2499 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2501 struct drm_device *dev = obj->dev;
2502 drm_i915_private_t *dev_priv = dev->dev_private;
2503 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2505 if (IS_I965G(dev))
2506 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2507 else {
2508 uint32_t fence_reg;
2510 if (obj_priv->fence_reg < 8)
2511 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2512 else
2513 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2514 8) * 4;
2516 I915_WRITE(fence_reg, 0);
2519 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2520 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2521 list_del_init(&obj_priv->fence_list);
2525 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2526 * to the buffer to finish, and then resets the fence register.
2527 * @obj: tiled object holding a fence register.
2529 * Zeroes out the fence register itself and clears out the associated
2530 * data structures in dev_priv and obj_priv.
2533 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2535 struct drm_device *dev = obj->dev;
2536 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2538 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2539 return 0;
2541 /* On the i915, GPU access to tiled buffers is via a fence,
2542 * therefore we must wait for any outstanding access to complete
2543 * before clearing the fence.
2545 if (!IS_I965G(dev)) {
2546 int ret;
2548 i915_gem_object_flush_gpu_write_domain(obj);
2549 i915_gem_object_flush_gtt_write_domain(obj);
2550 ret = i915_gem_object_wait_rendering(obj);
2551 if (ret != 0)
2552 return ret;
2555 i915_gem_clear_fence_reg (obj);
2557 return 0;
2561 * Finds free space in the GTT aperture and binds the object there.
2563 static int
2564 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2566 struct drm_device *dev = obj->dev;
2567 drm_i915_private_t *dev_priv = dev->dev_private;
2568 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2569 struct drm_mm_node *free_space;
2570 bool retry_alloc = false;
2571 int ret;
2573 if (dev_priv->mm.suspended)
2574 return -EBUSY;
2576 if (obj_priv->madv != I915_MADV_WILLNEED) {
2577 DRM_ERROR("Attempting to bind a purgeable object\n");
2578 return -EINVAL;
2581 if (alignment == 0)
2582 alignment = i915_gem_get_gtt_alignment(obj);
2583 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2584 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2585 return -EINVAL;
2588 search_free:
2589 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2590 obj->size, alignment, 0);
2591 if (free_space != NULL) {
2592 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2593 alignment);
2594 if (obj_priv->gtt_space != NULL) {
2595 obj_priv->gtt_space->private = obj;
2596 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2599 if (obj_priv->gtt_space == NULL) {
2600 /* If the gtt is empty and we're still having trouble
2601 * fitting our object in, we're out of memory.
2603 #if WATCH_LRU
2604 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2605 #endif
2606 ret = i915_gem_evict_something(dev, obj->size);
2607 if (ret)
2608 return ret;
2610 goto search_free;
2613 #if WATCH_BUF
2614 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2615 obj->size, obj_priv->gtt_offset);
2616 #endif
2617 if (retry_alloc) {
2618 i915_gem_object_set_page_gfp_mask (obj,
2619 i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2621 ret = i915_gem_object_get_pages(obj);
2622 if (retry_alloc) {
2623 i915_gem_object_set_page_gfp_mask (obj,
2624 i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2626 if (ret) {
2627 drm_mm_put_block(obj_priv->gtt_space);
2628 obj_priv->gtt_space = NULL;
2630 if (ret == -ENOMEM) {
2631 /* first try to clear up some space from the GTT */
2632 ret = i915_gem_evict_something(dev, obj->size);
2633 if (ret) {
2634 /* now try to shrink everyone else */
2635 if (! retry_alloc) {
2636 retry_alloc = true;
2637 goto search_free;
2640 return ret;
2643 goto search_free;
2646 return ret;
2649 /* Create an AGP memory structure pointing at our pages, and bind it
2650 * into the GTT.
2652 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2653 obj_priv->pages,
2654 obj->size >> PAGE_SHIFT,
2655 obj_priv->gtt_offset,
2656 obj_priv->agp_type);
2657 if (obj_priv->agp_mem == NULL) {
2658 i915_gem_object_put_pages(obj);
2659 drm_mm_put_block(obj_priv->gtt_space);
2660 obj_priv->gtt_space = NULL;
2662 ret = i915_gem_evict_something(dev, obj->size);
2663 if (ret)
2664 return ret;
2666 goto search_free;
2668 atomic_inc(&dev->gtt_count);
2669 atomic_add(obj->size, &dev->gtt_memory);
2671 /* Assert that the object is not currently in any GPU domain. As it
2672 * wasn't in the GTT, there shouldn't be any way it could have been in
2673 * a GPU cache
2675 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2676 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2678 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2680 return 0;
2683 void
2684 i915_gem_clflush_object(struct drm_gem_object *obj)
2686 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2688 /* If we don't have a page list set up, then we're not pinned
2689 * to GPU, and we can ignore the cache flush because it'll happen
2690 * again at bind time.
2692 if (obj_priv->pages == NULL)
2693 return;
2695 trace_i915_gem_object_clflush(obj);
2697 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2700 /** Flushes any GPU write domain for the object if it's dirty. */
2701 static void
2702 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2704 struct drm_device *dev = obj->dev;
2705 uint32_t seqno;
2706 uint32_t old_write_domain;
2708 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2709 return;
2711 /* Queue the GPU write cache flushing we need. */
2712 old_write_domain = obj->write_domain;
2713 i915_gem_flush(dev, 0, obj->write_domain);
2714 seqno = i915_add_request(dev, NULL, obj->write_domain);
2715 obj->write_domain = 0;
2716 i915_gem_object_move_to_active(obj, seqno);
2718 trace_i915_gem_object_change_domain(obj,
2719 obj->read_domains,
2720 old_write_domain);
2723 /** Flushes the GTT write domain for the object if it's dirty. */
2724 static void
2725 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2727 uint32_t old_write_domain;
2729 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2730 return;
2732 /* No actual flushing is required for the GTT write domain. Writes
2733 * to it immediately go to main memory as far as we know, so there's
2734 * no chipset flush. It also doesn't land in render cache.
2736 old_write_domain = obj->write_domain;
2737 obj->write_domain = 0;
2739 trace_i915_gem_object_change_domain(obj,
2740 obj->read_domains,
2741 old_write_domain);
2744 /** Flushes the CPU write domain for the object if it's dirty. */
2745 static void
2746 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2748 struct drm_device *dev = obj->dev;
2749 uint32_t old_write_domain;
2751 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2752 return;
2754 i915_gem_clflush_object(obj);
2755 drm_agp_chipset_flush(dev);
2756 old_write_domain = obj->write_domain;
2757 obj->write_domain = 0;
2759 trace_i915_gem_object_change_domain(obj,
2760 obj->read_domains,
2761 old_write_domain);
2765 * Moves a single object to the GTT read, and possibly write domain.
2767 * This function returns when the move is complete, including waiting on
2768 * flushes to occur.
2771 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2773 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2774 uint32_t old_write_domain, old_read_domains;
2775 int ret;
2777 /* Not valid to be called on unbound objects. */
2778 if (obj_priv->gtt_space == NULL)
2779 return -EINVAL;
2781 i915_gem_object_flush_gpu_write_domain(obj);
2782 /* Wait on any GPU rendering and flushing to occur. */
2783 ret = i915_gem_object_wait_rendering(obj);
2784 if (ret != 0)
2785 return ret;
2787 old_write_domain = obj->write_domain;
2788 old_read_domains = obj->read_domains;
2790 /* If we're writing through the GTT domain, then CPU and GPU caches
2791 * will need to be invalidated at next use.
2793 if (write)
2794 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2796 i915_gem_object_flush_cpu_write_domain(obj);
2798 /* It should now be out of any other write domains, and we can update
2799 * the domain values for our changes.
2801 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2802 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2803 if (write) {
2804 obj->write_domain = I915_GEM_DOMAIN_GTT;
2805 obj_priv->dirty = 1;
2808 trace_i915_gem_object_change_domain(obj,
2809 old_read_domains,
2810 old_write_domain);
2812 return 0;
2816 * Moves a single object to the CPU read, and possibly write domain.
2818 * This function returns when the move is complete, including waiting on
2819 * flushes to occur.
2821 static int
2822 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2824 uint32_t old_write_domain, old_read_domains;
2825 int ret;
2827 i915_gem_object_flush_gpu_write_domain(obj);
2828 /* Wait on any GPU rendering and flushing to occur. */
2829 ret = i915_gem_object_wait_rendering(obj);
2830 if (ret != 0)
2831 return ret;
2833 i915_gem_object_flush_gtt_write_domain(obj);
2835 /* If we have a partially-valid cache of the object in the CPU,
2836 * finish invalidating it and free the per-page flags.
2838 i915_gem_object_set_to_full_cpu_read_domain(obj);
2840 old_write_domain = obj->write_domain;
2841 old_read_domains = obj->read_domains;
2843 /* Flush the CPU cache if it's still invalid. */
2844 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2845 i915_gem_clflush_object(obj);
2847 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2850 /* It should now be out of any other write domains, and we can update
2851 * the domain values for our changes.
2853 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2855 /* If we're writing through the CPU, then the GPU read domains will
2856 * need to be invalidated at next use.
2858 if (write) {
2859 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2860 obj->write_domain = I915_GEM_DOMAIN_CPU;
2863 trace_i915_gem_object_change_domain(obj,
2864 old_read_domains,
2865 old_write_domain);
2867 return 0;
2871 * Set the next domain for the specified object. This
2872 * may not actually perform the necessary flushing/invaliding though,
2873 * as that may want to be batched with other set_domain operations
2875 * This is (we hope) the only really tricky part of gem. The goal
2876 * is fairly simple -- track which caches hold bits of the object
2877 * and make sure they remain coherent. A few concrete examples may
2878 * help to explain how it works. For shorthand, we use the notation
2879 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2880 * a pair of read and write domain masks.
2882 * Case 1: the batch buffer
2884 * 1. Allocated
2885 * 2. Written by CPU
2886 * 3. Mapped to GTT
2887 * 4. Read by GPU
2888 * 5. Unmapped from GTT
2889 * 6. Freed
2891 * Let's take these a step at a time
2893 * 1. Allocated
2894 * Pages allocated from the kernel may still have
2895 * cache contents, so we set them to (CPU, CPU) always.
2896 * 2. Written by CPU (using pwrite)
2897 * The pwrite function calls set_domain (CPU, CPU) and
2898 * this function does nothing (as nothing changes)
2899 * 3. Mapped by GTT
2900 * This function asserts that the object is not
2901 * currently in any GPU-based read or write domains
2902 * 4. Read by GPU
2903 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2904 * As write_domain is zero, this function adds in the
2905 * current read domains (CPU+COMMAND, 0).
2906 * flush_domains is set to CPU.
2907 * invalidate_domains is set to COMMAND
2908 * clflush is run to get data out of the CPU caches
2909 * then i915_dev_set_domain calls i915_gem_flush to
2910 * emit an MI_FLUSH and drm_agp_chipset_flush
2911 * 5. Unmapped from GTT
2912 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2913 * flush_domains and invalidate_domains end up both zero
2914 * so no flushing/invalidating happens
2915 * 6. Freed
2916 * yay, done
2918 * Case 2: The shared render buffer
2920 * 1. Allocated
2921 * 2. Mapped to GTT
2922 * 3. Read/written by GPU
2923 * 4. set_domain to (CPU,CPU)
2924 * 5. Read/written by CPU
2925 * 6. Read/written by GPU
2927 * 1. Allocated
2928 * Same as last example, (CPU, CPU)
2929 * 2. Mapped to GTT
2930 * Nothing changes (assertions find that it is not in the GPU)
2931 * 3. Read/written by GPU
2932 * execbuffer calls set_domain (RENDER, RENDER)
2933 * flush_domains gets CPU
2934 * invalidate_domains gets GPU
2935 * clflush (obj)
2936 * MI_FLUSH and drm_agp_chipset_flush
2937 * 4. set_domain (CPU, CPU)
2938 * flush_domains gets GPU
2939 * invalidate_domains gets CPU
2940 * wait_rendering (obj) to make sure all drawing is complete.
2941 * This will include an MI_FLUSH to get the data from GPU
2942 * to memory
2943 * clflush (obj) to invalidate the CPU cache
2944 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2945 * 5. Read/written by CPU
2946 * cache lines are loaded and dirtied
2947 * 6. Read written by GPU
2948 * Same as last GPU access
2950 * Case 3: The constant buffer
2952 * 1. Allocated
2953 * 2. Written by CPU
2954 * 3. Read by GPU
2955 * 4. Updated (written) by CPU again
2956 * 5. Read by GPU
2958 * 1. Allocated
2959 * (CPU, CPU)
2960 * 2. Written by CPU
2961 * (CPU, CPU)
2962 * 3. Read by GPU
2963 * (CPU+RENDER, 0)
2964 * flush_domains = CPU
2965 * invalidate_domains = RENDER
2966 * clflush (obj)
2967 * MI_FLUSH
2968 * drm_agp_chipset_flush
2969 * 4. Updated (written) by CPU again
2970 * (CPU, CPU)
2971 * flush_domains = 0 (no previous write domain)
2972 * invalidate_domains = 0 (no new read domains)
2973 * 5. Read by GPU
2974 * (CPU+RENDER, 0)
2975 * flush_domains = CPU
2976 * invalidate_domains = RENDER
2977 * clflush (obj)
2978 * MI_FLUSH
2979 * drm_agp_chipset_flush
2981 static void
2982 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2984 struct drm_device *dev = obj->dev;
2985 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2986 uint32_t invalidate_domains = 0;
2987 uint32_t flush_domains = 0;
2988 uint32_t old_read_domains;
2990 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2991 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2993 intel_mark_busy(dev, obj);
2995 #if WATCH_BUF
2996 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2997 __func__, obj,
2998 obj->read_domains, obj->pending_read_domains,
2999 obj->write_domain, obj->pending_write_domain);
3000 #endif
3002 * If the object isn't moving to a new write domain,
3003 * let the object stay in multiple read domains
3005 if (obj->pending_write_domain == 0)
3006 obj->pending_read_domains |= obj->read_domains;
3007 else
3008 obj_priv->dirty = 1;
3011 * Flush the current write domain if
3012 * the new read domains don't match. Invalidate
3013 * any read domains which differ from the old
3014 * write domain
3016 if (obj->write_domain &&
3017 obj->write_domain != obj->pending_read_domains) {
3018 flush_domains |= obj->write_domain;
3019 invalidate_domains |=
3020 obj->pending_read_domains & ~obj->write_domain;
3023 * Invalidate any read caches which may have
3024 * stale data. That is, any new read domains.
3026 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3027 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3028 #if WATCH_BUF
3029 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3030 __func__, flush_domains, invalidate_domains);
3031 #endif
3032 i915_gem_clflush_object(obj);
3035 old_read_domains = obj->read_domains;
3037 /* The actual obj->write_domain will be updated with
3038 * pending_write_domain after we emit the accumulated flush for all
3039 * of our domain changes in execbuffers (which clears objects'
3040 * write_domains). So if we have a current write domain that we
3041 * aren't changing, set pending_write_domain to that.
3043 if (flush_domains == 0 && obj->pending_write_domain == 0)
3044 obj->pending_write_domain = obj->write_domain;
3045 obj->read_domains = obj->pending_read_domains;
3047 dev->invalidate_domains |= invalidate_domains;
3048 dev->flush_domains |= flush_domains;
3049 #if WATCH_BUF
3050 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3051 __func__,
3052 obj->read_domains, obj->write_domain,
3053 dev->invalidate_domains, dev->flush_domains);
3054 #endif
3056 trace_i915_gem_object_change_domain(obj,
3057 old_read_domains,
3058 obj->write_domain);
3062 * Moves the object from a partially CPU read to a full one.
3064 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3065 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3067 static void
3068 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3070 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3072 if (!obj_priv->page_cpu_valid)
3073 return;
3075 /* If we're partially in the CPU read domain, finish moving it in.
3077 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3078 int i;
3080 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3081 if (obj_priv->page_cpu_valid[i])
3082 continue;
3083 drm_clflush_pages(obj_priv->pages + i, 1);
3087 /* Free the page_cpu_valid mappings which are now stale, whether
3088 * or not we've got I915_GEM_DOMAIN_CPU.
3090 kfree(obj_priv->page_cpu_valid);
3091 obj_priv->page_cpu_valid = NULL;
3095 * Set the CPU read domain on a range of the object.
3097 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3098 * not entirely valid. The page_cpu_valid member of the object flags which
3099 * pages have been flushed, and will be respected by
3100 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3101 * of the whole object.
3103 * This function returns when the move is complete, including waiting on
3104 * flushes to occur.
3106 static int
3107 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3108 uint64_t offset, uint64_t size)
3110 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3111 uint32_t old_read_domains;
3112 int i, ret;
3114 if (offset == 0 && size == obj->size)
3115 return i915_gem_object_set_to_cpu_domain(obj, 0);
3117 i915_gem_object_flush_gpu_write_domain(obj);
3118 /* Wait on any GPU rendering and flushing to occur. */
3119 ret = i915_gem_object_wait_rendering(obj);
3120 if (ret != 0)
3121 return ret;
3122 i915_gem_object_flush_gtt_write_domain(obj);
3124 /* If we're already fully in the CPU read domain, we're done. */
3125 if (obj_priv->page_cpu_valid == NULL &&
3126 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3127 return 0;
3129 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3130 * newly adding I915_GEM_DOMAIN_CPU
3132 if (obj_priv->page_cpu_valid == NULL) {
3133 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3134 GFP_KERNEL);
3135 if (obj_priv->page_cpu_valid == NULL)
3136 return -ENOMEM;
3137 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3138 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3140 /* Flush the cache on any pages that are still invalid from the CPU's
3141 * perspective.
3143 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3144 i++) {
3145 if (obj_priv->page_cpu_valid[i])
3146 continue;
3148 drm_clflush_pages(obj_priv->pages + i, 1);
3150 obj_priv->page_cpu_valid[i] = 1;
3153 /* It should now be out of any other write domains, and we can update
3154 * the domain values for our changes.
3156 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3158 old_read_domains = obj->read_domains;
3159 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3161 trace_i915_gem_object_change_domain(obj,
3162 old_read_domains,
3163 obj->write_domain);
3165 return 0;
3169 * Pin an object to the GTT and evaluate the relocations landing in it.
3171 static int
3172 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3173 struct drm_file *file_priv,
3174 struct drm_i915_gem_exec_object *entry,
3175 struct drm_i915_gem_relocation_entry *relocs)
3177 struct drm_device *dev = obj->dev;
3178 drm_i915_private_t *dev_priv = dev->dev_private;
3179 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3180 int i, ret;
3181 void __iomem *reloc_page;
3183 /* Choose the GTT offset for our buffer and put it there. */
3184 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3185 if (ret)
3186 return ret;
3188 entry->offset = obj_priv->gtt_offset;
3190 /* Apply the relocations, using the GTT aperture to avoid cache
3191 * flushing requirements.
3193 for (i = 0; i < entry->relocation_count; i++) {
3194 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3195 struct drm_gem_object *target_obj;
3196 struct drm_i915_gem_object *target_obj_priv;
3197 uint32_t reloc_val, reloc_offset;
3198 uint32_t __iomem *reloc_entry;
3200 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3201 reloc->target_handle);
3202 if (target_obj == NULL) {
3203 i915_gem_object_unpin(obj);
3204 return -EBADF;
3206 target_obj_priv = target_obj->driver_private;
3208 #if WATCH_RELOC
3209 DRM_INFO("%s: obj %p offset %08x target %d "
3210 "read %08x write %08x gtt %08x "
3211 "presumed %08x delta %08x\n",
3212 __func__,
3213 obj,
3214 (int) reloc->offset,
3215 (int) reloc->target_handle,
3216 (int) reloc->read_domains,
3217 (int) reloc->write_domain,
3218 (int) target_obj_priv->gtt_offset,
3219 (int) reloc->presumed_offset,
3220 reloc->delta);
3221 #endif
3223 /* The target buffer should have appeared before us in the
3224 * exec_object list, so it should have a GTT space bound by now.
3226 if (target_obj_priv->gtt_space == NULL) {
3227 DRM_ERROR("No GTT space found for object %d\n",
3228 reloc->target_handle);
3229 drm_gem_object_unreference(target_obj);
3230 i915_gem_object_unpin(obj);
3231 return -EINVAL;
3234 /* Validate that the target is in a valid r/w GPU domain */
3235 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3236 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3237 DRM_ERROR("reloc with read/write CPU domains: "
3238 "obj %p target %d offset %d "
3239 "read %08x write %08x",
3240 obj, reloc->target_handle,
3241 (int) reloc->offset,
3242 reloc->read_domains,
3243 reloc->write_domain);
3244 drm_gem_object_unreference(target_obj);
3245 i915_gem_object_unpin(obj);
3246 return -EINVAL;
3248 if (reloc->write_domain && target_obj->pending_write_domain &&
3249 reloc->write_domain != target_obj->pending_write_domain) {
3250 DRM_ERROR("Write domain conflict: "
3251 "obj %p target %d offset %d "
3252 "new %08x old %08x\n",
3253 obj, reloc->target_handle,
3254 (int) reloc->offset,
3255 reloc->write_domain,
3256 target_obj->pending_write_domain);
3257 drm_gem_object_unreference(target_obj);
3258 i915_gem_object_unpin(obj);
3259 return -EINVAL;
3262 target_obj->pending_read_domains |= reloc->read_domains;
3263 target_obj->pending_write_domain |= reloc->write_domain;
3265 /* If the relocation already has the right value in it, no
3266 * more work needs to be done.
3268 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3269 drm_gem_object_unreference(target_obj);
3270 continue;
3273 /* Check that the relocation address is valid... */
3274 if (reloc->offset > obj->size - 4) {
3275 DRM_ERROR("Relocation beyond object bounds: "
3276 "obj %p target %d offset %d size %d.\n",
3277 obj, reloc->target_handle,
3278 (int) reloc->offset, (int) obj->size);
3279 drm_gem_object_unreference(target_obj);
3280 i915_gem_object_unpin(obj);
3281 return -EINVAL;
3283 if (reloc->offset & 3) {
3284 DRM_ERROR("Relocation not 4-byte aligned: "
3285 "obj %p target %d offset %d.\n",
3286 obj, reloc->target_handle,
3287 (int) reloc->offset);
3288 drm_gem_object_unreference(target_obj);
3289 i915_gem_object_unpin(obj);
3290 return -EINVAL;
3293 /* and points to somewhere within the target object. */
3294 if (reloc->delta >= target_obj->size) {
3295 DRM_ERROR("Relocation beyond target object bounds: "
3296 "obj %p target %d delta %d size %d.\n",
3297 obj, reloc->target_handle,
3298 (int) reloc->delta, (int) target_obj->size);
3299 drm_gem_object_unreference(target_obj);
3300 i915_gem_object_unpin(obj);
3301 return -EINVAL;
3304 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3305 if (ret != 0) {
3306 drm_gem_object_unreference(target_obj);
3307 i915_gem_object_unpin(obj);
3308 return -EINVAL;
3311 /* Map the page containing the relocation we're going to
3312 * perform.
3314 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3315 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3316 (reloc_offset &
3317 ~(PAGE_SIZE - 1)));
3318 reloc_entry = (uint32_t __iomem *)(reloc_page +
3319 (reloc_offset & (PAGE_SIZE - 1)));
3320 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3322 #if WATCH_BUF
3323 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3324 obj, (unsigned int) reloc->offset,
3325 readl(reloc_entry), reloc_val);
3326 #endif
3327 writel(reloc_val, reloc_entry);
3328 io_mapping_unmap_atomic(reloc_page);
3330 /* The updated presumed offset for this entry will be
3331 * copied back out to the user.
3333 reloc->presumed_offset = target_obj_priv->gtt_offset;
3335 drm_gem_object_unreference(target_obj);
3338 #if WATCH_BUF
3339 if (0)
3340 i915_gem_dump_object(obj, 128, __func__, ~0);
3341 #endif
3342 return 0;
3345 /** Dispatch a batchbuffer to the ring
3347 static int
3348 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3349 struct drm_i915_gem_execbuffer *exec,
3350 struct drm_clip_rect *cliprects,
3351 uint64_t exec_offset)
3353 drm_i915_private_t *dev_priv = dev->dev_private;
3354 int nbox = exec->num_cliprects;
3355 int i = 0, count;
3356 uint32_t exec_start, exec_len;
3357 RING_LOCALS;
3359 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3360 exec_len = (uint32_t) exec->batch_len;
3362 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3364 count = nbox ? nbox : 1;
3366 for (i = 0; i < count; i++) {
3367 if (i < nbox) {
3368 int ret = i915_emit_box(dev, cliprects, i,
3369 exec->DR1, exec->DR4);
3370 if (ret)
3371 return ret;
3374 if (IS_I830(dev) || IS_845G(dev)) {
3375 BEGIN_LP_RING(4);
3376 OUT_RING(MI_BATCH_BUFFER);
3377 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3378 OUT_RING(exec_start + exec_len - 4);
3379 OUT_RING(0);
3380 ADVANCE_LP_RING();
3381 } else {
3382 BEGIN_LP_RING(2);
3383 if (IS_I965G(dev)) {
3384 OUT_RING(MI_BATCH_BUFFER_START |
3385 (2 << 6) |
3386 MI_BATCH_NON_SECURE_I965);
3387 OUT_RING(exec_start);
3388 } else {
3389 OUT_RING(MI_BATCH_BUFFER_START |
3390 (2 << 6));
3391 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3393 ADVANCE_LP_RING();
3397 /* XXX breadcrumb */
3398 return 0;
3401 /* Throttle our rendering by waiting until the ring has completed our requests
3402 * emitted over 20 msec ago.
3404 * Note that if we were to use the current jiffies each time around the loop,
3405 * we wouldn't escape the function with any frames outstanding if the time to
3406 * render a frame was over 20ms.
3408 * This should get us reasonable parallelism between CPU and GPU but also
3409 * relatively low latency when blocking on a particular request to finish.
3411 static int
3412 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3414 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3415 int ret = 0;
3416 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3418 mutex_lock(&dev->struct_mutex);
3419 while (!list_empty(&i915_file_priv->mm.request_list)) {
3420 struct drm_i915_gem_request *request;
3422 request = list_first_entry(&i915_file_priv->mm.request_list,
3423 struct drm_i915_gem_request,
3424 client_list);
3426 if (time_after_eq(request->emitted_jiffies, recent_enough))
3427 break;
3429 ret = i915_wait_request(dev, request->seqno);
3430 if (ret != 0)
3431 break;
3433 mutex_unlock(&dev->struct_mutex);
3435 return ret;
3438 static int
3439 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3440 uint32_t buffer_count,
3441 struct drm_i915_gem_relocation_entry **relocs)
3443 uint32_t reloc_count = 0, reloc_index = 0, i;
3444 int ret;
3446 *relocs = NULL;
3447 for (i = 0; i < buffer_count; i++) {
3448 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3449 return -EINVAL;
3450 reloc_count += exec_list[i].relocation_count;
3453 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3454 if (*relocs == NULL)
3455 return -ENOMEM;
3457 for (i = 0; i < buffer_count; i++) {
3458 struct drm_i915_gem_relocation_entry __user *user_relocs;
3460 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3462 ret = copy_from_user(&(*relocs)[reloc_index],
3463 user_relocs,
3464 exec_list[i].relocation_count *
3465 sizeof(**relocs));
3466 if (ret != 0) {
3467 drm_free_large(*relocs);
3468 *relocs = NULL;
3469 return -EFAULT;
3472 reloc_index += exec_list[i].relocation_count;
3475 return 0;
3478 static int
3479 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3480 uint32_t buffer_count,
3481 struct drm_i915_gem_relocation_entry *relocs)
3483 uint32_t reloc_count = 0, i;
3484 int ret = 0;
3486 for (i = 0; i < buffer_count; i++) {
3487 struct drm_i915_gem_relocation_entry __user *user_relocs;
3488 int unwritten;
3490 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3492 unwritten = copy_to_user(user_relocs,
3493 &relocs[reloc_count],
3494 exec_list[i].relocation_count *
3495 sizeof(*relocs));
3497 if (unwritten) {
3498 ret = -EFAULT;
3499 goto err;
3502 reloc_count += exec_list[i].relocation_count;
3505 err:
3506 drm_free_large(relocs);
3508 return ret;
3511 static int
3512 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3513 uint64_t exec_offset)
3515 uint32_t exec_start, exec_len;
3517 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3518 exec_len = (uint32_t) exec->batch_len;
3520 if ((exec_start | exec_len) & 0x7)
3521 return -EINVAL;
3523 if (!exec_start)
3524 return -EINVAL;
3526 return 0;
3530 i915_gem_execbuffer(struct drm_device *dev, void *data,
3531 struct drm_file *file_priv)
3533 drm_i915_private_t *dev_priv = dev->dev_private;
3534 struct drm_i915_gem_execbuffer *args = data;
3535 struct drm_i915_gem_exec_object *exec_list = NULL;
3536 struct drm_gem_object **object_list = NULL;
3537 struct drm_gem_object *batch_obj;
3538 struct drm_i915_gem_object *obj_priv;
3539 struct drm_clip_rect *cliprects = NULL;
3540 struct drm_i915_gem_relocation_entry *relocs;
3541 int ret, ret2, i, pinned = 0;
3542 uint64_t exec_offset;
3543 uint32_t seqno, flush_domains, reloc_index;
3544 int pin_tries;
3546 #if WATCH_EXEC
3547 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3548 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3549 #endif
3551 if (args->buffer_count < 1) {
3552 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3553 return -EINVAL;
3555 /* Copy in the exec list from userland */
3556 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3557 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3558 if (exec_list == NULL || object_list == NULL) {
3559 DRM_ERROR("Failed to allocate exec or object list "
3560 "for %d buffers\n",
3561 args->buffer_count);
3562 ret = -ENOMEM;
3563 goto pre_mutex_err;
3565 ret = copy_from_user(exec_list,
3566 (struct drm_i915_relocation_entry __user *)
3567 (uintptr_t) args->buffers_ptr,
3568 sizeof(*exec_list) * args->buffer_count);
3569 if (ret != 0) {
3570 DRM_ERROR("copy %d exec entries failed %d\n",
3571 args->buffer_count, ret);
3572 goto pre_mutex_err;
3575 if (args->num_cliprects != 0) {
3576 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3577 GFP_KERNEL);
3578 if (cliprects == NULL)
3579 goto pre_mutex_err;
3581 ret = copy_from_user(cliprects,
3582 (struct drm_clip_rect __user *)
3583 (uintptr_t) args->cliprects_ptr,
3584 sizeof(*cliprects) * args->num_cliprects);
3585 if (ret != 0) {
3586 DRM_ERROR("copy %d cliprects failed: %d\n",
3587 args->num_cliprects, ret);
3588 goto pre_mutex_err;
3592 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3593 &relocs);
3594 if (ret != 0)
3595 goto pre_mutex_err;
3597 mutex_lock(&dev->struct_mutex);
3599 i915_verify_inactive(dev, __FILE__, __LINE__);
3601 if (atomic_read(&dev_priv->mm.wedged)) {
3602 DRM_ERROR("Execbuf while wedged\n");
3603 mutex_unlock(&dev->struct_mutex);
3604 ret = -EIO;
3605 goto pre_mutex_err;
3608 if (dev_priv->mm.suspended) {
3609 DRM_ERROR("Execbuf while VT-switched.\n");
3610 mutex_unlock(&dev->struct_mutex);
3611 ret = -EBUSY;
3612 goto pre_mutex_err;
3615 /* Look up object handles */
3616 for (i = 0; i < args->buffer_count; i++) {
3617 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3618 exec_list[i].handle);
3619 if (object_list[i] == NULL) {
3620 DRM_ERROR("Invalid object handle %d at index %d\n",
3621 exec_list[i].handle, i);
3622 ret = -EBADF;
3623 goto err;
3626 obj_priv = object_list[i]->driver_private;
3627 if (obj_priv->in_execbuffer) {
3628 DRM_ERROR("Object %p appears more than once in object list\n",
3629 object_list[i]);
3630 ret = -EBADF;
3631 goto err;
3633 obj_priv->in_execbuffer = true;
3636 /* Pin and relocate */
3637 for (pin_tries = 0; ; pin_tries++) {
3638 ret = 0;
3639 reloc_index = 0;
3641 for (i = 0; i < args->buffer_count; i++) {
3642 object_list[i]->pending_read_domains = 0;
3643 object_list[i]->pending_write_domain = 0;
3644 ret = i915_gem_object_pin_and_relocate(object_list[i],
3645 file_priv,
3646 &exec_list[i],
3647 &relocs[reloc_index]);
3648 if (ret)
3649 break;
3650 pinned = i + 1;
3651 reloc_index += exec_list[i].relocation_count;
3653 /* success */
3654 if (ret == 0)
3655 break;
3657 /* error other than GTT full, or we've already tried again */
3658 if (ret != -ENOSPC || pin_tries >= 1) {
3659 if (ret != -ERESTARTSYS) {
3660 unsigned long long total_size = 0;
3661 for (i = 0; i < args->buffer_count; i++)
3662 total_size += object_list[i]->size;
3663 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3664 pinned+1, args->buffer_count,
3665 total_size, ret);
3666 DRM_ERROR("%d objects [%d pinned], "
3667 "%d object bytes [%d pinned], "
3668 "%d/%d gtt bytes\n",
3669 atomic_read(&dev->object_count),
3670 atomic_read(&dev->pin_count),
3671 atomic_read(&dev->object_memory),
3672 atomic_read(&dev->pin_memory),
3673 atomic_read(&dev->gtt_memory),
3674 dev->gtt_total);
3676 goto err;
3679 /* unpin all of our buffers */
3680 for (i = 0; i < pinned; i++)
3681 i915_gem_object_unpin(object_list[i]);
3682 pinned = 0;
3684 /* evict everyone we can from the aperture */
3685 ret = i915_gem_evict_everything(dev);
3686 if (ret && ret != -ENOSPC)
3687 goto err;
3690 /* Set the pending read domains for the batch buffer to COMMAND */
3691 batch_obj = object_list[args->buffer_count-1];
3692 if (batch_obj->pending_write_domain) {
3693 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3694 ret = -EINVAL;
3695 goto err;
3697 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3699 /* Sanity check the batch buffer, prior to moving objects */
3700 exec_offset = exec_list[args->buffer_count - 1].offset;
3701 ret = i915_gem_check_execbuffer (args, exec_offset);
3702 if (ret != 0) {
3703 DRM_ERROR("execbuf with invalid offset/length\n");
3704 goto err;
3707 i915_verify_inactive(dev, __FILE__, __LINE__);
3709 /* Zero the global flush/invalidate flags. These
3710 * will be modified as new domains are computed
3711 * for each object
3713 dev->invalidate_domains = 0;
3714 dev->flush_domains = 0;
3716 for (i = 0; i < args->buffer_count; i++) {
3717 struct drm_gem_object *obj = object_list[i];
3719 /* Compute new gpu domains and update invalidate/flush */
3720 i915_gem_object_set_to_gpu_domain(obj);
3723 i915_verify_inactive(dev, __FILE__, __LINE__);
3725 if (dev->invalidate_domains | dev->flush_domains) {
3726 #if WATCH_EXEC
3727 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3728 __func__,
3729 dev->invalidate_domains,
3730 dev->flush_domains);
3731 #endif
3732 i915_gem_flush(dev,
3733 dev->invalidate_domains,
3734 dev->flush_domains);
3735 if (dev->flush_domains)
3736 (void)i915_add_request(dev, file_priv,
3737 dev->flush_domains);
3740 for (i = 0; i < args->buffer_count; i++) {
3741 struct drm_gem_object *obj = object_list[i];
3742 uint32_t old_write_domain = obj->write_domain;
3744 obj->write_domain = obj->pending_write_domain;
3745 trace_i915_gem_object_change_domain(obj,
3746 obj->read_domains,
3747 old_write_domain);
3750 i915_verify_inactive(dev, __FILE__, __LINE__);
3752 #if WATCH_COHERENCY
3753 for (i = 0; i < args->buffer_count; i++) {
3754 i915_gem_object_check_coherency(object_list[i],
3755 exec_list[i].handle);
3757 #endif
3759 #if WATCH_EXEC
3760 i915_gem_dump_object(batch_obj,
3761 args->batch_len,
3762 __func__,
3763 ~0);
3764 #endif
3766 /* Exec the batchbuffer */
3767 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3768 if (ret) {
3769 DRM_ERROR("dispatch failed %d\n", ret);
3770 goto err;
3774 * Ensure that the commands in the batch buffer are
3775 * finished before the interrupt fires
3777 flush_domains = i915_retire_commands(dev);
3779 i915_verify_inactive(dev, __FILE__, __LINE__);
3782 * Get a seqno representing the execution of the current buffer,
3783 * which we can wait on. We would like to mitigate these interrupts,
3784 * likely by only creating seqnos occasionally (so that we have
3785 * *some* interrupts representing completion of buffers that we can
3786 * wait on when trying to clear up gtt space).
3788 seqno = i915_add_request(dev, file_priv, flush_domains);
3789 BUG_ON(seqno == 0);
3790 for (i = 0; i < args->buffer_count; i++) {
3791 struct drm_gem_object *obj = object_list[i];
3793 i915_gem_object_move_to_active(obj, seqno);
3794 #if WATCH_LRU
3795 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3796 #endif
3798 #if WATCH_LRU
3799 i915_dump_lru(dev, __func__);
3800 #endif
3802 i915_verify_inactive(dev, __FILE__, __LINE__);
3804 err:
3805 for (i = 0; i < pinned; i++)
3806 i915_gem_object_unpin(object_list[i]);
3808 for (i = 0; i < args->buffer_count; i++) {
3809 if (object_list[i]) {
3810 obj_priv = object_list[i]->driver_private;
3811 obj_priv->in_execbuffer = false;
3813 drm_gem_object_unreference(object_list[i]);
3816 mutex_unlock(&dev->struct_mutex);
3818 if (!ret) {
3819 /* Copy the new buffer offsets back to the user's exec list. */
3820 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3821 (uintptr_t) args->buffers_ptr,
3822 exec_list,
3823 sizeof(*exec_list) * args->buffer_count);
3824 if (ret) {
3825 ret = -EFAULT;
3826 DRM_ERROR("failed to copy %d exec entries "
3827 "back to user (%d)\n",
3828 args->buffer_count, ret);
3832 /* Copy the updated relocations out regardless of current error
3833 * state. Failure to update the relocs would mean that the next
3834 * time userland calls execbuf, it would do so with presumed offset
3835 * state that didn't match the actual object state.
3837 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3838 relocs);
3839 if (ret2 != 0) {
3840 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3842 if (ret == 0)
3843 ret = ret2;
3846 pre_mutex_err:
3847 drm_free_large(object_list);
3848 drm_free_large(exec_list);
3849 kfree(cliprects);
3851 return ret;
3855 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3857 struct drm_device *dev = obj->dev;
3858 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3859 int ret;
3861 i915_verify_inactive(dev, __FILE__, __LINE__);
3862 if (obj_priv->gtt_space == NULL) {
3863 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3864 if (ret)
3865 return ret;
3868 * Pre-965 chips need a fence register set up in order to
3869 * properly handle tiled surfaces.
3871 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3872 ret = i915_gem_object_get_fence_reg(obj);
3873 if (ret != 0) {
3874 if (ret != -EBUSY && ret != -ERESTARTSYS)
3875 DRM_ERROR("Failure to install fence: %d\n",
3876 ret);
3877 return ret;
3880 obj_priv->pin_count++;
3882 /* If the object is not active and not pending a flush,
3883 * remove it from the inactive list
3885 if (obj_priv->pin_count == 1) {
3886 atomic_inc(&dev->pin_count);
3887 atomic_add(obj->size, &dev->pin_memory);
3888 if (!obj_priv->active &&
3889 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3890 !list_empty(&obj_priv->list))
3891 list_del_init(&obj_priv->list);
3893 i915_verify_inactive(dev, __FILE__, __LINE__);
3895 return 0;
3898 void
3899 i915_gem_object_unpin(struct drm_gem_object *obj)
3901 struct drm_device *dev = obj->dev;
3902 drm_i915_private_t *dev_priv = dev->dev_private;
3903 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3905 i915_verify_inactive(dev, __FILE__, __LINE__);
3906 obj_priv->pin_count--;
3907 BUG_ON(obj_priv->pin_count < 0);
3908 BUG_ON(obj_priv->gtt_space == NULL);
3910 /* If the object is no longer pinned, and is
3911 * neither active nor being flushed, then stick it on
3912 * the inactive list
3914 if (obj_priv->pin_count == 0) {
3915 if (!obj_priv->active &&
3916 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3917 list_move_tail(&obj_priv->list,
3918 &dev_priv->mm.inactive_list);
3919 atomic_dec(&dev->pin_count);
3920 atomic_sub(obj->size, &dev->pin_memory);
3922 i915_verify_inactive(dev, __FILE__, __LINE__);
3926 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3927 struct drm_file *file_priv)
3929 struct drm_i915_gem_pin *args = data;
3930 struct drm_gem_object *obj;
3931 struct drm_i915_gem_object *obj_priv;
3932 int ret;
3934 mutex_lock(&dev->struct_mutex);
3936 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3937 if (obj == NULL) {
3938 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3939 args->handle);
3940 mutex_unlock(&dev->struct_mutex);
3941 return -EBADF;
3943 obj_priv = obj->driver_private;
3945 if (obj_priv->madv != I915_MADV_WILLNEED) {
3946 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3947 drm_gem_object_unreference(obj);
3948 mutex_unlock(&dev->struct_mutex);
3949 return -EINVAL;
3952 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3953 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3954 args->handle);
3955 drm_gem_object_unreference(obj);
3956 mutex_unlock(&dev->struct_mutex);
3957 return -EINVAL;
3960 obj_priv->user_pin_count++;
3961 obj_priv->pin_filp = file_priv;
3962 if (obj_priv->user_pin_count == 1) {
3963 ret = i915_gem_object_pin(obj, args->alignment);
3964 if (ret != 0) {
3965 drm_gem_object_unreference(obj);
3966 mutex_unlock(&dev->struct_mutex);
3967 return ret;
3971 /* XXX - flush the CPU caches for pinned objects
3972 * as the X server doesn't manage domains yet
3974 i915_gem_object_flush_cpu_write_domain(obj);
3975 args->offset = obj_priv->gtt_offset;
3976 drm_gem_object_unreference(obj);
3977 mutex_unlock(&dev->struct_mutex);
3979 return 0;
3983 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3984 struct drm_file *file_priv)
3986 struct drm_i915_gem_pin *args = data;
3987 struct drm_gem_object *obj;
3988 struct drm_i915_gem_object *obj_priv;
3990 mutex_lock(&dev->struct_mutex);
3992 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3993 if (obj == NULL) {
3994 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3995 args->handle);
3996 mutex_unlock(&dev->struct_mutex);
3997 return -EBADF;
4000 obj_priv = obj->driver_private;
4001 if (obj_priv->pin_filp != file_priv) {
4002 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4003 args->handle);
4004 drm_gem_object_unreference(obj);
4005 mutex_unlock(&dev->struct_mutex);
4006 return -EINVAL;
4008 obj_priv->user_pin_count--;
4009 if (obj_priv->user_pin_count == 0) {
4010 obj_priv->pin_filp = NULL;
4011 i915_gem_object_unpin(obj);
4014 drm_gem_object_unreference(obj);
4015 mutex_unlock(&dev->struct_mutex);
4016 return 0;
4020 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4021 struct drm_file *file_priv)
4023 struct drm_i915_gem_busy *args = data;
4024 struct drm_gem_object *obj;
4025 struct drm_i915_gem_object *obj_priv;
4027 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4028 if (obj == NULL) {
4029 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4030 args->handle);
4031 return -EBADF;
4034 mutex_lock(&dev->struct_mutex);
4035 /* Update the active list for the hardware's current position.
4036 * Otherwise this only updates on a delayed timer or when irqs are
4037 * actually unmasked, and our working set ends up being larger than
4038 * required.
4040 i915_gem_retire_requests(dev);
4042 obj_priv = obj->driver_private;
4043 /* Don't count being on the flushing list against the object being
4044 * done. Otherwise, a buffer left on the flushing list but not getting
4045 * flushed (because nobody's flushing that domain) won't ever return
4046 * unbusy and get reused by libdrm's bo cache. The other expected
4047 * consumer of this interface, OpenGL's occlusion queries, also specs
4048 * that the objects get unbusy "eventually" without any interference.
4050 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4052 drm_gem_object_unreference(obj);
4053 mutex_unlock(&dev->struct_mutex);
4054 return 0;
4058 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4059 struct drm_file *file_priv)
4061 return i915_gem_ring_throttle(dev, file_priv);
4065 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4066 struct drm_file *file_priv)
4068 struct drm_i915_gem_madvise *args = data;
4069 struct drm_gem_object *obj;
4070 struct drm_i915_gem_object *obj_priv;
4072 switch (args->madv) {
4073 case I915_MADV_DONTNEED:
4074 case I915_MADV_WILLNEED:
4075 break;
4076 default:
4077 return -EINVAL;
4080 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4081 if (obj == NULL) {
4082 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4083 args->handle);
4084 return -EBADF;
4087 mutex_lock(&dev->struct_mutex);
4088 obj_priv = obj->driver_private;
4090 if (obj_priv->pin_count) {
4091 drm_gem_object_unreference(obj);
4092 mutex_unlock(&dev->struct_mutex);
4094 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4095 return -EINVAL;
4098 if (obj_priv->madv != __I915_MADV_PURGED)
4099 obj_priv->madv = args->madv;
4101 /* if the object is no longer bound, discard its backing storage */
4102 if (i915_gem_object_is_purgeable(obj_priv) &&
4103 obj_priv->gtt_space == NULL)
4104 i915_gem_object_truncate(obj);
4106 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4108 drm_gem_object_unreference(obj);
4109 mutex_unlock(&dev->struct_mutex);
4111 return 0;
4114 int i915_gem_init_object(struct drm_gem_object *obj)
4116 struct drm_i915_gem_object *obj_priv;
4118 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4119 if (obj_priv == NULL)
4120 return -ENOMEM;
4123 * We've just allocated pages from the kernel,
4124 * so they've just been written by the CPU with
4125 * zeros. They'll need to be clflushed before we
4126 * use them with the GPU.
4128 obj->write_domain = I915_GEM_DOMAIN_CPU;
4129 obj->read_domains = I915_GEM_DOMAIN_CPU;
4131 obj_priv->agp_type = AGP_USER_MEMORY;
4133 obj->driver_private = obj_priv;
4134 obj_priv->obj = obj;
4135 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4136 INIT_LIST_HEAD(&obj_priv->list);
4137 INIT_LIST_HEAD(&obj_priv->fence_list);
4138 obj_priv->madv = I915_MADV_WILLNEED;
4140 trace_i915_gem_object_create(obj);
4142 return 0;
4145 void i915_gem_free_object(struct drm_gem_object *obj)
4147 struct drm_device *dev = obj->dev;
4148 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4150 trace_i915_gem_object_destroy(obj);
4152 while (obj_priv->pin_count > 0)
4153 i915_gem_object_unpin(obj);
4155 if (obj_priv->phys_obj)
4156 i915_gem_detach_phys_object(dev, obj);
4158 i915_gem_object_unbind(obj);
4160 if (obj_priv->mmap_offset)
4161 i915_gem_free_mmap_offset(obj);
4163 kfree(obj_priv->page_cpu_valid);
4164 kfree(obj_priv->bit_17);
4165 kfree(obj->driver_private);
4168 /** Unbinds all inactive objects. */
4169 static int
4170 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4172 drm_i915_private_t *dev_priv = dev->dev_private;
4174 while (!list_empty(&dev_priv->mm.inactive_list)) {
4175 struct drm_gem_object *obj;
4176 int ret;
4178 obj = list_first_entry(&dev_priv->mm.inactive_list,
4179 struct drm_i915_gem_object,
4180 list)->obj;
4182 ret = i915_gem_object_unbind(obj);
4183 if (ret != 0) {
4184 DRM_ERROR("Error unbinding object: %d\n", ret);
4185 return ret;
4189 return 0;
4193 i915_gem_idle(struct drm_device *dev)
4195 drm_i915_private_t *dev_priv = dev->dev_private;
4196 uint32_t seqno, cur_seqno, last_seqno;
4197 int stuck, ret;
4199 mutex_lock(&dev->struct_mutex);
4201 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4202 mutex_unlock(&dev->struct_mutex);
4203 return 0;
4206 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4207 * We need to replace this with a semaphore, or something.
4209 dev_priv->mm.suspended = 1;
4210 del_timer(&dev_priv->hangcheck_timer);
4212 /* Cancel the retire work handler, wait for it to finish if running
4214 mutex_unlock(&dev->struct_mutex);
4215 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4216 mutex_lock(&dev->struct_mutex);
4218 i915_kernel_lost_context(dev);
4220 /* Flush the GPU along with all non-CPU write domains
4222 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4223 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4225 if (seqno == 0) {
4226 mutex_unlock(&dev->struct_mutex);
4227 return -ENOMEM;
4230 dev_priv->mm.waiting_gem_seqno = seqno;
4231 last_seqno = 0;
4232 stuck = 0;
4233 for (;;) {
4234 cur_seqno = i915_get_gem_seqno(dev);
4235 if (i915_seqno_passed(cur_seqno, seqno))
4236 break;
4237 if (last_seqno == cur_seqno) {
4238 if (stuck++ > 100) {
4239 DRM_ERROR("hardware wedged\n");
4240 atomic_set(&dev_priv->mm.wedged, 1);
4241 DRM_WAKEUP(&dev_priv->irq_queue);
4242 break;
4245 msleep(10);
4246 last_seqno = cur_seqno;
4248 dev_priv->mm.waiting_gem_seqno = 0;
4250 i915_gem_retire_requests(dev);
4252 spin_lock(&dev_priv->mm.active_list_lock);
4253 if (!atomic_read(&dev_priv->mm.wedged)) {
4254 /* Active and flushing should now be empty as we've
4255 * waited for a sequence higher than any pending execbuffer
4257 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4258 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4259 /* Request should now be empty as we've also waited
4260 * for the last request in the list
4262 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4265 /* Empty the active and flushing lists to inactive. If there's
4266 * anything left at this point, it means that we're wedged and
4267 * nothing good's going to happen by leaving them there. So strip
4268 * the GPU domains and just stuff them onto inactive.
4270 while (!list_empty(&dev_priv->mm.active_list)) {
4271 struct drm_gem_object *obj;
4272 uint32_t old_write_domain;
4274 obj = list_first_entry(&dev_priv->mm.active_list,
4275 struct drm_i915_gem_object,
4276 list)->obj;
4277 old_write_domain = obj->write_domain;
4278 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4279 i915_gem_object_move_to_inactive(obj);
4281 trace_i915_gem_object_change_domain(obj,
4282 obj->read_domains,
4283 old_write_domain);
4285 spin_unlock(&dev_priv->mm.active_list_lock);
4287 while (!list_empty(&dev_priv->mm.flushing_list)) {
4288 struct drm_gem_object *obj;
4289 uint32_t old_write_domain;
4291 obj = list_first_entry(&dev_priv->mm.flushing_list,
4292 struct drm_i915_gem_object,
4293 list)->obj;
4294 old_write_domain = obj->write_domain;
4295 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4296 i915_gem_object_move_to_inactive(obj);
4298 trace_i915_gem_object_change_domain(obj,
4299 obj->read_domains,
4300 old_write_domain);
4304 /* Move all inactive buffers out of the GTT. */
4305 ret = i915_gem_evict_from_inactive_list(dev);
4306 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4307 if (ret) {
4308 mutex_unlock(&dev->struct_mutex);
4309 return ret;
4312 i915_gem_cleanup_ringbuffer(dev);
4313 mutex_unlock(&dev->struct_mutex);
4315 return 0;
4318 static int
4319 i915_gem_init_hws(struct drm_device *dev)
4321 drm_i915_private_t *dev_priv = dev->dev_private;
4322 struct drm_gem_object *obj;
4323 struct drm_i915_gem_object *obj_priv;
4324 int ret;
4326 /* If we need a physical address for the status page, it's already
4327 * initialized at driver load time.
4329 if (!I915_NEED_GFX_HWS(dev))
4330 return 0;
4332 obj = drm_gem_object_alloc(dev, 4096);
4333 if (obj == NULL) {
4334 DRM_ERROR("Failed to allocate status page\n");
4335 return -ENOMEM;
4337 obj_priv = obj->driver_private;
4338 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4340 ret = i915_gem_object_pin(obj, 4096);
4341 if (ret != 0) {
4342 drm_gem_object_unreference(obj);
4343 return ret;
4346 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4348 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4349 if (dev_priv->hw_status_page == NULL) {
4350 DRM_ERROR("Failed to map status page.\n");
4351 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4352 i915_gem_object_unpin(obj);
4353 drm_gem_object_unreference(obj);
4354 return -EINVAL;
4356 dev_priv->hws_obj = obj;
4357 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4358 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4359 I915_READ(HWS_PGA); /* posting read */
4360 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4362 return 0;
4365 static void
4366 i915_gem_cleanup_hws(struct drm_device *dev)
4368 drm_i915_private_t *dev_priv = dev->dev_private;
4369 struct drm_gem_object *obj;
4370 struct drm_i915_gem_object *obj_priv;
4372 if (dev_priv->hws_obj == NULL)
4373 return;
4375 obj = dev_priv->hws_obj;
4376 obj_priv = obj->driver_private;
4378 kunmap(obj_priv->pages[0]);
4379 i915_gem_object_unpin(obj);
4380 drm_gem_object_unreference(obj);
4381 dev_priv->hws_obj = NULL;
4383 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4384 dev_priv->hw_status_page = NULL;
4386 /* Write high address into HWS_PGA when disabling. */
4387 I915_WRITE(HWS_PGA, 0x1ffff000);
4391 i915_gem_init_ringbuffer(struct drm_device *dev)
4393 drm_i915_private_t *dev_priv = dev->dev_private;
4394 struct drm_gem_object *obj;
4395 struct drm_i915_gem_object *obj_priv;
4396 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4397 int ret;
4398 u32 head;
4400 ret = i915_gem_init_hws(dev);
4401 if (ret != 0)
4402 return ret;
4404 obj = drm_gem_object_alloc(dev, 128 * 1024);
4405 if (obj == NULL) {
4406 DRM_ERROR("Failed to allocate ringbuffer\n");
4407 i915_gem_cleanup_hws(dev);
4408 return -ENOMEM;
4410 obj_priv = obj->driver_private;
4412 ret = i915_gem_object_pin(obj, 4096);
4413 if (ret != 0) {
4414 drm_gem_object_unreference(obj);
4415 i915_gem_cleanup_hws(dev);
4416 return ret;
4419 /* Set up the kernel mapping for the ring. */
4420 ring->Size = obj->size;
4422 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4423 ring->map.size = obj->size;
4424 ring->map.type = 0;
4425 ring->map.flags = 0;
4426 ring->map.mtrr = 0;
4428 drm_core_ioremap_wc(&ring->map, dev);
4429 if (ring->map.handle == NULL) {
4430 DRM_ERROR("Failed to map ringbuffer.\n");
4431 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4432 i915_gem_object_unpin(obj);
4433 drm_gem_object_unreference(obj);
4434 i915_gem_cleanup_hws(dev);
4435 return -EINVAL;
4437 ring->ring_obj = obj;
4438 ring->virtual_start = ring->map.handle;
4440 /* Stop the ring if it's running. */
4441 I915_WRITE(PRB0_CTL, 0);
4442 I915_WRITE(PRB0_TAIL, 0);
4443 I915_WRITE(PRB0_HEAD, 0);
4445 /* Initialize the ring. */
4446 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4447 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4449 /* G45 ring initialization fails to reset head to zero */
4450 if (head != 0) {
4451 DRM_ERROR("Ring head not reset to zero "
4452 "ctl %08x head %08x tail %08x start %08x\n",
4453 I915_READ(PRB0_CTL),
4454 I915_READ(PRB0_HEAD),
4455 I915_READ(PRB0_TAIL),
4456 I915_READ(PRB0_START));
4457 I915_WRITE(PRB0_HEAD, 0);
4459 DRM_ERROR("Ring head forced to zero "
4460 "ctl %08x head %08x tail %08x start %08x\n",
4461 I915_READ(PRB0_CTL),
4462 I915_READ(PRB0_HEAD),
4463 I915_READ(PRB0_TAIL),
4464 I915_READ(PRB0_START));
4467 I915_WRITE(PRB0_CTL,
4468 ((obj->size - 4096) & RING_NR_PAGES) |
4469 RING_NO_REPORT |
4470 RING_VALID);
4472 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4474 /* If the head is still not zero, the ring is dead */
4475 if (head != 0) {
4476 DRM_ERROR("Ring initialization failed "
4477 "ctl %08x head %08x tail %08x start %08x\n",
4478 I915_READ(PRB0_CTL),
4479 I915_READ(PRB0_HEAD),
4480 I915_READ(PRB0_TAIL),
4481 I915_READ(PRB0_START));
4482 return -EIO;
4485 /* Update our cache of the ring state */
4486 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4487 i915_kernel_lost_context(dev);
4488 else {
4489 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4490 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4491 ring->space = ring->head - (ring->tail + 8);
4492 if (ring->space < 0)
4493 ring->space += ring->Size;
4496 return 0;
4499 void
4500 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4502 drm_i915_private_t *dev_priv = dev->dev_private;
4504 if (dev_priv->ring.ring_obj == NULL)
4505 return;
4507 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4509 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4510 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4511 dev_priv->ring.ring_obj = NULL;
4512 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4514 i915_gem_cleanup_hws(dev);
4518 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4519 struct drm_file *file_priv)
4521 drm_i915_private_t *dev_priv = dev->dev_private;
4522 int ret;
4524 if (drm_core_check_feature(dev, DRIVER_MODESET))
4525 return 0;
4527 if (atomic_read(&dev_priv->mm.wedged)) {
4528 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4529 atomic_set(&dev_priv->mm.wedged, 0);
4532 mutex_lock(&dev->struct_mutex);
4533 dev_priv->mm.suspended = 0;
4535 ret = i915_gem_init_ringbuffer(dev);
4536 if (ret != 0) {
4537 mutex_unlock(&dev->struct_mutex);
4538 return ret;
4541 spin_lock(&dev_priv->mm.active_list_lock);
4542 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4543 spin_unlock(&dev_priv->mm.active_list_lock);
4545 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4546 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4547 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4548 mutex_unlock(&dev->struct_mutex);
4550 drm_irq_install(dev);
4552 return 0;
4556 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4557 struct drm_file *file_priv)
4559 if (drm_core_check_feature(dev, DRIVER_MODESET))
4560 return 0;
4562 drm_irq_uninstall(dev);
4563 return i915_gem_idle(dev);
4566 void
4567 i915_gem_lastclose(struct drm_device *dev)
4569 int ret;
4571 if (drm_core_check_feature(dev, DRIVER_MODESET))
4572 return;
4574 ret = i915_gem_idle(dev);
4575 if (ret)
4576 DRM_ERROR("failed to idle hardware: %d\n", ret);
4579 void
4580 i915_gem_load(struct drm_device *dev)
4582 int i;
4583 drm_i915_private_t *dev_priv = dev->dev_private;
4585 spin_lock_init(&dev_priv->mm.active_list_lock);
4586 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4587 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4588 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4589 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4590 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4591 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4592 i915_gem_retire_work_handler);
4593 dev_priv->mm.next_gem_seqno = 1;
4595 spin_lock(&shrink_list_lock);
4596 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4597 spin_unlock(&shrink_list_lock);
4599 /* Old X drivers will take 0-2 for front, back, depth buffers */
4600 dev_priv->fence_reg_start = 3;
4602 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4603 dev_priv->num_fence_regs = 16;
4604 else
4605 dev_priv->num_fence_regs = 8;
4607 /* Initialize fence registers to zero */
4608 if (IS_I965G(dev)) {
4609 for (i = 0; i < 16; i++)
4610 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4611 } else {
4612 for (i = 0; i < 8; i++)
4613 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4614 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4615 for (i = 0; i < 8; i++)
4616 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4619 i915_gem_detect_bit_6_swizzle(dev);
4623 * Create a physically contiguous memory object for this object
4624 * e.g. for cursor + overlay regs
4626 int i915_gem_init_phys_object(struct drm_device *dev,
4627 int id, int size)
4629 drm_i915_private_t *dev_priv = dev->dev_private;
4630 struct drm_i915_gem_phys_object *phys_obj;
4631 int ret;
4633 if (dev_priv->mm.phys_objs[id - 1] || !size)
4634 return 0;
4636 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4637 if (!phys_obj)
4638 return -ENOMEM;
4640 phys_obj->id = id;
4642 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4643 if (!phys_obj->handle) {
4644 ret = -ENOMEM;
4645 goto kfree_obj;
4647 #ifdef CONFIG_X86
4648 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4649 #endif
4651 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4653 return 0;
4654 kfree_obj:
4655 kfree(phys_obj);
4656 return ret;
4659 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4661 drm_i915_private_t *dev_priv = dev->dev_private;
4662 struct drm_i915_gem_phys_object *phys_obj;
4664 if (!dev_priv->mm.phys_objs[id - 1])
4665 return;
4667 phys_obj = dev_priv->mm.phys_objs[id - 1];
4668 if (phys_obj->cur_obj) {
4669 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4672 #ifdef CONFIG_X86
4673 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4674 #endif
4675 drm_pci_free(dev, phys_obj->handle);
4676 kfree(phys_obj);
4677 dev_priv->mm.phys_objs[id - 1] = NULL;
4680 void i915_gem_free_all_phys_object(struct drm_device *dev)
4682 int i;
4684 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4685 i915_gem_free_phys_object(dev, i);
4688 void i915_gem_detach_phys_object(struct drm_device *dev,
4689 struct drm_gem_object *obj)
4691 struct drm_i915_gem_object *obj_priv;
4692 int i;
4693 int ret;
4694 int page_count;
4696 obj_priv = obj->driver_private;
4697 if (!obj_priv->phys_obj)
4698 return;
4700 ret = i915_gem_object_get_pages(obj);
4701 if (ret)
4702 goto out;
4704 page_count = obj->size / PAGE_SIZE;
4706 for (i = 0; i < page_count; i++) {
4707 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4708 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4710 memcpy(dst, src, PAGE_SIZE);
4711 kunmap_atomic(dst, KM_USER0);
4713 drm_clflush_pages(obj_priv->pages, page_count);
4714 drm_agp_chipset_flush(dev);
4716 i915_gem_object_put_pages(obj);
4717 out:
4718 obj_priv->phys_obj->cur_obj = NULL;
4719 obj_priv->phys_obj = NULL;
4723 i915_gem_attach_phys_object(struct drm_device *dev,
4724 struct drm_gem_object *obj, int id)
4726 drm_i915_private_t *dev_priv = dev->dev_private;
4727 struct drm_i915_gem_object *obj_priv;
4728 int ret = 0;
4729 int page_count;
4730 int i;
4732 if (id > I915_MAX_PHYS_OBJECT)
4733 return -EINVAL;
4735 obj_priv = obj->driver_private;
4737 if (obj_priv->phys_obj) {
4738 if (obj_priv->phys_obj->id == id)
4739 return 0;
4740 i915_gem_detach_phys_object(dev, obj);
4744 /* create a new object */
4745 if (!dev_priv->mm.phys_objs[id - 1]) {
4746 ret = i915_gem_init_phys_object(dev, id,
4747 obj->size);
4748 if (ret) {
4749 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4750 goto out;
4754 /* bind to the object */
4755 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4756 obj_priv->phys_obj->cur_obj = obj;
4758 ret = i915_gem_object_get_pages(obj);
4759 if (ret) {
4760 DRM_ERROR("failed to get page list\n");
4761 goto out;
4764 page_count = obj->size / PAGE_SIZE;
4766 for (i = 0; i < page_count; i++) {
4767 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4768 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4770 memcpy(dst, src, PAGE_SIZE);
4771 kunmap_atomic(src, KM_USER0);
4774 i915_gem_object_put_pages(obj);
4776 return 0;
4777 out:
4778 return ret;
4781 static int
4782 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4783 struct drm_i915_gem_pwrite *args,
4784 struct drm_file *file_priv)
4786 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4787 void *obj_addr;
4788 int ret;
4789 char __user *user_data;
4791 user_data = (char __user *) (uintptr_t) args->data_ptr;
4792 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4794 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4795 ret = copy_from_user(obj_addr, user_data, args->size);
4796 if (ret)
4797 return -EFAULT;
4799 drm_agp_chipset_flush(dev);
4800 return 0;
4803 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4805 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4807 /* Clean up our request list when the client is going away, so that
4808 * later retire_requests won't dereference our soon-to-be-gone
4809 * file_priv.
4811 mutex_lock(&dev->struct_mutex);
4812 while (!list_empty(&i915_file_priv->mm.request_list))
4813 list_del_init(i915_file_priv->mm.request_list.next);
4814 mutex_unlock(&dev->struct_mutex);
4817 static int
4818 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4820 drm_i915_private_t *dev_priv, *next_dev;
4821 struct drm_i915_gem_object *obj_priv, *next_obj;
4822 int cnt = 0;
4823 int would_deadlock = 1;
4825 /* "fast-path" to count number of available objects */
4826 if (nr_to_scan == 0) {
4827 spin_lock(&shrink_list_lock);
4828 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4829 struct drm_device *dev = dev_priv->dev;
4831 if (mutex_trylock(&dev->struct_mutex)) {
4832 list_for_each_entry(obj_priv,
4833 &dev_priv->mm.inactive_list,
4834 list)
4835 cnt++;
4836 mutex_unlock(&dev->struct_mutex);
4839 spin_unlock(&shrink_list_lock);
4841 return (cnt / 100) * sysctl_vfs_cache_pressure;
4844 spin_lock(&shrink_list_lock);
4846 /* first scan for clean buffers */
4847 list_for_each_entry_safe(dev_priv, next_dev,
4848 &shrink_list, mm.shrink_list) {
4849 struct drm_device *dev = dev_priv->dev;
4851 if (! mutex_trylock(&dev->struct_mutex))
4852 continue;
4854 spin_unlock(&shrink_list_lock);
4856 i915_gem_retire_requests(dev);
4858 list_for_each_entry_safe(obj_priv, next_obj,
4859 &dev_priv->mm.inactive_list,
4860 list) {
4861 if (i915_gem_object_is_purgeable(obj_priv)) {
4862 i915_gem_object_unbind(obj_priv->obj);
4863 if (--nr_to_scan <= 0)
4864 break;
4868 spin_lock(&shrink_list_lock);
4869 mutex_unlock(&dev->struct_mutex);
4871 would_deadlock = 0;
4873 if (nr_to_scan <= 0)
4874 break;
4877 /* second pass, evict/count anything still on the inactive list */
4878 list_for_each_entry_safe(dev_priv, next_dev,
4879 &shrink_list, mm.shrink_list) {
4880 struct drm_device *dev = dev_priv->dev;
4882 if (! mutex_trylock(&dev->struct_mutex))
4883 continue;
4885 spin_unlock(&shrink_list_lock);
4887 list_for_each_entry_safe(obj_priv, next_obj,
4888 &dev_priv->mm.inactive_list,
4889 list) {
4890 if (nr_to_scan > 0) {
4891 i915_gem_object_unbind(obj_priv->obj);
4892 nr_to_scan--;
4893 } else
4894 cnt++;
4897 spin_lock(&shrink_list_lock);
4898 mutex_unlock(&dev->struct_mutex);
4900 would_deadlock = 0;
4903 spin_unlock(&shrink_list_lock);
4905 if (would_deadlock)
4906 return -1;
4907 else if (cnt > 0)
4908 return (cnt / 100) * sysctl_vfs_cache_pressure;
4909 else
4910 return 0;
4913 static struct shrinker shrinker = {
4914 .shrink = i915_gem_shrink,
4915 .seeks = DEFAULT_SEEKS,
4918 __init void
4919 i915_gem_shrinker_init(void)
4921 register_shrinker(&shrinker);
4924 __exit void
4925 i915_gem_shrinker_exit(void)
4927 unregister_shrinker(&shrinker);