USB: ohci-pnx4008: Remove unnecessary cast of return value of kzalloc
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / ehci-sched.c
blobd4a8ace496769308338bce8e081511d80032e1d6
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 /* this file is part of ehci-hcd.c */
22 /*-------------------------------------------------------------------------*/
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
37 static int ehci_get_frame (struct usb_hcd *hcd);
39 /*-------------------------------------------------------------------------*/
42 * periodic_next_shadow - return "next" pointer on shadow list
43 * @periodic: host pointer to qh/itd/sitd
44 * @tag: hardware tag for type of this record
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 __hc32 tag)
50 switch (hc32_to_cpu(ehci, tag)) {
51 case Q_TYPE_QH:
52 return &periodic->qh->qh_next;
53 case Q_TYPE_FSTN:
54 return &periodic->fstn->fstn_next;
55 case Q_TYPE_ITD:
56 return &periodic->itd->itd_next;
57 // case Q_TYPE_SITD:
58 default:
59 return &periodic->sitd->sitd_next;
63 /* caller must hold ehci->lock */
64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
66 union ehci_shadow *prev_p = &ehci->pshadow[frame];
67 __hc32 *hw_p = &ehci->periodic[frame];
68 union ehci_shadow here = *prev_p;
70 /* find predecessor of "ptr"; hw and shadow lists are in sync */
71 while (here.ptr && here.ptr != ptr) {
72 prev_p = periodic_next_shadow(ehci, prev_p,
73 Q_NEXT_TYPE(ehci, *hw_p));
74 hw_p = here.hw_next;
75 here = *prev_p;
77 /* an interrupt entry (at list end) could have been shared */
78 if (!here.ptr)
79 return;
81 /* update shadow and hardware lists ... the old "next" pointers
82 * from ptr may still be in use, the caller updates them.
84 *prev_p = *periodic_next_shadow(ehci, &here,
85 Q_NEXT_TYPE(ehci, *hw_p));
86 *hw_p = *here.hw_next;
89 /* how many of the uframe's 125 usecs are allocated? */
90 static unsigned short
91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
93 __hc32 *hw_p = &ehci->periodic [frame];
94 union ehci_shadow *q = &ehci->pshadow [frame];
95 unsigned usecs = 0;
97 while (q->ptr) {
98 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
99 case Q_TYPE_QH:
100 /* is it in the S-mask? */
101 if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
102 usecs += q->qh->usecs;
103 /* ... or C-mask? */
104 if (q->qh->hw_info2 & cpu_to_hc32(ehci,
105 1 << (8 + uframe)))
106 usecs += q->qh->c_usecs;
107 hw_p = &q->qh->hw_next;
108 q = &q->qh->qh_next;
109 break;
110 // case Q_TYPE_FSTN:
111 default:
112 /* for "save place" FSTNs, count the relevant INTR
113 * bandwidth from the previous frame
115 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
116 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
118 hw_p = &q->fstn->hw_next;
119 q = &q->fstn->fstn_next;
120 break;
121 case Q_TYPE_ITD:
122 usecs += q->itd->usecs [uframe];
123 hw_p = &q->itd->hw_next;
124 q = &q->itd->itd_next;
125 break;
126 case Q_TYPE_SITD:
127 /* is it in the S-mask? (count SPLIT, DATA) */
128 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
129 1 << uframe)) {
130 if (q->sitd->hw_fullspeed_ep &
131 cpu_to_hc32(ehci, 1<<31))
132 usecs += q->sitd->stream->usecs;
133 else /* worst case for OUT start-split */
134 usecs += HS_USECS_ISO (188);
137 /* ... C-mask? (count CSPLIT, DATA) */
138 if (q->sitd->hw_uframe &
139 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
140 /* worst case for IN complete-split */
141 usecs += q->sitd->stream->c_usecs;
144 hw_p = &q->sitd->hw_next;
145 q = &q->sitd->sitd_next;
146 break;
149 #ifdef DEBUG
150 if (usecs > 100)
151 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
152 frame * 8 + uframe, usecs);
153 #endif
154 return usecs;
157 /*-------------------------------------------------------------------------*/
159 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
161 if (!dev1->tt || !dev2->tt)
162 return 0;
163 if (dev1->tt != dev2->tt)
164 return 0;
165 if (dev1->tt->multi)
166 return dev1->ttport == dev2->ttport;
167 else
168 return 1;
171 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
173 /* Which uframe does the low/fullspeed transfer start in?
175 * The parameter is the mask of ssplits in "H-frame" terms
176 * and this returns the transfer start uframe in "B-frame" terms,
177 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
178 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
179 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
181 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
183 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
184 if (!smask) {
185 ehci_err(ehci, "invalid empty smask!\n");
186 /* uframe 7 can't have bw so this will indicate failure */
187 return 7;
189 return ffs(smask) - 1;
192 static const unsigned char
193 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
195 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
196 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
198 int i;
199 for (i=0; i<7; i++) {
200 if (max_tt_usecs[i] < tt_usecs[i]) {
201 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
202 tt_usecs[i] = max_tt_usecs[i];
207 /* How many of the tt's periodic downstream 1000 usecs are allocated?
209 * While this measures the bandwidth in terms of usecs/uframe,
210 * the low/fullspeed bus has no notion of uframes, so any particular
211 * low/fullspeed transfer can "carry over" from one uframe to the next,
212 * since the TT just performs downstream transfers in sequence.
214 * For example two seperate 100 usec transfers can start in the same uframe,
215 * and the second one would "carry over" 75 usecs into the next uframe.
217 static void
218 periodic_tt_usecs (
219 struct ehci_hcd *ehci,
220 struct usb_device *dev,
221 unsigned frame,
222 unsigned short tt_usecs[8]
225 __hc32 *hw_p = &ehci->periodic [frame];
226 union ehci_shadow *q = &ehci->pshadow [frame];
227 unsigned char uf;
229 memset(tt_usecs, 0, 16);
231 while (q->ptr) {
232 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
233 case Q_TYPE_ITD:
234 hw_p = &q->itd->hw_next;
235 q = &q->itd->itd_next;
236 continue;
237 case Q_TYPE_QH:
238 if (same_tt(dev, q->qh->dev)) {
239 uf = tt_start_uframe(ehci, q->qh->hw_info2);
240 tt_usecs[uf] += q->qh->tt_usecs;
242 hw_p = &q->qh->hw_next;
243 q = &q->qh->qh_next;
244 continue;
245 case Q_TYPE_SITD:
246 if (same_tt(dev, q->sitd->urb->dev)) {
247 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
248 tt_usecs[uf] += q->sitd->stream->tt_usecs;
250 hw_p = &q->sitd->hw_next;
251 q = &q->sitd->sitd_next;
252 continue;
253 // case Q_TYPE_FSTN:
254 default:
255 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
256 frame);
257 hw_p = &q->fstn->hw_next;
258 q = &q->fstn->fstn_next;
262 carryover_tt_bandwidth(tt_usecs);
264 if (max_tt_usecs[7] < tt_usecs[7])
265 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
266 frame, tt_usecs[7] - max_tt_usecs[7]);
270 * Return true if the device's tt's downstream bus is available for a
271 * periodic transfer of the specified length (usecs), starting at the
272 * specified frame/uframe. Note that (as summarized in section 11.19
273 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
274 * uframe.
276 * The uframe parameter is when the fullspeed/lowspeed transfer
277 * should be executed in "B-frame" terms, which is the same as the
278 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
279 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
280 * See the EHCI spec sec 4.5 and fig 4.7.
282 * This checks if the full/lowspeed bus, at the specified starting uframe,
283 * has the specified bandwidth available, according to rules listed
284 * in USB 2.0 spec section 11.18.1 fig 11-60.
286 * This does not check if the transfer would exceed the max ssplit
287 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
288 * since proper scheduling limits ssplits to less than 16 per uframe.
290 static int tt_available (
291 struct ehci_hcd *ehci,
292 unsigned period,
293 struct usb_device *dev,
294 unsigned frame,
295 unsigned uframe,
296 u16 usecs
299 if ((period == 0) || (uframe >= 7)) /* error */
300 return 0;
302 for (; frame < ehci->periodic_size; frame += period) {
303 unsigned short tt_usecs[8];
305 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
307 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
308 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
309 frame, usecs, uframe,
310 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
311 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
313 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
314 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
315 frame, uframe);
316 return 0;
319 /* special case for isoc transfers larger than 125us:
320 * the first and each subsequent fully used uframe
321 * must be empty, so as to not illegally delay
322 * already scheduled transactions
324 if (125 < usecs) {
325 int ufs = (usecs / 125) - 1;
326 int i;
327 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
328 if (0 < tt_usecs[i]) {
329 ehci_vdbg(ehci,
330 "multi-uframe xfer can't fit "
331 "in frame %d uframe %d\n",
332 frame, i);
333 return 0;
337 tt_usecs[uframe] += usecs;
339 carryover_tt_bandwidth(tt_usecs);
341 /* fail if the carryover pushed bw past the last uframe's limit */
342 if (max_tt_usecs[7] < tt_usecs[7]) {
343 ehci_vdbg(ehci,
344 "tt unavailable usecs %d frame %d uframe %d\n",
345 usecs, frame, uframe);
346 return 0;
350 return 1;
353 #else
355 /* return true iff the device's transaction translator is available
356 * for a periodic transfer starting at the specified frame, using
357 * all the uframes in the mask.
359 static int tt_no_collision (
360 struct ehci_hcd *ehci,
361 unsigned period,
362 struct usb_device *dev,
363 unsigned frame,
364 u32 uf_mask
367 if (period == 0) /* error */
368 return 0;
370 /* note bandwidth wastage: split never follows csplit
371 * (different dev or endpoint) until the next uframe.
372 * calling convention doesn't make that distinction.
374 for (; frame < ehci->periodic_size; frame += period) {
375 union ehci_shadow here;
376 __hc32 type;
378 here = ehci->pshadow [frame];
379 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
380 while (here.ptr) {
381 switch (hc32_to_cpu(ehci, type)) {
382 case Q_TYPE_ITD:
383 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
384 here = here.itd->itd_next;
385 continue;
386 case Q_TYPE_QH:
387 if (same_tt (dev, here.qh->dev)) {
388 u32 mask;
390 mask = hc32_to_cpu(ehci,
391 here.qh->hw_info2);
392 /* "knows" no gap is needed */
393 mask |= mask >> 8;
394 if (mask & uf_mask)
395 break;
397 type = Q_NEXT_TYPE(ehci, here.qh->hw_next);
398 here = here.qh->qh_next;
399 continue;
400 case Q_TYPE_SITD:
401 if (same_tt (dev, here.sitd->urb->dev)) {
402 u16 mask;
404 mask = hc32_to_cpu(ehci, here.sitd
405 ->hw_uframe);
406 /* FIXME assumes no gap for IN! */
407 mask |= mask >> 8;
408 if (mask & uf_mask)
409 break;
411 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
412 here = here.sitd->sitd_next;
413 continue;
414 // case Q_TYPE_FSTN:
415 default:
416 ehci_dbg (ehci,
417 "periodic frame %d bogus type %d\n",
418 frame, type);
421 /* collision or error */
422 return 0;
426 /* no collision */
427 return 1;
430 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
432 /*-------------------------------------------------------------------------*/
434 static int enable_periodic (struct ehci_hcd *ehci)
436 u32 cmd;
437 int status;
439 /* did clearing PSE did take effect yet?
440 * takes effect only at frame boundaries...
442 status = handshake(ehci, &ehci->regs->status, STS_PSS, 0, 9 * 125);
443 if (status != 0) {
444 ehci_to_hcd(ehci)->state = HC_STATE_HALT;
445 return status;
448 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
449 ehci_writel(ehci, cmd, &ehci->regs->command);
450 /* posted write ... PSS happens later */
451 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
453 /* make sure ehci_work scans these */
454 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
455 % (ehci->periodic_size << 3);
456 return 0;
459 static int disable_periodic (struct ehci_hcd *ehci)
461 u32 cmd;
462 int status;
464 /* did setting PSE not take effect yet?
465 * takes effect only at frame boundaries...
467 status = handshake(ehci, &ehci->regs->status, STS_PSS, STS_PSS, 9 * 125);
468 if (status != 0) {
469 ehci_to_hcd(ehci)->state = HC_STATE_HALT;
470 return status;
473 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
474 ehci_writel(ehci, cmd, &ehci->regs->command);
475 /* posted write ... */
477 ehci->next_uframe = -1;
478 return 0;
481 /*-------------------------------------------------------------------------*/
482 #ifdef CONFIG_CPU_FREQ
484 static int safe_to_modify_i (struct ehci_hcd *ehci, struct ehci_qh *qh)
486 int now; /* current (frame * 8) + uframe */
487 int prev_start, next_start; /* uframes from/to split start */
488 int start_uframe = ffs(le32_to_cpup (&qh->hw_info2) & QH_SMASK);
489 int end_uframe = fls((le32_to_cpup (&qh->hw_info2) & QH_CMASK) >> 8);
490 int split_duration = end_uframe - start_uframe;
492 now = readl(&ehci->regs->frame_index) % (ehci->periodic_size << 3);
494 next_start = ((1024 << 3) + (qh->start << 3) + start_uframe - now)
495 % (qh->period << 3);
496 prev_start = (qh->period << 3) - next_start;
499 * Make sure there will be at least one uframe when qh is safe.
501 if ((qh->period << 3) <= (ehci->i_thresh + 2 + split_duration))
502 /* never safe */
503 return -EINVAL;
506 * Wait 1 uframe after transaction should have started, to make
507 * sure controller has time to write back overlay, so we can
508 * check QTD_STS_STS to see if transaction is in progress.
510 if ((next_start > ehci->i_thresh) && (prev_start > 1))
511 /* safe to set "i" bit if split isn't in progress */
512 return (qh->hw_token & STATUS_BIT(ehci)) ? 0 : 1;
513 else
514 return 0;
517 /* Set inactivate bit for all the split interrupt QHs. */
518 static void qh_inactivate_split_intr_qhs (struct ehci_hcd *ehci)
520 struct ehci_qh *qh;
521 int not_done, safe;
522 u32 inactivate = INACTIVATE_BIT(ehci);
523 u32 active = ACTIVE_BIT(ehci);
525 do {
526 not_done = 0;
527 list_for_each_entry(qh, &ehci->split_intr_qhs,
528 split_intr_qhs) {
529 if (qh->hw_info1 & inactivate)
530 /* already off */
531 continue;
533 * To avoid setting "I" after the start split happens,
534 * don't set it if the QH might be cached in the
535 * controller. Some HCs (Broadcom/ServerWorks HT1000)
536 * will stop in the middle of a split transaction when
537 * the "I" bit is set.
539 safe = safe_to_modify_i(ehci, qh);
540 if (safe == 0) {
541 not_done = 1;
542 } else if (safe > 0) {
543 qh->was_active = qh->hw_token & active;
544 qh->hw_info1 |= inactivate;
547 } while (not_done);
548 wmb();
551 static void qh_reactivate_split_intr_qhs (struct ehci_hcd *ehci)
553 struct ehci_qh *qh;
554 u32 token;
555 int not_done, safe;
556 u32 inactivate = INACTIVATE_BIT(ehci);
557 u32 active = ACTIVE_BIT(ehci);
558 u32 halt = HALT_BIT(ehci);
560 do {
561 not_done = 0;
562 list_for_each_entry(qh, &ehci->split_intr_qhs, split_intr_qhs) {
563 if (!(qh->hw_info1 & inactivate)) /* already on */
564 continue;
566 * Don't reactivate if cached, or controller might
567 * overwrite overlay after we modify it!
569 safe = safe_to_modify_i(ehci, qh);
570 if (safe == 0) {
571 not_done = 1;
572 } else if (safe > 0) {
573 /* See EHCI 1.0 section 4.15.2.4. */
574 token = qh->hw_token;
575 qh->hw_token = (token | halt) & ~active;
576 wmb();
577 qh->hw_info1 &= ~inactivate;
578 wmb();
579 qh->hw_token = (token & ~halt) | qh->was_active;
582 } while (not_done);
584 #endif
586 /* periodic schedule slots have iso tds (normal or split) first, then a
587 * sparse tree for active interrupt transfers.
589 * this just links in a qh; caller guarantees uframe masks are set right.
590 * no FSTN support (yet; ehci 0.96+)
592 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
594 unsigned i;
595 unsigned period = qh->period;
597 dev_dbg (&qh->dev->dev,
598 "link qh%d-%04x/%p start %d [%d/%d us]\n",
599 period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
600 qh, qh->start, qh->usecs, qh->c_usecs);
602 #ifdef CONFIG_CPU_FREQ
604 * If low/full speed interrupt QHs are inactive (because of
605 * cpufreq changing processor speeds), start QH with I flag set--
606 * it will automatically be cleared when cpufreq is done.
608 if (ehci->cpufreq_changing)
609 if (!(qh->hw_info1 & (cpu_to_le32(1 << 13))))
610 qh->hw_info1 |= INACTIVATE_BIT(ehci);
611 #endif
613 /* high bandwidth, or otherwise every microframe */
614 if (period == 0)
615 period = 1;
617 for (i = qh->start; i < ehci->periodic_size; i += period) {
618 union ehci_shadow *prev = &ehci->pshadow[i];
619 __hc32 *hw_p = &ehci->periodic[i];
620 union ehci_shadow here = *prev;
621 __hc32 type = 0;
623 /* skip the iso nodes at list head */
624 while (here.ptr) {
625 type = Q_NEXT_TYPE(ehci, *hw_p);
626 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
627 break;
628 prev = periodic_next_shadow(ehci, prev, type);
629 hw_p = &here.qh->hw_next;
630 here = *prev;
633 /* sorting each branch by period (slow-->fast)
634 * enables sharing interior tree nodes
636 while (here.ptr && qh != here.qh) {
637 if (qh->period > here.qh->period)
638 break;
639 prev = &here.qh->qh_next;
640 hw_p = &here.qh->hw_next;
641 here = *prev;
643 /* link in this qh, unless some earlier pass did that */
644 if (qh != here.qh) {
645 qh->qh_next = here;
646 if (here.qh)
647 qh->hw_next = *hw_p;
648 wmb ();
649 prev->qh = qh;
650 *hw_p = QH_NEXT (ehci, qh->qh_dma);
653 qh->qh_state = QH_STATE_LINKED;
654 qh_get (qh);
656 /* update per-qh bandwidth for usbfs */
657 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
658 ? ((qh->usecs + qh->c_usecs) / qh->period)
659 : (qh->usecs * 8);
661 #ifdef CONFIG_CPU_FREQ
662 /* add qh to list of low/full speed interrupt QHs, if applicable */
663 if (!(qh->hw_info1 & (cpu_to_le32(1 << 13)))) {
664 list_add(&qh->split_intr_qhs, &ehci->split_intr_qhs);
666 #endif
667 /* maybe enable periodic schedule processing */
668 if (!ehci->periodic_sched++)
669 return enable_periodic (ehci);
671 return 0;
674 static void qh_unlink_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
676 unsigned i;
677 unsigned period;
679 // FIXME:
680 // IF this isn't high speed
681 // and this qh is active in the current uframe
682 // (and overlay token SplitXstate is false?)
683 // THEN
684 // qh->hw_info1 |= __constant_cpu_to_hc32(1 << 7 /* "ignore" */);
686 #ifdef CONFIG_CPU_FREQ
687 /* remove qh from list of low/full speed interrupt QHs */
688 if (!(qh->hw_info1 & (cpu_to_le32(1 << 13)))) {
689 list_del_init(&qh->split_intr_qhs);
691 #endif
693 /* high bandwidth, or otherwise part of every microframe */
694 if ((period = qh->period) == 0)
695 period = 1;
697 for (i = qh->start; i < ehci->periodic_size; i += period)
698 periodic_unlink (ehci, i, qh);
700 /* update per-qh bandwidth for usbfs */
701 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
702 ? ((qh->usecs + qh->c_usecs) / qh->period)
703 : (qh->usecs * 8);
705 dev_dbg (&qh->dev->dev,
706 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
707 qh->period,
708 hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
709 qh, qh->start, qh->usecs, qh->c_usecs);
711 /* qh->qh_next still "live" to HC */
712 qh->qh_state = QH_STATE_UNLINK;
713 qh->qh_next.ptr = NULL;
714 qh_put (qh);
716 /* maybe turn off periodic schedule */
717 ehci->periodic_sched--;
718 if (!ehci->periodic_sched)
719 (void) disable_periodic (ehci);
722 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
724 unsigned wait;
726 qh_unlink_periodic (ehci, qh);
728 /* simple/paranoid: always delay, expecting the HC needs to read
729 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
730 * expect khubd to clean up after any CSPLITs we won't issue.
731 * active high speed queues may need bigger delays...
733 if (list_empty (&qh->qtd_list)
734 || (cpu_to_hc32(ehci, QH_CMASK)
735 & qh->hw_info2) != 0)
736 wait = 2;
737 else
738 wait = 55; /* worst case: 3 * 1024 */
740 udelay (wait);
741 qh->qh_state = QH_STATE_IDLE;
742 qh->hw_next = EHCI_LIST_END(ehci);
743 wmb ();
746 /*-------------------------------------------------------------------------*/
748 static int check_period (
749 struct ehci_hcd *ehci,
750 unsigned frame,
751 unsigned uframe,
752 unsigned period,
753 unsigned usecs
755 int claimed;
757 /* complete split running into next frame?
758 * given FSTN support, we could sometimes check...
760 if (uframe >= 8)
761 return 0;
764 * 80% periodic == 100 usec/uframe available
765 * convert "usecs we need" to "max already claimed"
767 usecs = 100 - usecs;
769 /* we "know" 2 and 4 uframe intervals were rejected; so
770 * for period 0, check _every_ microframe in the schedule.
772 if (unlikely (period == 0)) {
773 do {
774 for (uframe = 0; uframe < 7; uframe++) {
775 claimed = periodic_usecs (ehci, frame, uframe);
776 if (claimed > usecs)
777 return 0;
779 } while ((frame += 1) < ehci->periodic_size);
781 /* just check the specified uframe, at that period */
782 } else {
783 do {
784 claimed = periodic_usecs (ehci, frame, uframe);
785 if (claimed > usecs)
786 return 0;
787 } while ((frame += period) < ehci->periodic_size);
790 // success!
791 return 1;
794 static int check_intr_schedule (
795 struct ehci_hcd *ehci,
796 unsigned frame,
797 unsigned uframe,
798 const struct ehci_qh *qh,
799 __hc32 *c_maskp
802 int retval = -ENOSPC;
803 u8 mask = 0;
805 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
806 goto done;
808 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
809 goto done;
810 if (!qh->c_usecs) {
811 retval = 0;
812 *c_maskp = 0;
813 goto done;
816 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
817 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
818 qh->tt_usecs)) {
819 unsigned i;
821 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
822 for (i=uframe+1; i<8 && i<uframe+4; i++)
823 if (!check_period (ehci, frame, i,
824 qh->period, qh->c_usecs))
825 goto done;
826 else
827 mask |= 1 << i;
829 retval = 0;
831 *c_maskp = cpu_to_hc32(ehci, mask << 8);
833 #else
834 /* Make sure this tt's buffer is also available for CSPLITs.
835 * We pessimize a bit; probably the typical full speed case
836 * doesn't need the second CSPLIT.
838 * NOTE: both SPLIT and CSPLIT could be checked in just
839 * one smart pass...
841 mask = 0x03 << (uframe + qh->gap_uf);
842 *c_maskp = cpu_to_hc32(ehci, mask << 8);
844 mask |= 1 << uframe;
845 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
846 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
847 qh->period, qh->c_usecs))
848 goto done;
849 if (!check_period (ehci, frame, uframe + qh->gap_uf,
850 qh->period, qh->c_usecs))
851 goto done;
852 retval = 0;
854 #endif
855 done:
856 return retval;
859 /* "first fit" scheduling policy used the first time through,
860 * or when the previous schedule slot can't be re-used.
862 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
864 int status;
865 unsigned uframe;
866 __hc32 c_mask;
867 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
869 qh_refresh(ehci, qh);
870 qh->hw_next = EHCI_LIST_END(ehci);
871 frame = qh->start;
873 /* reuse the previous schedule slots, if we can */
874 if (frame < qh->period) {
875 uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK);
876 status = check_intr_schedule (ehci, frame, --uframe,
877 qh, &c_mask);
878 } else {
879 uframe = 0;
880 c_mask = 0;
881 status = -ENOSPC;
884 /* else scan the schedule to find a group of slots such that all
885 * uframes have enough periodic bandwidth available.
887 if (status) {
888 /* "normal" case, uframing flexible except with splits */
889 if (qh->period) {
890 frame = qh->period - 1;
891 do {
892 for (uframe = 0; uframe < 8; uframe++) {
893 status = check_intr_schedule (ehci,
894 frame, uframe, qh,
895 &c_mask);
896 if (status == 0)
897 break;
899 } while (status && frame--);
901 /* qh->period == 0 means every uframe */
902 } else {
903 frame = 0;
904 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
906 if (status)
907 goto done;
908 qh->start = frame;
910 /* reset S-frame and (maybe) C-frame masks */
911 qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
912 qh->hw_info2 |= qh->period
913 ? cpu_to_hc32(ehci, 1 << uframe)
914 : cpu_to_hc32(ehci, QH_SMASK);
915 qh->hw_info2 |= c_mask;
916 } else
917 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
919 /* stuff into the periodic schedule */
920 status = qh_link_periodic (ehci, qh);
921 done:
922 return status;
925 static int intr_submit (
926 struct ehci_hcd *ehci,
927 struct usb_host_endpoint *ep,
928 struct urb *urb,
929 struct list_head *qtd_list,
930 gfp_t mem_flags
932 unsigned epnum;
933 unsigned long flags;
934 struct ehci_qh *qh;
935 int status = 0;
936 struct list_head empty;
938 /* get endpoint and transfer/schedule data */
939 epnum = ep->desc.bEndpointAddress;
941 spin_lock_irqsave (&ehci->lock, flags);
943 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
944 &ehci_to_hcd(ehci)->flags))) {
945 status = -ESHUTDOWN;
946 goto done;
949 /* get qh and force any scheduling errors */
950 INIT_LIST_HEAD (&empty);
951 qh = qh_append_tds (ehci, urb, &empty, epnum, &ep->hcpriv);
952 if (qh == NULL) {
953 status = -ENOMEM;
954 goto done;
956 if (qh->qh_state == QH_STATE_IDLE) {
957 if ((status = qh_schedule (ehci, qh)) != 0)
958 goto done;
961 /* then queue the urb's tds to the qh */
962 qh = qh_append_tds (ehci, urb, qtd_list, epnum, &ep->hcpriv);
963 BUG_ON (qh == NULL);
965 /* ... update usbfs periodic stats */
966 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
968 done:
969 spin_unlock_irqrestore (&ehci->lock, flags);
970 if (status)
971 qtd_list_free (ehci, urb, qtd_list);
973 return status;
976 /*-------------------------------------------------------------------------*/
978 /* ehci_iso_stream ops work with both ITD and SITD */
980 static struct ehci_iso_stream *
981 iso_stream_alloc (gfp_t mem_flags)
983 struct ehci_iso_stream *stream;
985 stream = kzalloc(sizeof *stream, mem_flags);
986 if (likely (stream != NULL)) {
987 INIT_LIST_HEAD(&stream->td_list);
988 INIT_LIST_HEAD(&stream->free_list);
989 stream->next_uframe = -1;
990 stream->refcount = 1;
992 return stream;
995 static void
996 iso_stream_init (
997 struct ehci_hcd *ehci,
998 struct ehci_iso_stream *stream,
999 struct usb_device *dev,
1000 int pipe,
1001 unsigned interval
1004 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1006 u32 buf1;
1007 unsigned epnum, maxp;
1008 int is_input;
1009 long bandwidth;
1012 * this might be a "high bandwidth" highspeed endpoint,
1013 * as encoded in the ep descriptor's wMaxPacket field
1015 epnum = usb_pipeendpoint (pipe);
1016 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
1017 maxp = usb_maxpacket(dev, pipe, !is_input);
1018 if (is_input) {
1019 buf1 = (1 << 11);
1020 } else {
1021 buf1 = 0;
1024 /* knows about ITD vs SITD */
1025 if (dev->speed == USB_SPEED_HIGH) {
1026 unsigned multi = hb_mult(maxp);
1028 stream->highspeed = 1;
1030 maxp = max_packet(maxp);
1031 buf1 |= maxp;
1032 maxp *= multi;
1034 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1035 stream->buf1 = cpu_to_hc32(ehci, buf1);
1036 stream->buf2 = cpu_to_hc32(ehci, multi);
1038 /* usbfs wants to report the average usecs per frame tied up
1039 * when transfers on this endpoint are scheduled ...
1041 stream->usecs = HS_USECS_ISO (maxp);
1042 bandwidth = stream->usecs * 8;
1043 bandwidth /= 1 << (interval - 1);
1045 } else {
1046 u32 addr;
1047 int think_time;
1048 int hs_transfers;
1050 addr = dev->ttport << 24;
1051 if (!ehci_is_TDI(ehci)
1052 || (dev->tt->hub !=
1053 ehci_to_hcd(ehci)->self.root_hub))
1054 addr |= dev->tt->hub->devnum << 16;
1055 addr |= epnum << 8;
1056 addr |= dev->devnum;
1057 stream->usecs = HS_USECS_ISO (maxp);
1058 think_time = dev->tt ? dev->tt->think_time : 0;
1059 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1060 dev->speed, is_input, 1, maxp));
1061 hs_transfers = max (1u, (maxp + 187) / 188);
1062 if (is_input) {
1063 u32 tmp;
1065 addr |= 1 << 31;
1066 stream->c_usecs = stream->usecs;
1067 stream->usecs = HS_USECS_ISO (1);
1068 stream->raw_mask = 1;
1070 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1071 tmp = (1 << (hs_transfers + 2)) - 1;
1072 stream->raw_mask |= tmp << (8 + 2);
1073 } else
1074 stream->raw_mask = smask_out [hs_transfers - 1];
1075 bandwidth = stream->usecs + stream->c_usecs;
1076 bandwidth /= 1 << (interval + 2);
1078 /* stream->splits gets created from raw_mask later */
1079 stream->address = cpu_to_hc32(ehci, addr);
1081 stream->bandwidth = bandwidth;
1083 stream->udev = dev;
1085 stream->bEndpointAddress = is_input | epnum;
1086 stream->interval = interval;
1087 stream->maxp = maxp;
1090 static void
1091 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1093 stream->refcount--;
1095 /* free whenever just a dev->ep reference remains.
1096 * not like a QH -- no persistent state (toggle, halt)
1098 if (stream->refcount == 1) {
1099 int is_in;
1101 // BUG_ON (!list_empty(&stream->td_list));
1103 while (!list_empty (&stream->free_list)) {
1104 struct list_head *entry;
1106 entry = stream->free_list.next;
1107 list_del (entry);
1109 /* knows about ITD vs SITD */
1110 if (stream->highspeed) {
1111 struct ehci_itd *itd;
1113 itd = list_entry (entry, struct ehci_itd,
1114 itd_list);
1115 dma_pool_free (ehci->itd_pool, itd,
1116 itd->itd_dma);
1117 } else {
1118 struct ehci_sitd *sitd;
1120 sitd = list_entry (entry, struct ehci_sitd,
1121 sitd_list);
1122 dma_pool_free (ehci->sitd_pool, sitd,
1123 sitd->sitd_dma);
1127 is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1128 stream->bEndpointAddress &= 0x0f;
1129 stream->ep->hcpriv = NULL;
1131 if (stream->rescheduled) {
1132 ehci_info (ehci, "ep%d%s-iso rescheduled "
1133 "%lu times in %lu seconds\n",
1134 stream->bEndpointAddress, is_in ? "in" : "out",
1135 stream->rescheduled,
1136 ((jiffies - stream->start)/HZ)
1140 kfree(stream);
1144 static inline struct ehci_iso_stream *
1145 iso_stream_get (struct ehci_iso_stream *stream)
1147 if (likely (stream != NULL))
1148 stream->refcount++;
1149 return stream;
1152 static struct ehci_iso_stream *
1153 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1155 unsigned epnum;
1156 struct ehci_iso_stream *stream;
1157 struct usb_host_endpoint *ep;
1158 unsigned long flags;
1160 epnum = usb_pipeendpoint (urb->pipe);
1161 if (usb_pipein(urb->pipe))
1162 ep = urb->dev->ep_in[epnum];
1163 else
1164 ep = urb->dev->ep_out[epnum];
1166 spin_lock_irqsave (&ehci->lock, flags);
1167 stream = ep->hcpriv;
1169 if (unlikely (stream == NULL)) {
1170 stream = iso_stream_alloc(GFP_ATOMIC);
1171 if (likely (stream != NULL)) {
1172 /* dev->ep owns the initial refcount */
1173 ep->hcpriv = stream;
1174 stream->ep = ep;
1175 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1176 urb->interval);
1179 /* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1180 } else if (unlikely (stream->hw_info1 != 0)) {
1181 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1182 urb->dev->devpath, epnum,
1183 usb_pipein(urb->pipe) ? "in" : "out");
1184 stream = NULL;
1187 /* caller guarantees an eventual matching iso_stream_put */
1188 stream = iso_stream_get (stream);
1190 spin_unlock_irqrestore (&ehci->lock, flags);
1191 return stream;
1194 /*-------------------------------------------------------------------------*/
1196 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1198 static struct ehci_iso_sched *
1199 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1201 struct ehci_iso_sched *iso_sched;
1202 int size = sizeof *iso_sched;
1204 size += packets * sizeof (struct ehci_iso_packet);
1205 iso_sched = kzalloc(size, mem_flags);
1206 if (likely (iso_sched != NULL)) {
1207 INIT_LIST_HEAD (&iso_sched->td_list);
1209 return iso_sched;
1212 static inline void
1213 itd_sched_init(
1214 struct ehci_hcd *ehci,
1215 struct ehci_iso_sched *iso_sched,
1216 struct ehci_iso_stream *stream,
1217 struct urb *urb
1220 unsigned i;
1221 dma_addr_t dma = urb->transfer_dma;
1223 /* how many uframes are needed for these transfers */
1224 iso_sched->span = urb->number_of_packets * stream->interval;
1226 /* figure out per-uframe itd fields that we'll need later
1227 * when we fit new itds into the schedule.
1229 for (i = 0; i < urb->number_of_packets; i++) {
1230 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1231 unsigned length;
1232 dma_addr_t buf;
1233 u32 trans;
1235 length = urb->iso_frame_desc [i].length;
1236 buf = dma + urb->iso_frame_desc [i].offset;
1238 trans = EHCI_ISOC_ACTIVE;
1239 trans |= buf & 0x0fff;
1240 if (unlikely (((i + 1) == urb->number_of_packets))
1241 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1242 trans |= EHCI_ITD_IOC;
1243 trans |= length << 16;
1244 uframe->transaction = cpu_to_hc32(ehci, trans);
1246 /* might need to cross a buffer page within a uframe */
1247 uframe->bufp = (buf & ~(u64)0x0fff);
1248 buf += length;
1249 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1250 uframe->cross = 1;
1254 static void
1255 iso_sched_free (
1256 struct ehci_iso_stream *stream,
1257 struct ehci_iso_sched *iso_sched
1260 if (!iso_sched)
1261 return;
1262 // caller must hold ehci->lock!
1263 list_splice (&iso_sched->td_list, &stream->free_list);
1264 kfree (iso_sched);
1267 static int
1268 itd_urb_transaction (
1269 struct ehci_iso_stream *stream,
1270 struct ehci_hcd *ehci,
1271 struct urb *urb,
1272 gfp_t mem_flags
1275 struct ehci_itd *itd;
1276 dma_addr_t itd_dma;
1277 int i;
1278 unsigned num_itds;
1279 struct ehci_iso_sched *sched;
1280 unsigned long flags;
1282 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1283 if (unlikely (sched == NULL))
1284 return -ENOMEM;
1286 itd_sched_init(ehci, sched, stream, urb);
1288 if (urb->interval < 8)
1289 num_itds = 1 + (sched->span + 7) / 8;
1290 else
1291 num_itds = urb->number_of_packets;
1293 /* allocate/init ITDs */
1294 spin_lock_irqsave (&ehci->lock, flags);
1295 for (i = 0; i < num_itds; i++) {
1297 /* free_list.next might be cache-hot ... but maybe
1298 * the HC caches it too. avoid that issue for now.
1301 /* prefer previously-allocated itds */
1302 if (likely (!list_empty(&stream->free_list))) {
1303 itd = list_entry (stream->free_list.prev,
1304 struct ehci_itd, itd_list);
1305 list_del (&itd->itd_list);
1306 itd_dma = itd->itd_dma;
1307 } else
1308 itd = NULL;
1310 if (!itd) {
1311 spin_unlock_irqrestore (&ehci->lock, flags);
1312 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1313 &itd_dma);
1314 spin_lock_irqsave (&ehci->lock, flags);
1317 if (unlikely (NULL == itd)) {
1318 iso_sched_free (stream, sched);
1319 spin_unlock_irqrestore (&ehci->lock, flags);
1320 return -ENOMEM;
1322 memset (itd, 0, sizeof *itd);
1323 itd->itd_dma = itd_dma;
1324 list_add (&itd->itd_list, &sched->td_list);
1326 spin_unlock_irqrestore (&ehci->lock, flags);
1328 /* temporarily store schedule info in hcpriv */
1329 urb->hcpriv = sched;
1330 urb->error_count = 0;
1331 return 0;
1334 /*-------------------------------------------------------------------------*/
1336 static inline int
1337 itd_slot_ok (
1338 struct ehci_hcd *ehci,
1339 u32 mod,
1340 u32 uframe,
1341 u8 usecs,
1342 u32 period
1345 uframe %= period;
1346 do {
1347 /* can't commit more than 80% periodic == 100 usec */
1348 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1349 > (100 - usecs))
1350 return 0;
1352 /* we know urb->interval is 2^N uframes */
1353 uframe += period;
1354 } while (uframe < mod);
1355 return 1;
1358 static inline int
1359 sitd_slot_ok (
1360 struct ehci_hcd *ehci,
1361 u32 mod,
1362 struct ehci_iso_stream *stream,
1363 u32 uframe,
1364 struct ehci_iso_sched *sched,
1365 u32 period_uframes
1368 u32 mask, tmp;
1369 u32 frame, uf;
1371 mask = stream->raw_mask << (uframe & 7);
1373 /* for IN, don't wrap CSPLIT into the next frame */
1374 if (mask & ~0xffff)
1375 return 0;
1377 /* this multi-pass logic is simple, but performance may
1378 * suffer when the schedule data isn't cached.
1381 /* check bandwidth */
1382 uframe %= period_uframes;
1383 do {
1384 u32 max_used;
1386 frame = uframe >> 3;
1387 uf = uframe & 7;
1389 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1390 /* The tt's fullspeed bus bandwidth must be available.
1391 * tt_available scheduling guarantees 10+% for control/bulk.
1393 if (!tt_available (ehci, period_uframes << 3,
1394 stream->udev, frame, uf, stream->tt_usecs))
1395 return 0;
1396 #else
1397 /* tt must be idle for start(s), any gap, and csplit.
1398 * assume scheduling slop leaves 10+% for control/bulk.
1400 if (!tt_no_collision (ehci, period_uframes << 3,
1401 stream->udev, frame, mask))
1402 return 0;
1403 #endif
1405 /* check starts (OUT uses more than one) */
1406 max_used = 100 - stream->usecs;
1407 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1408 if (periodic_usecs (ehci, frame, uf) > max_used)
1409 return 0;
1412 /* for IN, check CSPLIT */
1413 if (stream->c_usecs) {
1414 uf = uframe & 7;
1415 max_used = 100 - stream->c_usecs;
1416 do {
1417 tmp = 1 << uf;
1418 tmp <<= 8;
1419 if ((stream->raw_mask & tmp) == 0)
1420 continue;
1421 if (periodic_usecs (ehci, frame, uf)
1422 > max_used)
1423 return 0;
1424 } while (++uf < 8);
1427 /* we know urb->interval is 2^N uframes */
1428 uframe += period_uframes;
1429 } while (uframe < mod);
1431 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1432 return 1;
1436 * This scheduler plans almost as far into the future as it has actual
1437 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1438 * "as small as possible" to be cache-friendlier.) That limits the size
1439 * transfers you can stream reliably; avoid more than 64 msec per urb.
1440 * Also avoid queue depths of less than ehci's worst irq latency (affected
1441 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1442 * and other factors); or more than about 230 msec total (for portability,
1443 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1446 #define SCHEDULE_SLOP 10 /* frames */
1448 static int
1449 iso_stream_schedule (
1450 struct ehci_hcd *ehci,
1451 struct urb *urb,
1452 struct ehci_iso_stream *stream
1455 u32 now, start, max, period;
1456 int status;
1457 unsigned mod = ehci->periodic_size << 3;
1458 struct ehci_iso_sched *sched = urb->hcpriv;
1460 if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1461 ehci_dbg (ehci, "iso request %p too long\n", urb);
1462 status = -EFBIG;
1463 goto fail;
1466 if ((stream->depth + sched->span) > mod) {
1467 ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1468 urb, stream->depth, sched->span, mod);
1469 status = -EFBIG;
1470 goto fail;
1473 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1475 /* when's the last uframe this urb could start? */
1476 max = now + mod;
1478 /* typical case: reuse current schedule. stream is still active,
1479 * and no gaps from host falling behind (irq delays etc)
1481 if (likely (!list_empty (&stream->td_list))) {
1482 start = stream->next_uframe;
1483 if (start < now)
1484 start += mod;
1485 if (likely ((start + sched->span) < max))
1486 goto ready;
1487 /* else fell behind; someday, try to reschedule */
1488 status = -EL2NSYNC;
1489 goto fail;
1492 /* need to schedule; when's the next (u)frame we could start?
1493 * this is bigger than ehci->i_thresh allows; scheduling itself
1494 * isn't free, the slop should handle reasonably slow cpus. it
1495 * can also help high bandwidth if the dma and irq loads don't
1496 * jump until after the queue is primed.
1498 start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1499 start %= mod;
1500 stream->next_uframe = start;
1502 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1504 period = urb->interval;
1505 if (!stream->highspeed)
1506 period <<= 3;
1508 /* find a uframe slot with enough bandwidth */
1509 for (; start < (stream->next_uframe + period); start++) {
1510 int enough_space;
1512 /* check schedule: enough space? */
1513 if (stream->highspeed)
1514 enough_space = itd_slot_ok (ehci, mod, start,
1515 stream->usecs, period);
1516 else {
1517 if ((start % 8) >= 6)
1518 continue;
1519 enough_space = sitd_slot_ok (ehci, mod, stream,
1520 start, sched, period);
1523 /* schedule it here if there's enough bandwidth */
1524 if (enough_space) {
1525 stream->next_uframe = start % mod;
1526 goto ready;
1530 /* no room in the schedule */
1531 ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1532 list_empty (&stream->td_list) ? "" : "re",
1533 urb, now, max);
1534 status = -ENOSPC;
1536 fail:
1537 iso_sched_free (stream, sched);
1538 urb->hcpriv = NULL;
1539 return status;
1541 ready:
1542 /* report high speed start in uframes; full speed, in frames */
1543 urb->start_frame = stream->next_uframe;
1544 if (!stream->highspeed)
1545 urb->start_frame >>= 3;
1546 return 0;
1549 /*-------------------------------------------------------------------------*/
1551 static inline void
1552 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1553 struct ehci_itd *itd)
1555 int i;
1557 /* it's been recently zeroed */
1558 itd->hw_next = EHCI_LIST_END(ehci);
1559 itd->hw_bufp [0] = stream->buf0;
1560 itd->hw_bufp [1] = stream->buf1;
1561 itd->hw_bufp [2] = stream->buf2;
1563 for (i = 0; i < 8; i++)
1564 itd->index[i] = -1;
1566 /* All other fields are filled when scheduling */
1569 static inline void
1570 itd_patch(
1571 struct ehci_hcd *ehci,
1572 struct ehci_itd *itd,
1573 struct ehci_iso_sched *iso_sched,
1574 unsigned index,
1575 u16 uframe
1578 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1579 unsigned pg = itd->pg;
1581 // BUG_ON (pg == 6 && uf->cross);
1583 uframe &= 0x07;
1584 itd->index [uframe] = index;
1586 itd->hw_transaction[uframe] = uf->transaction;
1587 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1588 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1589 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1591 /* iso_frame_desc[].offset must be strictly increasing */
1592 if (unlikely (uf->cross)) {
1593 u64 bufp = uf->bufp + 4096;
1595 itd->pg = ++pg;
1596 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1597 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1601 static inline void
1602 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1604 /* always prepend ITD/SITD ... only QH tree is order-sensitive */
1605 itd->itd_next = ehci->pshadow [frame];
1606 itd->hw_next = ehci->periodic [frame];
1607 ehci->pshadow [frame].itd = itd;
1608 itd->frame = frame;
1609 wmb ();
1610 ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1613 /* fit urb's itds into the selected schedule slot; activate as needed */
1614 static int
1615 itd_link_urb (
1616 struct ehci_hcd *ehci,
1617 struct urb *urb,
1618 unsigned mod,
1619 struct ehci_iso_stream *stream
1622 int packet;
1623 unsigned next_uframe, uframe, frame;
1624 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1625 struct ehci_itd *itd;
1627 next_uframe = stream->next_uframe % mod;
1629 if (unlikely (list_empty(&stream->td_list))) {
1630 ehci_to_hcd(ehci)->self.bandwidth_allocated
1631 += stream->bandwidth;
1632 ehci_vdbg (ehci,
1633 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1634 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1635 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1636 urb->interval,
1637 next_uframe >> 3, next_uframe & 0x7);
1638 stream->start = jiffies;
1640 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1642 /* fill iTDs uframe by uframe */
1643 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1644 if (itd == NULL) {
1645 /* ASSERT: we have all necessary itds */
1646 // BUG_ON (list_empty (&iso_sched->td_list));
1648 /* ASSERT: no itds for this endpoint in this uframe */
1650 itd = list_entry (iso_sched->td_list.next,
1651 struct ehci_itd, itd_list);
1652 list_move_tail (&itd->itd_list, &stream->td_list);
1653 itd->stream = iso_stream_get (stream);
1654 itd->urb = usb_get_urb (urb);
1655 itd_init (ehci, stream, itd);
1658 uframe = next_uframe & 0x07;
1659 frame = next_uframe >> 3;
1661 itd->usecs [uframe] = stream->usecs;
1662 itd_patch(ehci, itd, iso_sched, packet, uframe);
1664 next_uframe += stream->interval;
1665 stream->depth += stream->interval;
1666 next_uframe %= mod;
1667 packet++;
1669 /* link completed itds into the schedule */
1670 if (((next_uframe >> 3) != frame)
1671 || packet == urb->number_of_packets) {
1672 itd_link (ehci, frame % ehci->periodic_size, itd);
1673 itd = NULL;
1676 stream->next_uframe = next_uframe;
1678 /* don't need that schedule data any more */
1679 iso_sched_free (stream, iso_sched);
1680 urb->hcpriv = NULL;
1682 timer_action (ehci, TIMER_IO_WATCHDOG);
1683 if (unlikely (!ehci->periodic_sched++))
1684 return enable_periodic (ehci);
1685 return 0;
1688 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1690 static unsigned
1691 itd_complete (
1692 struct ehci_hcd *ehci,
1693 struct ehci_itd *itd
1695 struct urb *urb = itd->urb;
1696 struct usb_iso_packet_descriptor *desc;
1697 u32 t;
1698 unsigned uframe;
1699 int urb_index = -1;
1700 struct ehci_iso_stream *stream = itd->stream;
1701 struct usb_device *dev;
1703 /* for each uframe with a packet */
1704 for (uframe = 0; uframe < 8; uframe++) {
1705 if (likely (itd->index[uframe] == -1))
1706 continue;
1707 urb_index = itd->index[uframe];
1708 desc = &urb->iso_frame_desc [urb_index];
1710 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1711 itd->hw_transaction [uframe] = 0;
1712 stream->depth -= stream->interval;
1714 /* report transfer status */
1715 if (unlikely (t & ISO_ERRS)) {
1716 urb->error_count++;
1717 if (t & EHCI_ISOC_BUF_ERR)
1718 desc->status = usb_pipein (urb->pipe)
1719 ? -ENOSR /* hc couldn't read */
1720 : -ECOMM; /* hc couldn't write */
1721 else if (t & EHCI_ISOC_BABBLE)
1722 desc->status = -EOVERFLOW;
1723 else /* (t & EHCI_ISOC_XACTERR) */
1724 desc->status = -EPROTO;
1726 /* HC need not update length with this error */
1727 if (!(t & EHCI_ISOC_BABBLE))
1728 desc->actual_length = EHCI_ITD_LENGTH (t);
1729 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1730 desc->status = 0;
1731 desc->actual_length = EHCI_ITD_LENGTH (t);
1735 usb_put_urb (urb);
1736 itd->urb = NULL;
1737 itd->stream = NULL;
1738 list_move (&itd->itd_list, &stream->free_list);
1739 iso_stream_put (ehci, stream);
1741 /* handle completion now? */
1742 if (likely ((urb_index + 1) != urb->number_of_packets))
1743 return 0;
1745 /* ASSERT: it's really the last itd for this urb
1746 list_for_each_entry (itd, &stream->td_list, itd_list)
1747 BUG_ON (itd->urb == urb);
1750 /* give urb back to the driver ... can be out-of-order */
1751 dev = urb->dev;
1752 ehci_urb_done (ehci, urb);
1753 urb = NULL;
1755 /* defer stopping schedule; completion can submit */
1756 ehci->periodic_sched--;
1757 if (unlikely (!ehci->periodic_sched))
1758 (void) disable_periodic (ehci);
1759 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1761 if (unlikely (list_empty (&stream->td_list))) {
1762 ehci_to_hcd(ehci)->self.bandwidth_allocated
1763 -= stream->bandwidth;
1764 ehci_vdbg (ehci,
1765 "deschedule devp %s ep%d%s-iso\n",
1766 dev->devpath, stream->bEndpointAddress & 0x0f,
1767 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1769 iso_stream_put (ehci, stream);
1771 return 1;
1774 /*-------------------------------------------------------------------------*/
1776 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1777 gfp_t mem_flags)
1779 int status = -EINVAL;
1780 unsigned long flags;
1781 struct ehci_iso_stream *stream;
1783 /* Get iso_stream head */
1784 stream = iso_stream_find (ehci, urb);
1785 if (unlikely (stream == NULL)) {
1786 ehci_dbg (ehci, "can't get iso stream\n");
1787 return -ENOMEM;
1789 if (unlikely (urb->interval != stream->interval)) {
1790 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1791 stream->interval, urb->interval);
1792 goto done;
1795 #ifdef EHCI_URB_TRACE
1796 ehci_dbg (ehci,
1797 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1798 __FUNCTION__, urb->dev->devpath, urb,
1799 usb_pipeendpoint (urb->pipe),
1800 usb_pipein (urb->pipe) ? "in" : "out",
1801 urb->transfer_buffer_length,
1802 urb->number_of_packets, urb->interval,
1803 stream);
1804 #endif
1806 /* allocate ITDs w/o locking anything */
1807 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1808 if (unlikely (status < 0)) {
1809 ehci_dbg (ehci, "can't init itds\n");
1810 goto done;
1813 /* schedule ... need to lock */
1814 spin_lock_irqsave (&ehci->lock, flags);
1815 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1816 &ehci_to_hcd(ehci)->flags)))
1817 status = -ESHUTDOWN;
1818 else
1819 status = iso_stream_schedule (ehci, urb, stream);
1820 if (likely (status == 0))
1821 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1822 spin_unlock_irqrestore (&ehci->lock, flags);
1824 done:
1825 if (unlikely (status < 0))
1826 iso_stream_put (ehci, stream);
1827 return status;
1830 #ifdef CONFIG_USB_EHCI_SPLIT_ISO
1832 /*-------------------------------------------------------------------------*/
1835 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1836 * TTs in USB 2.0 hubs. These need microframe scheduling.
1839 static inline void
1840 sitd_sched_init(
1841 struct ehci_hcd *ehci,
1842 struct ehci_iso_sched *iso_sched,
1843 struct ehci_iso_stream *stream,
1844 struct urb *urb
1847 unsigned i;
1848 dma_addr_t dma = urb->transfer_dma;
1850 /* how many frames are needed for these transfers */
1851 iso_sched->span = urb->number_of_packets * stream->interval;
1853 /* figure out per-frame sitd fields that we'll need later
1854 * when we fit new sitds into the schedule.
1856 for (i = 0; i < urb->number_of_packets; i++) {
1857 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1858 unsigned length;
1859 dma_addr_t buf;
1860 u32 trans;
1862 length = urb->iso_frame_desc [i].length & 0x03ff;
1863 buf = dma + urb->iso_frame_desc [i].offset;
1865 trans = SITD_STS_ACTIVE;
1866 if (((i + 1) == urb->number_of_packets)
1867 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1868 trans |= SITD_IOC;
1869 trans |= length << 16;
1870 packet->transaction = cpu_to_hc32(ehci, trans);
1872 /* might need to cross a buffer page within a td */
1873 packet->bufp = buf;
1874 packet->buf1 = (buf + length) & ~0x0fff;
1875 if (packet->buf1 != (buf & ~(u64)0x0fff))
1876 packet->cross = 1;
1878 /* OUT uses multiple start-splits */
1879 if (stream->bEndpointAddress & USB_DIR_IN)
1880 continue;
1881 length = (length + 187) / 188;
1882 if (length > 1) /* BEGIN vs ALL */
1883 length |= 1 << 3;
1884 packet->buf1 |= length;
1888 static int
1889 sitd_urb_transaction (
1890 struct ehci_iso_stream *stream,
1891 struct ehci_hcd *ehci,
1892 struct urb *urb,
1893 gfp_t mem_flags
1896 struct ehci_sitd *sitd;
1897 dma_addr_t sitd_dma;
1898 int i;
1899 struct ehci_iso_sched *iso_sched;
1900 unsigned long flags;
1902 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1903 if (iso_sched == NULL)
1904 return -ENOMEM;
1906 sitd_sched_init(ehci, iso_sched, stream, urb);
1908 /* allocate/init sITDs */
1909 spin_lock_irqsave (&ehci->lock, flags);
1910 for (i = 0; i < urb->number_of_packets; i++) {
1912 /* NOTE: for now, we don't try to handle wraparound cases
1913 * for IN (using sitd->hw_backpointer, like a FSTN), which
1914 * means we never need two sitds for full speed packets.
1917 /* free_list.next might be cache-hot ... but maybe
1918 * the HC caches it too. avoid that issue for now.
1921 /* prefer previously-allocated sitds */
1922 if (!list_empty(&stream->free_list)) {
1923 sitd = list_entry (stream->free_list.prev,
1924 struct ehci_sitd, sitd_list);
1925 list_del (&sitd->sitd_list);
1926 sitd_dma = sitd->sitd_dma;
1927 } else
1928 sitd = NULL;
1930 if (!sitd) {
1931 spin_unlock_irqrestore (&ehci->lock, flags);
1932 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1933 &sitd_dma);
1934 spin_lock_irqsave (&ehci->lock, flags);
1937 if (!sitd) {
1938 iso_sched_free (stream, iso_sched);
1939 spin_unlock_irqrestore (&ehci->lock, flags);
1940 return -ENOMEM;
1942 memset (sitd, 0, sizeof *sitd);
1943 sitd->sitd_dma = sitd_dma;
1944 list_add (&sitd->sitd_list, &iso_sched->td_list);
1947 /* temporarily store schedule info in hcpriv */
1948 urb->hcpriv = iso_sched;
1949 urb->error_count = 0;
1951 spin_unlock_irqrestore (&ehci->lock, flags);
1952 return 0;
1955 /*-------------------------------------------------------------------------*/
1957 static inline void
1958 sitd_patch(
1959 struct ehci_hcd *ehci,
1960 struct ehci_iso_stream *stream,
1961 struct ehci_sitd *sitd,
1962 struct ehci_iso_sched *iso_sched,
1963 unsigned index
1966 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1967 u64 bufp = uf->bufp;
1969 sitd->hw_next = EHCI_LIST_END(ehci);
1970 sitd->hw_fullspeed_ep = stream->address;
1971 sitd->hw_uframe = stream->splits;
1972 sitd->hw_results = uf->transaction;
1973 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1975 bufp = uf->bufp;
1976 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1977 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1979 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1980 if (uf->cross)
1981 bufp += 4096;
1982 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1983 sitd->index = index;
1986 static inline void
1987 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1989 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1990 sitd->sitd_next = ehci->pshadow [frame];
1991 sitd->hw_next = ehci->periodic [frame];
1992 ehci->pshadow [frame].sitd = sitd;
1993 sitd->frame = frame;
1994 wmb ();
1995 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1998 /* fit urb's sitds into the selected schedule slot; activate as needed */
1999 static int
2000 sitd_link_urb (
2001 struct ehci_hcd *ehci,
2002 struct urb *urb,
2003 unsigned mod,
2004 struct ehci_iso_stream *stream
2007 int packet;
2008 unsigned next_uframe;
2009 struct ehci_iso_sched *sched = urb->hcpriv;
2010 struct ehci_sitd *sitd;
2012 next_uframe = stream->next_uframe;
2014 if (list_empty(&stream->td_list)) {
2015 /* usbfs ignores TT bandwidth */
2016 ehci_to_hcd(ehci)->self.bandwidth_allocated
2017 += stream->bandwidth;
2018 ehci_vdbg (ehci,
2019 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2020 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2021 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2022 (next_uframe >> 3) % ehci->periodic_size,
2023 stream->interval, hc32_to_cpu(ehci, stream->splits));
2024 stream->start = jiffies;
2026 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2028 /* fill sITDs frame by frame */
2029 for (packet = 0, sitd = NULL;
2030 packet < urb->number_of_packets;
2031 packet++) {
2033 /* ASSERT: we have all necessary sitds */
2034 BUG_ON (list_empty (&sched->td_list));
2036 /* ASSERT: no itds for this endpoint in this frame */
2038 sitd = list_entry (sched->td_list.next,
2039 struct ehci_sitd, sitd_list);
2040 list_move_tail (&sitd->sitd_list, &stream->td_list);
2041 sitd->stream = iso_stream_get (stream);
2042 sitd->urb = usb_get_urb (urb);
2044 sitd_patch(ehci, stream, sitd, sched, packet);
2045 sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
2046 sitd);
2048 next_uframe += stream->interval << 3;
2049 stream->depth += stream->interval << 3;
2051 stream->next_uframe = next_uframe % mod;
2053 /* don't need that schedule data any more */
2054 iso_sched_free (stream, sched);
2055 urb->hcpriv = NULL;
2057 timer_action (ehci, TIMER_IO_WATCHDOG);
2058 if (!ehci->periodic_sched++)
2059 return enable_periodic (ehci);
2060 return 0;
2063 /*-------------------------------------------------------------------------*/
2065 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2066 | SITD_STS_XACT | SITD_STS_MMF)
2068 static unsigned
2069 sitd_complete (
2070 struct ehci_hcd *ehci,
2071 struct ehci_sitd *sitd
2073 struct urb *urb = sitd->urb;
2074 struct usb_iso_packet_descriptor *desc;
2075 u32 t;
2076 int urb_index = -1;
2077 struct ehci_iso_stream *stream = sitd->stream;
2078 struct usb_device *dev;
2080 urb_index = sitd->index;
2081 desc = &urb->iso_frame_desc [urb_index];
2082 t = hc32_to_cpup(ehci, &sitd->hw_results);
2084 /* report transfer status */
2085 if (t & SITD_ERRS) {
2086 urb->error_count++;
2087 if (t & SITD_STS_DBE)
2088 desc->status = usb_pipein (urb->pipe)
2089 ? -ENOSR /* hc couldn't read */
2090 : -ECOMM; /* hc couldn't write */
2091 else if (t & SITD_STS_BABBLE)
2092 desc->status = -EOVERFLOW;
2093 else /* XACT, MMF, etc */
2094 desc->status = -EPROTO;
2095 } else {
2096 desc->status = 0;
2097 desc->actual_length = desc->length - SITD_LENGTH (t);
2100 usb_put_urb (urb);
2101 sitd->urb = NULL;
2102 sitd->stream = NULL;
2103 list_move (&sitd->sitd_list, &stream->free_list);
2104 stream->depth -= stream->interval << 3;
2105 iso_stream_put (ehci, stream);
2107 /* handle completion now? */
2108 if ((urb_index + 1) != urb->number_of_packets)
2109 return 0;
2111 /* ASSERT: it's really the last sitd for this urb
2112 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2113 BUG_ON (sitd->urb == urb);
2116 /* give urb back to the driver */
2117 dev = urb->dev;
2118 ehci_urb_done (ehci, urb);
2119 urb = NULL;
2121 /* defer stopping schedule; completion can submit */
2122 ehci->periodic_sched--;
2123 if (!ehci->periodic_sched)
2124 (void) disable_periodic (ehci);
2125 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2127 if (list_empty (&stream->td_list)) {
2128 ehci_to_hcd(ehci)->self.bandwidth_allocated
2129 -= stream->bandwidth;
2130 ehci_vdbg (ehci,
2131 "deschedule devp %s ep%d%s-iso\n",
2132 dev->devpath, stream->bEndpointAddress & 0x0f,
2133 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2135 iso_stream_put (ehci, stream);
2137 return 1;
2141 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2142 gfp_t mem_flags)
2144 int status = -EINVAL;
2145 unsigned long flags;
2146 struct ehci_iso_stream *stream;
2148 /* Get iso_stream head */
2149 stream = iso_stream_find (ehci, urb);
2150 if (stream == NULL) {
2151 ehci_dbg (ehci, "can't get iso stream\n");
2152 return -ENOMEM;
2154 if (urb->interval != stream->interval) {
2155 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2156 stream->interval, urb->interval);
2157 goto done;
2160 #ifdef EHCI_URB_TRACE
2161 ehci_dbg (ehci,
2162 "submit %p dev%s ep%d%s-iso len %d\n",
2163 urb, urb->dev->devpath,
2164 usb_pipeendpoint (urb->pipe),
2165 usb_pipein (urb->pipe) ? "in" : "out",
2166 urb->transfer_buffer_length);
2167 #endif
2169 /* allocate SITDs */
2170 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2171 if (status < 0) {
2172 ehci_dbg (ehci, "can't init sitds\n");
2173 goto done;
2176 /* schedule ... need to lock */
2177 spin_lock_irqsave (&ehci->lock, flags);
2178 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2179 &ehci_to_hcd(ehci)->flags)))
2180 status = -ESHUTDOWN;
2181 else
2182 status = iso_stream_schedule (ehci, urb, stream);
2183 if (status == 0)
2184 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2185 spin_unlock_irqrestore (&ehci->lock, flags);
2187 done:
2188 if (status < 0)
2189 iso_stream_put (ehci, stream);
2190 return status;
2193 #else
2195 static inline int
2196 sitd_submit (struct ehci_hcd *ehci, struct urb *urb, gfp_t mem_flags)
2198 ehci_dbg (ehci, "split iso support is disabled\n");
2199 return -ENOSYS;
2202 static inline unsigned
2203 sitd_complete (
2204 struct ehci_hcd *ehci,
2205 struct ehci_sitd *sitd
2207 ehci_err (ehci, "sitd_complete %p?\n", sitd);
2208 return 0;
2211 #endif /* USB_EHCI_SPLIT_ISO */
2213 /*-------------------------------------------------------------------------*/
2215 static void
2216 scan_periodic (struct ehci_hcd *ehci)
2218 unsigned frame, clock, now_uframe, mod;
2219 unsigned modified;
2221 mod = ehci->periodic_size << 3;
2224 * When running, scan from last scan point up to "now"
2225 * else clean up by scanning everything that's left.
2226 * Touches as few pages as possible: cache-friendly.
2228 now_uframe = ehci->next_uframe;
2229 if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
2230 clock = ehci_readl(ehci, &ehci->regs->frame_index);
2231 else
2232 clock = now_uframe + mod - 1;
2233 clock %= mod;
2235 for (;;) {
2236 union ehci_shadow q, *q_p;
2237 __hc32 type, *hw_p;
2238 unsigned uframes;
2240 /* don't scan past the live uframe */
2241 frame = now_uframe >> 3;
2242 if (frame == (clock >> 3))
2243 uframes = now_uframe & 0x07;
2244 else {
2245 /* safe to scan the whole frame at once */
2246 now_uframe |= 0x07;
2247 uframes = 8;
2250 restart:
2251 /* scan each element in frame's queue for completions */
2252 q_p = &ehci->pshadow [frame];
2253 hw_p = &ehci->periodic [frame];
2254 q.ptr = q_p->ptr;
2255 type = Q_NEXT_TYPE(ehci, *hw_p);
2256 modified = 0;
2258 while (q.ptr != NULL) {
2259 unsigned uf;
2260 union ehci_shadow temp;
2261 int live;
2263 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2264 switch (hc32_to_cpu(ehci, type)) {
2265 case Q_TYPE_QH:
2266 /* handle any completions */
2267 temp.qh = qh_get (q.qh);
2268 type = Q_NEXT_TYPE(ehci, q.qh->hw_next);
2269 q = q.qh->qh_next;
2270 modified = qh_completions (ehci, temp.qh);
2271 if (unlikely (list_empty (&temp.qh->qtd_list)))
2272 intr_deschedule (ehci, temp.qh);
2273 qh_put (temp.qh);
2274 break;
2275 case Q_TYPE_FSTN:
2276 /* for "save place" FSTNs, look at QH entries
2277 * in the previous frame for completions.
2279 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2280 dbg ("ignoring completions from FSTNs");
2282 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2283 q = q.fstn->fstn_next;
2284 break;
2285 case Q_TYPE_ITD:
2286 /* skip itds for later in the frame */
2287 rmb ();
2288 for (uf = live ? uframes : 8; uf < 8; uf++) {
2289 if (0 == (q.itd->hw_transaction [uf]
2290 & ITD_ACTIVE(ehci)))
2291 continue;
2292 q_p = &q.itd->itd_next;
2293 hw_p = &q.itd->hw_next;
2294 type = Q_NEXT_TYPE(ehci,
2295 q.itd->hw_next);
2296 q = *q_p;
2297 break;
2299 if (uf != 8)
2300 break;
2302 /* this one's ready ... HC won't cache the
2303 * pointer for much longer, if at all.
2305 *q_p = q.itd->itd_next;
2306 *hw_p = q.itd->hw_next;
2307 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2308 wmb();
2309 modified = itd_complete (ehci, q.itd);
2310 q = *q_p;
2311 break;
2312 case Q_TYPE_SITD:
2313 if ((q.sitd->hw_results & SITD_ACTIVE(ehci))
2314 && live) {
2315 q_p = &q.sitd->sitd_next;
2316 hw_p = &q.sitd->hw_next;
2317 type = Q_NEXT_TYPE(ehci,
2318 q.sitd->hw_next);
2319 q = *q_p;
2320 break;
2322 *q_p = q.sitd->sitd_next;
2323 *hw_p = q.sitd->hw_next;
2324 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2325 wmb();
2326 modified = sitd_complete (ehci, q.sitd);
2327 q = *q_p;
2328 break;
2329 default:
2330 dbg ("corrupt type %d frame %d shadow %p",
2331 type, frame, q.ptr);
2332 // BUG ();
2333 q.ptr = NULL;
2336 /* assume completion callbacks modify the queue */
2337 if (unlikely (modified))
2338 goto restart;
2341 /* stop when we catch up to the HC */
2343 // FIXME: this assumes we won't get lapped when
2344 // latencies climb; that should be rare, but...
2345 // detect it, and just go all the way around.
2346 // FLR might help detect this case, so long as latencies
2347 // don't exceed periodic_size msec (default 1.024 sec).
2349 // FIXME: likewise assumes HC doesn't halt mid-scan
2351 if (now_uframe == clock) {
2352 unsigned now;
2354 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
2355 break;
2356 ehci->next_uframe = now_uframe;
2357 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2358 if (now_uframe == now)
2359 break;
2361 /* rescan the rest of this frame, then ... */
2362 clock = now;
2363 } else {
2364 now_uframe++;
2365 now_uframe %= mod;