davinci: DA850/OMAP-L138: avoid using separate initcall for initializing regulator
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / mm / mmu.c
blobea67be0223ace255de0d96af02009fc5274085b0
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
31 #include "mm.h"
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
43 * The pmd table for the upper-most set of pages.
45 pmd_t *top_pmd;
47 #define CPOLICY_UNCACHED 0
48 #define CPOLICY_BUFFERED 1
49 #define CPOLICY_WRITETHROUGH 2
50 #define CPOLICY_WRITEBACK 3
51 #define CPOLICY_WRITEALLOC 4
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
61 struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
68 static struct cachepolicy cache_policies[] __initdata = {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
73 .pte = L_PTE_MT_UNCACHED,
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
78 .pte = L_PTE_MT_BUFFERABLE,
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
83 .pte = L_PTE_MT_WRITETHROUGH,
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
88 .pte = L_PTE_MT_WRITEBACK,
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
93 .pte = L_PTE_MT_WRITEALLOC,
98 * These are useful for identifying cache coherency
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
103 static void __init early_cachepolicy(char **p)
105 int i;
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
110 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
114 *p += len;
115 break;
118 if (i == ARRAY_SIZE(cache_policies))
119 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 * This restriction is partly to do with the way we boot; it is
122 * unpredictable to have memory mapped using two different sets of
123 * memory attributes (shared, type, and cache attribs). We can not
124 * change these attributes once the initial assembly has setup the
125 * page tables.
127 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 cachepolicy = CPOLICY_WRITEBACK;
131 flush_cache_all();
132 set_cr(cr_alignment);
134 __early_param("cachepolicy=", early_cachepolicy);
136 static void __init early_nocache(char **__unused)
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(&p);
142 __early_param("nocache", early_nocache);
144 static void __init early_nowrite(char **__unused)
146 char *p = "uncached";
147 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 early_cachepolicy(&p);
150 __early_param("nowb", early_nowrite);
152 static void __init early_ecc(char **p)
154 if (memcmp(*p, "on", 2) == 0) {
155 ecc_mask = PMD_PROTECTION;
156 *p += 2;
157 } else if (memcmp(*p, "off", 3) == 0) {
158 ecc_mask = 0;
159 *p += 3;
162 __early_param("ecc=", early_ecc);
164 static int __init noalign_setup(char *__unused)
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
171 __setup("noalign", noalign_setup);
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
176 unsigned long flags;
178 mask &= ~CR_A;
180 set &= mask;
182 local_irq_save(flags);
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
187 set_cr((get_cr() & ~mask) | set);
189 local_irq_restore(flags);
191 #endif
193 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196 static struct mem_type mem_types[] = {
197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
200 .prot_l1 = PMD_TYPE_TABLE,
201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
202 .domain = DOMAIN_IO,
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206 .prot_l1 = PMD_TYPE_TABLE,
207 .prot_sect = PROT_SECT_DEVICE,
208 .domain = DOMAIN_IO,
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
216 [MT_DEVICE_WC] = { /* ioremap_wc */
217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218 .prot_l1 = PMD_TYPE_TABLE,
219 .prot_sect = PROT_SECT_DEVICE,
220 .domain = DOMAIN_IO,
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
228 [MT_CACHECLEAN] = {
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_KERNEL,
232 [MT_MINICLEAN] = {
233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 .domain = DOMAIN_KERNEL,
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
248 [MT_MEMORY] = {
249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 .domain = DOMAIN_KERNEL,
252 [MT_ROM] = {
253 .prot_sect = PMD_TYPE_SECT,
254 .domain = DOMAIN_KERNEL,
256 [MT_MEMORY_NONCACHED] = {
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
262 const struct mem_type *get_mem_type(unsigned int type)
264 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
266 EXPORT_SYMBOL(get_mem_type);
269 * Adjust the PMD section entries according to the CPU in use.
271 static void __init build_mem_type_table(void)
273 struct cachepolicy *cp;
274 unsigned int cr = get_cr();
275 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
276 int cpu_arch = cpu_architecture();
277 int i;
279 if (cpu_arch < CPU_ARCH_ARMv6) {
280 #if defined(CONFIG_CPU_DCACHE_DISABLE)
281 if (cachepolicy > CPOLICY_BUFFERED)
282 cachepolicy = CPOLICY_BUFFERED;
283 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
284 if (cachepolicy > CPOLICY_WRITETHROUGH)
285 cachepolicy = CPOLICY_WRITETHROUGH;
286 #endif
288 if (cpu_arch < CPU_ARCH_ARMv5) {
289 if (cachepolicy >= CPOLICY_WRITEALLOC)
290 cachepolicy = CPOLICY_WRITEBACK;
291 ecc_mask = 0;
293 #ifdef CONFIG_SMP
294 cachepolicy = CPOLICY_WRITEALLOC;
295 #endif
298 * Strip out features not present on earlier architectures.
299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
300 * without extended page tables don't have the 'Shared' bit.
302 if (cpu_arch < CPU_ARCH_ARMv5)
303 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307 mem_types[i].prot_sect &= ~PMD_SECT_S;
310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 * "update-able on write" bit on ARM610). However, Xscale and
312 * Xscale3 require this bit to be cleared.
314 if (cpu_is_xscale() || cpu_is_xsc3()) {
315 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
316 mem_types[i].prot_sect &= ~PMD_BIT4;
317 mem_types[i].prot_l1 &= ~PMD_BIT4;
319 } else if (cpu_arch < CPU_ARCH_ARMv6) {
320 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
321 if (mem_types[i].prot_l1)
322 mem_types[i].prot_l1 |= PMD_BIT4;
323 if (mem_types[i].prot_sect)
324 mem_types[i].prot_sect |= PMD_BIT4;
329 * Mark the device areas according to the CPU/architecture.
331 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332 if (!cpu_is_xsc3()) {
334 * Mark device regions on ARMv6+ as execute-never
335 * to prevent speculative instruction fetches.
337 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
342 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
344 * For ARMv7 with TEX remapping,
345 * - shared device is SXCB=1100
346 * - nonshared device is SXCB=0100
347 * - write combine device mem is SXCB=0001
348 * (Uncached Normal memory)
350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353 } else if (cpu_is_xsc3()) {
355 * For Xscale3,
356 * - shared device is TEXCB=00101
357 * - nonshared device is TEXCB=01000
358 * - write combine device mem is TEXCB=00100
359 * (Inner/Outer Uncacheable in xsc3 parlance)
361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364 } else {
366 * For ARMv6 and ARMv7 without TEX remapping,
367 * - shared device is TEXCB=00001
368 * - nonshared device is TEXCB=01000
369 * - write combine device mem is TEXCB=00100
370 * (Uncached Normal in ARMv6 parlance).
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
376 } else {
378 * On others, write combining is "Uncached/Buffered"
380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
384 * Now deal with the memory-type mappings
386 cp = &cache_policies[cachepolicy];
387 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
389 #ifndef CONFIG_SMP
391 * Only use write-through for non-SMP systems
393 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395 #endif
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
401 if (arch_is_coherent() && cpu_is_xsc3())
402 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
405 * ARMv6 and above have extended page tables.
407 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
409 * Mark cache clean areas and XIP ROM read only
410 * from SVC mode and no access from userspace.
412 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
416 #ifdef CONFIG_SMP
418 * Mark memory with the "shared" attribute for SMP systems
420 user_pgprot |= L_PTE_SHARED;
421 kern_pgprot |= L_PTE_SHARED;
422 vecs_pgprot |= L_PTE_SHARED;
423 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
424 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
425 #endif
429 * Non-cacheable Normal - intended for memory areas that must
430 * not cause dirty cache line writebacks when used
432 if (cpu_arch >= CPU_ARCH_ARMv6) {
433 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
434 /* Non-cacheable Normal is XCB = 001 */
435 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
436 PMD_SECT_BUFFERED;
437 } else {
438 /* For both ARMv6 and non-TEX-remapping ARMv7 */
439 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440 PMD_SECT_TEX(1);
442 } else {
443 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
446 for (i = 0; i < 16; i++) {
447 unsigned long v = pgprot_val(protection_map[i]);
448 protection_map[i] = __pgprot(v | user_pgprot);
451 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
452 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
454 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
455 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
456 L_PTE_DIRTY | L_PTE_WRITE |
457 L_PTE_EXEC | kern_pgprot);
459 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
460 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
461 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
462 mem_types[MT_ROM].prot_sect |= cp->pmd;
464 switch (cp->pmd) {
465 case PMD_SECT_WT:
466 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
467 break;
468 case PMD_SECT_WB:
469 case PMD_SECT_WBWA:
470 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
471 break;
473 printk("Memory policy: ECC %sabled, Data cache %s\n",
474 ecc_mask ? "en" : "dis", cp->policy);
476 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
477 struct mem_type *t = &mem_types[i];
478 if (t->prot_l1)
479 t->prot_l1 |= PMD_DOMAIN(t->domain);
480 if (t->prot_sect)
481 t->prot_sect |= PMD_DOMAIN(t->domain);
485 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
487 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
488 unsigned long end, unsigned long pfn,
489 const struct mem_type *type)
491 pte_t *pte;
493 if (pmd_none(*pmd)) {
494 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
495 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
498 pte = pte_offset_kernel(pmd, addr);
499 do {
500 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
501 pfn++;
502 } while (pte++, addr += PAGE_SIZE, addr != end);
505 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
506 unsigned long end, unsigned long phys,
507 const struct mem_type *type)
509 pmd_t *pmd = pmd_offset(pgd, addr);
512 * Try a section mapping - end, addr and phys must all be aligned
513 * to a section boundary. Note that PMDs refer to the individual
514 * L1 entries, whereas PGDs refer to a group of L1 entries making
515 * up one logical pointer to an L2 table.
517 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
518 pmd_t *p = pmd;
520 if (addr & SECTION_SIZE)
521 pmd++;
523 do {
524 *pmd = __pmd(phys | type->prot_sect);
525 phys += SECTION_SIZE;
526 } while (pmd++, addr += SECTION_SIZE, addr != end);
528 flush_pmd_entry(p);
529 } else {
531 * No need to loop; pte's aren't interested in the
532 * individual L1 entries.
534 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
538 static void __init create_36bit_mapping(struct map_desc *md,
539 const struct mem_type *type)
541 unsigned long phys, addr, length, end;
542 pgd_t *pgd;
544 addr = md->virtual;
545 phys = (unsigned long)__pfn_to_phys(md->pfn);
546 length = PAGE_ALIGN(md->length);
548 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
549 printk(KERN_ERR "MM: CPU does not support supersection "
550 "mapping for 0x%08llx at 0x%08lx\n",
551 __pfn_to_phys((u64)md->pfn), addr);
552 return;
555 /* N.B. ARMv6 supersections are only defined to work with domain 0.
556 * Since domain assignments can in fact be arbitrary, the
557 * 'domain == 0' check below is required to insure that ARMv6
558 * supersections are only allocated for domain 0 regardless
559 * of the actual domain assignments in use.
561 if (type->domain) {
562 printk(KERN_ERR "MM: invalid domain in supersection "
563 "mapping for 0x%08llx at 0x%08lx\n",
564 __pfn_to_phys((u64)md->pfn), addr);
565 return;
568 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
569 printk(KERN_ERR "MM: cannot create mapping for "
570 "0x%08llx at 0x%08lx invalid alignment\n",
571 __pfn_to_phys((u64)md->pfn), addr);
572 return;
576 * Shift bits [35:32] of address into bits [23:20] of PMD
577 * (See ARMv6 spec).
579 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
581 pgd = pgd_offset_k(addr);
582 end = addr + length;
583 do {
584 pmd_t *pmd = pmd_offset(pgd, addr);
585 int i;
587 for (i = 0; i < 16; i++)
588 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
590 addr += SUPERSECTION_SIZE;
591 phys += SUPERSECTION_SIZE;
592 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
593 } while (addr != end);
597 * Create the page directory entries and any necessary
598 * page tables for the mapping specified by `md'. We
599 * are able to cope here with varying sizes and address
600 * offsets, and we take full advantage of sections and
601 * supersections.
603 void __init create_mapping(struct map_desc *md)
605 unsigned long phys, addr, length, end;
606 const struct mem_type *type;
607 pgd_t *pgd;
609 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
610 printk(KERN_WARNING "BUG: not creating mapping for "
611 "0x%08llx at 0x%08lx in user region\n",
612 __pfn_to_phys((u64)md->pfn), md->virtual);
613 return;
616 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
617 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
618 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
619 "overlaps vmalloc space\n",
620 __pfn_to_phys((u64)md->pfn), md->virtual);
623 type = &mem_types[md->type];
626 * Catch 36-bit addresses
628 if (md->pfn >= 0x100000) {
629 create_36bit_mapping(md, type);
630 return;
633 addr = md->virtual & PAGE_MASK;
634 phys = (unsigned long)__pfn_to_phys(md->pfn);
635 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
637 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
638 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
639 "be mapped using pages, ignoring.\n",
640 __pfn_to_phys(md->pfn), addr);
641 return;
644 pgd = pgd_offset_k(addr);
645 end = addr + length;
646 do {
647 unsigned long next = pgd_addr_end(addr, end);
649 alloc_init_section(pgd, addr, next, phys, type);
651 phys += next - addr;
652 addr = next;
653 } while (pgd++, addr != end);
657 * Create the architecture specific mappings
659 void __init iotable_init(struct map_desc *io_desc, int nr)
661 int i;
663 for (i = 0; i < nr; i++)
664 create_mapping(io_desc + i);
667 static unsigned long __initdata vmalloc_reserve = SZ_128M;
670 * vmalloc=size forces the vmalloc area to be exactly 'size'
671 * bytes. This can be used to increase (or decrease) the vmalloc
672 * area - the default is 128m.
674 static void __init early_vmalloc(char **arg)
676 vmalloc_reserve = memparse(*arg, arg);
678 if (vmalloc_reserve < SZ_16M) {
679 vmalloc_reserve = SZ_16M;
680 printk(KERN_WARNING
681 "vmalloc area too small, limiting to %luMB\n",
682 vmalloc_reserve >> 20);
685 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
686 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
687 printk(KERN_WARNING
688 "vmalloc area is too big, limiting to %luMB\n",
689 vmalloc_reserve >> 20);
692 __early_param("vmalloc=", early_vmalloc);
694 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
696 static void __init sanity_check_meminfo(void)
698 int i, j, highmem = 0;
700 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
701 struct membank *bank = &meminfo.bank[j];
702 *bank = meminfo.bank[i];
704 #ifdef CONFIG_HIGHMEM
705 if (__va(bank->start) > VMALLOC_MIN ||
706 __va(bank->start) < (void *)PAGE_OFFSET)
707 highmem = 1;
709 bank->highmem = highmem;
712 * Split those memory banks which are partially overlapping
713 * the vmalloc area greatly simplifying things later.
715 if (__va(bank->start) < VMALLOC_MIN &&
716 bank->size > VMALLOC_MIN - __va(bank->start)) {
717 if (meminfo.nr_banks >= NR_BANKS) {
718 printk(KERN_CRIT "NR_BANKS too low, "
719 "ignoring high memory\n");
720 } else {
721 memmove(bank + 1, bank,
722 (meminfo.nr_banks - i) * sizeof(*bank));
723 meminfo.nr_banks++;
724 i++;
725 bank[1].size -= VMALLOC_MIN - __va(bank->start);
726 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
727 bank[1].highmem = highmem = 1;
728 j++;
730 bank->size = VMALLOC_MIN - __va(bank->start);
732 #else
733 bank->highmem = highmem;
736 * Check whether this memory bank would entirely overlap
737 * the vmalloc area.
739 if (__va(bank->start) >= VMALLOC_MIN ||
740 __va(bank->start) < (void *)PAGE_OFFSET) {
741 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
742 "(vmalloc region overlap).\n",
743 bank->start, bank->start + bank->size - 1);
744 continue;
748 * Check whether this memory bank would partially overlap
749 * the vmalloc area.
751 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
752 __va(bank->start + bank->size) < __va(bank->start)) {
753 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
754 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
755 "to -%.8lx (vmalloc region overlap).\n",
756 bank->start, bank->start + bank->size - 1,
757 bank->start + newsize - 1);
758 bank->size = newsize;
760 #endif
761 j++;
763 #ifdef CONFIG_HIGHMEM
764 if (highmem) {
765 const char *reason = NULL;
767 if (cache_is_vipt_aliasing()) {
769 * Interactions between kmap and other mappings
770 * make highmem support with aliasing VIPT caches
771 * rather difficult.
773 reason = "with VIPT aliasing cache";
774 #ifdef CONFIG_SMP
775 } else if (tlb_ops_need_broadcast()) {
777 * kmap_high needs to occasionally flush TLB entries,
778 * however, if the TLB entries need to be broadcast
779 * we may deadlock:
780 * kmap_high(irqs off)->flush_all_zero_pkmaps->
781 * flush_tlb_kernel_range->smp_call_function_many
782 * (must not be called with irqs off)
784 reason = "without hardware TLB ops broadcasting";
785 #endif
787 if (reason) {
788 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
789 reason);
790 while (j > 0 && meminfo.bank[j - 1].highmem)
791 j--;
794 #endif
795 meminfo.nr_banks = j;
798 static inline void prepare_page_table(void)
800 unsigned long addr;
803 * Clear out all the mappings below the kernel image.
805 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
806 pmd_clear(pmd_off_k(addr));
808 #ifdef CONFIG_XIP_KERNEL
809 /* The XIP kernel is mapped in the module area -- skip over it */
810 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
811 #endif
812 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
813 pmd_clear(pmd_off_k(addr));
816 * Clear out all the kernel space mappings, except for the first
817 * memory bank, up to the end of the vmalloc region.
819 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
820 addr < VMALLOC_END; addr += PGDIR_SIZE)
821 pmd_clear(pmd_off_k(addr));
825 * Reserve the various regions of node 0
827 void __init reserve_node_zero(pg_data_t *pgdat)
829 unsigned long res_size = 0;
832 * Register the kernel text and data with bootmem.
833 * Note that this can only be in node 0.
835 #ifdef CONFIG_XIP_KERNEL
836 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
837 BOOTMEM_DEFAULT);
838 #else
839 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
840 BOOTMEM_DEFAULT);
841 #endif
844 * Reserve the page tables. These are already in use,
845 * and can only be in node 0.
847 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
848 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
851 * Hmm... This should go elsewhere, but we really really need to
852 * stop things allocating the low memory; ideally we need a better
853 * implementation of GFP_DMA which does not assume that DMA-able
854 * memory starts at zero.
856 if (machine_is_integrator() || machine_is_cintegrator())
857 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
860 * These should likewise go elsewhere. They pre-reserve the
861 * screen memory region at the start of main system memory.
863 if (machine_is_edb7211())
864 res_size = 0x00020000;
865 if (machine_is_p720t())
866 res_size = 0x00014000;
868 /* H1940 and RX3715 need to reserve this for suspend */
870 if (machine_is_h1940() || machine_is_rx3715()) {
871 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
872 BOOTMEM_DEFAULT);
873 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
874 BOOTMEM_DEFAULT);
877 if (machine_is_palmld() || machine_is_palmtx()) {
878 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
879 BOOTMEM_EXCLUSIVE);
880 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
881 BOOTMEM_EXCLUSIVE);
884 if (machine_is_treo680()) {
885 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
886 BOOTMEM_EXCLUSIVE);
887 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
888 BOOTMEM_EXCLUSIVE);
891 if (machine_is_palmt5())
892 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
893 BOOTMEM_EXCLUSIVE);
896 * U300 - This platform family can share physical memory
897 * between two ARM cpus, one running Linux and the other
898 * running another OS.
900 if (machine_is_u300()) {
901 #ifdef CONFIG_MACH_U300_SINGLE_RAM
902 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
903 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
904 res_size = 0x00100000;
905 #endif
906 #endif
909 #ifdef CONFIG_SA1111
911 * Because of the SA1111 DMA bug, we want to preserve our
912 * precious DMA-able memory...
914 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
915 #endif
916 if (res_size)
917 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
918 BOOTMEM_DEFAULT);
922 * Set up device the mappings. Since we clear out the page tables for all
923 * mappings above VMALLOC_END, we will remove any debug device mappings.
924 * This means you have to be careful how you debug this function, or any
925 * called function. This means you can't use any function or debugging
926 * method which may touch any device, otherwise the kernel _will_ crash.
928 static void __init devicemaps_init(struct machine_desc *mdesc)
930 struct map_desc map;
931 unsigned long addr;
932 void *vectors;
935 * Allocate the vector page early.
937 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
939 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
940 pmd_clear(pmd_off_k(addr));
943 * Map the kernel if it is XIP.
944 * It is always first in the modulearea.
946 #ifdef CONFIG_XIP_KERNEL
947 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
948 map.virtual = MODULES_VADDR;
949 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
950 map.type = MT_ROM;
951 create_mapping(&map);
952 #endif
955 * Map the cache flushing regions.
957 #ifdef FLUSH_BASE
958 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
959 map.virtual = FLUSH_BASE;
960 map.length = SZ_1M;
961 map.type = MT_CACHECLEAN;
962 create_mapping(&map);
963 #endif
964 #ifdef FLUSH_BASE_MINICACHE
965 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
966 map.virtual = FLUSH_BASE_MINICACHE;
967 map.length = SZ_1M;
968 map.type = MT_MINICLEAN;
969 create_mapping(&map);
970 #endif
973 * Create a mapping for the machine vectors at the high-vectors
974 * location (0xffff0000). If we aren't using high-vectors, also
975 * create a mapping at the low-vectors virtual address.
977 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
978 map.virtual = 0xffff0000;
979 map.length = PAGE_SIZE;
980 map.type = MT_HIGH_VECTORS;
981 create_mapping(&map);
983 if (!vectors_high()) {
984 map.virtual = 0;
985 map.type = MT_LOW_VECTORS;
986 create_mapping(&map);
990 * Ask the machine support to map in the statically mapped devices.
992 if (mdesc->map_io)
993 mdesc->map_io();
996 * Finally flush the caches and tlb to ensure that we're in a
997 * consistent state wrt the writebuffer. This also ensures that
998 * any write-allocated cache lines in the vector page are written
999 * back. After this point, we can start to touch devices again.
1001 local_flush_tlb_all();
1002 flush_cache_all();
1005 static void __init kmap_init(void)
1007 #ifdef CONFIG_HIGHMEM
1008 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1009 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1010 BUG_ON(!pmd_none(*pmd) || !pte);
1011 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1012 pkmap_page_table = pte + PTRS_PER_PTE;
1013 #endif
1017 * paging_init() sets up the page tables, initialises the zone memory
1018 * maps, and sets up the zero page, bad page and bad page tables.
1020 void __init paging_init(struct machine_desc *mdesc)
1022 void *zero_page;
1024 build_mem_type_table();
1025 sanity_check_meminfo();
1026 prepare_page_table();
1027 bootmem_init();
1028 devicemaps_init(mdesc);
1029 kmap_init();
1031 top_pmd = pmd_off_k(0xffff0000);
1034 * allocate the zero page. Note that this always succeeds and
1035 * returns a zeroed result.
1037 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1038 empty_zero_page = virt_to_page(zero_page);
1039 flush_dcache_page(empty_zero_page);
1043 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1044 * the user-mode pages. This will then ensure that we have predictable
1045 * results when turning the mmu off
1047 void setup_mm_for_reboot(char mode)
1049 unsigned long base_pmdval;
1050 pgd_t *pgd;
1051 int i;
1053 if (current->mm && current->mm->pgd)
1054 pgd = current->mm->pgd;
1055 else
1056 pgd = init_mm.pgd;
1058 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1059 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1060 base_pmdval |= PMD_BIT4;
1062 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1063 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1064 pmd_t *pmd;
1066 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1067 pmd[0] = __pmd(pmdval);
1068 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1069 flush_pmd_entry(pmd);